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2 D.J.Edenetal.

ABSTRACT

We present the first release of the data and compact-sout@egae for the JCMT Large Program
SCUBA-2 Continuum Observations of Pre-protostellar Etiolu(SCOPE). SCOPE consists of 8af con-
tinuum observations of 123 anckGalactic Cold Clumps (PGCCs) made with the Submillimetren@mwn-
User Bolometer Array 2 on the James Clerk Maxwell TelescOpese data are at an angular resolution of
14.4 arcsec, significantly improving upon the 353-GHz netsoh of Planckat 5 arcmin, and allowing for a
catalogue of 3528 compact sources in 558 PGCCs. We find thatdtected PGCCs have significant sub-
structure, with 61 per cent of detected PGCCs having 3 or mwamgact sources, with filamentary structure
also prevalent within the sample. A detection rate of 45 et ¢s found across the survey, which is 95 per
cent complete t&lanckcolumn densities oy, > 5 x 10?1 cm~2. By positionally associating the SCOPE
compact sources with YSOs, the star formation efficiencynaasured by the ratio of luminosity to mass,
in nearby clouds is found to be similar to that in the moreafisGalactic Plane, with the column density
distributions also indistinguishable from each other.

Key words:
surveys — stars: formation — ISM: clouds — submillimetrév|S

1 INTRODUCTION veal the highly structured nature of the PGCQswela et al. 2012
Liu etal. 2012.

The resolution of SCUBA-2 at 850m resolves PGCCs at
1.5kpc and 0.5 kpc to scales of 0.1 pc and 0.03 pc, respeagtitel
typical size of star-forming cores and clumps (ekgnyves et al.
2015, with 56 per cent and 43 per cent of sources falling within
these distances, respectiveRlgnck Collaboration et al. 2016t
is important to resolve individual cores in the PGCCs, eigigc
because of the close connection between the core massuspectr
and the the stellar IMF (e.gSimpson et al. 2008K6nyves et al.
2015 Montillaud et al. 2013,

The SCOPE survey was awarded 300 hours in the JCMT
weather bands 3 and 4, which correspond to sky opacity values
of 12o5=0.08-0.2. Observations began with three periods of pilot
observations occurring in September 2014, and continaead De-
cember 2015 until July 2017. SCUBA-2 does observe the 450-
band simultaneously with the 850m band but the weather bands
available to SCOPE do not allow for reliable photometridlwal-
tion to be made on these shorter wavelength data.

The Planck survey, with its primary goal of mapping the cos-
mic microwave background, covered the thermal emissiom fro
dust of ~14 K at wavelengths of 350m, 550um, and 85Qum.
In the process of removing local, Galactic emission, a cata-
logue of 13188Planck Galactic cold clumps (PGCCs) was com-
piled (Planck Collaboration et al. 20112016. By comparing
the column densities and velocity widths of such clumps and
those containing active star formation, the PGCCs were doun
to be significantly more quiescent and less evolvedl et al.
2012 Liu etal. 2013. The apparent quiescent nature of PGCCs
makes them a valuable sample for studying the earliest stage
of star formation, especially since they appear to have ieond
tions suitable for star formation, with low dust temperagiof
6—20K (Planck Collaboration et al. 201L6CO clumps have been
detected towards PGCCs (e.biu et al. 2013 Meng et al. 2013
Parikka et al. 2015Zhang et al. 2016Fehér et al. 201)7 as well
as detections of line emission from dense-gas tracéran( et al.
2016. There can be, however, low levels of active star formation
within PGCCs T6th et al. 2014Liu et al. 2015 Tang et al. 2018
Yietal. 2018 Zhang et al. 2018

Alarge sample of prestellar cores and clumps needs to be stud 1.1  SCOPE science goals
ied to understand the evolution of cores and clumps aftefdhe
mation of a young stellar object (YSO). In support of the effo
collect a large sample of pre- and protostellar cores anchzy
we present SCOPE, the SCUBA-2 Continuum Observations of gest that the Galaxy’s spiral arms do not have much of an im-

Pre-protostellar Evolution Large Program. The projectsaimtest pact on star formation, other than collecting the sourceerisit

th_e earlies_t sta_lges of star formation by observing 1235_ I_D:GCC together Eden et al. 20122013 Moore et al. 2012 Understand-
with the wide-field sub-mm bolometer camera, the Submillime ing star formation out of the Galactic Plane, however, isrietsd

Common-User Bolometer Array 2 (SCUBA#plland et al. 2013 to nearby clouds in the Gould's Belt (e.yVard-Thompson et al.
at the 850pm wavelength beam size of 14.4 arcsec on the James 2007 André etal. 2010 Some clouds at higher latitudes show
Clerk Maxwell Telescope (JCMT). By observing with SCUBA-2  gjgng of star formation (e.gMcGehee 2008Malinen et al. 2014
in the 850um continuum, matching the frequency of théanck Kerp et al. 2015 Hence, high-latitude clouds could be contribut-
353 GHz band, we can significantly improve over tHer&solu- ing to Galactic star formation, both at present and in the fu-
tion of the Planck observations of PGCCs. The Eesolution of ture by providing source material for fresh star formatiom-
Planckls proh|b|t|ye|nthat it hinders the posmo_nal cross manch deed, gas at high latitudes could be a part of a Galactic foun-
of higher-resolution catalogues of YSOs (&\gight et al. 2010 tain, where gas and dust is expelled into the Galactic halsuby
Gutermuth & Heyer 2013Viarton et al. 201pand also doesn'tre-  hernoyae and stellar wind8(egman 198) This material would
then fall back to the Galactic Plane, cooling and condensitm
atomic clouds, with observations detecting kigh-latitude clouds
* E-mail: D. J. Eden@Iljmu.ac.uk (Rohser et al. 2016bThese clouds then fall back onto the Plane,

