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Abstract

We report the study of an “Einstein Cross” configuration first identified in a set of HST images by Cerny et al. Deep
spectroscopic observations obtained at the Spanish 10.4 m Gran Telescopio Canarias telescope, allowed us to
demonstrate the lens nature of the system, that consists of a Lyman-break galaxy (LBG), not a quasi-stellar object
as is usually the case, at z=3.03 lensed by a galaxy at z=0.556. Combining the new spectroscopy with the
archival HST data, it turns out that the lens is an elliptical galaxy with MV=−21.0, effective radius 2.8 kpc, and
stellar velocity dispersion σ=208±39 km s−1. The source is an LBG with Lyα luminosity ∼L* at that redshift.
From the modeling of the system, performed by assuming a singular isothermal ellipsoid (SIE) with external shear,
we estimate that the flux source is magnified about 4.5 times, and the velocity dispersion of the lens is
s = -

+197.9SIE 1.3
2.6 km s−1, in good agreement with the value derived spectroscopically. This is the second case

known of an Einstein cross of an LBG.

Key words: galaxies: elliptical and lenticular, cD – galaxies: high-redshift – gravitational lensing: strong –

techniques: spectroscopic

1. Introduction

Gravitational lenses represent one of the most powerful tools
to probe the properties of distant galaxies and the cosmological
parameters. Strong gravitational lensing produces multiple
images of distant sources that have their lines of sight very
close to foreground massive objects (see Treu 2010, for a
review). In addition, the special case of image splitting of
distant quasars can provide the direct measurement of the
Hubble constant from correlated flux variability (Treu &
Koopmans 2002; Suyu et al. 2014).

Accurate lens modeling can precisely probe the density
profile of galaxies at cosmological distances, specifically the
mass enclosed within the Einstein radius and the mean local
density slope within it. Combining lensing and dynamics
allows the central dark matter profile to be robustly inferred
(e.g., Treu & Koopmans 2004). All these facts make this kind
of configuration a fantastic laboratory for the study of the
universe.

Of particular interest is the detection of quadruple images of
lensed quasi-stellar object (QSO) in the shape of an Einstein
Cross (see e.g., Wisotzki et al. 2002; Morgan et al. 2004 for
first discoveries). However, these optical structures are rare on
the sky (Oguri & Marshall 2010) as they require a very close
alignment of quasars with foreground massive galaxies.
Various large-area sky surveys are planned in the near future
to increase the number of such systems (e.g., Schechter et al.
2017; Williams et al. 2017, 2018; Agnello et al. 2018), and
recently the Ho Lenses in COSMO-GRAILs Wellspring
(H0LiCOW) program (Bonvin et al. 2017; Suyu et al. 2017)
listed the five best lensed quasars discovered to date showing
an Einstein Cross structure.

During a search for high-z galaxies from the Reionization
Lensing Cluster Survey (RELICS) of the Hubble Treasury
Program (Salmon et al. 2017), a possible new Einstein Cross

configuration around a galaxy located at α=22:11:41.99,
δ=03:50:52.3 was discovered by Cerny et al. (2018; see
Figure 1). Later on, during a search for stripped galaxies in the
Hubble Space Telescope (HST) images from the RELICS
project, the serendipitous re-discovery of this object by one of
us (A. O.) led to the observations presented in this Letter. The
system, hereafter called J2211–0350, is sitting ∼90 arcsec
southwest from the core of the cluster RXC J2211.7−0349
(z=0.397) and, based on the redder color of the alleged lens
galaxy, it was argued that the lens had to be well behind the
nearby cluster. The system is composed by an early-type red
galaxy surrounded by four blue objects that are arranged in the
shape of a “Latin Cross” around the central galaxy. In Table 1
we report the magnitudes and the relative positions of the
image components. Data are from the RELICS catalogs except
for the component D that we measured directly on the HST
images.
Prompted by this discovery, we report here the results of

optical spectroscopy of the system that allows us to confirm its
lensing nature and measure the redshift of both the lens and the
source. We adopt the concordance cosmology and assume
H0=70 km s−1 Mpc−1, Ωm=0.3, and ΩΛ=0.7.

2. Observations and Data Analysis

Spectroscopic observations were collected on 2018 Decem-
ber 1 at the 10.4 m Gran Telescopio Canarias, located at the
Roque de Los Muchachos observatory, La Palma (Spain). We
used the optical spectrograph OSIRIS (Cepa et al. 2003) with
the grism R1000B covering the spectral range 4100–7500Å,
and a slit width of 1.0 arcsec. This configuration yields an
effective spectral resolution of R∼600.
Figure 1 shows an HST image of the target with super-

imposed the position of the slit, located so to observe both the
lensing galaxy and the three brighter images of the source at
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once. Only source D is outside the slit. Three independent
exposures of 1800 s were obtained under photometric condi-
tions and good atmospheric seeing (0.8 arcsec).

