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Abstract. Although Dung’s frameworks are widely approved tools for
abstract argumentation, their abstractness makes expressing notions such
as support or uncertainty very difficult. Thus, many of their generaliza-
tions were created, including the probabilistic argumentation frameworks
(PrAFs) and the abstract dialectical frameworks (ADFs). While the first
allow modeling uncertain arguments and attacks, the latter can handle
various dependencies between arguments. Although the actual probabil-
ity layer in PrAFs is independent of the chosen semantics, new relations
pose new challenges and new interpretations of what is the probability of
a relation. Thus, the methodology for handling uncertainties cannot be
shifted to more general structures without any further thought. In this
paper we show how ADFs are extended with probabilities.
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1 Introduction

Within the last decade, argumentation has emerged as a central field of Arti-
ficial Intelligence [1]. One of its subfields is the abstract argumentation, at the
heart of which lies the Dung’s argumentation framework (AF) [2]. Although
quite powerful, for many applications Dung’s AFs appear too abstract in order
to conveniently model all aspects of an argumentation problem. This has led to
the development of their numerous enrichments [3]. One of AF’s shortcomings is
the insufficient handling of the levels of uncertainty [4], an aspect which typically
occurs in domains, where diverging opinions are raised. This calls for augmenting
AFs with probabilities [4, 5]. They serve as a basis to generate AF–subgraphs,
which naturally represent the possible situations induced by the uncertainties in
a given probabilistic framework (PrAF). From them we obtain extensions and
their associated uncertainty coming from the subgraphs. Consequently, the un-
certainty layer is independent of the underlying semantics and of the framework
itself, which is considered one of its greatest strengths.
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Argument and attack uncertainties had proved to be a useful concept. There-
fore, it is not unreasonable that an AF enrichment should also incorporate
them [6]. Due to the independency of the probability layer, it was claimed that
it can be done easily [5]. However, it is natural to expect that the probability of
a positive relation between the arguments may be interpreted in different ways.
While we may doubt if e.g. a positive interaction between a and b will be carried
out, we can also question whether b requires a (or only a) to hold. Thus, the con-
ditions for accepting an argument might be uncertain. Those two interpretations
of relation probabilities are modeled in exactly the opposite way. Assuming that
the relation does not occur, in the first case b would not be acceptable, while
in the latter it would not be a problem. Generating the subgraphs in the usual
manner would allow us to model only one of the scenarios at a time. Thus, new
relations pose new challenges and this research should not be dismissed so easily.

Unfortunately, AFs permit only binary conflict. Among the most general
structures addressing this issue [3] are abstract dialectical frameworks (ADFs)
[7]. They assign acceptance conditions to arguments, which can be seen as a
Boolean functions stating if its “owner” can be accepted or not w.r.t. given ar-
guments. Although various other frameworks that can handle positive relations
were proposed [8–10], our preliminary findings show that they can be expressed
within ADFs. Thus, ADFs make a good base for probabilistic frameworks that
would allow us to model various uncertain relations, not limited to attack or
support only. In this paper we create a framework joining both the uncertainty
and the relation research – the probabilistic abstract dialectical framework. We
show that it generalizes ADFs as well as PrAFs. Our goal is to model situations
when the requirements to accept an argument might be uncertain. We achieve it
by assigning not a single acceptance condition to an argument, but a number of
them. We then adopt the subgraph approach to our new setting. Consequently,
we are able to generalize the methodology introduced by PrAFs to handle dif-
ferent interpretations of probability. Finally, we discuss other possible methods
of augmenting ADFs with uncertainties and give pointers for future work.

2 Dung’s Framework and its Probabilistic Extensions

Definition 1. A Dung’s argumentation framework (AF) is a pair F =
〈A,R〉 where A is a set of arguments and R ⊆ A×A is the attack relation.