As previously mentioned, thelancksurvey mapped the entire sky,
therefore PGCCs cover all Galactic longitudes and latguffem
the Galactic Plane to high-latitude clouds. Previous waug-
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replenishing the reservoir for star formatidPugiman et al. 2012
In this regard, these clouds would also contain some maecul
material Magnani & Smith 2010 Rohser et al. 201§aand dust
(Planck Collaboration et al. 201}, iherefore SCOPE is important
in quantifying the amount of dense gas at high latitudes arsgé
if it has the same star formation efficiency as in the Plane.

Images of the dust-continuum emission found that the ISM
and molecular clouds are highly filamentary. with the vast ma
jority of clumps and cores lying on, or in, these structures
(Molinari et al. 2010 André etal. 2010 2014). The formation
mechanism of filaments is disputed, with global gravitatiorol-
lapse Hartmann & Burkert 200) large-scale colliding flows in
the cloud-formation proces$iéitsch & Hartmann 2008 and de-
caying supersonic turbulencBgdoan et al. 20Qbeing suggested
as possible formation mechanisms. Observational evidédvoe-
ever, has been unable to discriminate between these fditesbi
The fact that most cores, both pre- and proto-stellar, anado
on these filaments implies that the filamentary structurescas-
cial to their formation, regardless of how the filaments form
Follow-up studies have also found PGCCs to be filamentagy, (e.
Rivera-Ingraham et al. 2016im et al. 20173, and the increased
resolution of the SCOPE survey allows the determinationhef t
detection rate of filaments and the fragmentation of filasartb
clumps and cores. Such detection of filaments, and the pkem
of clumps/cores along them will allow for a greater underdta
ing of the role that they play in star formatiohi( et al. 2018zb;
Juvela et al. 2018b

Using the method oSadavoy et al(2013, we can combine
Herschel Space Observatogata and simultaneously derive the
dust temperature, column density, and dust emissivitytsgldn-
dex. By calculating these values, we can study how dust piiepe
vary between different Galactic environments and betweearces
in different stages of the star-formation process, with sahthe
sources in this study already addressedinyela et al(2018ab).

Multiple papers have already been published using the SCOPE

data, namely the maps and imagesu(et al. 2016 Kim et al.
2017 Tatematsu et al. 201 Ziu et al. 2018zb; Juvela et al. 2018a
Tang et al. 2018 Zhang etal. 2018Yietal. 2018 Juvela et al.
2018Hh.

The layout of this paper is as follows: Section 2 introdutes t
observing strategy and complementary observations angysur
Section 3 describes the data and the data reduction, wieitstoB
4 includes the compact source extraction. Sections 5 andditde
data access and results, respectively. Finally, Sectiom@des a
summary and final conclusions.

2 SCOPE OBSERVING STRATEGY

The SCOPE selection of PGCCs was chosen randomly from As well as the SCOPE survey, there are ongoing surveys at othe

the full PGCC sample to sample varying Galactic environ-
ments Liu et al. 20183 Sources from the catalogue of PGCCs

SCOPE Survey Description 3

into a 3-dimensional grid with each longitude bin 30 degreige,
latitude bins ofb| =0°, 4°, 10°, and 90, and distance bins of 0 kpc,
0.2kpc, 0.5kpc, 1 kpc, 2 kpc, and 8 kpc. Sources with colunm de
sities Ny, < 2 x 10?1 cm~2 chosen randomly within each bin, with
all sources with column densities4) > 2 x 10?! cm~2 observed.
This column density criterium is due to the pilot study of thigial
300 PGCCs, where the detection rate of PGCCs wigh N 1071
cm 2 were dramatically lower. The JCMT has through SCOPE,
and other archival data, covered nearly all PGCCs with colum
densities of N, > 2 x10?1 cm~2 within the declination range of
-30° — +35, the most likely star-forming PGCCs (Wang et al., in
preparation).

The properties of the observed sources are displayed i1 Fig.
The presented properties are Galactic longitude, Galtatttade,
temperature, distance, column density, mass, luminosigjor
axis, and aspect ratio. The physical properties are novetkifor
all sources, and are as calculated Phkanck Collaboration et al.
(2016. These distributions are compared to the entire popuigtio
as derived byPlanck Collaboration et a{2016. The biggest de-
parture is with column density. We observed higher columm-de

sity PGCCs than the average, which in turn skewed the SCOPE

mass distribution to higher observed masses. Low column den
sity (Nn, <107 cm~2) PGCCs usually do not contain dense cores,
based on our pilot observations, and thus are not integeftirstar
formation studies.

