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ABSTRACT

We present the first release of the data and compact-source catalogue for the JCMT Large Program
SCUBA-2 Continuum Observations of Pre-protostellar Evolution (SCOPE). SCOPE consists of 850-µm con-
tinuum observations of 1235PlanckGalactic Cold Clumps (PGCCs) made with the Submillimetre Common-
User Bolometer Array 2 on the James Clerk Maxwell Telescope.These data are at an angular resolution of
14.4 arcsec, significantly improving upon the 353-GHz resolution of Planckat 5 arcmin, and allowing for a
catalogue of 3528 compact sources in 558 PGCCs. We find that the detected PGCCs have significant sub-
structure, with 61 per cent of detected PGCCs having 3 or morecompact sources, with filamentary structure
also prevalent within the sample. A detection rate of 45 per cent is found across the survey, which is 95 per
cent complete toPlanckcolumn densities ofNH2 >5×1021cm−2. By positionally associating the SCOPE
compact sources with YSOs, the star formation efficiency, asmeasured by the ratio of luminosity to mass,
in nearby clouds is found to be similar to that in the more distant Galactic Plane, with the column density
distributions also indistinguishable from each other.

Key words:
surveys – stars: formation – ISM: clouds – submillimetre: ISM

1 INTRODUCTION

The Planck survey, with its primary goal of mapping the cos-
mic microwave background, covered the thermal emission from
dust of∼14 K at wavelengths of 350µm, 550µm, and 850µm.
In the process of removing local, Galactic emission, a cata-
logue of 13188PlanckGalactic cold clumps (PGCCs) was com-
piled (Planck Collaboration et al. 2011a, 2016). By comparing
the column densities and velocity widths of such clumps and
those containing active star formation, the PGCCs were found
to be significantly more quiescent and less evolved (Wu et al.
2012; Liu et al. 2013). The apparent quiescent nature of PGCCs
makes them a valuable sample for studying the earliest stages
of star formation, especially since they appear to have condi-
tions suitable for star formation, with low dust temperatures of
6–20 K (Planck Collaboration et al. 2016). CO clumps have been
detected towards PGCCs (e.g.,Liu et al. 2013; Meng et al. 2013;
Parikka et al. 2015; Zhang et al. 2016; Fehér et al. 2017), as well
as detections of line emission from dense-gas tracers (Yuan et al.
2016). There can be, however, low levels of active star formation
within PGCCs (Tóth et al. 2014; Liu et al. 2015; Tang et al. 2018;
Yi et al. 2018; Zhang et al. 2018).

A large sample of prestellar cores and clumps needs to be stud-
ied to understand the evolution of cores and clumps after thefor-
mation of a young stellar object (YSO). In support of the effort to
collect a large sample of pre- and protostellar cores and clumps,
we present SCOPE, the SCUBA-2 Continuum Observations of
Pre-protostellar Evolution Large Program. The project aims to test
the earliest stages of star formation by observing 1235 PGCCs
with the wide-field sub-mm bolometer camera, the Submillimetre
Common-User Bolometer Array 2 (SCUBA-2;Holland et al. 2013)
at the 850-µm wavelength beam size of 14.4 arcsec on the James
Clerk Maxwell Telescope (JCMT). By observing with SCUBA-2
in the 850-µm continuum, matching the frequency of thePlanck
353 GHz band, we can significantly improve over the 5′ resolu-
tion of the Planck observations of PGCCs. The 5′ resolution of
Planckis prohibitive in that it hinders the positional cross matching
of higher-resolution catalogues of YSOs (e.gWright et al. 2010;
Gutermuth & Heyer 2015; Marton et al. 2016) and also doesn’t re-

⋆ E-mail: D. J. Eden@ljmu.ac.uk

veal the highly structured nature of the PGCCs (Juvela et al. 2012;
Liu et al. 2012).

The resolution of SCUBA-2 at 850µm resolves PGCCs at
1.5 kpc and 0.5 kpc to scales of 0.1 pc and 0.03 pc, respectively, the
typical size of star-forming cores and clumps (e.g.,Könyves et al.
2015), with 56 per cent and 43 per cent of sources falling within
these distances, respectively (Planck Collaboration et al. 2016). It
is important to resolve individual cores in the PGCCs, especially
because of the close connection between the core mass spectrum
and the the stellar IMF (e.g.,Simpson et al. 2008; Könyves et al.
2015; Montillaud et al. 2015),

The SCOPE survey was awarded 300 hours in the JCMT
weather bands 3 and 4, which correspond to sky opacity values
of τ225= 0.08–0.2. Observations began with three periods of pilot
observations occurring in September 2014, and continued from De-
cember 2015 until July 2017. SCUBA-2 does observe the 450-µm
band simultaneously with the 850-µm band but the weather bands
available to SCOPE do not allow for reliable photometric calibra-
tion to be made on these shorter wavelength data.

