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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Predictive maintenance is of importance to various industries. Fleet management can be beneficial if the time-between-failures (TBF) of an 
automobile can be predicted. Conventionally, the prediction models in predictive maintenance are established using historical maintenance data 
or sensor data. In the era of big data, the availability of data has been significantly increased. This study aims to introduce geographic 
information systems data into TBF modelling and research their impact on automobile TBF using deep learning. An experimental study based 
on real-world maintenance data reveals that the performance of deep neural network improved with the help of GIS data. 
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1. Introduction 

Maintenance is an essential part of the industry since it is 
highly relevant to modern production systems and product 
lifecycle management [1]. The failure of a machine may lead 
to casualty. Meanwhile, the maintenance cost has become a 
significant concern to the industry [2]. In order to avoid 
human injury and lower the maintenance cost, appropriate 
maintenance needs to be scheduled before failure occurs.  

The maintenance of the automobile is a big concern for 
fleet management companies. If the engine of an automobile 
fails when it is running, it might cause accident and economy 
loss [3]. It is important that fleet management companies take 
better maintenance to ensure an automobile in health status. 
There are two main types of maintenance strategies widely 
deployed in fleet management, which are run-to-failure and 
preventive maintenance [4]. Run-to-failure is a reactive 
management technique. The maintenance is not carried out 
until failure occurs. Preventive maintenance is deemed as a 
time-driven maintenance strategy. With the deployment of 
preventive maintenance, an automobile takes a scheduled 
check in a certain period [4]. Apparently, run-to-failure 
management cannot lower maintenance cost. As for 

preventive maintenance, a tricky part is that the scheduled 
check period is hard to determine. If it is scheduled too 
frequently, the maintenance cost will increase, and a part of 
automobile usage will be lost. However, if it is scheduled less 
frequently, an accident will happen [5]. The prediction of the 
TBF of an automobile can bring tangible benefits to the 
maintenance strategy. With the prediction of TBF, 
maintenance can be scheduled in an appropriate time so as to 
avoid the accident and lower maintenance cost. 

Deep learning is a group of machine learning algorithms, 
which is good at learning the hidden patterns of data [6]. In 
predictive maintenance, deep learning has been investigated in 
recent years [7-9]. Researchers have mainly focused on the 
features in sensor data or historical maintenance data [10]. 
However, the TBF of an automobile is also affected by 
environmental factors such as climate, terrain and traffic 
condition. Automobiles in a fleet management company may 
work in different areas which environmental factors are not 
the same. Hence, the data of the environmental factors also 
can be introduced into TBF modelling. GIS is a powerful tool 
which can be used to capture, store, query, analyse, display 
and output geographical information [11]. The data of climate, 
terrain and traffic condition can be captured using GIS. This 
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1. Introduction 

Maintenance is an essential part of the industry since it is 
highly relevant to modern production systems and product 
lifecycle management [1]. The failure of a machine may lead 
to casualty. Meanwhile, the maintenance cost has become a 
significant concern to the industry [2]. In order to avoid 
human injury and lower the maintenance cost, appropriate 
maintenance needs to be scheduled before failure occurs.  

The maintenance of the automobile is a big concern for 
fleet management companies. If the engine of an automobile 
fails when it is running, it might cause accident and economy 
loss [3]. It is important that fleet management companies take 
better maintenance to ensure an automobile in health status. 
There are two main types of maintenance strategies widely 
deployed in fleet management, which are run-to-failure and 
preventive maintenance [4]. Run-to-failure is a reactive 
management technique. The maintenance is not carried out 
until failure occurs. Preventive maintenance is deemed as a 
time-driven maintenance strategy. With the deployment of 
preventive maintenance, an automobile takes a scheduled 
check in a certain period [4]. Apparently, run-to-failure 
management cannot lower maintenance cost. As for 

preventive maintenance, a tricky part is that the scheduled 
check period is hard to determine. If it is scheduled too 
frequently, the maintenance cost will increase, and a part of 
automobile usage will be lost. However, if it is scheduled less 
frequently, an accident will happen [5]. The prediction of the 
TBF of an automobile can bring tangible benefits to the 
maintenance strategy. With the prediction of TBF, 
maintenance can be scheduled in an appropriate time so as to 
avoid the accident and lower maintenance cost. 

Deep learning is a group of machine learning algorithms, 
which is good at learning the hidden patterns of data [6]. In 
predictive maintenance, deep learning has been investigated in 
recent years [7-9]. Researchers have mainly focused on the 
features in sensor data or historical maintenance data [10]. 
However, the TBF of an automobile is also affected by 
environmental factors such as climate, terrain and traffic 
condition. Automobiles in a fleet management company may 
work in different areas which environmental factors are not 
the same. Hence, the data of the environmental factors also 
can be introduced into TBF modelling. GIS is a powerful tool 
which can be used to capture, store, query, analyse, display 
and output geographical information [11]. The data of climate, 
terrain and traffic condition can be captured using GIS. This 
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paper aims to establish a TBF prediction model for automobile 
using machine learning based on historical maintenance data 
and GIS data. Also, the impact of GIS data on automobile 
TBF is studied. The rest of the paper is organised as follows: 
The existing techniques in predictive maintenance and the 
cases of using GIS data for analysis are reviewed in Section 2. 
The methodology of how to establish a TBF prediction model 
using deep learning based on historical maintenance data and 
GIS data is reported in Section 3. Section 4 introduces an 
experimental study of TBF modelling using real-world data. 
Section 5 concludes the paper. 