An argument a ∈ A is defended (in F ) by S ⊆ A if ∀b ∈ A s.t. (b, a) ∈ R,
∃c ∈ S s.t. (c, b) ∈ R. A set S ⊆ A is:
– conflict–free, if there are no a, b ∈ S, such that (a, b) ∈ R.
– stable, if it is conflict–free and for all a ∈ A \ S, ∃b ∈ S, s.t.(b, a) ∈ R;
– admissible, if it is conflict–free and each a ∈ S is defended (in F ) by S;
– complete, if it is admissible and each a defended (in F ) by S is in S;
– grounded, if it is the least w.r.t. ⊆ complete;
– preferred, if it is maximal w.r.t. ⊆ admissible.

By σ(F ) we will denote the extensions of F under semantics σ listed above.

For an AF F = (A,R) and a set A′ ⊆ A, by RA′ we denote the restriction of
R to A′ ×A′, i.e. RA′ = {(a, b) ∈ R | a, b ∈ A′}.



We will now recall the probabilistic frameworks [5]. In this setting, instead of
asking if a set of arguments is an extension of a given semantics, one now expects
to analyze the probability that it is. This is addressed by the idea of subgraphs,
which express the possible interpretations of the original probabilistic framework
FPR in terms of AFs, whereby it is not sure that all arguments or attacks in
FPR actually appear in a given AF. The collection of such graphs represents the
possible scenarios induced by the probabilities in the initial structure.

Definition 2. A probabilistic argumentation framework (PrAF) FPR is
a tuple 〈A,R, PA, PR〉, where 〈A,R〉 is a Dung’s framework, PA : A −→ (0, 1]
and PR : R −→ (0, 1] are the probabilities of arguments and attacks.

Definition 3. Let FPR = (A,R, PA, PR) be a PrAF. A subgraph 3 G of FPR

(denoted G ⊑ FPR) is a pair (A′, R′) s.t. 1) A′ ⊆ A and {a ∈ A | PA(a) = 1} ⊆
A′, and 2) R′ ⊆ RA′ and {(a, b) ∈ R | a, b ∈ A′, PA(a) = PA(b) = 1, PR(a, b) =
1} ⊆ R′. s(FPR) = {G | G ⊑ FPR} denotes the set of all subgraphs of FPR.

Given a semantics σ and its potential extension E , we determine the subgraphs
of an FPR that have E as their AF σ–extension. The sum of the probabilities of
such subgraphs gives us the final probability that E is a σ–extension of FPR.

Definition 4 ( [5]). Let FPR = 〈A,R, PA, PR〉 be a PrAF and let G = 〈A′, R′〉 ⊑
FPR. Then the probability of G is:

pFPR
(G) = (

∏

a∈A′

P (a))(
∏

a∈A\A′

(1−P (a)))(
∏

r∈R′

PR(r))(
∏

r∈RA′\R′

(1−PR(r))). (1)

Theorem 1 ( [5]). The function pFPR
is a probabilistic distribution on the set

s(FPR), i.e., a nonnegative function s.t.
∑

G⊑FPR
pFPR

(G) = 1.

Definition 5. Let FPR = 〈A,R, PA, PR〉 be a PrAF, E ⊆ A a set of argu-
ments, and σ ∈ {conflict-free, admissible, complete, preferred, stable, grounded}
a semantics. The set of subgraphs of FPR for which E is a σ-extension is
Qσ

FPR
(E ) = {G ∈ s(FPR) | E ∈ σ(G)}. The probability that E ⊆ A is in

σ(FPR) is defined as:4

Pσ
FPR

(E ) =
∑

G∈Qσ
FPR

(E)

pFPR
(G). (2)

3 Abstract Dialectical Frameworks

Abstract dialectical frameworks have been defined in [7] and further developed
in [11–16]. Their main goal is to be able to express arbitrary relations, which is
achieved by the use of acceptance conditions. They define what sets of arguments
related to a given argument should be present for it to be accepted or rejected.

3 In [5], subgraphs are called AFs induced from FPR

4 The definition from [5] is more general, it computes the probability that a set is a
subset of a σ extension.



Definition 6. An abstract dialectical framework (ADF) as a tuple 〈S,L,C〉,
where S is a set of arguments (nodes), L ⊆ S × S is a set of links (edges)
and C = {Cs}s∈S is a set of acceptance conditions, one condition per each
argument. An acceptance condition is given by a total function Cs : 2

par(s) →
{in, out}, where par(s) = {p ∈ S | (p, s) ∈ L} is the set of parents of s.

