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The role of entrepreneurship, innovation, and urbanity-diversity on growth, 

unemployment, and income: US State-level evidence and an fsQCA elucidation 

 

 

Abstract 

This study considers roles played by dimensions of entrepreneurship, innovation, and 

geography on United States (US) state level growth, unemployment, and income employing 

Fuzzy-set Qualitative Comparative Analyses (fsQCA).  One important developmental feature 

of the analyses is the use of a novel fuzzy membership score creation process, undertaken to 

calibrate the considered condition and outcome variables.  Moreover, fuzzy cluster analyses 

are undertaken, using the fuzzy c-means technique, on sets of constituent variables to 

produce sets of clusters interpretable to the relevant condition and outcome variables.  A 

series of fsQCA investigations are undertaken across the different outcome variables of 

growth, unemployment, and income.  The fsQCA results offer novel insights into variations in 

the US state level based outcome variables, and how dimensions of entrepreneurship, 

innovation, and the urbanity-diversity of the states contribute to this.  The novel applied and 

technical developments offer expanding ideas on this area of research. 

  



 
 

 

1. Introduction 

The relationship between entrepreneurship and wider measures of economic prosperity is 

complex, widely debated, and interlinked with issues of innovation and economic geography. 

For example, van Stel et al. (2005) evaluated the impact of Total Entrepreneurial Activity 

(TEA, effectively a business start-up) on economic growth in 36 countries, identifying an 

inconsistent relationship where TEA is found to be significantly positive for economically 

wealthy countries, but significantly negative for poorer countries (particularly developing 

economies). They also posit that in more developed economies, the positive relationship is 

associated with start-up entrepreneurship linked to innovation (specifically 

commercialization). Colombelli et al. (2016) and Malchow-Møller et al. (2011) further posit 

that such business start-ups contribute to job creation (and therefore to reducing 

unemployment), provided that the net effect of the new entrants, namely, taking over the market 

shares of exiting firms, also allow for overall market growth. In contrast, van Stel et al. (2005) 

argue that poorer countries failing to benefit from such entrepreneurial activity is an indication 

of insufficient larger firms being able to generate economies of scale, technology, and learning 

effects from innovation.  

In terms of the stock of small businesses, Carree and Thurik’s (2008) study found 

initially direct positive effects from increasing numbers of business owners on employment, 

gross domestic product (GDP), and productivity growth. This was followed by negative 

business exit-related effects, the final overall net effect (including supply-side effects) being 

positive for employment and GDP growth. Thurik et al. (2008) found, however, that the overall 

impact on reducing unemployment rates can take up to eight years. Contrastingly, Casson 

(2010) notes that older entrepreneurs remaining in existing businesses might reduce predicted 

benefits from entrepreneurship, where it prevents entrepreneurs moving to exploit 

opportunities elsewhere. Casson (2010) also suggests that an economy with a good supply of 

entrepreneurs but serious inefficiencies in its market for entrepreneurs, may find that 

entrepreneurs move to exploit opportunities elsewhere. This suggests both that existing 

business rates may be negatively related to start-ups and that high-growth entrepreneurship and 

international migration into an area potentially indicates the desirability of that location from 

an entrepreneurial start-up, growth, and innovation perspective, when complimented with a 

positive entrepreneurial environment. Furthermore, Acs (2008) identified that the most 

significant contributions to national economies were achieved by faster-growing “gazelle” 

firms, while Shane (2009) also argued that efficient policy should direct resources toward high-

growth firms in particular, rather than those focused only on survival. 



 
 

 

 Interactions exist between entrepreneurship, innovation, and desirability of location; 

these variables also impact growth, unemployment, and income (Li et al., 2016; Rupasingha, 

2017). Growth, unemployment, and income conditions, however, also interact with each other, 

making this a particularly complex issue to analyzes, with entrepreneurial, innovation and 

geographical drivers likely to impact in different ways in diverse environments (Huggins et al., 

2017).  

Therefore, the context of this study lies within the often-contested overlapping roles of 

entrepreneurship, innovation, and geography in economic development as measured by 

growth, unemployment, and income. Specifically, the study adopts the position that the 

literature is fundamentally related to the alternate ways in which entrepreneurship can be 

measured, in terms of start-up, small-firm survival, and high-growth, as well as the links 

between these different entrepreneurship measures, innovation, and the geographical context 

in which these activities take place. Synthesising both entrepreneurship and innovation, while 

also introducing an economic geography component, within the regional innovation systems 

literature, Cooke (2003) suggests that successful regions, as measured by their relatively high-

growth and income and low unemployment rates, have “entrepreneurial” innovation systems, 

while peripheral regions have different, more “institutional,” government-directed systems. 

This dynamic suggests that a heterogeneous mixture of conditions and consequent policies will 

be relevant depending on the region in question. 

 There is a lack of analyses of which combinations of entrepreneurship, innovation, and 

geographical context lead to which outcome, a gap which is particularly relevant at the regional 

level, given the importance often placed on government policy in supporting economic 

development. The study utilizes United States (US) state-level data, where the literature is 

largely nascent, in order to conduct this analyses. Fazio et al. (2016), for example, suggests that 

while entrepreneurship levels significantly influence the US economy, creating a foundation 

for economic dynamism and prosperity with high-growth start-ups contributing 

disproportionately to both job creation and impactful innovation, there is also a variation in 

entrepreneurial potential for such growth across the US. Their review of existing analyses 

highlights either studies conducted on a small number of US states over time, or on cities and 

regions, rather than across US states. It is this gap that this study seeks to address. To evaluate 

these issues, fuzzy-set qualitative comparative analyses (fsQCA) (Ragin, 2000; 2008) is used 

in the analysese of US state-level data. As a set theoretic-based analyses technique, it is closely 

associated with small “n” data-level analyses, relevant in the case of US state-level data. In 

addition, where fsQCA has been previously employed using US state-level data, for example, 



 
 

 

in pension movement on US old-age policy (Amenta et al., 2005) and environmental justice 

policy (Kim and Verweij, 2016), it has allowed heterogeneity created by having very different 

state-level contexts to be accounted for through the identification of multiple pathways to an 

outcome. As Glaeser and Gottlieb’s (2009) work highlights, the heterogeneous economies that 

US states represent means that fsQCA is potentially pertinent where equifinality and 

asymmetric aspects of the analyses may also be relevant, as well as conjunctional cauzation. In 

a review of QCA in public policy analyses, Rihoux et al. (2011) suggested US state-level 

analyses would benefit from this particular form of analyses. 

 One technical development in this study is a novel form of data generation for use with 

fsQCA, where the variables, condition and outcome must be in fuzzy membership score form. 

Here, sets of constituent-variables are considered for each variable (condition or outcome) used 

in the analyses, using fsQCA. For each set of constituent-variables, a two-step clustering 

process is first employed (Bacher et al., 2004; Şchiopu, 2010), whereby i) the optimum 

numbers of clusters is first found with concomitant silhouette coefficients (Zhou and Gao, 

2014), and then, ii) fuzzy clustering, using fuzzy c-means (Bezdek, 1980) is used to establish 

the subsequent sets of clusters. This approach was employed in Beynon et al. (2018) to create 

a single outcome variable (with fsQCA results compared with this outcome variable and those 

found from a factor-analyses-derived outcome variable). For all considered condition and 

outcome variables, two cluster solutions are identified as optimum from their constituent-

variables, from which fuzzy membership scores associating cases to one of the two clusters are 

shown to be appropriate as the necessary fuzzy membership scores for use with fsQCA. 