1.1 SCOPE science goals

As previously mentioned, thePlancksurvey mapped the entire sky,
therefore PGCCs cover all Galactic longitudes and latitudes, from
the Galactic Plane to high-latitude clouds. Previous workssug-
gest that the Galaxy’s spiral arms do not have much of an im-
pact on star formation, other than collecting the source material
together (Eden et al. 2012, 2013; Moore et al. 2012). Understand-
ing star formation out of the Galactic Plane, however, is restricted
to nearby clouds in the Gould’s Belt (e.g.,Ward-Thompson et al.
2007; André et al. 2010). Some clouds at higher latitudes show
signs of star formation (e.g.,McGehee 2008; Malinen et al. 2014;
Kerp et al. 2016). Hence, high-latitude clouds could be contribut-
ing to Galactic star formation, both at present and in the fu-
ture by providing source material for fresh star formation.In-
deed, gas at high latitudes could be a part of a Galactic foun-
tain, where gas and dust is expelled into the Galactic halo bysu-
pernovae and stellar winds (Bregman 1980). This material would
then fall back to the Galactic Plane, cooling and condensinginto
atomic clouds, with observations detecting HI high-latitude clouds
(Röhser et al. 2016b). These clouds then fall back onto the Plane,
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replenishing the reservoir for star formation (Putman et al. 2012).
In this regard, these clouds would also contain some molecular
material (Magnani & Smith 2010; Röhser et al. 2016a) and dust
(Planck Collaboration et al. 2011b), therefore SCOPE is important
in quantifying the amount of dense gas at high latitudes and to see
if it has the same star formation efficiency as in the Plane.

Images of the dust-continuum emission found that the ISM
and molecular clouds are highly filamentary. with the vast ma-
jority of clumps and cores lying on, or in, these structures
(Molinari et al. 2010; André et al. 2010, 2014). The formation
mechanism of filaments is disputed, with global gravitational col-
lapse (Hartmann & Burkert 2007), large-scale colliding flows in
the cloud-formation process (Heitsch & Hartmann 2008), and de-
caying supersonic turbulence (Padoan et al. 2007) being suggested
as possible formation mechanisms. Observational evidence, how-
ever, has been unable to discriminate between these possibilities.
The fact that most cores, both pre- and proto-stellar, are found
on these filaments implies that the filamentary structures are cru-
cial to their formation, regardless of how the filaments form.
Follow-up studies have also found PGCCs to be filamentary (e.g.,
Rivera-Ingraham et al. 2016; Kim et al. 2017), and the increased
resolution of the SCOPE survey allows the determination of the
detection rate of filaments and the fragmentation of filaments into
clumps and cores. Such detection of filaments, and the placement
of clumps/cores along them will allow for a greater understand-
ing of the role that they play in star formation (Liu et al. 2018a,b;
Juvela et al. 2018b).

Using the method ofSadavoy et al.(2013), we can combine
Herschel Space Observatorydata and simultaneously derive the
dust temperature, column density, and dust emissivity spectral in-
dex. By calculating these values, we can study how dust properties
vary between different Galactic environments and between sources
in different stages of the star-formation process, with some of the
sources in this study already addressed byJuvela et al.(2018a,b).

Multiple papers have already been published using the SCOPE
data, namely the maps and images (Liu et al. 2016; Kim et al.
2017; Tatematsu et al. 2017; Liu et al. 2018a,b; Juvela et al. 2018a;
Tang et al. 2018; Zhang et al. 2018; Yi et al. 2018; Juvela et al.
2018b).

The layout of this paper is as follows: Section 2 introduces the
observing strategy and complementary observations and surveys.
Section 3 describes the data and the data reduction, whilst Section
4 includes the compact source extraction. Sections 5 and 6 describe
data access and results, respectively. Finally, Section 8 provides a
summary and final conclusions.

2 SCOPE OBSERVING STRATEGY

The SCOPE selection of PGCCs was chosen randomly from
the full PGCC sample to sample varying Galactic environ-
ments (Liu et al. 2018a). Sources from the catalogue of PGCCs
were excluded if they had already been observed at the JCMT
with SCUBA-2 at a rms sensitivty of at least 6 mJy beam−1.
These observations formed part of the JCMT Legacy Surveys
(Chrysostomou 2010), namely the JCMT Plane Survey (JPS;
Moore et al. 2015; Eden et al. 2017and the JCMT Gould Belt Sur-
vey (GBS;Ward-Thompson et al. 2007). The SCUBA-2 Ambitious
Sky Survey (SASSy;MacKenzie et al. 2011; Nettke et al. 2017;
Thompson et al., in preparation), covers half of the Galactic Plane
but does not have the desired rms.

The PGCCs not previously observed at JCMT were placed

into a 3-dimensional grid with each longitude bin 30 degreeswide,
latitude bins of|b|= 0◦, 4◦, 10◦, and 90◦, and distance bins of 0 kpc,
0.2 kpc, 0.5 kpc, 1 kpc, 2 kpc, and 8 kpc. Sources with column den-
sities NH2 < 2×1021 cm−2 chosen randomly within each bin, with
all sources with column densities NH2 > 2×1021 cm−2 observed.
This column density criterium is due to the pilot study of theinitial
300 PGCCs, where the detection rate of PGCCs with NH2 < 1021

cm−2 were dramatically lower. The JCMT has through SCOPE,
and other archival data, covered nearly all PGCCs with column
densities of NH2 > 2×1021 cm−2 within the declination range of
-30◦ – +35◦, the most likely star-forming PGCCs (Wang et al., in
preparation).

The properties of the observed sources are displayed in Fig.1.
The presented properties are Galactic longitude, Galacticlatitude,
temperature, distance, column density, mass, luminosity,major
axis, and aspect ratio. The physical properties are not derived for
all sources, and are as calculated byPlanck Collaboration et al.
(2016). These distributions are compared to the entire populations,
as derived byPlanck Collaboration et al.(2016). The biggest de-
parture is with column density. We observed higher column den-
sity PGCCs than the average, which in turn skewed the SCOPE
mass distribution to higher observed masses. Low column den-
sity (NH2<1021 cm−2) PGCCs usually do not contain dense cores,
based on our pilot observations, and thus are not interesting for star
formation studies.