2. Literature Review 

2.1. Statistical and Machine Learning Techniques in 
Predictive maintenance 

The existing techniques in predictive maintenance can be 
categorised into two types, which are statistical methods and 
machine learning methods. 

Parametric and semi-parametric methods are two types of 
well-known statistical methods in predictive maintenance. 
Parametric methods assume the lifetime of a machine follows 
a specific parametric distribution such as Weibull [12] and 
exponential [13]. The performance of parametric methods can 
be excellent when data generally follow a particular 
distribution. However, data distribution does not always fit the 
model perfectly and therefore the accuracy of parameter 
estimation cannot be always guaranteed. Accelerated failure 
time (AFT) model is an important parametric model which is 
used to analyse the accelerated or decelerated failure time. An 
AFT model was proposed to analyse the life-stress 
relationships for multiple types of stresses. The proposed 
model was developed based on n Log-Linear model. Its 
likelihood theory can be used to process censored data [14].  

Nonparametric methods have been studied for decades. The 
most prevailing model is called the Cox proportional hazard 
model (Cox PHM) [15]. The Cox PHM and its variants are 
widely used in reliability analysis. It is well known for the 
flexibility in processing both censored and uncensored data. 
Many researchers have used the Cox PHM to study the 
reliability of a product at a certain time base on the variables 
relevant to the reliability [16]. The Standard Cox PHM can be 
used to analyse the relationship between reliability and time-
independent covariates.  

Besides statistical methods, machine learning techniques 
also have been investigated in predictive maintenance. Wei et 
al. [17] proposed a dynamic particle filter-support vector 
regression method to forecast system reliability. Nieto et al. 
[18] proposed a hybrid particle swarm optimisation support 
vector machine to predict the remaining useful life (RUL) of 
aircraft.  

Because deep belief network does not rely on explicit 
model equations and domain knowledge, Zhao et al. [7] 
introduced a deep belief network to predict the RUL of 
bearing. A prognosis of defect propagation based recurrent 
neural network was designed to forecast the long-term 
prognostic machine reliability [8]. Both studies used data 
collected via sensors, while the former study focus on RUL 

and the latter study focus on reliability. Zhang et al. [19] 
researched the prediction of RUL using deep learning. The 
raw sensor data is converted to health index using a single 
layer perceptron. Then the health index is used to train a bi-
directional long-short-term memory network. 

Wang et al. [20] proposed a conditional inference trees 
model to forecast the reliability of automobile engines. A tree-
structured regression model was combined with Cox PHM in 
this study. The proposed tree model can offer straightforward 
interpretation reveal the significant attributes.  

Both statistical and machine learning techniques are 
important in predictive maintenance. In the past, when the 
data size is small and low in dimension, statistical methods 
had been prevailing. In the era of big data, as the growing size 
and complexity of data, machine learning has gained 
increasing attention due to its excellent capability in data 
mining. 

2.2. Machine Learning techniques in Processing GIS data 

GIS is a powerful tool which has been widely used in 
spatial analysis. The knowledge obtained from GIS can be 
beneficial to decision making [11]. In the engineering field, 
Miles [21] proposed several examples of GIS modelling 
application in civil engineering. The benefits of using GIS in 
engineering modelling was summarized. Lee [22] proposed a 
logistic regression model to evaluate the hazard of landslides 
using GIS and remote sensing data. Several terrain features 
such as slope, curvature, and distance from drainage were 
selected to establish a logistic regression model.  

In order to improve soil information for decision making, a 
predictive soil map was developed using digital soil mapping 
techniques. The soil profile data was collected, and a numeric 
classification was performed on the collected data to obtain 
soil taxa. Then, the soil taxa were spatially predicted and 
mapped using two machine learning algorithms, which are 
random forest and J48. Results indicated that random forest 
shows merits in modelling in comparison with J48 [23]. 

 A spectral-spatial feature-based classification framework 
was proposed to extract spectral and spatial features. In this 
framework, a balanced local discriminant embedding 
algorithm is used to extract spectral features from 
hyperspectral datasets. A convolutional neural network was 
used to extract the spatial features. The spectral and spatial 
features are then stacked together to train a multiple-feature-
based classifier [24].  

Tehrani et al. [25] proposed a method that uses a weights-
of evidence model and a support vector machine (SVM) 
technique to evaluate the correlation between flood occurrence 
and each conditioning factor. The performance of SVM based 
on four different kernels were identified. AUC (Area under the 
ROC Curve) was used to evaluate the algorithm performance. 
Results can be helpful to local government about optimising 
flood mitigation strategies.  

2.3. A Brief Summary 

From literature, it is obvious that various techniques in 
statistics and machine learning have been investigated in 
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predictive maintenance. Recently, in order to obtain 
knowledge for decision making, researchers have studied GIS 
data using machine learning techniques. However, to the best 
of our knowledge, there are no studies in predictive 
maintenance using GIS data. As we all know, automobile TBF 
is affected by different GIS factors such as climate, terrain and 
traffic condition. If GIS data can be introduced into TBF 
modelling and identified how its impact on automobile TBF, 
fleet management companies can adjust their maintenance 
strategy to lower the maintenance cost. 