The study’s contribution to the theory of entrepreneurship and innovation offers novel 

insights into how different combinations of entrepreneurship, innovation, and urbanity-

diversity affect growth, unemployment and income levels across US states, consequently 

effectively informing entrepreneurship policy and practice regarding which policies are most 

effective to generate specific outcomes.   

 The structure of the rest of the paper is as follows: in section 2, a discussion on the 

position of entrepreneurship, innovation, and urbanity-diversity differences, including within 

the US, and their consequence on growth, unemployment, and income, is undertaken. Section 

3 describes the methodology and data, with the creation of a fuzzy membership score based on 

condition and outcome variables (using two-stage clustering). Section 4 describes the results 

from the fsQCA analyses of the considered US state-level data. Section 5 interprets the fsQCA-

based findings. In section 6, focused conclusions develop the discussion of the results, 



 
 

 

articulated within the extant literature, presenting implications for theory and practice, and 

limitations and directions for future research. 

 

2. Interactions between entrepreneurship, innovation and urbanity-diversity with 

growth, unemployment, and income  

 

2.1  The relationships between different measures of entrepreneurship, innovation, and 

economic geography and growth 

In terms of economic growth, Wennekers and Thurik (1999), Audretsch et al. (2006) and 

Cumming et al. (2014), found entrepreneurial activity measured in terms of business start-up 

to be an engine for economic development, increased innovation, and regional development in 

both industrialized and developing countries. Colombelli et al. (2016), Wennekers and Thurik 

(1999) and Dejardin (2011) suggest business start-ups play a key role in supporting 

competition, enabling innovation, and assisting new business sector development. 

Simultaneously, government policy-makers encourage innovation activity (Hausman, 2005), 

Beynon et al. (2015) and Santos (2000) positing that innovation is itself a critical process in 

improving business growth and performance.   

With regard to the types of entrepreneurship of potential importance, Wennekers and 

Thurik (1999) implicitly identify start-up, fast growth, and innovation-focused 

entrepreneurship as beneficial to economic growth, competition effects also meaning that 

business exits (and consequently lower levels of existing businesses) are also regarded as 

positive. Valliere and Peterson (2009), for more developed economies, found a significant 

portion of economic growth attributable to high-growth focused entrepreneurs exploiting 

national innovation systems and regulatory freedom, whereas in less developed economies this 

effect is absent.  Wong et al. (2005) used cross-sectional GEM data on 37 countries and found 

that for high-growth potential TEA, necessity TEA, opportunity TEA, and overall TEA, only 

high-growth potential entrepreneurship had a significant impact on economic growth. In the 

US context specifically, Phillips and Kirchoff (1989) find firm survival rates positively related 

to firm growth. Mueller’s (2007) results also indicate that increased innovative start-up activity 

is more effective than increased general entrepreneurship for economic growth.  

Minghao et al. (2016) found that local economic conditions favorable to high-growth 

firms are significantly different from new firms more generally and that such conditions differ 

between more urban and rural areas. Valliere and Peterson (2009) also find that regional 

concentration of economic activity, driven by increasing localized returns from labor markets, 



 
 

 

reduced transportation costs, and increased demand for manufactured goods, is positively 

related to economic growth; these aspects are more likely to be found in more urbanized areas.  

Thus, these findings indicate that start-up and particularly high-growth 

entrepreneurship (rather than firm survival) are relevant to economic growth, and that high-

growth entrepreneurship is often linked to innovation activities in these processes. In addition, 

there are also potential impacts from the specific geographical context in which these activities 

take place, including within a country where individual regions may exhibit different economic 

development stages and disparate performance levels, and where more urbanized regions 

would seem to have an advantage. This dynamic suggests that high start-up entrepreneurship, 

in combination with high-growth entrepreneurship, and innovation within regions displaying 

stronger aspects of urbanity are more likely to experience high-growth, with more rural areas 

being likely to require different policy combinations to achieve the same outcomes.  

 

2.2  The relationships between different measures of entrepreneurship, innovation, and 

economic geography, and unemployment 

Turning the focus to unemployment highlights a different combination of measures of 

entrepreneurship as being of more importance. Cumming et al. (2014), for example, found that 

entrepreneurship, in terms of business start-up, positively impacts by reducing unemployment. 

Moreover, Audretsch and Thurik (2000) identified that increased entrepreneurship, measured 

by number of business owners as a proportion of the labor force, leads to lower levels of 

unemployment. While Baptista and Preto (2007) suggest a more ambiguous relationship, 

Fritsch and Mueller (2004) identify time-dependent effects, with initial positive direct effects 

of job creation in new entities, then negative indirect effects of new businesses crowding out 

competitors and, lastly, improved supply conditions and competitiveness, peak positive 

impacts of new businesses on regional development reached eight years after entry. 

 These findings indicate that firm start up, in conjunction with firm survival, is 

of particular relevance to unemployment. Again, there are geographical aspects to this, with 

several, sometimes contradictory processes in operation, linked to firm start-up, survival, and 

innovation. In the US context, Acs et al. (2007) found that greater geographical concentration 

of businesses reduces initial new-firm formation rates but also increases survival rates of 

business start-ups, advantages given by geographical concentration reducing formation of 

short-lived firms. Conversely, while a positive geographical concentration effect for innovation 

can be seen to exist, due to, for example, knowledge spillover effects (Acs and Varga, 2002), 

greater geographical concentration can also lead to lower innovative new-firm survival rates 



 
 

 

because of the potential for short-lived imitative businesses. This highlights that the quality of 

business start-ups, in terms of its effects on competitiveness, is itself related to innovation, the 

impact of geography then occurring through processes highlighted previously by Acs et al. 

(2007).  

In terms of unemployment, therefore, the evidence suggests both that combinations of 

firm survival with one or more of start-up, innovation and geography are particularly relevant 

but also that, because of the geographical effects of concentration (where concentration will be 

more strongly associated with urban areas), different combinations will be required in other 

geographies to generate unemployment benefits. Specifically, in urban areas, unemployment 

benefits from entrepreneurship are likely related to high survival rates in areas without high 

innovation, while in more rural areas, high survival rates related to high firm start-up and/or 

innovation are more likely linked to positive unemployment effects.   

 

2.3  The Relationships between different measures of entrepreneurship, innovation, and 

economic geography and income 

Regarding effects on income, Cumming et al. (2014) suggest that entrepreneurship, measured 

by new firm formation, has a significantly positive relationship with GDP per capita (i.e., 

income levels). This is itself, however, also linked to economic geography, which also affects 

the type of entrepreneurship and the importance of innovation.  

At the country level, Ács et al. (2008) identify entrepreneurship as having a U-shaped 

relationship with economic development (for which income-per-head levels serves as a proxy). 

This is related to individuals undertaking entrepreneurial activity for opportunity- and 

necessity-based reasons (Tominc and Rebernik, 2007). In lower-income, lower-innovation, 

developing, factor-driven economies (which are also likely to be more rural), entrepreneurship 

(particularly necessity-based) activity tends to be high. It then tends to decrease as economies 

enter the efficiency phase, which is more dominated by manufacturing, before entrepreneurship 

activity (more opportunity-based) rises again during the services and innovation-driven phase 

for developed, higher-income, higher-innovation economies (likely also more urbanized). 

This dynamic suggests therefore, that while innovation is central to high-income outcomes 

generally, this will be in combination with different variables dependent on economic 

geography. In more urbanized geographies, where high-income is more likely, high-growth 

entrepreneurship and innovation are typically associated with high-income outcomes. In more 

rural economies, however, where low incomes are prevalent, obtaining high-income outcomes 

will require the development of a stock of surviving, innovation-driven growth firms. 