The average angular size of PGCCs is 8′

(Planck Collaboration et al. 2016), therefore the CV Daisy
mode of SCUBA-2 was used for these observations (Bintley et al.
2014). The CV Daisy mode is specifically designed for small,
compact objects, with the telescope keeping to a circular pattern
at 155′′ s−1. Each SCOPE map takes 16 minutes to perform,
with the CV Daisy mode producing 850-µm rms noise values of
6 mJy beam−1 in the central 3′, with 850-µm rms noise out to radii
of 6′ of 10-30 mJy beam−1.

The SCOPE survey including pilot studies observed fields to-
wards 1235 PGCCs in 1062 fields, with compact source detections
towards∼ 51 per cent of fields, 45 per cent of PGCCs. The ob-
served PGCCs in the SCOPE survey are displayed in their Galactic
context in Fig.2, with the 174 and 321 PGCCs observed by the
JPS and GBS, respectively, overlaid. This paper will deal with only
those observed as part of the SCOPE project.

The goal of SCOPE was to observe PGCCs in all Galactic
environments. Comparison to the entire PGCC population andto
sources in the GBS fields (Fig.3) shows that SCOPE observations
are representative of the high-column-density PGCC targets and
complement the sources observed in GBS.

2.1 Complementary Observations

As well as the SCOPE survey, there are ongoing surveys at other
facilities, giving complementary data to these PGCC detections
(Liu et al. 2015, 2018a). The Taeduk Radio Astronomy Observa-
tory (TRAO) Observations ofPlanckcold clumps (TOP) survey is
observing∼2000 PGCCs in the rotational transition ofJ = 1−0
of CO istopologues12CO and13CO at resolutions of 45-47 arcsec.
A full description of this survey can be found inLiu et al. (2018a).
FurtherJ = 1−0 observations have been made at the Purple Moun-
tain Observatory (PMO) at the same resolution. These observations
will allow PGCCs to be put in the greater context of extended CO
emission and structure.

The SMT (Submillimetre Telescope) “All-sky” Mapping
of Planck Interstellar Nebulae in the Galaxy (SAMPLING;
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Figure 1. Properties of the PGCCs observed in the SCOPE survey (grey histogram), with the total PGCC population fromPlanck Collaboration et al.(2016)
overlaid in blue. The top row displays the Galactic longitude, Galactic latitude, and temperature, in the left, central, and right panels, respectively. The middle
row are the distance, column density, and mass, with the bottom row showing the luminosity, major axis, and aspect ratio.

Wang et al. 2018) survey follows up PGCCs in theJ = 2−1 transi-
tion of 12CO and13CO. The detection of two transitions will allow
more accurate column densities to be calculated.

Further PI observations have occurred at the Nobeyama Ra-
dio Observatory 45-metre telescope, the 21-metre telescopes in Ko-
rean VLBI Network (KVN) and the Effelsberg 100-metre telescope
in the dense-gas tracers like HCO+, N2H+, HC3N, CCS, DNC,
HN13C, N2D+ and NH3 towards samples of SCUBA-2 dense cores
in PGCCs. By observing these species, temperatures, depletion and
deuteration fractions can be determined (Tatematsu et al. 2017).

3 DATA REDUCTION AND SCOPE DATA

Liu et al. (2018a) provides a full description of different data re-
duction methods employed and tested within the SCOPE survey.

The data reduction employed within the first SCOPE data re-
lease use the Dynamic Iterative Map-Maker (Chapin et al. 2013),
part of theStarlink SMURF package (Jenness et al. 2011). These

data make use of a 200′′ spatial filter, with no use of external mask-
ing. This initial data reduction is then filtered for regionswith a
signal-to-noise ratio (SNR) less than 3, with these high-SNR re-
gions used then as a mask for a further reduction. A full description
of the masking process can be found inMairs et al.(2015).

A flux conversion factor of 554 Jy beam−1 pW−1 is used to
convert from the native units of pW to Jy beam−1. This value is∼ 3
per cent higher than the 537 Jy beam−1 pW−1 flux conversion fac-
tor recommended byDempsey et al.(2013b), reflecting the pixel
size (4′′) and data reduction method used by the SCOPE survey as
the pixel size is a factor in the flux conversion factor equation.

Examples of two of the observed PGCCs are shown in Fig.4, a
complex, filamentary source, and a high-latitude cloud withsimple
morphology.

The mean rms within the central 12′ of the 1062 fields
(this is the number of fields observed, containing the ob-
served 1235 PGCCs) is 0.185 Jy arcsec−2, which corresponds to
43.9 mJy beam−1. This sensitivity is a factor of∼1.5 worse than
the 25-31 mJy beam−1 rms of the JPS (Eden et al. 2017). Within
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SCOPE Survey Description 5

the central 3′, the rms is found to be 0.028 Jy arcsec−2, which cor-
responds to 6.65 mJy beam−1.

4 COMPACT SOURCE CATALOGUE

4.1 Compact Source Extraction

Compact sources were extracted from the images using the FELL -
WALKER algorithm (FW;Berry 2015)1. Justification for the choice
of source extraction algorithm and the parameters used are outlined
in Moore et al.(2015) andEden et al.(2017). The parameter FELL -
WALKER :MINPIX is adjusted to account for the larger pixel size
used in the SCOPE reduction.