3. Methodology 

Deep learning is a group of machine learning algorithms 
[26]. It was originated from the artificial neural network [27] 
and has been researched in recent years. Deep learning does 
not rely on feature selection. The features which are barely 
relevant to the TBF will be allocated with a small weight. In 
other words, the weights of the input layer in a deep learning 
model can be used to represent the feature relevancy to the 
TBF. There are two targets in this study. Firstly, a deep 
learning model needs to be established to predict automobile 
TBF based on historical maintenance data and GIS data. 
Secondly, the impact of GIS features to the TBF need to be 
determined. In order to achieve this target, the following 
methodology is adopted.  

Firstly, in order to process the nominal data (categorical 
variables) in historical maintenance data, one-hot encoding is 
necessary. However, when the number of categorical variables 
significantly surpasses the numeric variables, the dataset will 
become sparse and hard to be analysed [28]. Then, 
autoencoder, a deep learning algorithm, is used to train a 
neural network based on the one-hot encoded data in order to 
obtain low-dimension and robust data. The low-dimension and 
robust data is then concatenated with the rest numeric data in 
the dataset. 

Secondly, with the coordinates (i.e. longitude and latitude) 
of an automobile workstation. The GIS data such as local 
geographical and climatic data can be collected. This data is 
then combined with the processed historical maintenance data 
as a new dataset. The new dataset is then normalised and 
randomised before it is used for modelling. 

Thirdly, in the modelling stage, a deep learning model is 
established for automobile TBF prediction. The details about 
how to design a deep learning model were reported in our 
previous work [9]. In order to design a deep learning model, 
the types of a neural network need to be first determined 
according to the task and data type. In the next stage, the 
parameters of the deep learning model need to be selected and 
fine-tuned. 

Finally, once the deep learning model is established, it is 
necessary to identify the impact of different features on TBF. 
Because the training process of deep learning cannot be 
monitored, it is hard to identify how features affect TBF. In a 
neural network, the weight of the input layer refers to the 
importance of the feature. Hence, extracting the weight of the 
neural network’s input layer is helpful to identify the 
relevancy between features and output. Fig.1 shows the 
flowchart of the methodology. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. The flowchart of the methodology. 

4. Experimental Study 

4.1. Experimental Setup and Data 

In this study, a historical maintenance dataset of 
automobile engines is provided by a sizable fleet service 
company in the UK. Firstly, an understanding of the 
company’s general information is necessary. There are a large 
number of automobiles serving in the company, which include 
various types such as van and personal car. There are two 
maintenance management in the company, which are run-to-
failure and scheduled check. Without the knowledge of 
predictive maintenance, it is hard to optimise the maintenance 
cost and spare part management. Hence, the company has a 
keen interest in when an automobile will break down and 
return to the workstation. If the TBF of an automobile can be 
predicted, the maintenance strategy can be modified to 
achieve better spare parts management and lower maintenance 
cost. 

Secondly, the data collection method needs to be identified. 
The company has numerous workstations in different cities in 
the UK. When an automobile fails, it is returned to its 
belonging workstation. Then, the information of the failure 
such as failure time, type of automobile, and mileage is 
recorded. The historical maintenance dataset used in this study 
contains an excess of 10 thousand data entries in total. Each 
data entry represents the TBF and feature difference between 
the two maintenance record. 

After the historical maintenance data was collected, the 
next step is to collect the GIS data. There are various types of 
GIS features might affect automobile TBF, which includes 
terrain, climate, traffic, etc. Among all these GIS data, climate 
data is relatively easy to access. In this study, climate data was 
collected according to the automobile workstation, before it 
was integrated with the historical maintenance data. In this 
study, the GIS data collected contains five climatic features. 
The climatic data used in this dataset is collected from the 
website of the Met Office, UK [29]. The collected climatic 
features can be categorised into two types: temperature 
relevant features and rainfall relevant features. As the weather 
in the UK is relatively mild from March to November and it 

 



	 Chong Chen  et al. / Procedia CIRP 81 (2019) 447–452� 449
2 Chong Chen et al. / Procedia CIRP 00 (2019) 000–000 

paper aims to establish a TBF prediction model for automobile 
using machine learning based on historical maintenance data 
and GIS data. Also, the impact of GIS data on automobile 
TBF is studied. The rest of the paper is organised as follows: 
The existing techniques in predictive maintenance and the 
cases of using GIS data for analysis are reviewed in Section 2. 
The methodology of how to establish a TBF prediction model 
using deep learning based on historical maintenance data and 
GIS data is reported in Section 3. Section 4 introduces an 
experimental study of TBF modelling using real-world data. 
Section 5 concludes the paper. 

2. Literature Review 

2.1. Statistical and Machine Learning Techniques in 
Predictive maintenance 

The existing techniques in predictive maintenance can be 
categorised into two types, which are statistical methods and 
machine learning methods. 