The average angular size of PGCCs is’ 8
(Planck Collaboration et al. 2016 therefore the CV Daisy
mode of SCUBA-2 was used for these observatidist(ey et al.
2014. The CV Daisy mode is specifically designed for small,
compact objects, with the telescope keeping to a circulétepa
at 155”s 1. Each SCOPE map takes 16 minutes to perform,
with the CV Daisy mode producing 850m rms noise values of
6 mJy beam? in the central 3 with 8504tm rms noise out to radii
of 6 of 10-30 mJy beamt.

The SCOPE survey including pilot studies observed fields to-
wards 1235 PGCCs in 1062 fields, with compact source detectio
towards~ 51 per cent of fields, 45 per cent of PGCCs. The ob-
served PGCCs in the SCOPE survey are displayed in their Balac
context in Fig.2, with the 174 and 321 PGCCs observed by the
JPS and GBS, respectively, overlaid. This paper will deth winly
those observed as part of the SCOPE project.

The goal of SCOPE was to observe PGCCs in all Galactic
environments. Comparison to the entire PGCC populationtand
sources in the GBS fields (Fig) shows that SCOPE observations
are representative of the high-column-density PGCC targat
complement the sources observed in GBS.

2.1 Complementary Observations

facilities, giving complementary data to these PGCC detest
(Liu et al. 2015 20183. The Taeduk Radio Astronomy Observa-

were excluded if they had already been observed at the JCMT tory (TRAO) Observations dPlanckcold clumps (TOP) survey is

with SCUBA-2 at a rms sensitivty of at least 6 mJybedm

observing~ 2000 PGCCs in the rotational transitiondbf= 1—0

These observations formed part of the JCMT Legacy Surveys of CO istopologues?CO and'3CO at resolutions of 45-47 arcsec.

(Chrysostomou 2090 namely the JCMT Plane Survey (JPS;
Moore et al. 2015Eden et al. 201and the JCMT Gould Belt Sur-
vey (GBS;Ward-Thompson et al. 200.7The SCUBA-2 Ambitious
Sky Survey (SASSyMacKenzie et al. 201 1Nettke et al. 2017
Thompson et al., in preparation), covers half of the Gatdetane
but does not have the desired rms.

A full description of this survey can be found ltiu et al. (20183.
FurtherJ = 1—0 observations have been made at the Purple Moun-
tain Observatory (PMO) at the same resolution. These oatens
will allow PGCCs to be put in the greater context of extend€d C
emission and structure.

The SMT (Submillimetre Telescope) “All-sky” Mapping

The PGCCs not previously observed at JCMT were placed of Planck Interstellar Nebulae in the Galaxy (SAMPLING;
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Figure 1. Properties of the PGCCs observed in the SCOPE survey (gsgggham), with the total PGCC population frdtanck Collaboration et a{2016)
overlaid in blue. The top row displays the Galactic longé&u@alactic latitude, and temperature, in the left, cengnadl right panels, respectively. The middle
row are the distance, column density, and mass, with thernatbw showing the luminosity, major axis, and aspect ratio.

Wang et al. 2018survey follows up PGCCs in the= 2— 1 transi- data make use of a 20@patial filter, with no use of external mask-

tion of 12CO and'3CO. The detection of two transitions will allow  ing. This initial data reduction is then filtered for regiowith a

more accurate column densities to be calculated. signal-to-noise ratio (SNR) less than 3, with these highRS¥-
Further Pl observations have occurred at the Nobeyama Ra-gions used then as a mask for a further reduction. A full deton

dio Observatory 45-metre telescope, the 21-metre telesdago- of the masking process can be foundMairs et al.(2015.

rean VLBI Network (KVN) and the Effelsberg 100-metre telese A flux conversion factor of 554 Jybearhpw 1 is used to

in the dense-gas tracers like HEON,H™*, HC3N, CCS, DNC, convert from the native units of pW to Jy beaf This value is~ 3
HN13C, N,D* and NH; towards samples of SCUBA-2 dense cores  per cent higher than the 537 Jy beahpw 1 flux conversion fac-
in PGCCs. By observing these species, temperatures, iepetd tor recommended bipempsey et al(2013h, reflecting the pixel
deuteration fractions can be determin@dtématsu et al. 20).7 size (4') and data reduction method used by the SCOPE survey as
the pixel size is a factor in the flux conversion factor ecprati
Examples of two of the observed PGCCs are shown in&ig.
complex, filamentary source, and a high-latitude cloud wiithple
morphology.
Liu et al. (20183 provides a full description of different data re- The mean rms within the central '1®f the 1062 fields
duction methods employed and tested within the SCOPE survey (this is the number of fields observed, containing the ob-
The data reduction employed within the first SCOPE data re- served 1235 PGCCs) is 0.185 Jy arceavhich corresponds to
lease use the Dynamic Iterative Map-Mak&hgpin et al. 2013 43.9mJy beam!. This sensitivity is a factor of- 1.5 worse than
part of theStarlink SMURF package Jenness et al. 201L1These the 25-31 mJy beant rms of the JPSHden et al. 2017 Within

3 DATA REDUCTION AND SCOPE DATA
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the central 3 the rms is found to be 0.028 Jy arcsécwhich cor-
responds to 6.65 mJy bearh

4 COMPACT SOURCE CATALOGUE
4.1 Compact Source Extraction

Compact sources were extracted from the images usingehe-F
WALKER algorithm (FW;Berry 20151, Justification for the choice
of source extraction algorithm and the parameters used.linexl

in Moore et al(2015 andEden et al(2017). The parameterE_L-
WALKER:MINPIX is adjusted to account for the larger pixel size
used in the SCOPE reduction.