 
 

 

 

 

3 Methodology and data 

The above discussion identifies a complex interplay among combinations of geography, 

entrepreneurship, and innovation-related factors and overall growth, income and 

unemployment outcomes. This dynamic identifies a requirement for a method able to deal with 

both conjunctional causation and equifinality, with issues of asymmetry in outcomes also likely 

to exist, and a study of US states requires a method capable of dealing with a small n dataset. 

In summary, the literature review reveals a requirement for further research to enhance our 

understanding of the associations among entrepreneurial activity, innovation, and different 

aggregate-level outcomes in terms of growth, unemployment, and income. This is particularly 

pertinent in the context of comparative US states analyses, where the literature is nascent. This 

review therefore presents a critical perspective on the literature currently available, particularly 

in the US context. This section outlines the fsQCA methodology, provides a description of the 

data, and describes the creation of fuzzy membership score values for use in fsQCA. 

 

 

 

FsQCA 

FsQCA is a set-theoretic-based data analyses technique introduced in Ragin (2000; 2008). As 

a development of the original crisp QCA (Ragin, 1987), where crisp sets are binary, fsQCA 

can utilize fuzzy sets, sets in which membership can be expressed in degrees. To elucidate 

fsQCA against a more traditional quantitative approach, here regression, the more traditional 

regression-based approach investigates the effect of a condition variable on an outcome 

variable, the orientation of fsQCA is on what conditions lead to an outcome (Elliott, 2013). 

FsQCA as a configurational comparative approach offers two practical dimensions in its 

analyses, as described in Fiss et al. (2013), “…allows for equifinality (different configurations 

leading to the same outcome) and asymmetric causality (absence of causal conditions 

associated with an outcome not leading to absence of the outcome)” (p. 192). Since its 

introduction, fsQCA has been employed in a range of business management disciplines, 

including in the area of entrepreneurship and innovation (Beynon et al., 2016a, b, 2018;  Mallon 

et al., 2018). For further details on fsQCA, including its particular usage within the 

entrepreneurship and innovation discipline, see Kraus et al. (2018).  

 

https://www.emeraldinsight.com/author/Mallon%2C+Mark+R


 
 

 

Data 

The data considered here are with regard to US state-level analyses, and following the intended 

employment of fsQCA, are broken down into condition and outcome variables. We present the 

variables included in the study in addition to the reasons to include them instead of others. 

 

Condition variables 

This sub-section describes the construction of five condition variables. Three of these are 

derived from the most recent (2016) data contained within The Kauffman Index of 

Entrepreneurship series (Kauffman, 2017), which is an umbrella of annual reports that measure 

US entrepreneurship activities. Because this dataset provided a consistent range of data related 

to firm start-up, existing small-firm levels, and high-growth activity, it was determined that the 

data be used to construct the entrepreneurship-related variables. Specifically, three types of 

state-level entrepreneurship behavior are taken from this series and considered here: 

 

1. The Start-up Activity Index focuses on the beginnings of entrepreneurship, specifically new 

business creation (Rate of New Entrepreneurs - RoNE), market opportunity (Opportunity 

Share of New Entrepreneur - OSoNE), and start-up density (Start-up Density - SD). 

2. The Main Street Index focuses on the prevalence of local, small business ownership (Rate 

of Business Growth - RoBG; Survival Rate of Firms - SRoF; Established Small Business 

Density - ESBD). 

3. The Growth Entrepreneurship Index focuses on growing companies (Rate of Start Growth 

- RoSG; Share of Scaleups - SoS; High-Growth Company Density - H-GCD). 

 

While in this study these are used as condition variables, these areas are often 

considered as outcome variables, particularly with regards to start-up (Beynon et al., 2016a), 

and high-growth (Lee, 2014). In this study, and motivated by the intended use in fsQCA, a 

novel analyses is undertaken through the notion of clustering. Namely, the study considers the 

association of each US state to the area derivatives of low and high, Start-up Activity, Main 

Street and Growth Entrepreneurship.   

In addition, a process of identifying three relevant constituent-variables from which to 

create further condition variables was also used for Innovation and for Urbanity-diversity, the 

specific data chosen on the basis of being the most recently available from official government 

sources and available for all US states. The three constituent-variables chosen for innovation 

and urbanity-diversity were also selected on the basis of complementarity in providing different 



 
 

 

while related measures of innovation and urbanity-diversity. We therefore believe they provide 

a reasonable basis for the fsQCA analyses subsequently conducted. 

 

4. The Innovation Index focuses on patents (2015 Patents per 1000 population from the US 

Patent Office (2018), Higher Education Qualifications (2015 Percentage of Post-18 

Population with Bachelor’s Degree or Higher from the United States Census Bureau, (2018), 

and Research and Development spending (R&D spending as a percentage of State GDP 

from the latest available 2012 Bureau Of Economic Analyses (2018) data). 

5. The Urbanity-Diversity Index focuses on the concentration of the state population in urban 

areas (Percentage of Population) living in urban areas with more than 50,000 people from 

the 2010 Census (United States Census, 2010), the density of those areas (Urban Area 

Population Density score from the 2010 Census (United States Census, 2010), and the 

diversity of the state population (in terms of the percentage of the state population that is 

foreign-born according to the 2015 American Community Survey (United States Census 

Bureau, 2018). 

 

Moreover, following the approach adopted in Beynon et al. (2018), fuzzy c-means 

(FCM) clustering forms the clustering process employed (Bezdek, 1980), post-establishment 

of the optimum number of clusters using the first part of the often-employed two-step approach 

(Bacher et al., 2004; Şchiopu, 2010). 

For each condition variable, the three identified sub-variables are used in the cluster 

analyses to form cluster solutions, which, since using FCM, means grades of membership are 

evaluated on the association of each case (US state) to the interpreted clusters. This is pertinent 

in the construction of variables for fsQCA, when there are two clusters established, and the 

concomitant grades of membership are limited based on the derivatives of high and low 

outcome. 

 

Outcome variables 

We chose three relevant outcome variables partly for reasons of consistency with the fuzzy-

clustering-based creation process of the condition variables, available US government data 

being used for growth, unemployment, and income-per-head data, for specific variables where 

the data existed for all US states. Unlike the condition variables, however, a single definition 

(one for growth, unemployment, and income per head) was used because of the more specific 

nature of the outcome variables, with the last three years of annually available data being used 

in each case to reduce the potential for a single year of data to skew the data. Again, while other 



 
 

 

definitions for each of the variables could have been chosen, we believe they provide a 

reasonable basis for the fsQCA analyses subsequently conducted as follows: 

 

1. US state Annual Growth rates as measured by Annual Percentage Change in Real GDP (in 

chained US dollars) for 2013-14, 2014-15, and 2015-16 from the Bureau of Economic 

Analyses (2018). 

2. US state per capita personal Income for 2014, 2015 and 2016 from the Bureau of Economic 

Analyses (2018). 

3. US state unemployment rates (U6 definition) for 2014, 2015 and 2016 from the Bureau of 

Labor Statistics (2018). 

 

Establishment of optimum number of clusters 

Following the discussion of the considered condition and outcome variables, and in particular 

the constituent-variables, the creation of the fsQCA useable variables is considered next. With 

a view to performing fuzzy clustering on the separate sets of constituent-variables, this section 

outlines the identification of the optimum number of clusters associated with each set of 

constituent-variables, for future condition and outcome variables appropriate for use in fsQCA.   