Parametric and semi-parametric methods are two types of 
well-known statistical methods in predictive maintenance. 
Parametric methods assume the lifetime of a machine follows 
a specific parametric distribution such as Weibull [12] and 
exponential [13]. The performance of parametric methods can 
be excellent when data generally follow a particular 
distribution. However, data distribution does not always fit the 
model perfectly and therefore the accuracy of parameter 
estimation cannot be always guaranteed. Accelerated failure 
time (AFT) model is an important parametric model which is 
used to analyse the accelerated or decelerated failure time. An 
AFT model was proposed to analyse the life-stress 
relationships for multiple types of stresses. The proposed 
model was developed based on n Log-Linear model. Its 
likelihood theory can be used to process censored data [14].  

Nonparametric methods have been studied for decades. The 
most prevailing model is called the Cox proportional hazard 
model (Cox PHM) [15]. The Cox PHM and its variants are 
widely used in reliability analysis. It is well known for the 
flexibility in processing both censored and uncensored data. 
Many researchers have used the Cox PHM to study the 
reliability of a product at a certain time base on the variables 
relevant to the reliability [16]. The Standard Cox PHM can be 
used to analyse the relationship between reliability and time-
independent covariates.  

Besides statistical methods, machine learning techniques 
also have been investigated in predictive maintenance. Wei et 
al. [17] proposed a dynamic particle filter-support vector 
regression method to forecast system reliability. Nieto et al. 
[18] proposed a hybrid particle swarm optimisation support 
vector machine to predict the remaining useful life (RUL) of 
aircraft.  

Because deep belief network does not rely on explicit 
model equations and domain knowledge, Zhao et al. [7] 
introduced a deep belief network to predict the RUL of 
bearing. A prognosis of defect propagation based recurrent 
neural network was designed to forecast the long-term 
prognostic machine reliability [8]. Both studies used data 
collected via sensors, while the former study focus on RUL 

and the latter study focus on reliability. Zhang et al. [19] 
researched the prediction of RUL using deep learning. The 
raw sensor data is converted to health index using a single 
layer perceptron. Then the health index is used to train a bi-
directional long-short-term memory network. 

Wang et al. [20] proposed a conditional inference trees 
model to forecast the reliability of automobile engines. A tree-
structured regression model was combined with Cox PHM in 
this study. The proposed tree model can offer straightforward 
interpretation reveal the significant attributes.  

Both statistical and machine learning techniques are 
important in predictive maintenance. In the past, when the 
data size is small and low in dimension, statistical methods 
had been prevailing. In the era of big data, as the growing size 
and complexity of data, machine learning has gained 
increasing attention due to its excellent capability in data 
mining. 

2.2. Machine Learning techniques in Processing GIS data 

GIS is a powerful tool which has been widely used in 
spatial analysis. The knowledge obtained from GIS can be 
beneficial to decision making [11]. In the engineering field, 
Miles [21] proposed several examples of GIS modelling 
application in civil engineering. The benefits of using GIS in 
engineering modelling was summarized. Lee [22] proposed a 
logistic regression model to evaluate the hazard of landslides 
using GIS and remote sensing data. Several terrain features 
such as slope, curvature, and distance from drainage were 
selected to establish a logistic regression model.  

In order to improve soil information for decision making, a 
predictive soil map was developed using digital soil mapping 
techniques. The soil profile data was collected, and a numeric 
classification was performed on the collected data to obtain 
soil taxa. Then, the soil taxa were spatially predicted and 
mapped using two machine learning algorithms, which are 
random forest and J48. Results indicated that random forest 
shows merits in modelling in comparison with J48 [23]. 

 A spectral-spatial feature-based classification framework 
was proposed to extract spectral and spatial features. In this 
framework, a balanced local discriminant embedding 
algorithm is used to extract spectral features from 
hyperspectral datasets. A convolutional neural network was 
used to extract the spatial features. The spectral and spatial 
features are then stacked together to train a multiple-feature-
based classifier [24].  

Tehrani et al. [25] proposed a method that uses a weights-
of evidence model and a support vector machine (SVM) 
technique to evaluate the correlation between flood occurrence 
and each conditioning factor. The performance of SVM based 
on four different kernels were identified. AUC (Area under the 
ROC Curve) was used to evaluate the algorithm performance. 
Results can be helpful to local government about optimising 
flood mitigation strategies.  

2.3. A Brief Summary 

From literature, it is obvious that various techniques in 
statistics and machine learning have been investigated in 
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predictive maintenance. Recently, in order to obtain 
knowledge for decision making, researchers have studied GIS 
data using machine learning techniques. However, to the best 
of our knowledge, there are no studies in predictive 
maintenance using GIS data. As we all know, automobile TBF 
is affected by different GIS factors such as climate, terrain and 
traffic condition. If GIS data can be introduced into TBF 
modelling and identified how its impact on automobile TBF, 
fleet management companies can adjust their maintenance 
strategy to lower the maintenance cost. 

3. Methodology 

Deep learning is a group of machine learning algorithms 
[26]. It was originated from the artificial neural network [27] 
and has been researched in recent years. Deep learning does 
not rely on feature selection. The features which are barely 
relevant to the TBF will be allocated with a small weight. In 
other words, the weights of the input layer in a deep learning 
model can be used to represent the feature relevancy to the 
TBF. There are two targets in this study. Firstly, a deep 
learning model needs to be established to predict automobile 
TBF based on historical maintenance data and GIS data. 
Secondly, the impact of GIS features to the TBF need to be 
determined. In order to achieve this target, the following 
methodology is adopted.  