The FW algorithm is run on the SNR maps, with the mask pro-
duced bycupID:FINDCLUMPS used to extract flux from the emis-
sion maps.

Compact sources were initially identified in 821 of the 1062
observed fields. Sources which had a peak SNRwere rejected,
as well as sources with an aspect ratic. The sensitivity to ex-
tended, filamentary objects in the SCOPE survey will be arplo
in a future study (Fich et al., in preparation). These qualiéntrol
cuts resulted in 3528 sources, with examples of the sourttacex
tion results for two fields shown in Fid.

Tablel contains a portion of the full SCOPE compact source
catalogue. The columns are as follows: (1) SCOPE catalogue
source name; (2) SCOPE Region; (3) and (4) Right Ascensidn an
Declination (J2000) of the peak flux position within the SEGOP
source; (5) and (6) Right Ascension and Declination (J200)e
central point; (7—9) semi-major axis, semi-minor axis, podition
angle, measured anticlockwise from Equatorial north, efdltipse
fit to the shape of the SCOPE source which are not deconvolved
sizes; (10) effective radius of source, calculated A/ ), where
A is the area of the source above the detection thresholdafs3
(11-12) peak flux density, in units of Jy beaf and associated
uncertainty; (13-14) integrated 850n flux, in units of Jy, and
associated uncertainty and (15) signal-to-noise ratioRBdf the
source, calculated from the peak flux density andotfye from the
observed field. The uncertainties take account for errocsglibra-
tion, taken to be 5 per cenDémpsey et al. 2013band uncertain-
ties in the FCF value used, also taken to be 5 per cent. A frdioe
is included in the Supporting Information. The 3528 sounzese
distributed across 558 PGCCs.

The FW routine was tested extensively within the JPS survey,
with a 95 per cent recovery fraction of artificial sourcesfdtio be
at approximately &. A full explanation can be found iEden et al.
(2017). Therefore, we are assuming that this completeness kmit i
valid for the observed SCOPE sources within the Galactiodla
An improved recovery fraction of 99 per cent was found in two
SCOPE fields afb| > 30°.

4.2 Recovered flux densities

The FW algorithm is well understoo&@en et al. 201)7 Therefore,
any differences in the recovered flux densities comparedhero
surveys are likely due to calibration issues. To test theveed
fluxes, the SCOPE fluxes were compared to those of the JPS/surve
(Eden et al. 201)] both positionally matched and the survey as a
whole.

The distributions of peak intensites and integrated fluxes f

1 FW is part of theStarlink cupiD package outlined iBerry et al.(2007).

SCOPE Survey Description 5

both surveys are displayed in Fi). The JPS survey source inten-
sities have been converted into mJy arcgeand mJy in the peak
intensity and integrated flux distributions, respectivélile peak
intensity distribution of the JPS goes2 x deeper than SCOPE,
which corresponds to the rms values of the respective ssiridye
CV Daisy mode actually produces deeper observations inghe ¢
tral regions, with SCOPE having greater sensitivity in thos-
gions. The peaks of the integrated flux distributions, haxesare
consistent with each other. By assuming single power-lavs f@r
the tails of the distributions of the forldN/AS, 0 S 9, values of

o for the two distributions were found to ke=2.10+0.13 and

a =1.97+ 0.10 for the peak intensity and integrated flux distribu-
tions, respectively, above limits of 0.5 mJy arcsend 2 mJy for
the peak intensity and integrated flux distributions, retipely.
The SCOPE peak intensity distribution is consistent witht thf
the JPS ¢ =2.24+ 0.12) but the SCOPE integrated flux distribu-
tion is flatter than that of the JPS survey< 2.56+ 0.18).

There is actually a slight overlap between the SCOPE and the
JPS surveys. By positionally matching the two surveys witdi
JCMT beam of 14.4 arcsec, we find 83 matches. A comparison of
peak intensities and integrated fluxes for sources in comanen
shown in Fig.6. The two distributions show a slight disceprency,
with the integrated fluxes departing by a greater amount.difhe
ference between the peak fluxes can be accounted for by the dif
ference in pixel sizes (3 arcsec in the JPS, 4 arcsec in SC@BE)
reported inMairs et al.(2015; Rumble et al(2015, changing the
pixel size, especially to smaller sizes, can change the paiaie,
with 3-arcsec pixels giving the most accurate peak fluxes.difs
ference in integrated fluxes is accounted for by larger smlircthe
SCOPE survey, with sources in the SCOPE survey found to have a
mean size 1.32 times that of the reported JPS source sizaearli
best fit to the relationship gives a gradient of 1406.05. The dif-
ferent FCFs will also account for some of the difference. sy,
the major difference comes from the sensitivity in the oetdges

of the SCOPE maps, where these 83 sources are found. In these

regions, the JPS is 2 x more sensitive, thus causing the sources
to be broken up in the JPS. A full explanation of this effeatda-
tained inEden et al(2017) in the context of JPS and ATLASGAL
(Schuller et al. 200pcomparisons.