This optimum (number of clusters) issue is the first part of the two-step clustering 

approach available in the Statistical Package for the Social Sciences used in this analyses (SPSS 

Inc., 2001); for independent evaluations of this approach, see Bacher et al. (2004) and Şchiopu 

(2010). In technical terms, the number of clusters can be automatically determined using a two-

phase estimator, first using Bayesian Information Criterion, then by examining the ratio change 

in distance between clusters (Bacher et al., 2004). To quantify the quality of the chosen number 

of clusters for each set of constituent-variables, the concomitant silhouette coefficient plots are 

found (Zhou and Gao, 2014). The silhouette coefficient is a measure of how similar an object 

is to its own cluster (cohesion) compared to other clusters (separation), and ranges from −1 to 

+1 (Rousseeuw, 1987), with subranges noting different qualitative grades of appropriateness 

(using the SPSS two-step approach), namely, bad, fair and good (noting also if most objects 

have a good value, then the clustering configuration is appropriate, SPSS Inc., 2001). 

The optimum number of clusters and concomitant silhouette coefficient plots for each 

set of constituent variables are shown in Table 1. 

  



 
 

 

 

Table 1. Optimum number of clusters and concomitant silhouette coefficient plots for 

each set of constituent variables 
 

Variable (No. clusters) 

Silhouette plot 

Variable (No. clusters) 

Silhouette plot 

Start-up Activity (2 clusters) 

 

Main Street (2 clusters) 

 
Growth Entrepreneurship (2 clusters) 

 

Innovation (2 clusters) 

 
Urbanity-diversity (2 clusters) 

 

Growth (2 clusters) 

 
Unemployment (2 clusters) 

 

Income (2 clusters) 

 
 

In Table 1, each set of constituent-variables is shown to be optimally considered in 

terms of two clusters, the first stage of this approach being to ‘grades of membership’ based 

variable construction. The quality of these suggested optimizations of cluster numbers is shown 

by the specific silhouette plots for each set of constituent-variables, the plots shown (in terms 

of horizontal white bar) indicating a predominance of high-fair to good quality. We next move 

onto the fuzzy clustering part of this process, using FCM on each set of three constituent 

variables to establish two clusters. 

 

Fuzzy clustering of sets of constituent variables 

Following the approach in Beynon et al. (2018), which similarly used two clusters, FCM was 

employed to identify the grouping of US states to the two clusters shown to be optimum, for 

each of the areas, Start-up Activity, Main Street, Growth Entrepreneurship, and Urbanity-

diversity. The FCM cluster results for each condition variable set of constituent-variables are 

graphically shown in Figure 1. 

 

  



 
 

 

Figure 1. Constituent cluster variable means for the sets of three sub-variables across 

the five condition variables, Start-up Activity, Main Street, Growth Entrepreneurship, 

and Urbanity-diversity, found using FCM 
 

         
 

           
 

In each graph shown, the points depict the constituent means for the sets of variable 

values associated with US states found to be most associated to a cluster. The lines between 

points enable the indication of sets of constituent means describing a cluster. While the y-axis 

indicates standardized values of the relevant scales (as used in FCM), the values shown in the 

plot, of the cluster constituent means, are given in their non-standardized values (for ease of 

interpretation). 

Inspection of the sets of constituent means for the pairs of clusters shows there is one 

cluster with consistently higher mean values than the others. The indication being that the 

clusters, across each condition variable, can be consistently considered the concomitant 

derivatives of low and high Start-up Activity (C1 and C2 in Figure 1a), low and high Main 

Street (C1 and C2 in Figure 1b), low and high-Growth Entrepreneurship (C1 and C2 in Figure 

1c), low and high Innovation (C1 and C2 in Figure 1d), and low and high Urbanity-diversity 

(C1 and C2 in Figure 1e). A similar approach is taken with the three considered outcome 

variables Growth, Unemployment, and Income (Figure 2).  

 

  



 
 

 

Figure 2. Constituent cluster variable means for the sets of three sub-variables across 

the three outcome variables constructed, Growth, Unemployment and Income, found 

using the FCM 
 

          
 

As with the condition variables, the reported constituent means across each set of 

constituent-variables discerns the clusters in terms of low and high-Growth (C1 and C2 in 

Figure 2a), low and high Unemployment (C1 and C2 in Figure 2b) and low and high Income 

(C1 and C2 in Figure 2c). Across all the cluster results for the considered condition and 

outcome variables, importantly, C2 is associated with the high derivative. In general, letting 1 

and 2 be the grades of membership associating a US state to the C1 and C2 clusters, 

respectively, found using FCM, it follows with two clusters, 1 + 2 = 1, so 1 = 1  2. Hence, 

the 2 value can be used for each area to measure the grade of membership to ‘high outcome’, 

and 1  2 for grades of membership to ‘low outcome’.   

 

Description of variable fuzzy membership scores 

Based on the 2 grades of membership (to C2 clusters), each US state is now represented as a 

fuzzy membership score (grades of membership), appropriate for use in fsQCA. Figures 3 and 

4 report the spreads of grades of membership values across the condition (Figure 3) and 

outcome (Figure 4) variables. 

 

Figure 3. Probability density functions and spreads of grades of membership values (x-

axis) for five condition variables  
 

   
 

       
 



 
 

 

Figure 4. Probability density functions and spreads of grades of membership values (x-

axis) for three outcome variables  
 

   
 

 In each graph in Figures 3 and 4, a probability density function (pdf) representing the 

spread of the previously created grades of membership values for each variable is shown, to 

elucidate their distributions across the respective 0.0 – 1.0 domains. Above each pdf are the 

specific values the 50 US states take for a variable; furthermore, the arrows near the base of 

each graph show the number of US states above and below the 0.5 grades of membership value 

(of note in the fsQCA undertaken – in terms of strong membership terms – see Ragin, 2008). 

As noted, this is a novel form of calibration of variables to a form of variables appropriate for 

use in fsQCA. 

 

4. FsQCA analyses 

This section evaluates the fsQCA analyses of the constructed US state-level data set (using the 

fuzzy membership scores values found previously). The analyses are deconstructed into three 

parts: i) necessity analyses of all the condition variables across the different outcome variables, 

ii) elucidation of truth table and concomitant frequency and consistency thresholds used in 

fsQCA, and iii) sufficiency analyses across the different outcome variables in the creation of 

concomitant causal recipes. 

 

Necessity Analyses 

The necessity analyses undertaken here are to investigate if there exists necessary conditions 

in relation to an outcome (Ragin, 2008) in relation to the respective membership scores of a 

condition variable (Xi), and outcome variable (Yi), and a measure is employed (measuring the 

level that the respective Yi values are less than the respective Xi values) (Table 2). The analyses 

are performed with respect to the presence and absence (~) of the condition and outcome 

variables. 