Firstly, in order to process the nominal data (categorical 
variables) in historical maintenance data, one-hot encoding is 
necessary. However, when the number of categorical variables 
significantly surpasses the numeric variables, the dataset will 
become sparse and hard to be analysed [28]. Then, 
autoencoder, a deep learning algorithm, is used to train a 
neural network based on the one-hot encoded data in order to 
obtain low-dimension and robust data. The low-dimension and 
robust data is then concatenated with the rest numeric data in 
the dataset. 

Secondly, with the coordinates (i.e. longitude and latitude) 
of an automobile workstation. The GIS data such as local 
geographical and climatic data can be collected. This data is 
then combined with the processed historical maintenance data 
as a new dataset. The new dataset is then normalised and 
randomised before it is used for modelling. 

Thirdly, in the modelling stage, a deep learning model is 
established for automobile TBF prediction. The details about 
how to design a deep learning model were reported in our 
previous work [9]. In order to design a deep learning model, 
the types of a neural network need to be first determined 
according to the task and data type. In the next stage, the 
parameters of the deep learning model need to be selected and 
fine-tuned. 

Finally, once the deep learning model is established, it is 
necessary to identify the impact of different features on TBF. 
Because the training process of deep learning cannot be 
monitored, it is hard to identify how features affect TBF. In a 
neural network, the weight of the input layer refers to the 
importance of the feature. Hence, extracting the weight of the 
neural network’s input layer is helpful to identify the 
relevancy between features and output. Fig.1 shows the 
flowchart of the methodology. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. The flowchart of the methodology. 

4. Experimental Study 

4.1. Experimental Setup and Data 

In this study, a historical maintenance dataset of 
automobile engines is provided by a sizable fleet service 
company in the UK. Firstly, an understanding of the 
company’s general information is necessary. There are a large 
number of automobiles serving in the company, which include 
various types such as van and personal car. There are two 
maintenance management in the company, which are run-to-
failure and scheduled check. Without the knowledge of 
predictive maintenance, it is hard to optimise the maintenance 
cost and spare part management. Hence, the company has a 
keen interest in when an automobile will break down and 
return to the workstation. If the TBF of an automobile can be 
predicted, the maintenance strategy can be modified to 
achieve better spare parts management and lower maintenance 
cost. 

Secondly, the data collection method needs to be identified. 
The company has numerous workstations in different cities in 
the UK. When an automobile fails, it is returned to its 
belonging workstation. Then, the information of the failure 
such as failure time, type of automobile, and mileage is 
recorded. The historical maintenance dataset used in this study 
contains an excess of 10 thousand data entries in total. Each 
data entry represents the TBF and feature difference between 
the two maintenance record. 

After the historical maintenance data was collected, the 
next step is to collect the GIS data. There are various types of 
GIS features might affect automobile TBF, which includes 
terrain, climate, traffic, etc. Among all these GIS data, climate 
data is relatively easy to access. In this study, climate data was 
collected according to the automobile workstation, before it 
was integrated with the historical maintenance data. In this 
study, the GIS data collected contains five climatic features. 
The climatic data used in this dataset is collected from the 
website of the Met Office, UK [29]. The collected climatic 
features can be categorised into two types: temperature 
relevant features and rainfall relevant features. As the weather 
in the UK is relatively mild from March to November and it 
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becomes rainy and cold from December to February. The high 
humidity and low temperature might have a negative impact 
on the health of an automobile. Hence, the average climatic 
data from December to February was adopted in this study.  

The feature description is shown in Table 1. The historical 
maintenance dataset contains seven features which are deemed 
highly relevant to TBF. Among these features, four of them 
are numeric, while the rest three of them are the nominal type 
of data. For the GIS data, all the climatic features are numeric. 

Feature selection is an important process for machine 

learning algorithms. In this case, two prevailing feature 
selection algorithms which are CfsSubEval [30] and 
WrapperSubEval [31] are used. Results indicated that only 
three features out of 31 features in total are recommended by 
the algorithms. It is hard to identify the relevancy between the 
rest 28 features and TBF. Because deep learning has excellent 
capability in identifying features relevancy. All 31 features 
were used for modelling. The impact of features was studied 
after the modelling stage via extracting the weights of the first 
layer in deep learning model. 

Table 1. The features description. 

Historical maintenance data GIS data 
Features  Note Features Note Features  Note 

nRepair 
The times of engine 
experienced 
maintenance 

Regions Four binary attributes  
Days of rainfall >= 
1 mm  

The days of rainfall which is over 1mm during 
Dec and Feb. 

PAge 
The age of automobile 
engine 

Model 
(Nominal) 

The model of automobile Rainfall  The rainfall (mm) during Dec and Feb 

Vage The age of automobile 
WS 
(Nominal) 

The workstation of 
automobile 

Max. temp The maximum temperature during Dec and Feb 

CumM 
The cumulative miles 
when a failure occurs 

Area 
(Nominal) 

The area of automobile Min. temp The minimum temperature during Dec and Feb 

Model_Year 
The year of the 
automobile model 

  Days of air frost The days of air frost during Dec and Feb 

Secondly, the nominal data was transformed using one-hot 
encoding [32]. The data generated via one-hot encoding 
increased the dimension of the nominal data from 4 to 164, 
which dramatically increase the data sparsity. In order to 
lower the data sparsity, autoencoder [33], a deep learning 
algorithm, was employed in this study to encode the sparse 
data to robust representation. The autoencoder model consists 
of three fully-connected layers, which the number of node in 
input and output layer was set at 164 (the dimension of one-
hot encoding attributes) and the number of node in hidden 
layer was set at 16 (the required dimension of the encoded 
data). With the help of autoencoder, the dimension of 
autoencoder decreased from 164 to 16. The data generated by 
autoencoder was then concatenated with the rest numeric data 
to be a new dataset. The new dataset contains 31 features and 
in excess of 10 thousand data entries in total. Figure 2 shows 
the structure of the autoencoder. 