The FW algorithm is run on the SNR maps, with the mask pro-
duced byCUPID:FINDCLUMPSused to extract flux from the emis-
sion maps.

Compact sources were initially identified in 821 of the 1062
observed fields. Sources which had a peak SNR< 5 were rejected,
as well as sources with an aspect ratio> 5. The sensitivity to ex-
tended, filamentary objects in the SCOPE survey will be explored
in a future study (Fich et al., in preparation). These quality control
cuts resulted in 3528 sources, with examples of the source extrac-
tion results for two fields shown in Fig.4.

Table1 contains a portion of the full SCOPE compact source
catalogue. The columns are as follows: (1) SCOPE catalogue
source name; (2) SCOPE Region; (3) and (4) Right Ascension and
Declination (J2000) of the peak flux position within the SCOPE
source; (5) and (6) Right Ascension and Declination (J2000)of the
central point; (7–9) semi-major axis, semi-minor axis, andposition
angle, measured anticlockwise from Equatorial north, of the ellipse
fit to the shape of the SCOPE source which are not deconvolved
sizes; (10) effective radius of source, calculated by

√

(A/π), where
A is the area of the source above the detection threshold of 3σrms;
(11–12) peak flux density, in units of Jy beam−1, and associated
uncertainty; (13–14) integrated 850-µm flux, in units of Jy, and
associated uncertainty and (15) signal-to-noise ratio (SNR) of the
source, calculated from the peak flux density and theσrms from the
observed field. The uncertainties take account for errors incalibra-
tion, taken to be 5 per cent (Dempsey et al. 2013b), and uncertain-
ties in the FCF value used, also taken to be 5 per cent. A full version
is included in the Supporting Information. The 3528 sourceswere
distributed across 558 PGCCs.

The FW routine was tested extensively within the JPS survey,
with a 95 per cent recovery fraction of artificial sources found to be
at approximately 5σ. A full explanation can be found inEden et al.
(2017). Therefore, we are assuming that this completeness limit is
valid for the observed SCOPE sources within the Galactic Plane.
An improved recovery fraction of 99 per cent was found in two
SCOPE fields at|b|>30◦.

4.2 Recovered flux densities

The FW algorithm is well understood (Eden et al. 2017). Therefore,
any differences in the recovered flux densities compared to other
surveys are likely due to calibration issues. To test the recovered
fluxes, the SCOPE fluxes were compared to those of the JPS survey
(Eden et al. 2017), both positionally matched and the survey as a
whole.

The distributions of peak intensites and integrated fluxes for

1 FW is part of theStarlink CUPID package outlined inBerry et al.(2007).

both surveys are displayed in Fig.5. The JPS survey source inten-
sities have been converted into mJy arcsec−2 and mJy in the peak
intensity and integrated flux distributions, respectively. The peak
intensity distribution of the JPS goes∼ 2 × deeper than SCOPE,
which corresponds to the rms values of the respective surveys. The
CV Daisy mode actually produces deeper observations in the cen-
tral regions, with SCOPE having greater sensitivity in those re-
gions. The peaks of the integrated flux distributions, however, are
consistent with each other. By assuming single power-law laws for
the tails of the distributions of the form∆N/∆Sν ∝ S−α , values of
α for the two distributions were found to beα = 2.10± 0.13 and
α = 1.97± 0.10 for the peak intensity and integrated flux distribu-
tions, respectively, above limits of 0.5 mJy arcsec2 and 2 mJy for
the peak intensity and integrated flux distributions, respectively.
The SCOPE peak intensity distribution is consistent with that of
the JPS (α = 2.24± 0.12) but the SCOPE integrated flux distribu-
tion is flatter than that of the JPS survey (α = 2.56± 0.18).

There is actually a slight overlap between the SCOPE and the
JPS surveys. By positionally matching the two surveys within a
JCMT beam of 14.4 arcsec, we find 83 matches. A comparison of
peak intensities and integrated fluxes for sources in commonare
shown in Fig.6. The two distributions show a slight disceprency,
with the integrated fluxes departing by a greater amount. Thedif-
ference between the peak fluxes can be accounted for by the dif-
ference in pixel sizes (3 arcsec in the JPS, 4 arcsec in SCOPE). As
reported inMairs et al.(2015); Rumble et al.(2015), changing the
pixel size, especially to smaller sizes, can change the peakvalue,
with 3-arcsec pixels giving the most accurate peak fluxes. The dif-
ference in integrated fluxes is accounted for by larger sources in the
SCOPE survey, with sources in the SCOPE survey found to have a
mean size 1.32 times that of the reported JPS source size. A linear
best fit to the relationship gives a gradient of 1.06± 0.05. The dif-
ferent FCFs will also account for some of the difference. However,
the major difference comes from the sensitivity in the outeredges
of the SCOPE maps, where these 83 sources are found. In these
regions, the JPS is∼ 2 × more sensitive, thus causing the sources
to be broken up in the JPS. A full explanation of this effect iscon-
tained inEden et al.(2017) in the context of JPS and ATLASGAL
(Schuller et al. 2009) comparisons.

4.3 Angular size distribution

The angular size distribution of the SCOPE sources is shown in
Fig. 7. The plotted quantity is the major axis of the elliptical fit
to the source, provided by FW. The reported sizes are not decon-
voled sizes. The peak of the distribution, found at 35 arcsec, is in
marked contrast to the peak at 8 arcmin found in thePlanckcat-
alogue (Planck Collaboration et al. 2016). This difference further
exemplifies the inner substructure identified by the higher resolu-
tion SCOPE survey and the presence of multiple SCUBA-2 sources
inside a single PGCC, which is highlighted in Fig.8, where 61 per
cent of detected PGCCs have 3 or more SCOPE sources.