 



 
 

 

Table 2. Analyses of necessity results for Growth (GRTH and ~GRTH), Unemployment 

(UNPT and ~UNPT), and Income (INCM and ~INCM) (Cons - Consistency and Cov - 

Coverage) 
 

Variable Var 
Growth  Unemployment  Income 

GRTH ~GRTH  UNPT ~UNPT  INCM ~INCM 

  Cons Cov Cons Cov  Cons Cov Cons Cov  Cons Cov Cons Cov 

Start-up Activity 

SA 0.671 0.752 0.557 0.642  0.516 0.628 0.546 0.577  0.561 0.507 0.515 0.706 

~SA 
0.680 0.599 0.784 0.710 

 
0.652 0.623 0.648 0.538 

  

0.674 

 

0.479 

 

0.640 

 

0.688 

Main Street 
MS 0.606 0.651 0.639 0.705  0.425 0.496 0.703 0.711  0.626 0.543 0.482 0.632 

~MS 0.725 0.661 0.684 0.641  0.753 0.745 0.502 0.431  0.575 0.423 0.651 0.725 

Growth 

Entrepreneurship 

GE 0.726 0.719 0.648 0.659  0.576 0.619 0.599 0.559  0.612 0.488 0.576 0.696 

~GE 0.656 0.644 0.723 0.731  0.589 0.629 0.591 0.548  0.619 0.491 0.576 0.692 

Innovation 
In 0.516 0.689 0.451 0.619  0.430 0.623 0.450 0.566  0.652 0.701 0.293 0.478 

~In 0.714 0.559 0.773 0.622  0.701 0.595 0.700 0.516  0.515 0.325 0.817 0.780 

Urbanity-diversity 
Ud 0.542 0.700 0.443 0.587  0.501 0.701 0.384 0.467  0.631 0.656 0.324 0.511 

~Ud 0.680 0.543 0.774 0.635  0.619 0.537 0.754 0.567  0.530 0.341 0.782 0.762 

Stats 
Min 0.516 0.543 0.443 0.587  0.425 0.496 0.384 0.431  0.515 0.325 0.293 0.478 

Max 0.726 0.752 0.784 0.731  0.753 0.745 0.703 0.711  0.674 0.701 0.817 0.780 

 

The results in Table 2 show the necessity measures, Consistency (Cons), and Coverage 

(Cov), of each condition variable (the Var and ~Var versions) against each outcome variable 

(absence and presence of versions). Inspection of the bottom Stats rows shows the min and 

max of the values for each outcome variable; importantly, no value goes above 0.817 in terms 

of the consistency values, less that the often-employed threshold of approximately 0.9 (see 

Ragin, 2008; Young and Park, 2013), which would signify a necessary variable. Hence, no 

condition variable derivative was considered necessary for an outcome variable derivative in 

this study.  

 

Truth table 

With combinations of condition variables now the focus of investigation (no one condition 

variable deemed necessary), the associated truth tables formed from the five condition variables 

to each outcome are next explored; see Table 3. The truth table, which is partly a list of the 

logically possible combinations of conditions, is used to synthesize the results of fuzzy-set 

analyses of the logically possible configurations of a given set of conditions (Ragin, 2008). 

For a detailed description of the details of a truth table, such as that in Table 3, see 

Ragin (2008). Each row of the truth table describes a logically possible configuration of 

condition variables (combinations of 0 s and 1 s under the condition variable columns – with 

five condition variables there are 25 = 32 possible configurations). The number column notes 

the number of US states with ‘strong membership’-based association to the respective 



 
 

 

configurations (following Greckhamer, 2015, this is determined by assigning a 1 to cases with 

a set membership score >0.5 and a 0 to cases with a set membership score <0.5), with the US 

state column listing the actual states with this association. The remaining columns provide the 

relevant consistency values associating each configuration to the presence of and absence of 

derivatives of each outcome variable. Similar to the necessity-based analyses undertaken 

previously, the consistency scores denote the degree to which cases sharing a given condition 

or combination of conditions agree in displaying the considered outcome. 

 Thereafter, the first of two threshold terms must be considered, namely, frequency 

threshold, particular to the number of US states associated with a configuration for it to be 

considered in the later sufficiency analyses. With 32 possible configurations to consider, and 

the spread of the States across them, it was decided that at least two US states were necessary 

to be associated with a configuration for it to be further considered (across all three outcome 

variables). Thus, in Table 3, those configurations with zero or one US state associated with 

them are struck through, indicating not further considered (more specifically, considered as 

remainders later; see Ragin, 2008). 



 
 

18 
 

Table 3. Truth Table: All configurations existing from data, based on five condition variables 

Config 

Condition Variables 

Number US State 

Raw Consistency Values 

Start-up 

Activity 

Main 

Street 

Growth 

Entrepreneurship 
Innovation 

Urbanity-

diversity 

GRTH UNPT INCM 

Presence Absence Presence Absence Presence Absence 
1 0 0 0 0 0 3 Arkansas, Kentucky, Mississippi 0.7574 0.8889 0.7862 0.6017 0.4232 0.8658 

2 0 0 0 0 1 0  0.9232 0.8804 0.8469 0.6511 0.6661 0.8081 

3 0 0 0 1 0 1 Michigan 0.9452 0.8817 0.8307 0.6795 0.5552 0.8931 

4 0 0 0 1 1 2 Illinois, Washington 0.8697 0.892 0.8856 0.5916 0.7473 0.6812 

5 0 0 1 0 0 4 Alabama, South Carolina, Tennessee, West Virginia 0.7896 0.8115 0.8379 0.5292 0.3930 0.8898 

6 0 0 1 0 1 0  0.8928 0.8816 0.8528 0.6415 0.6932 0.7857 

7 0 0 1 1 0 2 Delaware, New Mexico 0.9285 0.9034 0.8077 0.7169 0.6044 0.8947 

8 0 0 1 1 1 2 Rhode Island, Virginia 0.8243 0.9294 0.8295 0.6712 0.7748 0.6898 

9 0 1 0 0 0 5 Indiana, Iowa, Maine, Nebraska, Wisconsin 0.7592 0.8941 0.6079 0.7678 0.4739 0.8790 

10 0 1 0 0 1 0  0.9219 0.9008 0.8099 0.6945 0.7027 0.8092 

11 0 1 0 1 0 1 Vermont 0.8788 0.8874 0.6643 0.7478 0.6671 0.7695 

12 0 1 0 1 1 2 Connecticut, Oregon 0.8521 0.8870 0.8578 0.5802 0.7180 0.7052 

13 0 1 1 0 0 4 Kansas, Louisiana, Ohio, Pennsylvania 0.7986 0.9066 0.7182 0.6926 0.5355 0.8574 

14 0 1 1 0 1 0  0.8995 0.8949 0.8113 0.6870 0.7236 0.7885 

15 0 1 1 1 0 2 Minnesota, New Hampshire 0.9365 0.8900 0.6529 0.8035 0.7555 0.7418 

16 0 1 1 1 1 2 Maryland, Massachusetts 0.8513 0.8527 0.7283 0.7232 0.8120 0.6205 

17 1 0 0 0 0 3 Alaska, Georgia, Missouri 0.8306 0.8922 0.7353 0.6891 0.5161 0.8035 

18 1 0 0 0 1 1 Florida 0.9016 0.8198 0.8462 0.5920 0.5985 0.8301 

19 1 0 0 1 0 1 Idaho 0.9149 0.8860 0.7677 0.7478 0.5866 0.8626 

20 1 0 0 1 1 3 California, New Jersey, New York 0.7859 0.8480 0.8647 0.5167 0.7765 0.5839 

21 1 0 1 0 0 1 North Carolina 0.8973 0.8529 0.8100 0.6253 0.5115 0.8310 

22 1 0 1 0 1 3 Arizona, Nevada, Texas 0.8841 0.7778 0.7842 0.6210 0.5555 0.8535 

23 1 0 1 1 0 0  0.9307 0.9266 0.8225 0.7341 0.6754 0.8570 

24 1 0 1 1 1 2 Colorado, Utah 0.9115 0.8107 0.7611 0.6887 0.7222 0.7260 

25 1 1 0 0 0 3 Montana, South Dakota, Wyoming 0.8944 0.8867 0.6177 0.8242 0.5694 0.8319 

