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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

Keywords: Assembly; Design method; Family identification

1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Among the undesirable quality incidents in the cold rolling process of strip products, strip snap could result in yield loss and reduced work speed. 
Therefore, it is necessary to reveal the factors influencing the occurrence of this failure for quality improvement. In this study, a data analytics 
approach was applied with the aim of determining relevant variables affecting snap occurrence. To validate this approach, a case study was 
conducted based on real-world data collected from an electrical steel reversing mill. The results suggested a selection of variables to characterize 
the quality issue of strip snap in the cold rolling process. This quality characterization study was performed as the preliminary stage of a quality 
improvement task.  
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1. Introduction 

Assumed a plain-strain deformation process, cold rolling 
compresses and squeezes incoming strip feedstock into thinner 
strips between the working rolls. With the rapid development 
of cold rolling processes, a wide variety of sensors are deployed 
which enable opportunities for quality improvement through 
data analytics under this data-rich environment. For the cold 
rolling process of High Silicon strip products, a typical incident 
of strip snaps frequently occurs. Strip snap, also known as strip 
breakage or strip tearing, is one of the most common quality 
issues in the cold rolling process [1]. This incident results in 
damage on rolls, the steel strip and loss of yield. Therefore, 
research to identify and determine the causes of strip snap is of 
great significance in production yield improvement, cost 
reduction and mill service life extension [2]. 

The causes of strip snaps have previously been studied in a 
handful of works [3-5] which focused on retrospective analyses 
after the occurrence of this incident using conventional 
metallurgy or mechanical theories. According to these works, 

causes of strip snap in cold rolling are various: equipment 
factors, material defects, improper operation, sensor 
malfunction and production adjustment. Recently, researches 
of these strip snap cause analysis have been conducted by 
employing data analytics [6, 7]. The studies carried out based 
on a subset of selected variables from hundreds of process 
measurements to analyse the correlations between these 
selected variables and strip snap. However, before data 
analytics were conducted in these works, variables had already 
been selected based on previous domain knowledge and 
expertise, thus leaving out of other important causes. 

The scope of this paper is to investigate the relation between 
cold rolling process variables and strip snap using data 
analytics methods of feature selection and classification. 
Feature selection, which is to the benefit of understanding data 
and gaining knowledge from data mining [8], was applied to 
understand the potential reasons of strip snap. k-nearest 
neighbours (k-NN) classification models were built to evaluate 
the results of feature selection. With the determination of 
process variables that affect the strip snap quality issue, this 

 

Available online at www.sciencedirect.com 

ScienceDirect 
Procedia CIRP 00 (2019) 000–000 

  
     www.elsevier.com/locate/procedia 
   

 

 

2212-8271 © 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/) 
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems. 

52nd CIRP Conference on Manufacturing Systems 

Characterizing Strip Snap in Cold Rolling Process Using Advanced Data 
Analytics  

 Zheyuan Chena*, Ying Liua, Agustin Valera-Medinab, Fiona Robinsonc  
a Institute of Mechanical and Manufacturing Engineering, School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK  

b School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK 
c Cogent Power Ltd, Orb Electrical Steels, P.O. Box 30, Stephenson Street, Newport, NP19 0RB, UK 

* Corresponding author. Tel.: +44 7513646692. E-mail address: chenz57@cardiff.ac.uk 

Abstract 

Among the undesirable quality incidents in the cold rolling process of strip products, strip snap could result in yield loss and reduced work speed. 
Therefore, it is necessary to reveal the factors influencing the occurrence of this failure for quality improvement. In this study, a data analytics 
approach was applied with the aim of determining relevant variables affecting snap occurrence. To validate this approach, a case study was 
conducted based on real-world data collected from an electrical steel reversing mill. The results suggested a selection of variables to characterize 
the quality issue of strip snap in the cold rolling process. This quality characterization study was performed as the preliminary stage of a quality 
improvement task.  
© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/3.0/) 
Peer-review under responsibility of the scientific committee of the 52nd CIRP Conference on Manufacturing Systems. 