4.3 Angular size distribution

The angular size distribution of the SCOPE sources is shown i
Fig. 7. The plotted quantity is the major axis of the elliptical fit
to the source, provided by FW. The reported sizes are notndeco
voled sizes. The peak of the distribution, found at 35 arcisen
marked contrast to the peak at 8 arcmin found in Pfenck cat-
alogue Planck Collaboration et al. 20L6This difference further
exemplifies the inner substructure identified by the higlsolu-
tion SCOPE survey and the presence of multiple SCUBA-2 ssurc
inside a single PGCC, which is highlighted in F&jwhere 61 per
cent of detected PGCCs have 3 or more SCOPE sources.

We present the aspect ratios of the SCOPE sources i9Fig.
We have overlaid the aspect ratios of the obseRkthckPGCCs
in this surveyPlanck Collaboration et a{2016) found that 40 per
cent of sources had an aspect ratio of between 2 and 3, withué sh
der at those values not present in the SCOPE compact souece ca
logue. This shoulder in the PGCC catalogue aspect ratiofiista
at the substructure observed by SCOPE, with a higher asutéat r
pointing towards more filamentary structures. It is alsofection
of the nature of the sources extracted by the FW algorithnigtwh
is attuned more towards extracting compact objects.
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Figure 2. The distribution of observed PGCCs by the JCMT. The blacktgaiepresent SCOPE sources, whilst the white and goldswiete observed as
part of the JPS and GBS, respectively. The underlying imagfgeiPlanck353-GHz (850xm) intensity map.
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Figure 3. Histograms of column density of PGCCs with the entire pop-
ulation represented by the blue histogram, the grey hiatogrepresent-
ing those PGCCs observed by SCOPE and the green hashedrdnistog
covering those PGCCs observed by the JCMT in the Gould's Baitrey
((Ward-Thompson et al. 2007

5 SCOPE SURVEY AND DATA ACCESS

The SCOPE data products can be downloaded from the Cana-
dian Astronomy Data Centre’s JCMT Science ArcRiveith the
proposal IDs MJLSY14B, M15AI105, M15BI06, and M16AL003.
These IDs correspond to observations taken in the SASSggurv
two PI proposals, all of which formed the pilot observatioasd
the SCOPE survey, respectively. As well as these data, theba
servation data can also be downloaded from the same location
The full source compact source catalogue is available as Sup
porting Information.

6 RESULTS
6.1 Detection statistics

The PGCCs observed in the SCOPE survey were chosen to sam-
ple across the spectrum of a host of statistics, as displayed
Fig.1, with a bias towards the highest column density sources, as
described earlier. The detection rate of each statistibdsva in
Fig.10. Six high-latitude PGCCs with detection|(> 30°) were

2 http://www.cadc-ccda. hia-iha.nrc-cnrc.gc.ca/en/jcmt
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Figure 4. Examples of observed PGCCs in the SCOPE survey. Left panetidplicated, filamentary source at Galactic coordinéte86°62, b=-0°11,
PGCC_G36.62-0.11. Right panel: A high-latitude PGCC, tpwsed at!/ =604, b=36"77, PGCC_G6.04+36.77 (Liu et al., in preparation). Thensity
scale in each image is mJy arcséand the white ellipses represent the elliptical fits to tEeIFVALKER extractions within the observed field.
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Figure 5. Peak and integrated flux distributions for the SCOPE surgesy( filled histogram) compared to the JPS (blue histograre left and right panels,

respectively. The least-squares fit to the SCOPE distdhatare indicated by the red, dashed line.

excluded from the statistics as they were found to be aseakcia
with lensed galaxies (Liu et al., in preparation).

The longitude detection rates are approximately equaléo th
overall detection rate (0.46), with lower rates found in teatral
20 degrees|| < 2°). In these longitudes, higher latitude sources
are observed, with lower detection rates found outside @fctn-
tral 4 degrees|p| > 2°) of the Galactic Plane. In the latitude range
of |b| < 2°, the detection rate is slightly higher than the overall rate

The column densities are 95 per cent complete above densi-
ties of Ny, > 5 x 10?* cm2. This detection rate corresponds to the

Integrated Flux Density (mJy)

threshold for star formation found in studies of nearby-fbaming
clouds André et al. 201pHeiderman et al. 20tQ.ada et al. 2010

André et al. 201¥Some bins are subject to low detection rates due

to low number statistics. The mass and lumniosities are tetefo
a 95 per cent rate abovex510° M, and 1x 10° L, respectively.

approximately 0.50. This is also reflected in the detectada as a
function of distance. The detection rate at higher distant®se
classically taken to be in the Galactic Plane, are well detkc
However, the local, higher latitude sources are not dedeateas
higher rate.

The column density detection rate does not account for the se
lection bias imposed on the initial sample. When comparhey t
entire PGCC population, the observed SCOPE sample, and the ©
detected PGCCs in SCOPE, we can see that the highest column
density sources are confined to the lower latitudes, whiehttze
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Figure 7. Histogram of the major axes identified by ELWALKER of the

extracted SCOPE compact sources. The red dashed lineteslitee beam
size of the JCMT at 850m.