26 1 1 0 0 1 0  0.9351 0.9193 0.8022 0.7108 0.6780 0.8569 

27 1 1 0 1 0 0  0.9103 0.9161 0.7655 0.7759 0.6430 0.8663 

28 1 1 0 1 1 0  0.9262 0.9189 0.8262 0.6918 0.7141 0.7874 

29 1 1 1 0 0 2 North Dakota, Oklahoma 0.8781 0.9386 0.6763 0.7827 0.5992 0.8216 

30 1 1 1 0 1 1 Hawaii 0.9245 0.9101 0.7969 0.7068 0.6954 0.8441 

31 1 1 1 1 0 0  0.9378 0.9521 0.8046 0.7876 0.7162 0.8536 

32 1 1 1 1 1 0  0.9112 0.9172 0.8083 0.7208 0.7653 0.7576 

Frequency Threshold  > 1 > 1 > 1 

Consistency Threshold > 0.904 > 0.750 > 0.750 

Number of configurations (US states) 
(3 (6), 3 (8))  

[6 (14)] 

(9 (23), 4 (12))  

[13 (35)] 

(4 (9), 9 (31))  

[14 (40)] 
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Consideration then turns to the consistency threshold to adopt, over which 

configurations may be associated with either the presence or absence of derivatives of an 

outcome. The different outcome variables were considered separately on this issue, and the 

criteria expressed in Andrews et al. (2016) and Beynon et al. (2016a) initially adopted here, 

namely, the lowest possible consistency threshold to adopt while not allowing the same 

configuration to be then associated with both the presence and absence of derivative forms of 

an outcome, with a further check for when an evaluated threshold value is below the often-

employed minimum standard of 0.750; in such cases the consistency threshold is raised to this 

0.750 value. The respective consistency thresholds for each outcome are (see Table 3), namely, 

0.904 for Growth, 0.750 for Unemployment, and 0.750 for Income (for Unemployment and 

Income these values have been found from raising the initially identified values). The last row 

displays the number of configurations, based on consistency thresholds, associated with each 

presence or absence outcome derivative (as well as subsequent number of US states). As noted, 

this phase can also mean for an outcome variable, and there may be further configurations now 

considered remainders, since they lack one of the two concomitant consistency values above 

the concomitant consistency threshold. The explained details in the adapted truth table in Table 

3 (for all three outcome variables) are next considered in terms of relevant sufficiency analyses. 

 

Sufficiency analyses 

In providing a rigorous analyses and presentation of the main results under discussion, the 

sufficiency analyses undertaken here first considers those conditions, or sets of conditions, 

which lead to the outcome (but a set of sufficient conditions may not be the only conditions 

that lead to the outcome). For each outcome variable, the sufficiency analyses is exposited 

using an amended form of the Ragin and Fiss (2008) circle notation, employed in Andrews et 

al. (2016). This notation system highlights the thinking on how to consider those configurations 

identified as remainders (see discussion around Table 3).   

It follows that the analyses distinguishes between complex (discerning between those 

configurations considered in the truth table – not remainders) and parsimonious solutions 

(discerning between those in the truth table – including possible remainders); see Ragin (2008), 

with the elucidation of both these solutions advocated by Wagemann and Schneider (2010). 

Only discerning against those other configurations still considered in Table 3 is termed the 

complex solution (avoid using any remainders to simplify the truth table), while incorporating 

the remainders that yields the most parsimonious solutions is termed the parsimonious solution.   
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 Sufficiency analyses are presented for each of the three outcome variables, Growth, 

Unemployment, and Income. Furthermore, maps are given showing collections of US states 

associated with causal recipes from the parsimonious solutions (limited space restricted full 

discussion of some complex solutions: causal recipes). Emphasis is given to causal recipes with 

associated consistency equal to or above 0.750, with details of others given for completeness. 

 

Growth  

Sufficiency analyses for the Growth presence of (GRTH) and absence of (~GRTH) outcome 

variables are shown in Table 4 (and maps shown in Figure 5). 

 

Table 4. Sufficiency Analyses Results for Growth Outcomes 
 

Conditions 
Growth 

GRTH  ~GRTH 

Start-up Activity      

Main Street      

Growth Entrepreneurship      

Innovation      

Urbanity-diversity      
      

Complex  CHG1 CHG2  CLG1 CLG2 

Configurations 24 7, 15  8 13,29 

Consistency 0.911 0.923  0.929 0.895 

Raw Coverage 0.239 0.264  0.224 0.386 

Unique Coverage 0.074 0.100  0.081 0.243 

Solution Consistency 0.889  0.897 

Solution Coverage 0.339  0.467 
    

Parsimonious  PHG1 PHG2  PLG1 PLG2 

Configurations 24 7, 15  8 13, 29 

Consistency 0.900 0.820  0.876 0.878 

Raw Coverage 0.278 0.330  0.266 0.449 

Unique Coverage 0.074 0.125  0.041 0.224 

Solution Consistency 0.822  0.867 

Solution Coverage 0.403  0.490 
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Figure 5. Maps showing US states associated with the identified Parsimonious solution-

based causal recipes for Growth 
 

a) PHG1           b) PHG2 

        
 

c) PLG1           d) PLG2 

        
 

 The parsimonious and complex solutions for presence and absence of Growth indicate 

equifinality and asymmetry as well as conjunctional cauzation in the relationships. Specifically, 

CHG1 (covering Colorado, and Utah) shows that US state growth is present where there is the 

presence of Start-up, Growth Entrepreneurship, Innovation and Urbanity-diversity, and the 

absence of Main Street (suggesting strong competitive effects), this recipe in many ways 

showing an “ideal” scenario for entrepreneurial processes and their impact on growth. 

However, CLG1 (Rhode Island, and Virginia) notes State growth being absent where Urbanity-

diversity is present even where Entrepreneurial Growth (core) and Innovation are also present, 

if there is also the (core) absence of Start-up and Main Street activity. This suggests that Start-

up Activity is key to growth in high-entrepreneurial, high-growth urban areas, where strong 

competitive effects lead to an absence of Main Street entrepreneurship, because of the way in 

which such Start-up Activity influences competition.   

CHG2 (Delaware, New Mexico, Minnesota, and New Hampshire) highlights that the 

presence of State growth is also possible where Urbanity-diversity is absent, where Innovation 

(core) and Entrepreneurial growth is also present but start-up is absent. This may suggest that 

where Urbanity-diversity and the competitive effects related to it are absent, it is a focus on 

quality of firms in terms of high-growth innovative businesses, rather than quantity in terms of 

start-up, that is of even more importance. 

In addition, CLG2 (Kansas, Louisiana, North Dakota, Ohio, Oklahoma, and 

Pennsylvania) illustrates that State growth can be absent where Urbanity-diversity is absent, 
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even where Growth Entrepreneurship is present, where Innovation is absent and Main Street is 

present (suggesting weak competitive effects). This suggests that where there is an absence of 

Urbanity-diversity, innovative activity per se is potentially more important in driving overall 

growth than Growth Entrepreneurship that may thus manifest itself in terms of firms numbers 

(presence of Main Street), rather than presence of growth more generally. 

Overall, this indicates that Growth Entrepreneurship and Innovation are necessary, but 

not always sufficient, to obtain economic growth, and additional supporting entrepreneurial 

activities and processes also necessary, differing depending on the economic geography of the 

particular States in question. This illustrates the complex relationships among 

entrepreneurship, innovation, and State Urbanity-diversity and growth, indicated by the 

relatively low numbers of States encompassed by the analyses. The analyses, therefore, only 

partially supports previous literature (Wennekers and Thurik, 1999), particularly for Start-up 

and Growth Entrepreneurship being relevant to economic growth when linked to Innovation 

activities in these processes. There is specific support for high start-up entrepreneurship, in 

combination with Growth Entrepreneurship, and Innovation, within regions displaying 

stronger aspects of Urbanity-diversity, being more likely to experience the presence of growth. 