We present the aspect ratios of the SCOPE sources in Fig.9.
We have overlaid the aspect ratios of the observedPlanckPGCCs
in this survey.Planck Collaboration et al.(2016) found that 40 per
cent of sources had an aspect ratio of between 2 and 3, with a shoul-
der at those values not present in the SCOPE compact source cata-
logue. This shoulder in the PGCC catalogue aspect ratios is ahint
at the substructure observed by SCOPE, with a higher aspect ratio
pointing towards more filamentary structures. It is also a reflection
of the nature of the sources extracted by the FW algorithm, which
is attuned more towards extracting compact objects.
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6 D. J. Eden et al.

Figure 2. The distribution of observed PGCCs by the JCMT. The black points represent SCOPE sources, whilst the white and gold points were observed as
part of the JPS and GBS, respectively. The underlying image is thePlanck353-GHz (850-µm) intensity map.
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Figure 3. Histograms of column density of PGCCs with the entire pop-
ulation represented by the blue histogram, the grey histogram represent-
ing those PGCCs observed by SCOPE and the green hashed histogram
covering those PGCCs observed by the JCMT in the Gould’s BeltSurvey
((Ward-Thompson et al. 2007).

5 SCOPE SURVEY AND DATA ACCESS

The SCOPE data products can be downloaded from the Cana-
dian Astronomy Data Centre’s JCMT Science Archive2, with the
proposal IDs MJLSY14B, M15AI05, M15BI06, and M16AL003.
These IDs correspond to observations taken in the SASSy survey,
two PI proposals, all of which formed the pilot observations, and
the SCOPE survey, respectively. As well as these data, the raw ob-
servation data can also be downloaded from the same location.

The full source compact source catalogue is available as Sup-
porting Information.

6 RESULTS

6.1 Detection statistics

The PGCCs observed in the SCOPE survey were chosen to sam-
ple across the spectrum of a host of statistics, as displayedin
Fig.1, with a bias towards the highest column density sources, as
described earlier. The detection rate of each statistic is shown in
Fig.10. Six high-latitude PGCCs with detections (|b|>30◦) were

2 http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/jcmt/
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SCOPE Survey Description 7

Figure 4. Examples of observed PGCCs in the SCOPE survey. Left panel: Acomplicated, filamentary source at Galactic coordinatesℓ= 36.◦62, b= -0.◦11,
PGCC_G36.62-0.11. Right panel: A high-latitude PGCC, positioned atℓ= 6.◦04, b= 36.◦77, PGCC_G6.04+36.77 (Liu et al., in preparation). The intensity
scale in each image is mJy arcsec−2 and the white ellipses represent the elliptical fits to the FELLWALKER extractions within the observed field.
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Figure 5. Peak and integrated flux distributions for the SCOPE survey (grey, filled histogram) compared to the JPS (blue histogram)in the left and right panels,
respectively. The least-squares fit to the SCOPE distributions are indicated by the red, dashed line.

excluded from the statistics as they were found to be associated
with lensed galaxies (Liu et al., in preparation).

The longitude detection rates are approximately equal to the
overall detection rate (0.46), with lower rates found in thecentral
20 degrees (|b|< 2◦). In these longitudes, higher latitude sources
are observed, with lower detection rates found outside of the cen-
tral 4 degrees (|b|>2◦) of the Galactic Plane. In the latitude range
of |b|<2◦, the detection rate is slightly higher than the overall rate,
approximately 0.50. This is also reflected in the detection rate as a
function of distance. The detection rate at higher distances, those
classically taken to be in the Galactic Plane, are well detected.
However, the local, higher latitude sources are not detected at as
higher rate.

The column densities are 95 per cent complete above densi-
ties ofNH2 > 5×1021 cm−2. This detection rate corresponds to the
threshold for star formation found in studies of nearby star-forming
clouds (André et al. 2010; Heiderman et al. 2010; Lada et al. 2010;
André et al. 2014) Some bins are subject to low detection rates due
to low number statistics. The mass and lumniosities are complete to
a 95 per cent rate above 5×103 M⊙ and 1× 103 L⊙, respectively.

The column density detection rate does not account for the se-
lection bias imposed on the initial sample. When comparing the
entire PGCC population, the observed SCOPE sample, and the
detected PGCCs in SCOPE, we can see that the highest column
density sources are confined to the lower latitudes, which are the
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Figure 6. Comparison of the recovered peak and total fluxes for positionally matched SCOPE and JPS sources, in the left and right panels, respectively. The
red dashed line represents the 1:1 line.
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Figure 7. Histogram of the major axes identified by FELLWALKER of the
extracted SCOPE compact sources. The red dashed line indicates the beam
size of the JCMT at 850µm.

PGCCs with the largest distances, as seen in Fig.11. Deeper obser-
vations will be required to trace the lowest column density objects.

The major axes and aspect ratios fluctuate around the actual
detection rate of the SCOPE survey.

The detection rate of the temperatures is skewed by the lack of
derived temperatures byPlanck Collaboration et al.(2016). 619 of
the 1235 observed PGCCs do not have derived temperatures, with
360 of those 619 detected in SCOPE. The detection rate at the lower
temperatures of less than 15 K is 0.15.