PGCCs with the largest distances, as seen inJHigDeeper obser-
vations will be required to trace the lowest column densiijects.
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Figure 8. Histogram of the number of compact sources extracted pet®GC
with a detection in the SCOPE survey.

map extents of 201 observed PGCCs that have detected compact

sources.
The YSO catalogue dflarton et al(2016) contains the mag-

The major axes and aspect ratios fluctuate around the actualpjtudes of the 4 WISE bands (34n, 4.6um, 12um, and 22:m)

detection rate of the SCOPE survey.

The detection rate of the temperatures is skewed by the fack o
derived temperatures lanck Collaboration et a(2016. 619 of
the 1235 observed PGCCs do not have derived temperatutbs, wi
360 of those 619 detected in SCOPE. The detection rate aivlee |
temperatures of less than 15K is 0.15.

6.2 Star formation out of the Galactic Plane

The SCOPE survey gives a sample of potentially star-forroangs

and clumps in different Galactic environments. The YSOlogtze

of Marton et al.(2016) provides an all-sky catalogue derived from
the AIIWISE catalogueQutri et al. 2013. By positionally match-

ing these two catalogues, we find 865 YSOs located within the

as well as thel, H, andK bands from the positional matching of
2MASS Point SourcesQutri et al. 2003. These 7 bands can be
used to calculate the luminosities of each YSO, and thezefue
total YSO luminosity associated with a PGCC. The luminesitire
calculated, once the magnitudes are converted into flusasy @
trapezium rule estimation in log-log space, which was shéwn
provide a good approximation of the luminosifden et al. 2015
with other studies using this method (eXjeneziani et al. 2013
These luminositied,, can be compared to the masdes,of
the SCOPE detected YSOs to determine the ratib/®, a mea-
sure of the current star formation and an indicator of théugtian-
ary state of that star formation (e.glja et al. 2017Urquhart et al.

2018. Comparing this ratio between the nearby sources, comple-

mentary to the Gould’s Belt, and the more distant Galactan®l
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Figure 9. Histogram of the aspect ratios of all SCOPE sources (grey his
togram) with the aspect ratios of the SCOPE-observed PG@&tada in
the blue histogram.

can determine whether the star formation in either envimnis
at a different evolutionary stage (on average).

The masses were derived from the total emission within the
SCOPE maps. The masses in the SCOPE maps are estimated usi
the optically thin approximation:

S,D?
- KyBy (Td) @

whereS, is the integrated flux of the emissioB, is the distance
(omitted in the calculation for the ratio & M), ky is the mass ab-
sorption coefficient taken to be 0.01 &gr ! (Mitchell et al. 200}
which accounts for a gas-to-dust ratio of 100, 8ydTy) is the
Planck function evaluated at temperaturg,taken to be 13K, the
peak of the SCOPE-observed PGCC-temperature distribution
The sample of 201 PGCCs with a YSO was split into
two populations, a Gould's Belt-like population and the-dis
tant Galactic Plane. This was done by using a distance cut of
0.5kpc, as this is taken to be the furthest Gould’'s Belt semirc
(Ward-Thompson et al. 2097with distances below this in the
Gould’s Belt, and greater distances in the Galactic PlamemF
hereafter, these populations will be referred to as thehyear
and distant samples, respectively. The distances wermadsti

SCOPE Survey Description 9

the two subsamples finds a 25 per cent chance they are not drawn
from the same distribution. We therefore cannot stronglyatehe

null hypothesis that they are not drawn from the same sanmmule a
that the distributions at different distances are differ&he sample

of the Galactic Plane PGCCs will be extended when JPS sources
are also included, and this analysis will be the subject afrthér
study (Eden et al., in preparation).

6.3 Column densities of SCOPE sources

The column densities of the SCOPE sources in the nearby envi-
ronments and the distant Galactic Plane are compared. Tin@igo
densities were calculated using the following:

N, = Bﬂ @

v (Ta)QoKymy i
wheresS, peakis the peak intensityBy (Tq) andk, are as defined
above,Qy, is the solid angle of the beamy is the mass of a hy-
drogen atom, and is the mean mass per hydrogen molecule, taken
to be 2.8 Kauffmann et al. 2008

The distribution of column densities for the entire SCOPE
sample, as well as the two subsamples are displayed il &{tpp,
middle), with the cumulative distribution also includedKAS test

the two subsamples givesa2.50, or a 2.5 per cent chance that
they are not drawn from the same population. We thereforeatan
strongly reject the null hypothesis that they are not drasemfthe
same sample.

When comparing only the star-forming samples, as shown in
Fig.13 (bottom), the K-S test gives a 94 per cent result that the
nearby and distant Galactic Plane SCOPE sources are dramn fr
the same population. We can assume, however, that the tatal s
forming sample is considerably different from the entireCBRE
sample due to a K-S test giving a probability of their being th
same of 0.001. This result is consistent with thatlofluhart et al.
(2014, who found that the star-forming clumps in the ATLAS-
GAL survey had a considerably different column-densityribia-
tion than that of the entire population.