One can also use the propositional representation, i.e. with C = {ϕs}s∈S where
ϕs is a propositional formula over the parents of s. Since the links no longer
define the nature of the connections between the arguments and can be easily
extracted from the conditions, we can use shortened notation D = 〈S,C〉.

Instead of returning sets of accepted arguments, the semantics of ADFs from
[11] produce three–valued interpretations in which arguments are assigned truth–
values from {t, f ,u}. The values are compared w.r.t. precision (information)
ordering ≤i, defined as u ≤i t and u ≤i f . It can be extended to interpretations:
given two interpretations v and v′ on S, v ≤i v

′ iff ∀s∈S v(s) ≤i v
′(s). In case

v is three and v′ two–valued (i.e. has only f and t mappings), we say that
v′ extends v. The set of all two–valued interpretations extending v is denoted
[v]2. The pair ({t, f,u},≤i) forms a complete meet–semilattice with the meet
operation ⊓ defined as: t ⊓ t = t, f ⊓ f = f and u in all other cases. ⊓ can
also be defined for interpretations: for interpretations v and v′ on S, v ⊓ v′ = v′′

where ∀s∈S v′′(s) = v(s)⊓v′(s). Meet simply checks whether two interpretations
agree on assignments or not. Finally, we will use vx to denote a set of arguments
mapped to x by v, where x ∈ {t, f ,u}. We can now recall the ADF semantics
from [11], which are based on the notion of a characteristic operator:

Definition 7. Let D = 〈S,L,C〉 with C = {ϕs}s∈S be an ADF, VS the set of all
three–valued interpretations defined on S, s ∈ S and v an interpretation in VS.
The three–valued characteristic operator of D is a function ΓD : VS → VS

s.t. ΓD(v) = v′ with v′(s) =
d

w∈[v]2
Cs(par(s) ∩ wt). We say that v is:

– admissible iff v ≤i ΓD(v);
– complete iff v = ΓD(v);
– preferred iff it is ≤i–maximal admissible;
– grounded iff it is the least fixpoint of ΓD.

The stable semantics is a slightly different case, as formally we receive a set, not
an interpretation. However, stability leaves nothing undecided, and we can just
map arguments not in the set to f . The definition uses the concept of a reduct.
Reduction of an acceptance condition simply means that the occurrences of
rejected arguments are replaced by f (one can also use ⊥).

Definition 8. Let D = 〈S,C〉 with C = {ϕs}s∈S be an ADF. We say that
M ⊆ S is a model of D iff ∀m ∈ M,Cm(S∩par(m)) = in and ∀ s ∈ S, Cs(M∩
par(s)) = in implies s ∈ M . A reduct of D w.r.t. M is DM = (M,CM ), where
for m ∈ M we set CM

m = ϕm[b/f : b /∈ M ]. Let gv be the grounded model of DM .
Model M is stable iff M = gvt.

Finally, we recall that ADFs properly generalize AFs [11].



Definition 9. For an F = 〈A,R〉, the associated ADF is DF = 〈A,R, {ϕa}a∈A〉
with ϕa =

∧
b:(b,a)∈R ¬b for a ∈ A. For an interpretation v, the set Ev = {a ∈

A | v(a) = t} defines the unique extension associated with v.

Theorem 2. Let F be an AF and DF its associated ADF. An extension E is
in σ(F ), where σ ∈ {admissible, complete, preferred, stable, grounded}, iff it is
in σ(DF ).