The evidence also suggests that where Startup is absent from this combination, growth is also 

absent, but that more rural areas experience very different policy combinations to achieve the 

same outcomes. Geographical context, therefore, including through its relationship with the 

presence or absence of Main Street entrepreneurship, through processes of competition also 

appears to be of importance in determining whether growth is present or absent. The results 

showing that geography per se does not determine the presence or absence of growth is also 

important, suggesting that (albeit different) entrepreneurship-innovation-related policy 

combinations may be relevant. 

 

Unemployment 

Sufficiency analyses for the Unemployment presence of (UNPT) and absence of (~UNPT) 

derivative outcome variables are shown in Table 5 (maps in Figure 6). 
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Table 5. Sufficiency Analyses Results for Unemployment Outcomes 
 

Conditions 
Unemployment 

UNPT  ~UNPT 

Start-up Activity          

Main Street          

Growth Entrepreneurship          

Innovation          

Urbanity-diversity          
    

Complex  CHU1 CHU2 CHU3 CHU4 CHU5  CLU1 CLU2 CLU3 

Configurations 1 5, 7 22, 24 4, 8, 20, 24 4, 12  15 9, 25 25, 29 

Consistency 0.814 0.818 0.730 0.807 0.874  0.804 0.796 0.812 

Raw Coverage 0.408 0.371 0.255 0.304 0.233  0.214 0.409 0.343 

Unique Coverage 0.047 0.006 0.040 0.077 0.042  0.053 0.090 0.028 

Solution Consistency 0.772  0.795 

Solution Coverage 0.668  0.498 
    

Parsimonious  PHU1 PHU2 PHU3  PLU1 PLU2 PLU3 

Configurations 1, 4, 5, 7, 8 4, 8, 20, 22, 24 4, 12, 20  15 9, 25 25, 29 

Consistency 0.798 0.784 0.852  0.787 0.774 0.751 

Raw Coverage 0.412 0.412 0.384  0.279 0.467 0.401 

Unique Coverage 0.383 0.044 0.045  0.039 0.090 0.073 

Solution Consistency 0.774  0.756 

Solution Coverage 0.714  0.587 

 

Figure 6. Maps showing US states associated with the identified Parsimonious solution-

based causal recipes for Unemployment 
 

a) PHU1           b) PHU2 

        
 

c) PHU3           d) PLU1 

        
 

e) PLU2           f) PLU3 
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 For unemployment, a larger number of US states were considered in the final analyses. 

Specifically, supporting the work of Wennekers and Thurik (1999), Main Street was 

consistently present for absence of unemployment causal recipes and absent in four of the five 

presence of unemployment causal recipes, suggesting that it a key ingredient in the recipes, 

though in conjunction with different sets of factors depending on whether urbanity-diversity 

was present or absent. Urbanity-diversity was also consistently absent in the absence of 

unemployment causal recipes, while being present in three of the five presence of 

unemployment complex causal recipes.   

Combining these two results suggests that it is states where Urbanity-diversity is 

present where unemployment is concentrated (although not exclusively so) and where policies 

to support Main Street activity may potentially be beneficial (as indicated by the first set of 

parsimonious solutions). However, there is also diversity in the recipes where urbanity-

diversity is present. Where Main Street is absent, the presence of other entrepreneurship-

innovation processes (Acs et al., 2007) may be feeding into competition (and potentially in 

some cases broader economic growth) rather than reducing unemployment. Where Main Street 

is neither absent nor present in the recipe, however, the Innovation activity taking place is doing 

so in the absence of Start-up Activity, suggesting it is this lack of complementarity that is 

contributing to the presence of unemployment (in the case of the two configurations covered 

by this recipe, neither growth nor income outcomes reaching the required level of consistency 

to be included in the analyses of these outcomes). 

For more rural areas, where there is also the presence of high unemployment, this was 

consistently associated with the absence of Main Street entrepreneurship. In one recipe 

(CHU2), this was also linked to the absence of Start-up Activity and Innovation, in the case of 

the configuration covered by this recipe suggesting the near-complete absence of 

entrepreneurship as well as Innovation activity, suggesting a relative lack of resources for these 

activities that may also be detrimental to income levels. In the other recipe, the absence of Main 

Street is in conjunction with the absence of Start-up Activity but also the presence of Growth 

Entrepreneurship, potentially suggesting a focus on a narrow range of firms that may have 

improved access to the financial resources available (because of the lack of competition 

indicated by the absence of start-up activity), leading to more capital-intensive Growth 

Entrepreneurship that is not beneficial to reducing unemployment or income levels, though 

likely more beneficial to broader growth. 

In terms of unemployment specifically, therefore, the evidence suggests both that 

combinations of firm survival with one or more of Start-up, Innovation, and Urbanity-diversity 
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are particularly relevant but also that, specifically because of the geographical effects of 

concentration (where concentration will be more associated with urban areas), different 

combinations will likely be required in different geographies to generate unemployment 

benefits. It was not possible to specifically explore the relationship identified in the literature 

that in more urban areas an absence of unemployment is more likely where there are high firm 

survival rates in areas without high innovation because an absence of unemployment was only 

related to recipes where there was an absence of Urbanity-diversity.  

In more rural areas, an absence of unemployment was linked to firm survival (i.e., 

presence of Main Street entrepreneurship) in conjunction with either high firm Start-up or 

Innovation, in two of the recipes. In the other absence of unemployment recipe, however, it is 

linked to the presence of Main Street with an absence of Innovation and absence of Growth 

Entrepreneurship, suggesting a relative stagnancy in these economies that may be suggestive 

of a trade-off with income levels. 

More broadly, the evidence suggests that different sets of entrepreneurship-innovation 

conditions in combination with different geographies, possibly because of their different effects 

on competition and resources, may be leading to different complementary/substituting 

relationships among growth, unemployment, and income outcomes. This implies both that 

different entrepreneurial processes (and hence policies) may be required to support presence of 

growth (linked to Entrepreneurial growth and Innovation) and absence of unemployment 

(linked to the presence of Main Street) outcomes but also that policies that produce 

complementary outcomes for growth and unemployment for one economic geography may 

generate substituting outcomes in another. 

 

Income 

Sufficiency analyses for the Income presence of (INCM) and absence of (~INCM) derivative 

outcome variables are shown in Table 6 (maps in Figure 7). 
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Table 6. Sufficiency Analyses Results for Income Outcomes 
 

Conditions 
Income 

INCM  ~INCM 

Start-up Activity         

Main Street         

Growth Entrepreneurship         

Innovation         

Urbanity-diversity         
    

Complex  CHI1 CHI2 CHI3  CLI1 CLI2 CLI3 CLI4 

Configurations 20 8, 16 15, 16  5, 7 22 1, 9, 17, 25 9, 13, 25, 29 

Consistency 0.777 0.817 0.806  0.892 0.853 0.835 0.809 

Raw Coverage 0.274 0.310 0.342  0.360 0.227 0.438 0.396 

Unique Coverage 0.108 0.033 0.071  0.074 0.084 0.051 0.041 

Solution Consistency 0.820  0.831 

Solution Coverage 0.489  0.659 
    

Parsimonious  PHI1 PHI2 PHI3  PLI1 PLI2 

Configurations 20 8, 16 15, 16  5, 7 1, 9, 13, 17, 22, 25, 29 

Consistency 0.678 0.770 0.807  0.870 0.780 

Raw Coverage 0.328 0.365 0.367  0.526 0.817 

Unique Coverage 0.099 0.053 0.077  0.053 0.344 

Solution Consistency 0.750  0.789 

Solution Coverage 0.560  0.870 

 

 For Income, 40 states were covered by the analyses. Innovation was the most consistent 

in its presence or absence (in the complex solutions at least), being present in all the presence 

of income causal-recipes and absent in three of the four absence of income causal recipes. 