Standard IRAF6 tools were adopted for the data reduction.
Bias subtraction, flat field correction, image alignment, and
combination were performed. Cosmic rays were cleaned by
combining the three independent exposures and using the
crreject algorithm. The spectra were then calibrated in
wavelength with ∼0.2Å accuracy. Data of a spectrophoto-
metric standard star observed on the same night were used to
perform a relative flux calibration of the spectrum. HST
photometry on filter F606W was then used to achieve absolute
flux calibration of the spectrum (see Table 1).

The final 2D spectrum is characterized by the strong
emission from three blobs coincident with the spatial location
in the slit of the three lensed sources (see Figures 2 and 3). This
leaves no doubt about the nature of this source. The emission,

centered at λ=4904Å, is identified as the Lyα at z=3.03.
No other clear emission lines are visible (see Figure 4)
implying that the lensed source is a Lyman-break galaxy (LBG)
rather than a QSO. The identification of this line is secure as
there are no other emission lines and its profile shows a classic,
asymmetric, blue self-absorbed morphology that is typical of
Lyα emission (Jones et al. 2012).

3. Results

The flux and shape of the Lyα emission for the three blobs
are very similar, the observed FWHM for this line is
10–12Åcorresponding to a velocity of ∼1200 km s−1 at rest
frame (Figures 3 and 5).
The observed flux is 2.4×10−16 erg cm−2 s−1. Including

the contribution of source D (estimated from the HST
photometry), we derive a total observed line luminosity of
L(Lyα)=2.5×1043 erg s−1.
The red part of the spectrum is dominated by the signal from

the lens galaxy. Using the pPXF (Cappellari & Emsellem 2004)
IDL routines we measured the stellar velocity dispersion. The
Ca II H and K absorption lines were fitted at z=0.556 to
estimate the galaxy velocity dispersion. We used the library of
single stellar population spectra from Vazdekis et al. (2012)
properly convolved with the instrumental resolution to fit the
lines’ profile. The best fit corresponds to a velocity dispersion
σ=208±39 km s−1. These results confirm the photometric
redshift found by Cerny et al. (2018) that the galaxy is not a
member of the cluster RXC J2211.7−0349.
The ACS+F814W image was used to derive the properties

of the lensing galaxy. After properly masking the four images
of the source, we modeled the lens galaxy with a Sérsic law.
The data were deconvolved using as point-spread function
(PSF) an unsaturated and isolated star present in the field. We
found that the lens galaxy is well fitted by a model with n=5
and effective radius re=0.44 arcsec corresponding to
Re∼2.8 kpc. The absolute magnitude of the lens galaxy
(z=0.556) corresponds to MV∼−21.0 (taking into account
k-correction). The mass of the lens galaxy estimated from the
measured σ and Re is Mgal=4.5×1010M☉.

3.1. Lens Modeling

We performed the lens modeling of the system by using the
code by Enia et al. (2018), which implements the regularized
semi-linear inversion formalism with adaptive pixel scale
(Warren & Dye 2003; Suyu et al. 2006; Nightingale &
Dye 2015, and references therein).
The source plane (SP; i.e., the plane orthogonal to the line of

sight of the observer to the deflector, containing the back-
ground source) is gridded into pixels whose values represent
the source surface brightness counts and are treated as free
parameters. This approach avoids any a priori analytic
assumption on the surface brightness of the background source.
The size of the pixels adapts to the magnification pattern, being
smaller closer to the regions of increasing magnification, to
ensure a uniform signal-to-noise ratio (S/N) across the
reconstructed source and to fully exploit the increase in spatial
resolution in highly magnified regions provided by gravita-
tional lensing. For a fixed mass model of the deflector (or lens),
the SP is mapped into the image plane (IP; i.e., the plane
containing the deflector and orthogonal to the line of sight of
the observer to the deflector), then convolved with the PSF, and

Figure 1. HST color image of the new Einstein Cross J2211–0350 in the field
of the cluster RXC J2211.7−0349. The image is a combination of WFC3/IR
(F160W) in red, ACS image (F814W) in green, and (F435W) in blue. The
orange lines represent the position of the 1 arcsec slit used for the spectroscopic
observations. Both the lens galaxy and three lensed targets are observed
at once.

Table 1
Position and Measured Magnitudes

Id. Δα Δδ F435W F606W F814W
arcseca arcseca AB AB AB

Gal 0 0 24.61±0.08 22.83±0.01 21.59±0.01
A 0.826 −0.756 24.80±0.06 24.21±0.02 24.19±0.03
B −0.481 1.021 24.88±0.06 24.38±0.02 24.25±0.03
C 0.517 0.210 25.24±0.06 24.69±0.02 24.54±0.03
D −0.324 −0.216 25.7±0.10 25.20±0.15 25.11±0.10

Notes. R.A. (2000)=22 11 41.97 decl. (2000)=−03 50 52.0.
a Positions relative to the lensing galaxy center.

6 IRAF is distributed by the National Optical Astronomy Observatory, which
is operated by the Association of Universities for Research in Astronomy
(AURA) under cooperative agreement with the National Science Foundation.
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Figure 2. The 2D optical spectrum of the Einstein Cross J2211–0350 (see also Figure 3). Superimposed to the faint continuum is a prominent emission line at
∼4900 Å identified as Lyα.