4 Probabilistic Abstract Dialectical Frameworks

The probability of a positive interaction between arguments can be interpreted
in several ways. First of all, it can happen that a given argument is actually sup-
porting another one only with a certain probability, which canhave its source in
e.g. ambiguity or incompletion. However, it is also possible that the requirements
to accept a given argument change. This brings us to the idea of ADFs in which
the acceptance conditions are assigned a level of uncertainty. In order to grasp
the probabilities of different scenarios, instead of a single condition, an argument
receives a block of acceptance conditions. Each member of the block is assigned
a probability in a way that they all sum up to 1. The uncertainty of a condition
should be understood as the uncertainty of the argument’s requirements for ac-
ceptance. This also means that at a given point, only a single condition of a block
can “happen”. However, it does not mean that only one relation targeted at this
argument can occur. If we consider an AF and its associated ADF (Definition
9), both augmented with probabilities, it is not the case that every condition
and its probability would correspond to one attack and its probability in the
original framework. ADF conditions provide a bigger point of view and express
the general requirements of an argument to hold. Given an argument attacked
by two others (with some probabilities), ADFs would model the situation with
four conditions – when both, none, and only one of the attacks occur.

The idea of our method of determining the probability of an extension is
similar to the one in PrAFs. Just like in PrAFs we generated AF subgraphs, in
probabilistic ADFs we will create ADFs. This brings us to another reason why
the total probability of a condition block has to be 1. In PrAFs, if we knew
that a attacks b with a chance 0.3, then we also knew that a does not attack b
with a chance 0.7. In ADFs, should a given acceptance condition be used with
probability 0.3, what condition should occur with 0.7? The state of an argument
is always defined by the condition, thus on any occasion one has to be assigned.
Consequently, it is important that the total probability of a block is 1.

Let us now describe our party example and introduce the framework. We can
observe that ADFs can express relations between arguments (see argument d)
which go beyond the usual understanding of attack or support and that cannot,
to the best of our knowledge, be conveniently modeled in any other framework.

Example 1. Julia is throwing a dinner party and is deciding with her husband
Mark which of their friends – Anne, Bernard, Cecilia and David – to invite.
Bernard and Cecilia are taking care of their sick mother and the two of them



will not be able to come at the same time. Mark was told that Anne had to reject
one of Bernard’s projects at work and he might not want to meet with her now.
Julia believes that David is still angry at Cecilia for their bad break up and will
not come if she is invited unless Anne, who is his current girlfriend, also shows
up. However, Mark thinks that David is fine with it now and Cecilia’s presence
should not be a problem, but he might prefer to come with Anne anyway since
she is leaving for a business trip soon. Finally, they both agree that even though
Anne would like to come, she might not be able to due to the travel preparations.
We now construct arguments a, b, c and d representing Anne, Bernard, Cecilia
and David coming to the dinner, and their possible acceptance conditions. The
condition of a is just ⊤, since Anne’s decision does not depend on anyone else.
However, since she is busy, a is assigned a probability of 0.5. The condition of
b might be just ¬c – since Bernard cannot come together with Cecilia – but it
can also be ¬a∧¬c due to issues with Anne. We give both of them a 0.5 chance.
Similarly, c is assigned ¬b. Finally, we have that condition of d might be a∨¬c,
reflecting Davids problem with Cecilia, or just a in case he sorted it out and just
wants time with Anne. We assign to them probabilities 0.7 and 0.3 respectively.

Definition 10. A probabilistic abstract dialectical framework (PrADF)
is a tuple DPR = 〈A, {Ca}a∈A, PA, {PCa

}a∈A〉, where A is a set of arguments,
Ca = {ϕa,i | i = 1, . . . , na} is a set of possible acceptance conditions of a,
PA : A → (0, 1] is the probability of arguments and PCa

: Ca → (0, 1] s.t.∑
ϕa,i∈Ca

PC(ϕa,i) = 1, is the probability of acceptance conditions.

We can now continue with the definition of a subframework in our new set-
ting.We first choose an arbitrary subset of arguments – the only restriction is
that it contains the ones that are certain to happen. We then assign each argu-
ment an acceptance condition from its block and thus obtain our subframework.
However, it can happen that an argument occurring in the condition no longer
appears in our set. Therefore, what needs to be performed is the reduction of the
conditions (see Definition 8). This brings us to the definition of a subframework:

Definition 11. Let DPR = 〈A, {Ca}a∈A, PA, {PCa
}a∈A〉 be a PrADF and A′ ⊆

A a set of arguments s.t. {a ∈ A | PA(a) = 1} ⊆ A′. Given a collection of indices
{ia}a∈A′ , the induced subframework is D′ = 〈A′, {ϕA′

a,ia
}a∈A′〉. The set of all

subframeworks of DPR is denoted by s(DPR).