 Keywords: strip breakage; cold rolling; quality improvement; data analytics; machine learning 

 
1. Introduction 

Assumed a plain-strain deformation process, cold rolling 
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which enable opportunities for quality improvement through 
data analytics under this data-rich environment. For the cold 
rolling process of High Silicon strip products, a typical incident 
of strip snaps frequently occurs. Strip snap, also known as strip 
breakage or strip tearing, is one of the most common quality 
issues in the cold rolling process [1]. This incident results in 
damage on rolls, the steel strip and loss of yield. Therefore, 
research to identify and determine the causes of strip snap is of 
great significance in production yield improvement, cost 
reduction and mill service life extension [2]. 

The causes of strip snaps have previously been studied in a 
handful of works [3-5] which focused on retrospective analyses 
after the occurrence of this incident using conventional 
metallurgy or mechanical theories. According to these works, 

causes of strip snap in cold rolling are various: equipment 
factors, material defects, improper operation, sensor 
malfunction and production adjustment. Recently, researches 
of these strip snap cause analysis have been conducted by 
employing data analytics [6, 7]. The studies carried out based 
on a subset of selected variables from hundreds of process 
measurements to analyse the correlations between these 
selected variables and strip snap. However, before data 
analytics were conducted in these works, variables had already 
been selected based on previous domain knowledge and 
expertise, thus leaving out of other important causes. 

The scope of this paper is to investigate the relation between 
cold rolling process variables and strip snap using data 
analytics methods of feature selection and classification. 
Feature selection, which is to the benefit of understanding data 
and gaining knowledge from data mining [8], was applied to 
understand the potential reasons of strip snap. k-nearest 
neighbours (k-NN) classification models were built to evaluate 
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process variables that affect the strip snap quality issue, this 
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study was performed as a quality characterization work which 
stands as the preliminary stage of quality improvement [9]. 

The subsequent sections are structured as follows. In 
Section 2, a review of both the cold rolling process and strip 
snap cause analyses using different methods is addressed, 
followed by a review on cold rolling process characterization. 
Subsequently, the research problem of this study is stated in 
Section 3, and the methodology of strip snap characterization 
in the cold rolling process is proposed in Section 4. Before 
conclusions, a case study is revealed in Section 5. The case 
study aims at determining the variables relevant to strip snap. 
Finally, the findings and further works are concluded in 
Section 6.  

2. Literature review 

2.1. Cold rolling process and research on the cause of strip 
snap  

The rolling process has an essential role in the manufacture 
of a wide variety of products because of its high accuracy, 
efficiency and production rate. Sheets and strips can be rolled 
either in the single stand or tandem mills [1].  

As one of the main processes in electrical steel strip 
production, cold rolling enhances strip properties by changing 
the microstructure and thickness of the steel. These enhanced 
properties include yield strength, tensile strength, surface 
smoothness and hardness [6].  

Similar to other metal forming processes, the final product 
of cold rolling can exhibit some mechanical defects. Various 
defects were observed in industrial metal forming processes, 
including plane strain rolling. Based on technical reports, 
common defects in the sheet metal rolling process are edge 
cracking, central burst, surface defects and buckling of the 
strip. Among these defects, strip tearing requires special 
consideration, because it does not only significantly increase 
production costs but can also cause serious damage to rolls and 
mill accessories [10]. 

As one of the most common production incidents in the cold 
rolling process, plenty of research has been conducted on the 
causes of strip snap. It has been summarized  [4] that strip snaps 
could result from material defect, equipment malfunction, 
improper operation and improper rolling parameter settings.  

Among these possible causes, equipment factor has been 
analyzed as the primary one. In a real case study [5], servo-
valve malfunction resulted in high-pressure fluctuation, thus 
leading to inter-frame tension deviations, crushing the strip on 
one side. Other equipment malfunctions such as the piston rod 
protrusion of HGC (Hydraulic Gap Control) and tension meter 
detection accuracy have also been discussed by [11].  

Apart from equipment factors, inappropriate operation and 
parameter settings also account for the occurrence of strip snap. 
Several operating parameters related to the working roll such 
as diameter disparity between top and bottom working rolls, 
levelness of the bottom working roll and convexity degree of 
the working rolls have been discussed to be significant strip 
snap causes. Apart from working rolls, levelness and 
perpendicularity of the deflector rolls have also been proved to 
generate strip snaps as well [3].  

2.2. Characterizing the cold rolling process  

Regarding the modelling of the cold rolling process, many 
different models have been developed and presented over the 
past decade. These models generally consist of rolling 
parameters such as tension, roll force, torque and yield strength 
of the strip as well as several operating parameters. A model 
developed by Orowan was considered to be one of the most 
comprehensive among these cold rolling process models. 
Conventional rolling force formulas, however, provide not 
more than reasonably accurate approximations [12, 13]. 