7 SUMMARY

We present the first data release of the SCOPE survey, pirggent
the data images and a compact source catalogue. The datstcons

in three ways. The first was to take the distances as derived by of observations of 123RlanckGalactic Cold Clumps (PGCCs) at

Planck Collaboration et a{2016). This accounted for 91 PGCCs.
The second was to extract spectra from spectral line datadsast-

ing surveys Dame et al. 2001Jackson et al. 200®empsey et al.
20133 Rigby et al. 2015 with sources in the Plane compared to
the Galactic rotation curve &@rand & Blitz (1993. This accounted
for a further 108 PGCCs. The final two were well out of the Plane
at high latitudes, and were assumed to be local.

We found 114 and 87 PGCCs in the distant and nearby sam-

ples, respectively. The distribution of tthe’'M ratios for each of
these populations is shown in Fig2. The mean values of the
two populations are 0.780.16 L,/Ms and 1.14+0.30 Lo/M¢
for the distant and nearby samples, respectively, with aredal-
ues of 0.2 0.16 L.,/M; and 0.32:0.28 L,/M,, respectively.
The populations are consistent with each other, within therg,
indicating that the star formation in the distant Galactiane is
at roughly the same evolutionary stage as that within thebyea
Gould’s Belt-like sample. A Kolomogorov—Smirnov (K-S) te$

angular resolutions of 14.4 arcsec, significantly imprguipon the
5-arcmin resolution dPlanck The improved resolution reveals sig-
nificant substructure within these sources, reflected bynapect
source catalogue consisting of 3528 sources. The data ane-do
loadable from the CADC, with the compact source catalogue in
cluded as Supporting Information to this article.

The compact source catalogue was produced usingghe-F
WALKER algorithm, reflecting the same method used within the
JCMT Plane Survey (JPE&den et al. 201)7 A comparison of peak
intensities and integrated fluxes in overlapping sourcesdsn the
JPS and SCOPE surveys shows slight discrepancies, butvigber
good agreement. The SCOPE sources are significantly srtiaier
those within thePlanck catalogue, with peaks of the angular-size
distribution found at 35 arcsec compared to 8 arcmin.

The detection rate of PGCCs within the SCOPE survey
is 45 per cent, with 558 PGCCs detected of the 1235 ob-
served. The survey is 95 complete in PGCCs with column den-
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Figure 10. Distributions of the observedlanckderived statistics of SCOPE sources (grey histogramsjastewnith the detected PGCCs (yellow hashed
histogram). The ratio of the two histograms is overlaid g Itiue dotted line. The black dashed line respresents thralbdetection rate. As in Fidl, the
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Figure 13. Top panel: column density distribution of all SCOPE com-
pact sources (grey histogram), with those in the distant&ial Plane
(d > 500pc; red histogram) and nearby sampmle<( 500 pc; green his-
togram). Middle panel: the cumulative distributions of #zene histograms
with the dashed black line, dotted red line, and green solerkepresenting,
the whole sample, in the distant Galactic Plane and neardyePrespec-
tively. Bottom panel: the cumulative distributions of thtarsforming sam-
ples, with the dashed black line representing the total #&fap in the mid-
dle panel, includes non-star-forming sources), and thiedoed lines and
green solid lines represent the star-forming sources iamiand nearby
environments, respectively.
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Table 1. The SCOPE compact source catalogue. The columns are asidefiBection 4.1.

Name Region RpPeak  DeGeak RAcen Deceen Omaj  Omin PA Reft Speak ASyeak Sint ASnt SNR