Figure 3. Enlargement of the region around the Lyα. The Lyα emission of the
three lensed images (A, B, and C) is clearly resolved. Note the slight offset of
component C with respect to A and B due to the different position inside the
slit (see also Figure 1). The run of the flux along the spatial direction is also
shown (solid line).

Figure 4. Optical spectrum of the Einstein Cross (observed frame). This 1D spectrum was obtained by integrating the flux of both the lens galaxy and three lensed
images (see also Figure 2). A prominent Lyα emission is visible at z=3.03 due to the lensed source while stellar absorption lines at z=0.556 are due to the lensing
galaxy. The regions affected by telluric absorptions are marked (orange vertical lines).

Figure 5. Lyα region of optical spectrum of the three images of the Einstein
Cross shifted of an arbitrary quantity to viewing purposes. The peak is labeled
“A” in Figure 3.
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finally compared to the observed image. In order to avoid
unphysical solutions, in with the reconstructed source present-
ing severe discontinuities and pixel-to-pixel variations, a
regularization term is added to the merit function. The weight
of the regularization term is calculated via Bayesian analysis,
according to Suyu et al. (2006).

The mass distribution of the lens is modeled as a singular
isothermal ellipsoid (SIE), described by the following para-
meters: the Einstein radius (θE), the position of the lens centroid
(xL, yL), the minor-to-major axis ratio (qL), and the orientation
angle (θL; counter-clockwise from west). Although the object is
at the edge of the nearby cluster, to model the lens an external
shear is included in the model. It is described by the shear
strength (γ) and the shear angle (θγ; counter-clockwise from
west). The search for the best-fitting parameters of the lens is
done using the EMCEE code (Foreman-Mackey et al. 2013),
which implements the Markov Chain Monte Carlo technique to
sample the posterior probability density function of the model
parameters.

The magnification factor, μ, is calculated as the ratio
between the total flux density of the sources, as measured in
the SP within the region of S/N�3, and the flux density of
the corresponding image in the IP. The uncertainty on the
magnification factor is derived by computing μ 1000 times,
perturbing each time the lens model parameters around their
best-fitting values.

The modeling is carried out on the reduced ACS + F606w
image, with a pixel scale of 0 06. A noise map is constructed
from the provided weight map and the PSF is obtained by
median combining three unsaturated stars in the vicinity of the
target. The lens is subtracted from the image after fitting its
light profile with GALFIT (Peng et al. 2002).

The best-fitting SIE model has q = -
+0.76E 0.01

0.02 arcsec,
= -

+q 0.66L 0.06
0.04, and q = - -

+35.6L 0.8
0.6 degrees, with an external

shear of strength g = -
+0.31 0.02

0.01 and angle q = -g -
+34.9 0.7

0.6

degrees. The estimated Einstein radius can be converted into a
velocity dispersion, σSIE, using the relation

q p
s

= ⎜ ⎟⎛
⎝

⎞
⎠ ( )

c

D

D
4 , 1E

SIE
2

LS

S

where DLS and DS are the angular-diameter distances from lens
to source and observer to source, respectively. We find
s = -

+197.9SIE 1.3
2.6 km s−1, which is in good agreement with the

value derived from the line profile.
The results of the lens modeling are shown in Figure 6. The

reconstructed source, in the rightmost panel, is compact. This
result is not surprising, as there is no evidence of extended

structure in the lensed images. The estimated magnification
factor is m = -

+4.5 0.8
1.0.

4. Summary and Conclusions

We have presented the spectroscopic confirmation of a new
gravitational lens J2211–0350 with an Einstein Cross config-
uration discovered while inspecting RELICS images. The lens
is an elliptical galaxy (MV∼−21) at z=0.556, while the
lensed source is an LBG at z=3.03. Modeling of the lens
shows that the Einstein Cross is well reproduced by an SIE
model with an Einstein ring of 0.76 arcsec and that includes the
shear effect due to the foreground massive low-redshift cluster
of galaxies. The lensed source is magnified by a factor 4.5. This
gravitational lens is similar to the case reported by Bolton et al.
(2006) for J1011+0143. This is the second case of an Einstein
Cross gravitational lens produced by a distant LBG. The
intrinsic Lyα luminosity, taking into account the magnification
factor, is L(Lyα)=5×1042 erg s−1, a factor ∼2 higher than
that found by Bolton et al. (2006) for J1011+0143. The Lyα
luminosity is close to L* of the luminosity function of high-
redshift Lyα emitters (see e.g., Sobral et al. 2018).

We thank Mario Radovich, Simona Paiano, and Aldo Treves
for useful discussions. This work is based on observations
made with the GTC telescope, in the Spanish Observatorio del
Roque de los Muchachos of the Instituto de Astrofisica de
Canarias, under Director’s Discretionary Time. It is also based
on observations taken by the RELICS Treasury Program (GO
14096) with the NASA/ESA HST, which is operated by the
Association of Universities for Research in Astronomy, Inc.,
under NASA contract NAS5-26555.
Facilities: GTC(OSIRIS), HST(ACS), HST(WFC2).
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