Recognized to be a desirable approach to investigate the 
design of mill equipment and rolling operation practices, the 
mathematical modelling of the cold rolling process is 
conducive to productivity and quality improvement [14].  

However, many factors such as friction conditions, roll 
flattening, deflection of the rolling mill and temperature make 
the theoretical analysis of the rolling process very complicated 
and time-consuming. Since the exact values of these variables 
cannot be measured during the rolling process, there are many 
parameters needed for better accuracy of the mathematical 
model [15]. For example, strip snap has been analyzed using a 
strip deformation model. Nevertheless, the strip deformation 
models are dependent on parameters which are determined 
from a combination of approximations to existing rolling 
theory [16].  

3. Problem statement 

This paper deals with the occurrence of strip snap during a 
grain-oriented electrical steel cold rolling process. According 
to the domain experts, this type of steel is fragile due to a high 
silicon content which leads to a higher rate of strip snaps during 
cold reduction to 10% of the starting thickness. The occurrence 
of this undesired incident can result in yield loss due to the 
failure to achieve the final target thickness. In addition to this, 
when the cold rolling production resumes from this incident, an 
altered rolling performance may occur due to the unexpected 
disruption caused by strip snaps. This disruption may result in 
a variation of strip thickness, thus influencing the magnetic loss 
which is proportional to strip thickness. It is therefore of great 
significance to identify the causes of strip snap regarding 
production yield improvement and cost reduction for cold 
rolling processes.  

The objective of this study is to determine the causes of strip 
snap from multiple measurements in a cold rolling process. 
This study focuses on the cold rolling process rather than on 
the incoming material; therefore, variables related to materials 
are not in the scope of this research. In this context, two 
historical cold rolling databases that would have a significant 
influence on this strip snap problem were selected after 
discussions with the shop floor engineers at the mill of interest. 
In this paper, data analytics are used to infer possible causes of 
strip snap incident and cold rolling process variations. 

4. Methodology 

With the aim of discovering relevant features and discarding 
those that are irrelevant, data analytics were carried out to 
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discover potential variables influencing the occurrence of strip 
snaps. These tasks consist of discovering novel, interesting, and 
potentially useful patterns from large data sets and applying 
algorithms to extract information. In the scope of this study, the 
process data archived in the databases are massive due to the 
diversity of the cold rolling process measurements. A typical 
procedure of process data analytics includes the following 
steps: the collection of both normal and fault data which covers 
most of the operating regions is firstly carried out, following by 
data reconciliation. Subsequently, latent variables methods are 
applied to model the data. Fault detection indices and control 
limits are generated in the final step [17]. However, these 
conventional data analytics approaches are not connected to the 
recent progress in machine learning since the conventional data 
analytics require a set of carefully collected clean data with 
irregularly measured and unstructured data mostly unused.  

With reference to the procedure of both process data 
analytics and machine learning [18], the methodology in this 
study was conducted following this procedure: the first step of 
this data analytic approach is the collection of data from 
different data sources that are potentially related with strip 
snaps and then transforming the data into the same structure 
and format. Following this, data cleaning is conducted to filter 
out the noise and to discard idle states of the rolling mill. 
Subsequently, feature selection techniques are applied in order 
to find the relevant variables from the training dataset. Feature 
selection technique is used in conjunction with the classifier. 
The performance of this classifier is used to determine the 
preferable feature selection algorithm. Finally, by summarizing 
selected variables, potential variables affecting the quality 
issues are selected. Further investigation and knowledge 
discovery are conducted based on these selected variables. The 
flowchart of proposed methodology is illustrated in Figure 1.  

5. Case study 

5.1. Experiment setup 

This case study was conducted based on the historical data 
provided by an electrical steel mill. The company produces 
strip coil products which are cold rolled five passes back and 
forth through a reversing mill. With the silicon exceeding 3% 

and the thickness decreasing by up to 90%, these fragile strips 
often break undesirably during the cold rolling process. The 
broken strips were marked with a specific pass number by the 
shop floor engineer. Meanwhile, each strip coil was measured 
and recorded with detailed data gathering all types of variables.   