6.2 Star formation out of the Galactic Plane

The SCOPE survey gives a sample of potentially star-formingcores
and clumps in different Galactic environments. The YSO catalogue
of Marton et al.(2016) provides an all-sky catalogue derived from
the AllWISE catalogue (Cutri et al. 2013). By positionally match-
ing these two catalogues, we find 865 YSOs located within the
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Figure 8.Histogram of the number of compact sources extracted per PGCC
with a detection in the SCOPE survey.

map extents of 201 observed PGCCs that have detected compact
sources.

The YSO catalogue ofMarton et al.(2016) contains the mag-
nitudes of the 4 WISE bands (3.4µm, 4.6µm, 12µm, and 22µm)
as well as theJ, H, andK bands from the positional matching of
2MASS Point Sources (Cutri et al. 2003). These 7 bands can be
used to calculate the luminosities of each YSO, and therefore the
total YSO luminosity associated with a PGCC. The luminosities are
calculated, once the magnitudes are converted into fluxes, using a
trapezium rule estimation in log-log space, which was shownto
provide a good approximation of the luminosity (Eden et al. 2015),
with other studies using this method (e.g.,Veneziani et al. 2013).

These luminosities,L, can be compared to the masses,M, of
the SCOPE detected YSOs to determine the ratio ofL/M, a mea-
sure of the current star formation and an indicator of the evolution-
ary state of that star formation (e.g.,Elia et al. 2017; Urquhart et al.
2018). Comparing this ratio between the nearby sources, comple-
mentary to the Gould’s Belt, and the more distant Galactic Plane
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Figure 9. Histogram of the aspect ratios of all SCOPE sources (grey his-
togram) with the aspect ratios of the SCOPE-observed PGCCs overlaid in
the blue histogram.

can determine whether the star formation in either environment is
at a different evolutionary stage (on average).

The masses were derived from the total emission within the
SCOPE maps. The masses in the SCOPE maps are estimated using
the optically thin approximation:

M =
Sν D2

κν Bν (Td)
(1)

whereSν is the integrated flux of the emission,D is the distance
(omitted in the calculation for the ratio ofL/M), κν is the mass ab-
sorption coefficient taken to be 0.01 cm2 g−1 (Mitchell et al. 2001)
which accounts for a gas-to-dust ratio of 100, andBν (Td) is the
Planck function evaluated at temperature,Td, taken to be 13 K, the
peak of the SCOPE-observed PGCC-temperature distribution.

The sample of 201 PGCCs with a YSO was split into
two populations, a Gould’s Belt-like population and the dis-
tant Galactic Plane. This was done by using a distance cut of
0.5 kpc, as this is taken to be the furthest Gould’s Belt sources
(Ward-Thompson et al. 2007), with distances below this in the
Gould’s Belt, and greater distances in the Galactic Plane. From
hereafter, these populations will be referred to as the nearby
and distant samples, respectively. The distances were estimated
in three ways. The first was to take the distances as derived by
Planck Collaboration et al.(2016). This accounted for 91 PGCCs.
The second was to extract spectra from spectral line data from exist-
ing surveys (Dame et al. 2001; Jackson et al. 2006; Dempsey et al.
2013a; Rigby et al. 2016), with sources in the Plane compared to
the Galactic rotation curve ofBrand & Blitz (1993). This accounted
for a further 108 PGCCs. The final two were well out of the Plane
at high latitudes, and were assumed to be local.

We found 114 and 87 PGCCs in the distant and nearby sam-
ples, respectively. The distribution of theL/M ratios for each of
these populations is shown in Fig.12. The mean values of the
two populations are 0.78± 0.16 L⊙/M⊙ and 1.14± 0.30 L⊙/M⊙

for the distant and nearby samples, respectively, with median val-
ues of 0.21± 0.16 L⊙/M⊙ and 0.32±0.28 L⊙/M⊙, respectively.
The populations are consistent with each other, within the errors,
indicating that the star formation in the distant Galactic Plane is
at roughly the same evolutionary stage as that within the nearby
Gould’s Belt-like sample. A Kolomogorov–Smirnov (K–S) test of

the two subsamples finds a 25 per cent chance they are not drawn
from the same distribution. We therefore cannot strongly reject the
null hypothesis that they are not drawn from the same sample and
that the distributions at different distances are different. The sample
of the Galactic Plane PGCCs will be extended when JPS sources
are also included, and this analysis will be the subject of a further
study (Eden et al., in preparation).

6.3 Column densities of SCOPE sources

The column densities of the SCOPE sources in the nearby envi-
ronments and the distant Galactic Plane are compared. The column
densities were calculated using the following:

NH2 =
Sν,peak

Bν (Td)ΩbκνmHµ
(2)

whereSν,peak is the peak intensity,Bν (Td) andκν are as defined
above,Ωb is the solid angle of the beam,mH is the mass of a hy-
drogen atom, andµ is the mean mass per hydrogen molecule, taken
to be 2.8 (Kauffmann et al. 2008).

The distribution of column densities for the entire SCOPE
sample, as well as the two subsamples are displayed in Fig.13(top,
middle), with the cumulative distribution also included. AK–S test
of the two subsamples gives a∼2.5σ, or a 2.5 per cent chance that
they are not drawn from the same population. We therefore cannot
strongly reject the null hypothesis that they are not drawn from the
same sample.