Autoencoder is trained using back-propagation algorithm. 
The input vector of autoencoder is denoted as 𝑥𝑥. The features 
learned by the encoder, also known as code, is denoted as 𝑧𝑧. 
The relation between 𝑥𝑥 and 𝑧𝑧 can be denoted as: 

 𝑧𝑧 = 𝜎𝜎(𝑊𝑊𝑊𝑊 + 𝑏𝑏)                                                                    (1) 

where W is the weight matrix between the input layer and 
the hidden layer, b is the bias, and the σ() is the activation 
function. 

The features 𝑧𝑧 learned from the hidden layer is then used to 
construct a vector 𝑥𝑥′ which is expected the same as vector 𝑥𝑥. 
The relationship between 𝑥𝑥′ and 𝑧𝑧 can be represented as: 

𝑥𝑥′= 𝜎𝜎(𝑊𝑊′𝑧𝑧 + 𝑏𝑏′)                                                                   (2) 

where 𝑊𝑊′is the weight matrix between the input layer and 
the hidden layer, 𝑏𝑏′ is the bias, and the 𝜎𝜎() is the activation 
function. 

Thirdly, the new dataset was normalised to increase data 
integrity [34]. Specifically, all the data was scaled into the 
range from 0 to 1. Finally, the dataset was randomised. The 
shuffle of the dataset can avoid some local patterns to be 
learned by an algorithm, which may damage the algorithm 
performance.  

In the evaluation stage, 10-fold cross-validation was 
adopted to obtain a comprehensive result. In order to reveal 
the algorithm performance, Root Mean Square Error (RMSE) 
was adopted as an evaluation metric. RMSE is a metric that 
measures the difference between the predicted and actual 
values.  

Fig. 2. The structure of autoencoder. 
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4.2. Model Setup 

In our previous study, the experimental results indicated 
deep learning shows merits in automobile TBF modelling in 
comparison with several prevailing machine learning 
algorithms [9]. In this study, we mainly focused on the impact 
of GIS data on TBF modelling. A deep learning algorithm 
which is a deep neural network (DNN) and three prevailing 
machine learning algorithms, which are Bayesian regression 
(BR), random forest [35] k-nearest neighbours (k-NN), was 
used to establish TBF prediction model based on the clean 
dataset, separately. The models were established using the 
Python language. 

In order to build a neural network, there are several 
elements need to be determined: layer, activation function, 
loss function and optimizer. Firstly, the DNN designed in this 
study consists of fully connected layers and drop-out layers. 
The fully connected layer is the basic layer of deep learning. 
Drop-out layer is used to avoid overfitting by randomly 
cutting a certain ratio of connection in the training process 
[36]. Secondly, the activation function is used to process the 
input of a neuron. Rectified Linear Units (ReLU) is a popular 
activation function in deep learning owning to its biological 
motivation and mathematical justifications [37]. Thirdly, the 
optimizer is used to optimise the training process of deep 
learning. Adam is a prevailing optimizer in deep learning [38] 
and it was adopted as the optimizer of the DNN. Finally, the 
mean square error was adopted as the loss function due to its 
popularity in the regression task. 

The parameters setting of DNN is also essential to 
algorithm performance. After several trials, the number of 
layers in DNN was set at four (exclude two drop-out layers) 
and the node of each hidden layer in DNN was set at 1000. 
The ratio of drop-out was set at 20%. The batch size and 
training epochs of DNN were set at 50 and 45, respectively. 
The learning rate was set at 0.001. Fig. 3 shows the structure 
of DNN. 
 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. The structure of DNN. 

4.3. Deep Learning Modelling Based on Historical 
Maintenance Data and GIS Data 

In this study, in order to reveal the impact of GIS data on 
TBF modelling, two groups of machine learning models were 
trained based on different datasets. The models in the first 

group were only trained based on the historical maintenance 
data, while the models in the second group were trained based 
on the combination of historical maintenance data and GIS 
data. The parameters setting of DNN is the same for both 
groups. The results of modelling were obtained using 10-fold 
cross-validation. Table 2 shows the results of modelling. 

Table 2. The results of TBF modelling using DNN. 

 RMSE of Historical 
maintenance data (days)  

RMSE of Historical maintenance 
data+ GIS data (days) 

DNN 366.73 363.07  
BR 401.73 402.65 
RF 380.09 376.65 
k-NN 398.91 397.64 

 
It can be seen from the results that DNN and RF show 

better performance with the help of GIS data, while the RMSE 
of BR and k-NN are barely changed. Among the four 
algorithms, DNN achieved the lowest RMSE which is 363.07 
days. 