Note that it is possible that two acceptance conditions of an argument a
that are initially different in a PrADF, i.e. ϕa,i 6= ϕa,j for some j 6= i, become

equivalent in some subframework D′ = 〈A′, {ϕA′

a,i}a∈A′〉(i.e.ϕA′

a,i = ϕA′

a,j
5). Thus,

the definition of the probability of D′ has to take this situation into account.

Definition 12. Let DPR = 〈A, {Ca}a∈A, PA, {PCa
}a∈A〉 be a PrADF and D′ =

〈A′, {ϕA′

a,ia
}a∈A′〉 its subframework.The probability of D′ is defined as:

pDPR
(D′) = (

∏

a∈A′

PA(a))(
∏

a∈A\A′

(1− PA(a)))(
∏

a∈A′

∑

j:ϕA′

a,j=ϕA′

a,i

PCa
(ϕa,j)). (3)

5 We identify the equivalent formulas, since they induce the same acceptance functions.



Theorem 3. Given a PrADF DPR = 〈A, {Ca}a∈A, PA, {PCa
}a∈A〉, the func-

tion pDPR
is a probabilistic distribution on the set s(DPR), i.e., a nonnegative

function s.t.
∑

D′∈s(DPR) pDPR
(D′) = 1.

We will now proceed with PrADF semantics, focusing on the extensions
associated with ADF interpretations.

Definition 13. Let DPR = 〈A, {Ca}a∈A, PA, {PCa
}a∈A〉 be a PrADF and E ⊆

A. The set of all subframeworks D′ of DPR s.t. E is a σ extension of DPR,
where σ ∈ {admissible, complete, preferred, stable, grounded}, is:

Qσ
DPR

(E) = {D′ ⊑ DPR | ∃v ∈ σ(D′) s.t. vt = E}. (4)

The probability that E is a σ-extension of DPR is defined as:

Pσ
DPR

(E) =
∑

D′∈Qσ
DPR

(E)

pDPR
(D′). (5)

Example 2. Let us now construct a PrADF D for our scenario from Example 1.
Our arguments are {a, b, c, d}, where PA(a) = 0.5 and since there are no reasons
against, PA(b) = PA(c) = PA(d) = 1. As discussed before, ϕa = ⊤. This is
the only condition of a and thus PCa

(ϕa) = 1. For b we have ϕb1 = ¬c and
ϕb2 = ¬a ∧ ¬c with probabilities PCb

(ϕb1) = PCb
(ϕb2) = 0.5. In the case of c,

ϕc = ¬b and has chance of 1 just like a. Finally, for d we have ϕd1
= a∨¬c and

ϕd2
= a with chances PCd

(ϕd1
) = 0.7 and PCd

(ϕd2
) = 0.3. We obtain 6 possible

subframeworks:DG1
= 〈{a, b, c, d}, {ϕa = ⊤, ϕb = ¬c, ϕc = ¬b, ϕd = a}〉,DG2

=
〈{a, b, c, d}, {ϕa = ⊤, ϕb = ¬a ∧ ¬c, ϕc = ¬b, ϕd = a}〉, DG3

= 〈{b, c, d}, {ϕb =
¬c, ϕc = ¬b, ϕd = ¬c}〉, DG4

= 〈{a, b, c, d}, {ϕa = ⊤, ϕb = ¬a ∧ ¬c, ϕc =
¬b, ϕd = a∨¬c}〉, DG5

= 〈{a, b, c, d}, {ϕa = ⊤, ϕb = ¬c, ϕc = ¬b, ϕd = a∨¬c}〉,
and DG6

= 〈{b, c, d}, {ϕb = ¬c, ϕc = ¬b, ϕd = ⊥}〉. Their probabilities and
extension are listed in Table 1. Note DG3

and DG6
can be induced in two ways,

as reducing ϕb1 and ϕb2 w.r.t. {b, c, d} leads to equivalent formulas.
As expected, there is no possibility of inviting everyone. The next options in

which we get the most friends are extensions {a, b, d} and {a, c, d}. The first one
has probability pD(DG1

) + pD(DG5
) = 0.25 if we assume preferred or complete

semantics, but 0 in case of grounded.The other set occurs in DG1
, DG2

, DG4
and

DG5
, which yields probability 0.25 w.r.t. grounded semantics and 0.5 otherwise.