When comparing only the star-forming samples, as shown in
Fig.13 (bottom), the K–S test gives a 94 per cent result that the
nearby and distant Galactic Plane SCOPE sources are drawn from
the same population. We can assume, however, that the total star-
forming sample is considerably different from the entire SCOPE
sample due to a K-S test giving a probability of their being the
same of 0.001. This result is consistent with that ofUrquhart et al.
(2014), who found that the star-forming clumps in the ATLAS-
GAL survey had a considerably different column-density distribu-
tion than that of the entire population.

7 SUMMARY

We present the first data release of the SCOPE survey, presenting
the data images and a compact source catalogue. The data consist
of observations of 1235PlanckGalactic Cold Clumps (PGCCs) at
angular resolutions of 14.4 arcsec, significantly improving upon the
5-arcmin resolution ofPlanck. The improved resolution reveals sig-
nificant substructure within these sources, reflected by a compact
source catalogue consisting of 3528 sources. The data are down-
loadable from the CADC, with the compact source catalogue in-
cluded as Supporting Information to this article.

The compact source catalogue was produced using the FELL -
WALKER algorithm, reflecting the same method used within the
JCMT Plane Survey (JPS;Eden et al. 2017). A comparison of peak
intensities and integrated fluxes in overlapping sources between the
JPS and SCOPE surveys shows slight discrepancies, but otherwise
good agreement. The SCOPE sources are significantly smallerthan
those within thePlanckcatalogue, with peaks of the angular-size
distribution found at 35 arcsec compared to 8 arcmin.

The detection rate of PGCCs within the SCOPE survey
is 45 per cent, with 558 PGCCs detected of the 1235 ob-
served. The survey is 95 complete in PGCCs with column den-
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Figure 10. Distributions of the observed,Planck-derived statistics of SCOPE sources (grey histograms) overlaid with the detected PGCCs (yellow hashed
histogram). The ratio of the two histograms is overlaid by the blue dotted line. The black dashed line respresents the overall detection rate. As in Fig.1, the
top row displays the Galactic longitude, Galactic latitude, and temperature, in the left, central, and right panels, respectively. The middle row are the distance,
column density, and mass, with the bottom row showing the luminosity, major axis, and aspect ratio.

sities NH2 >5× 1021 cm−2, and to masses and luminosities of
5×103 M⊙ and 1× 103 L⊙, respectively.

By positionally matching the SCOPE compact sources with
YSOs from the WISE catalogue, and splitting the sample into
sources that are within 0.5 kpc and those at greater distances, we
found that the ratio ofL/M is consistent between these samples.
The column densities of these two samples of SCOPE sources
are also consistent. The distribution of column densities of star-
forming sources, however, were found to be significantly different
from those of the whole SCOPE compact source catalogue.
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Figure 11. Latitude of PGCCs against column density (left panel) and distance (right panel). The blue circles are the entire PGCC sample from
Planck Collaboration et al.(2016), the black plus symbols are the observed SCOPE PGCCs, with the yellow squares representing the detected SCOPE PGCCs.
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Figure 12.Histogram of theL/M ratios in SCOPE detected PGCCs in the
further (grey) and in the nearby (green) Galactic Plane.
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Figure 13. Top panel: column density distribution of all SCOPE com-
pact sources (grey histogram), with those in the distant Galactic Plane
(d > 500 pc; red histogram) and nearby sample (d < 500 pc; green his-
togram). Middle panel: the cumulative distributions of thesame histograms
with the dashed black line, dotted red line, and green solid line representing,
the whole sample, in the distant Galactic Plane and nearby Plane, respec-
tively. Bottom panel: the cumulative distributions of the star-forming sam-
ples, with the dashed black line representing the total sample (as in the mid-
dle panel, includes non-star-forming sources), and the dotted red lines and
green solid lines represent the star-forming sources in distant and nearby
environments, respectively.
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Table 1.The SCOPE compact source catalogue. The columns are as defined in Section 4.1.

Name Region RApeak Decpeak RAcen Deccen σmaj σmin PA Reff Speak ∆Speak Sint ∆Sint SNR
(◦) (◦) (◦) (◦) (′′) (′′) (◦) (′′) (Jy arcsec−2) (Jy arcsec−2) (Jy) (Jy)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