Economic geography could also be seen to play a role here (again for the complex recipes), 

with Urbanity-diversity present in two of the three presence of income causal recipes and 

absent in three of the four absence of income causal recipes (though being present in the other).  

 The literature review identified that innovation is central to high-income outcomes 

generally, the results here supporting this, as well as the presence of income outcomes being 

much more prevalent in urban geographies. The review also suggested, however, that the role 

of innovation will be in combination with different variables dependent on the economic 

geography, in more urbanized geographies, with the combination of high-growth 

entrepreneurship and innovation most likely to be linked to high-income outcomes, while in 

more rural economies high-income outcomes also requiring building a stock of surviving, 

innovation-driven growth firms. The results broadly support this but also identify more 

specifically the complexity in these relationships than is implied in the literature. 
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Figure 7. Maps showing US states associated with the identified Parsimonious solution-

based causal recipes for Income 
 

a) PHI1           b) PHI2 

        
 

c) PHI3           d) PLI1 

        
 

 e) PLI2 

 
 

In terms of the absence of income, the absence (or at least non-presence) of Innovation does 

appear to be of central relevance for both urban and rural geographies, albeit with different 

combinations of relevance to urban and rural areas, as indicated by PLI1 and PLI2. In terms of 

presence of income, the recipe CHI2 also broadly supports the existing literature. Here, the 

presence of income is related to the presence of Urbanity-diversity (encompassing Maryland, 

Massachusetts, Rhode Island, and Virginia) with (albeit non-core) Innovation, presence of 

Growth Entrepreneurship and core absence of Start-up. In this case, absence of Start-up 

Entrepreneurship potentially suggests that Urbanity-Diversity reduces initial start-up rates (in 

line with Acs et al., 2007), but that the deleterious effects of concentration on high-innovation 

entrepreneurship through imitation are outweighed by benefits in terms of supporting Growth 

Entrepreneurship. For CHI1, however, while the presence of income causal-recipe with that of 

Urbanity-diversity (California, New Jersey, and New York) is associated with presence of 

Innovation, this is not core, and along with the absence of Main Street, there is also the core 

absence of Growth Entrepreneurship, with the (non-core) presence of Start-up Activity. For the 

states covered by this recipe, therefore, broader (start-up) processes, rather than those related 
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to high-Growth Entrepreneurship specifically (as measured by the variables here at any rate) 

appear to be of more importance in driving high-income levels. This may, however, still be 

consistent with the geographical concentration effect for innovation from knowledge spillover 

effects (Acs and Varga, 2002), where this greater geographical concentration leads to lower 

innovative new-firm survival (and firm growth) rates because of greater short-lived, imitative, 

businesses being created.  

For CHI3, the third presence of income causal-recipe, Urbanity-diversity is neither 

absent nor present, the recipe including presence of Growth Entrepreneurship and Innovation, 

as well as presence of Main Street and (non-core) absence of Start-up. This result is consistent 

with the literature related to more rural national economies, this recipe including configurations 

covering (absent Urbanity-diversity) Minnesota, and New Hampshire (which benefit from 

presence of growth and absence of unemployment) but also with (present Urbanity-diversity) 

Maryland, and Massachusetts, who are associated with presence of unemployment (with 

outcomes associated with both presence and absence of growth above the threshold level and 

therefore not included in the analyses). 

 

Summary 

Overall, this might suggest that for non-urban-diverse states, such as Minnesota and New 

Hampshire, the presence of Innovation, Growth Entrepreneurship and Main Street, and relative 

absence of Start-up Activity (itself indicating a quantity versus quality issue for 

entrepreneurship policy), is of most relevance in supporting positive growth, unemployment 

and income outcomes, that do not appear to need to be traded off against one another. For more 

urban-diverse states, however, this combination of factors is less effective in generating 

positive outcomes across all three outcomes. Specifically, there are clear trade-offs in growth, 

unemployment, and income outcomes in more complex urban-diverse economies, likely 

because of the ways in which competition (the outcomes of which are indicated through Main 

Street entrepreneurship) is driven by geographical concentration interacting with Innovation in 

combination with Start-up and Growth Entrepreneurship activities.  

 

5. Conclusions 

This study offers a novel theoretical contribution to further the understanding of the complexity 

of the effects on growth, unemployment, and income of interactions among innovation and 

different entrepreneurial behaviors within the different economic geographies represented by 

individual US states. Specifically, it broadens the debate on the impact of entrepreneurship in 
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countries in different states of development, to explore these issues within a highly developed 

economy, while also indicating that it is combinations of innovation and specific 

entrepreneurship activities within specific geographies that create growth, unemployment, and 

income outcomes. There are also trade-offs among these outcomes depending on the specific 

economic geography in question. 

FsQCA has allowed this more nuanced understanding of these complex relationships 

linking entrepreneurship, innovation, and geography (here urbanity-diversity) with growth, 

unemployment, and income outcomes, at the US state-level. An additional, technical 

development in this study, which may also assist in such future research, has been the 

employment of fuzzy clustering to formulate the considered condition and outcome variables, 

and importantly the concomitant fuzzy membership scores required. Without loss of generality, 

three constituent-variables are considered to model each condition and outcome variable (less 

or more could be included), and a two-step approach employed to identify two clusters of cases 

across each set of constituent-variables. Using the evaluated grades of membership values for 

the relevant cluster, they are in the correct scale for use in fsQCA (fuzzy membership scores). 

It is worth noting that this approach has done away with previously considered awkward efforts 

required for such calibration processes, such as using the direct method approach (Ragin, 

2008).  

The study also offers implications for both policy and practice. In terms of policy, the 

study offers novel insights for US state-level decision-makers in allowing the identification of 

the combinations of specific types of entrepreneurial activity and innovation activity that are 

required to promote growth, unemployment, and income outcomes, in specific geographies. In 

addition, it clearly indicates the configurations of US states where there is also a requirement 

to understand the trade-offs among growth, unemployment, and income that may result from 

such policies. Thus, decision-makers can use this evidence to mirror effective practice within 

benchmark states toward improved entrepreneurial practice and seek to reduce the negative 

impacts of unemployment, low growth, and/or low income, depending on their policy 

priorities. If such a strategic approach could be implemented, the small business community 

would benefit in turn through increased, more specifically focused support and legislation, 

which should thereby increase firm efficiency and practices. 

The findings suggest there is no “one size fits all” policy that can be suggested for the 

use of entrepreneurial activities to promote beneficial growth, unemployment, and income 

outcomes, particularly for more urban-diverse US states, where there is a clear requirement for 

further research. This study also recognizes, however, its limitations in terms of drawing 
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meaningful conclusions from a single, essentially cross-sectional study. Generally, a 

longitudinal study is required, as well as further in-depth research, to analyzes in more detail 

effective entrepreneurial behavior within individual US states to identify best practices, given 

their diversity and the requirement to further inform policy. There is also a need to further 

explore the issue of effective entrepreneurial behavior within urban-diverse US states. 
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