Inviting just Anne and David, i.e. {a, d}, would have a chance of 0.5 in admissible
semantics (DG1

, DG2
, DG4

and DG5
), 0.25 in complete and grounded (DG1

and
DG5

), and would not be possible at all in preferred and stable cases. Going just
for the manly team - {b, d} would give us 0 probability in the grounded case,
0.52 in admissible and 0.35 in any other.

Note that by setting argument probability to 1 and using single element
acceptance condition blocks, we easily retrieve ADFs from PrADFs. We close
this section by showing that PrADFs properly generalize PrAFs.

Definition 14. The PrADF associated to the PrAF FPR = 〈A,R, PA, PR〉 is
DFPR

= 〈A, {Ca}a∈A, PA, {PCa
| a ∈ A}〉, where:



Table 1. Subframeworks of D and their extensions.

s(D) pD stb grd adm prf com

DG1
0.075

{a, b, d},
{a, c, d}

{a, d}
∅, {a}, {b}, {c},{a, b},
{a, c}, {a, d}, {a, b, d},

{a, c, d}

{a, b, d},
{a, c, d}

{a, d},
{a, b, d},
{a, c, d}

DG2
0.075 {a, c, d} {a, c, d}

∅, {a}, {c}, {a, c},
{a, d}, {a, c, d}

{a, c, d} {a, c, d}

DG3
0.35 {c}, {b, d} ∅ ∅, {b}, {c}, {b, d} {c}, {b, d} ∅, {c}, {b, d}

DG4
0.175 {a, c, d} {a, c, d}

∅, {a}, {c}, {a, c},
{a, d}, {a, c, d}

{a, c, d} {a, c, d}

DG5
0.175

{a, b, d},
{a, c, d}

{a, d}
∅, {a}, {b}, {c}, {a, b},
{a, c}, {a, d}, {b, d},
{a, b, d}, {a, c, d}

{a, b, d},
{a, c, d}

{a, d},
{a, b, d},
{a, c, d}

DG6
0.15 {b}, {c} ∅ ∅, {b}, {c} {b}, {c} ∅, {b}, {c}

– Ca = {
∧

(b,a)∈R′ ¬b | R′ ⊆ R}

– PCa
(
∧

(b,a)∈R′ ¬b) = (
∏

(b,a)∈R′ PR((b, a)))(
∏

(b,a)∈R\R′(1− PR((b, a))))

Theorem 4. Let FPR = 〈A,R, PA, PR〉 be a PrAF and let DFPR
be its associ-

ated PrADF. Then Pσ
FPR

(E ) = Pσ
DFPR

(E ).

5 Discussion and future work

One of the most interesting observations we have made in our research is the fact
that the probabilities of acceptance conditions allow us to express the probabili-
ties of arguments. This method is unique to ADFs and is possible thanks to the
fact that we can have a ϕs = ⊥ condition, which is simply interpreted as s does
not exist. Consequently, an argument–based PrADF can be transformed into an
acceptance condition based one. Given an argument a assigned probability arg1
and conditions C1, ..., Cn with probabilities p1, ..., pn, we can shift the argument
uncertainty into a condition. We produce an additional formula Cn+1 = ⊥ with
probability 1−arg1 and alter the probabilities of existing conditions by multiply-
ing them by arg1. Consequently, PrADFs can be improved and that a simpler,
cleaner formulation can be created. We would like to fully develop this idea in
our future work and create an approach without the independency assumption.

A particular line of research in abstract argumentation concerns the formal-
ization of argumentation semantics in terms of logics. A uniform logical formal-
ization for PrAFs using probabilistic logic was already developed in [17]. We
believe that this approach may be further extended in order to logically formal-
ize PrADFs. Finally, we would like to study the complexity of PrADFs and their
semantics and possibly provide an implementation.
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