SCOPEG000.39+11.38 G0.49+11.38a 256.139 -22.294 256.139-22.299 15 7 260 20 0.308 0.035 0.647 0.032 5.39
SCOPEG000.41+11.41 G0.49+11.38a 256.120 -22.259 256.115-22.258 17 11 207 29 0.943 0.025 4.232 0.212 16.53
SCOPEG001.37+20.94 G001.3+20.9A1 248.655 -15.791 248.660 -15.794 23 15 192 43 1.132 0.151 7.936 0.397 11.26
SCOPEG001.37+20.95 G001.3+20.9A1 248.647 -15.782 248.647 -15.781 21 18 132 46 1.379 0.202 14.625 0.731 13.71
SCOPEG001.37+20.96 G001.3+20.9A1 248.636 -15.776 248.634 -15.771 18 14 222 33 1.038 0.155 4.771 0.239 10.33
SCOPEG001.82+16.56 G001.8+16.5A1 252.559 -18.105 252.559 -18.104 24 15 190 42 0.651 0.081 4.494 0.225 7.82
SCOPEG003.98+35.70 G4.18+35.79a 238.346 -4.808 238.357 -4.798 37 20 162 58 3.143 0.050 42.604 2.130 24.61
SCOPEG004.00+35.71 G4.18+35.79a 238.350 -4.788 238.356 -4.778 48 33 167 79 1.515 0.081 35.849 1.792 11.86
SCOPEG004.01+35.66 G4.18+35.79a 238.394 -4.809 238.390 -4.806 13 8 161 21 3.071 0.050 7.201 0.360 24.04
SCOPEG004.02+35.66 G4.18+35.79a 238.398 -4.808 238.400 -4.801 15 10 140 26 2.137 0.027 6.655 0.333 16.73
SCOPEG004.61+36.64 G004.5+36.7A1 237.928 -3.821 237.918-3.837 45 21 115 68 15.535 0.069 243.776 12.189 27.44
SCOPEG004.62+36.64 G004.5+36.7A1 237.927 -3.816 237.918-3.817 29 8 156 37 13.091 0.062 68.204 3.410 23.12
SCOPEG004.62+36.65 G004.5+36.7A1 237.926 -3.810 237.914-3.799 40 20 254 66 12.707 0.049 167.376 8.369 22.44
SCOPEG005.00+18.99 G005.0+19.0A1 252.391 -14.230 252.389 -14.229 9 4 143 11 1.117 0.026 0.755 0.038 17.61
SCOPEG005.23-01.99 G5.17-1.97 271.305 -25.426 271.305 -25.427 14 10 195 26 0.724 0.077 2.136 0.107 7.34
SCOPEG005.64+00.23 G5.73+0.19 269.408 -23.968 269.411 -23.972 22 13 219 36 1.930 0.147 9.894 0.495 10.58
SCOPEG005.64+00.24 G5.73+0.19 269.395 -23.966 269.394 -23.962 25 17 239 51 12.946 0.153 62.862 3.143 71.00
SCOPEG005.65+00.22 G5.73+0.19 269.416 -23.964 269.416 -23.960 28 14 254 47 1.665 0.225 10.648 0.532 9.13
SCOPEG005.65+00.26 G5.73+0.19 269.381 -23.944 269.380 -23.944 8 6 123 14 0.917 0.050 1.119 0.056 5.03
SCOPEG005.83−00.94 G005.91−01.00 270.615 -24.383 270.618 -24.382 15 9 227 26 1.654 0.050 5.157 0.258 12.63
SCOPEG005.83−01.03 G005.91−01.00 270.704 -24.435 270.703 -24.443 31 14 97 35 0.788 0.040 3.053 0.153 6.02
SCOPEG005.84−01.00 G005.91−01.00 270.676 -24.406 270.678 -24.412 32 24 267 65 2.297 0.246 22.732 1.137 17.54
SCOPEG005.85−00.99 G005.91−01.00 270.682 -24.392 270.683 -24.390 15 15 102 35 1.618 0.254 8.175 0.409 12.35
SCOPEG005.85−01.00 G005.91−01.00 270.693 -24.397 270.697 -24.399 18 14 204 32 0.753 0.105 3.974 0.199 5.75
SCOPEG005.87−00.99 G005.91−01.00 270.693 -24.375 270.693 -24.378 28 12 243 40 1.183 0.164 8.784 0.439 9.03
SCOPEG005.88−00.94 G005.91−01.00 270.648 -24.345 270.645 -24.352 27 25 109 58 0.999 0.138 15.217 0.761 7.62
SCOPEG005.88−01.01 G005.91−01.00 270.709 -24.374 270.705 -24.372 22 13 257 38 2.814 0.397 14.790 0.739 21.49
SCOPEG005.89−00.91 G005.91−01.00 270.624 -24.325 270.629 -24.320 23 14 161 39 0.723 0.091 5.750 0.287 5.52
SCOPEG005.89−00.94 G005.91−01.00 270.656 -24.334 270.655 -24.331 15 12 240 32 1.727 0.193 5.672 0.284 13.18
SCOPEG005.90−00.93 G005.91−01.00 270.650 -24.317 270.648 -24.315 16 10 234 31 1.162 0.123 4.413 0.221 8.88
SCOPEG005.90−01.01 G005.91−01.00 270.721 -24.362 270.720 -24.371 46 24 261 72 1.936 0.248 36.472 1.824 14.78
SCOPEG005.91−00.95 G005.91−01.00 270.675 -24.318 270.671 -24.319 25 18 256 51 2.880 0.294 14.736 0.737 21.99
SCOPEG005.91−01.00 G005.91−01.00 270.724 -24.345 270.725 -24.344 20 10 141 30 1.467 0.354 9.249 0.462 11.20
SCOPEG005.91−01.02 G005.91−01.00 270.742 -24.357 270.740 -24.354 23 21 223 54 2.246 0.442 20.771 1.039 17.15
SCOPEG005.92−00.96 G005.91−01.00 270.683 -24.313 270.683 -24.311 12 9 117 22 0.722 0.121 1.833 0.092 5.51
SCOPEG005.92−00.97 G005.91−01.00 270.696 -24.317 270.696 -24.316 13 12 170 29 0.695 0.138 2.919 0.146 5.31
SCOPEG005.92−00.99 G005.91−01.00 270.714 -24.335 270.713 -24.335 31 23 156 62 2.432 0.550 27.790 1.389 18.57
SCOPEG005.96−01.12 G005.91−01.00 270.857 -24.359 270.843 -24.361 23 15 162 36 0.701 0.032 4.665 0.233 5.35

Note:Only a small portion of the catalogue is shown here. The entire catalogue is available in the Supporting Information.
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