) ) ) ) (m ) () (Qyarcsec?) (Jyarcsec?) (Jy) y)
1) (2 3) 4 (5) (6) mn ® (O (@0 (11) (12) (13) (14) (15)
SCOPEG000.39+11.38 G0.49+11.38a 256.139 -22.294  256.13%2.299 15 7 260 20 0.308 0.035 0.647 0.032 5.39
SCOPEG000.41+11.41 G0.49+11.38a 256.120 -22.259  256.113.258 17 11 207 29 0.943 0.025 4.232 0.212 16.53
SCOPEGO001.37+20.94 G001.3+20.9A1 248.655 -15.791 2@8.6615.794 23 15 192 43 1.132 0.151 7.936 0.397 11.26
SCOPEGO001.37+20.95 GO001.3+20.9A1 248.647 -15.782 248.6415.781 21 18 132 46 1.379 0.202 14.625 0.731 13.71
SCOPEGO001.37+20.96 GO001.3+20.9A1 248.636 -15.776 248.6315.771 18 14 222 33 1.038 0.155 4.771 0.239 10.33
SCOPEGO001.82+16.56 G001.8+16.5A1 252,559 -18.105 282.5518.104 24 15 190 42 0.651 0.081 4.494 0.225 7.82
SCOPEG003.98+35.70 G4.18+35.79a 238.346 -4.808 238.352.798 37 20 162 58 3.143 0.050 42.604 2.130 24.61
SCOPEGO004.00+35.71 G4.18+35.79a 238.350 -4.788 238.358.778 48 33 167 79 1.515 0.081 35.849 1.792 11.86
SCOPEGO004.01+35.66 G4.18+35.79a 238.394 -4.809 238.390.806 13 8 161 21 3.071 0.050 7.201 0.360 24.04
SCOPEGO004.02+35.66 G4.18+35.79a 238.398 -4.808 238.400.801- 15 10 140 26 2.137 0.027 6.655 0.333 16.73
SCOPEGO004.61+36.64 G004.5+36.7A1  237.928 -3.821 237.91:8.837 45 21 115 68 15.535 0.069 243.776  12.189 27.44
SCOPEGO004.62+36.64 G004.5+36.7A1  237.927 -3.816 237.918.817 29 8 156 37 13.091 0.062 68.204 3.410 23.12
SCOPEG004.62+36.65 G004.5+36.7A1  237.926 -3.810 237.91:8.799 40 20 254 66 12.707 0.049 167.376 8.369 22.44
SCOPEGO005.00+18.99 G005.0+19.0A1 252.391 -14.230 282.3814.229 9 4 143 11 1.117 0.026 0.755 0.038 17.61
SCOPEG005.23-01.99 G5.17-1.97 271.305 -25.426 271.30%5.422 14 10 195 26 0.724 0.077 2.136 0.107 7.34
SCOPEGO005.64+00.23 G5.73+0.19 269.408 -23.968 269.4113.972 22 13 219 36 1.930 0.147 9.894 0.495 10.58
SCOPEGO005.64+00.24 G5.73+0.19 269.395 -23.966 269.3943.962 25 17 239 51 12.946 0.153 62.862 3.143 71.00
SCOPEGO005.65+00.22 G5.73+0.19 269.416 -23.964 269.4163.96Q 28 14 254 47 1.665 0.225 10.648 0.532 9.13
SCOPEGO005.65+00.26 G5.73+0.19 269.381 -23.944  269.38(B.942 8 6 123 14 0.917 0.050 1.119 0.056 5.03
SCOPEGO005.8300.94 G005.9301.00 270.615 -24.383 270.618 -24.382 15 9 227 26 1.654 0.050 5.157 0.258 12.63
SCOPEG005.8301.03 G005.9301.00 270.704 -24.435 270.703 -24.443 31 14 97 35 0.788 0.040 3.053 0.153 6.02
SCOPEGO005.8401.00 G005.9301.00 270.676 -24.406 270.678 -24.412 32 24 267 65 2.297 60.24 22.732 1.137 17.54
SCOPEG005.8500.99 G005.9301.00 270.682 -24.392 270.683 -24.390 15 15 102 35 1.618 40.25 8.175 0.409 12.35
SCOPEGO005.8501.00 G005.9301.00 270.693 -24.397 270.697 -24.399 18 14 204 32 0.753 50.10 3.974 0.199 5.75
SCOPEGO005.8700.99 G005.9301.00 270.693 -24.375 270.693 -24.378 28 12 243 40 1.183 40.16 8.784 0.439 9.03
SCOPEGO005.8800.94 G005.9301.00 270.648 -24.345 270.645 -24.352 27 25 109 58 0.999 80.13 15.217 0.761 7.62
SCOPEG005.8801.01 G005.9301.00 270.709 -24.374 270.705 -24.372 22 13 257 38 2.814 70.39 14.790 0.739 21.49
SCOPEGO005.8900.91 G005.9301.00 270.624 -24.325 270.629 -24.320 23 14 161 39 0.723 10.09 5.750 0.287 5.52
SCOPEG005.8900.94 G005.9301.00 270.656 -24.334 270.655 -24.331 15 12 240 32 1.727 30.19 5.672 0.284 13.18
SCOPEGO005.9000.93 G005.9301.00 270.650 -24.317 270.648 -24.315 16 10 234 31 1.162 30.12 4.413 0.221 8.88
SCOPEG005.9001.01 G005.9301.00 270.721 -24.362 270.720 -24.371 46 24 261 72 1.936 80.24 36.472 1.824 14.78
SCOPEGO005.92400.95 G005.9301.00 270.675 -24.318 270.671 -24.319 25 18 256 51 2.880 40.29 14.736 0.737 21.99
SCOPEG005.9401.00 G005.9301.00 270.724 -24.345 270.725 -24.344 20 10 141 30 1.467 40.35 9.249 0.462 11.20
SCOPEGO005.9401.02 G005.9401.00 270.742 -24.357 270.740 -24.354 23 21 223 54 2.246 20.44 20.771 1.039 17.15
SCOPEG005.9200.96 G005.9301.00 270.683 -24.313 270.683 -24.311 12 9 117 22 0.722 0.121 1.833 0.092 5.51
SCOPEG005.9200.97 G005.9301.00 270.696 -24.317 270.696 -24.316 13 12 170 29 0.695 80.13 2.919 0.146 5.31
SCOPEG005.9200.99 G005.9301.00 270.714 -24.335 270.713 -24.335 31 23 156 62 2.432 00.55 27.790 1.389 18.57
SCOPEG005.9601.12 G005.9301.00 270.857 -24.359 270.843 -24.361 23 15 162 36 0.701 20.03 4.665 0.233 5.35

Note: Only a small portion of the catalogue is shown here. The@gttalogue is available in the Supporting Information.
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