In order to identify the relevancy between GIS features and 
automobile TBF, the weights of the input layer in DNN was 
extracted, normalised, and ranked. Table 3 shows the details 
of the weights and rank of GIS features in all the features.  

It can be seen from the results that the weights and rank of 
the GIS features rank at different levels. The most relevant 
feature in the dataset takes 7.19% of the weights in the input 
layer of DNN, while the most irrelevant feature in the dataset 
takes mere 1.94% of the weights. The most relevant GIS 
feature is the Min. temp, which weight is 3.22%. The second 
and third relevant GIS features are Days of air frost and Days 
of rainfall >= 1 mm, which takes 3.04% and 2.47%, 
respectively. Rainfall and Max. temp occupy the least weight 
among all the features. 

Table 3. The weights and rank of the GIS features. 

Features Weights (%) Rank 
nRepair (Best) 7.19% 1 
isNorth (Medium) 2.81% 16 
 isScoNI (Worst) 1.36% 31 
Min. temp  3.22% 12 
Days of air frost  3.04% 15 
Days of rainfall >= 1 mm  2.47% 22 
Rainfall  2.37% 25 
Max. temp  1.94% 30 

4.4. Discussion 

In this study, four algorithms were used for TBF modelling. 
Feature selection is an important process before modelling 
using machine learning algorithms. Because the results of the 
prevailing feature selection algorithms do not offer explicit 
knowledge, the algorithm performance of BR, RF and k-NN 
might be compromised. The deep neural network is an 
algorithm which is able to identify the relevancy between 
inputs and output during the training process. It is reasonable 
that it achieved the lowest RMSE. In order to identify the 
impact of GIS features on automobile TBF, the weights of 
DNN was used to identify the impact of GIS data. Results 
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becomes rainy and cold from December to February. The high 
humidity and low temperature might have a negative impact 
on the health of an automobile. Hence, the average climatic 
data from December to February was adopted in this study.  

The feature description is shown in Table 1. The historical 
maintenance dataset contains seven features which are deemed 
highly relevant to TBF. Among these features, four of them 
are numeric, while the rest three of them are the nominal type 
of data. For the GIS data, all the climatic features are numeric. 

Feature selection is an important process for machine 

learning algorithms. In this case, two prevailing feature 
selection algorithms which are CfsSubEval [30] and 
WrapperSubEval [31] are used. Results indicated that only 
three features out of 31 features in total are recommended by 
the algorithms. It is hard to identify the relevancy between the 
rest 28 features and TBF. Because deep learning has excellent 
capability in identifying features relevancy. All 31 features 
were used for modelling. The impact of features was studied 
after the modelling stage via extracting the weights of the first 
layer in deep learning model. 

Table 1. The features description. 

Historical maintenance data GIS data 
Features  Note Features Note Features  Note 

nRepair 
The times of engine 
experienced 
maintenance 

Regions Four binary attributes  
Days of rainfall >= 
1 mm  

The days of rainfall which is over 1mm during 
Dec and Feb. 

PAge 
The age of automobile 
engine 

Model 
(Nominal) 

The model of automobile Rainfall  The rainfall (mm) during Dec and Feb 

Vage The age of automobile 
WS 
(Nominal) 

The workstation of 
automobile 

Max. temp The maximum temperature during Dec and Feb 

CumM 
The cumulative miles 
when a failure occurs 

Area 
(Nominal) 

The area of automobile Min. temp The minimum temperature during Dec and Feb 

Model_Year 
The year of the 
automobile model 

  Days of air frost The days of air frost during Dec and Feb 

Secondly, the nominal data was transformed using one-hot 
encoding [32]. The data generated via one-hot encoding 
increased the dimension of the nominal data from 4 to 164, 
which dramatically increase the data sparsity. In order to 
lower the data sparsity, autoencoder [33], a deep learning 
algorithm, was employed in this study to encode the sparse 
data to robust representation. The autoencoder model consists 
of three fully-connected layers, which the number of node in 
input and output layer was set at 164 (the dimension of one-
hot encoding attributes) and the number of node in hidden 
layer was set at 16 (the required dimension of the encoded 
data). With the help of autoencoder, the dimension of 
autoencoder decreased from 164 to 16. The data generated by 
autoencoder was then concatenated with the rest numeric data 
to be a new dataset. The new dataset contains 31 features and 
in excess of 10 thousand data entries in total. Figure 2 shows 
the structure of the autoencoder. 

Autoencoder is trained using back-propagation algorithm. 
The input vector of autoencoder is denoted as 𝑥𝑥. The features 
learned by the encoder, also known as code, is denoted as 𝑧𝑧. 
The relation between 𝑥𝑥 and 𝑧𝑧 can be denoted as: 

 𝑧𝑧 = 𝜎𝜎(𝑊𝑊𝑊𝑊 + 𝑏𝑏)                                                                    (1) 

where W is the weight matrix between the input layer and 
the hidden layer, b is the bias, and the σ() is the activation 
function. 

The features 𝑧𝑧 learned from the hidden layer is then used to 
construct a vector 𝑥𝑥′ which is expected the same as vector 𝑥𝑥. 
The relationship between 𝑥𝑥′ and 𝑧𝑧 can be represented as: 

𝑥𝑥′= 𝜎𝜎(𝑊𝑊′𝑧𝑧 + 𝑏𝑏′)                                                                   (2) 

where 𝑊𝑊′is the weight matrix between the input layer and 
the hidden layer, 𝑏𝑏′ is the bias, and the 𝜎𝜎() is the activation 
function. 

Thirdly, the new dataset was normalised to increase data 
integrity [34]. Specifically, all the data was scaled into the 
range from 0 to 1. Finally, the dataset was randomised. The 
shuffle of the dataset can avoid some local patterns to be 
learned by an algorithm, which may damage the algorithm 
performance.  

In the evaluation stage, 10-fold cross-validation was 
adopted to obtain a comprehensive result. In order to reveal 
the algorithm performance, Root Mean Square Error (RMSE) 
was adopted as an evaluation metric. RMSE is a metric that 
measures the difference between the predicted and actual 
values.  

Fig. 2. The structure of autoencoder. 
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of GIS data on TBF modelling. A deep learning algorithm 
which is a deep neural network (DNN) and three prevailing 
machine learning algorithms, which are Bayesian regression 
(BR), random forest [35] k-nearest neighbours (k-NN), was 
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dataset, separately. The models were established using the 
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In order to build a neural network, there are several 
elements need to be determined: layer, activation function, 
loss function and optimizer. Firstly, the DNN designed in this 
study consists of fully connected layers and drop-out layers. 
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Drop-out layer is used to avoid overfitting by randomly 
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In this study, in order to reveal the impact of GIS data on 
TBF modelling, two groups of machine learning models were 
trained based on different datasets. The models in the first 

group were only trained based on the historical maintenance 
data, while the models in the second group were trained based 
on the combination of historical maintenance data and GIS 
data. The parameters setting of DNN is the same for both 
groups. The results of modelling were obtained using 10-fold 
cross-validation. Table 2 shows the results of modelling. 

Table 2. The results of TBF modelling using DNN. 

 RMSE of Historical 
maintenance data (days)  

RMSE of Historical maintenance 
data+ GIS data (days) 

DNN 366.73 363.07  
BR 401.73 402.65 
RF 380.09 376.65 
k-NN 398.91 397.64 

 
It can be seen from the results that DNN and RF show 

better performance with the help of GIS data, while the RMSE 
of BR and k-NN are barely changed. Among the four 
algorithms, DNN achieved the lowest RMSE which is 363.07 
days. 

In order to identify the relevancy between GIS features and 
automobile TBF, the weights of the input layer in DNN was 
extracted, normalised, and ranked. Table 3 shows the details 
of the weights and rank of GIS features in all the features.  

It can be seen from the results that the weights and rank of 
the GIS features rank at different levels. The most relevant 
feature in the dataset takes 7.19% of the weights in the input 
layer of DNN, while the most irrelevant feature in the dataset 
takes mere 1.94% of the weights. The most relevant GIS 
feature is the Min. temp, which weight is 3.22%. The second 
and third relevant GIS features are Days of air frost and Days 
of rainfall >= 1 mm, which takes 3.04% and 2.47%, 
respectively. Rainfall and Max. temp occupy the least weight 
among all the features. 

Table 3. The weights and rank of the GIS features. 

Features Weights (%) Rank 
nRepair (Best) 7.19% 1 
isNorth (Medium) 2.81% 16 
 isScoNI (Worst) 1.36% 31 
Min. temp  3.22% 12 
Days of air frost  3.04% 15 
Days of rainfall >= 1 mm  2.47% 22 
Rainfall  2.37% 25 
Max. temp  1.94% 30 

4.4. Discussion 

In this study, four algorithms were used for TBF modelling. 
Feature selection is an important process before modelling 
using machine learning algorithms. Because the results of the 
prevailing feature selection algorithms do not offer explicit 
knowledge, the algorithm performance of BR, RF and k-NN 
might be compromised. The deep neural network is an 
algorithm which is able to identify the relevancy between 
inputs and output during the training process. It is reasonable 
that it achieved the lowest RMSE. In order to identify the 
impact of GIS features on automobile TBF, the weights of 
DNN was used to identify the impact of GIS data. Results 
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indicate that the introduction of GIS data is beneficial to TBF 
modelling using DNN. It is evident that automobile TBF is 
sensitive to the cold weather relevant features such as Min. 
temp and Days of air frost. In contrast, automobile TBF is not 
very sensitive to the humidity relevant features such as Days 
of rainfall >= 1 mm and Rainfall. With this knowledge, fleet 
management companies can adjust their maintenance strategy. 
For example, for the workshop in the cold area, the 
automobiles need to check more frequently. The GIS data 
used in this study is only climatic data. In the future, more 
data relevant to automobile TBF such as terrain data and 
traffic data will be collected and studied their impact on TBF. 

5. Conclusions  

Predictive maintenance is an essential topic for fleet 
management. In this study, the method of how to introduce 
GIS data into TBF modelling and identify their impact on TBF 
has been introduced. An experimental study is introduced to 
machine learning algorithms to establish TBF prediction 
models based on historical maintenance data and GIS data. 
Experimental results indicate that better TBF prediction can be 
achieved with the help of GIS data. Besides, the impact of GIS 
data on TBF is identified. The knowledge derived from this 
study can be beneficial to fleet management companies to 
optimise their maintenance strategy.  
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