The following experiment is set up with the aim of 
determining variables that show the most discrimination degree 
to differentiate snap and good coils. In this context, with the 
advantage of gaining knowledge regarding the process that 
generated the data [8], a set of comparative experiments were 
conducted based on k-NN models built from different feature 
selection techniques. six feature selection techniques were used 
and compared to obtain the preferable feature selection result. 
The following feature selection techniques and k-NN 
classification experiments were carried out on Weka (Waikato 
Environment for Knowledge Analysis) with version 3.8 [19]. 

Feature selection approaches are classified as wrapper 
approaches and filter approaches. The filter approaches focus 
on the evaluation of every single attribute [20]. Meanwhile, the 
wrapper model requires one predetermined learning algorithm 
in feature selection and uses its performance to evaluate and 
determine which features are selected [21]. This approach tends 
to find features better suited to the predetermined learning 
algorithm, thus resulting in superior learning performance, but 
it also tends to be more computationally expensive than the 
filter model. When there is a high dimensional dataset, the filter 
model is usually chosen due to its computational 
efficiency [22]. In this study, considering both the high 
dimensionality of variables and the objective to select features 
based on general characteristics of the training dataset, six 
prevailing filter approaches were applied as listed in Table 1.  

Table 1. List of filter-based feature selection techniques applied in this study. 

Abbreviation  Name  

subset search algorithms  

CFSsub Correlation-based subset feature selection [23] 

feature weighting algorithms 

GR  Gain ratio [24] 

IG  Information Gain [24] 

SU  Symmetric uncertainty [24] 

RF  ReliefF [25] 

CFS Correlation-based feature selection [23] 

 
With the aim of measuring the correlation between variables 

and class concept, feature selection techniques with 
correlation-based evaluation criteria were selected. There are 
two approaches to measure this correlation [26]: one is based 
on linear correlation including CFS, the other one is based on 
information theory including GR, IG and SU. As a contrast 
with correlation-based evaluation criteria, the RF feature 
selection technique with distance evaluation criteria was also 
chosen. 

Within filter approaches, different feature selection 
techniques can be categorized into feature weighting 
algorithms and subset search algorithms [22]. For the subset 
search algorithms, the number of selected features is 
automatically generated; while this number is required to be set 
manually for feature weighting algorithms by setting a 

Fig. 1. The methodology flowchart. 
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study was performed as a quality characterization work which 
stands as the preliminary stage of quality improvement [9]. 

The subsequent sections are structured as follows. In 
Section 2, a review of both the cold rolling process and strip 
snap cause analyses using different methods is addressed, 
followed by a review on cold rolling process characterization. 
Subsequently, the research problem of this study is stated in 
Section 3, and the methodology of strip snap characterization 
in the cold rolling process is proposed in Section 4. Before 
conclusions, a case study is revealed in Section 5. The case 
study aims at determining the variables relevant to strip snap. 
Finally, the findings and further works are concluded in 
Section 6.  

2. Literature review 

2.1. Cold rolling process and research on the cause of strip 
snap  

The rolling process has an essential role in the manufacture 
of a wide variety of products because of its high accuracy, 
efficiency and production rate. Sheets and strips can be rolled 
either in the single stand or tandem mills [1].  

As one of the main processes in electrical steel strip 
production, cold rolling enhances strip properties by changing 
the microstructure and thickness of the steel. These enhanced 
properties include yield strength, tensile strength, surface 
smoothness and hardness [6].  

Similar to other metal forming processes, the final product 
of cold rolling can exhibit some mechanical defects. Various 
defects were observed in industrial metal forming processes, 
including plane strain rolling. Based on technical reports, 
common defects in the sheet metal rolling process are edge 
cracking, central burst, surface defects and buckling of the 
strip. Among these defects, strip tearing requires special 
consideration, because it does not only significantly increase 
production costs but can also cause serious damage to rolls and 
mill accessories [10]. 

As one of the most common production incidents in the cold 
rolling process, plenty of research has been conducted on the 
causes of strip snap. It has been summarized  [4] that strip snaps 
could result from material defect, equipment malfunction, 
improper operation and improper rolling parameter settings.  

Among these possible causes, equipment factor has been 
analyzed as the primary one. In a real case study [5], servo-
valve malfunction resulted in high-pressure fluctuation, thus 
leading to inter-frame tension deviations, crushing the strip on 
one side. Other equipment malfunctions such as the piston rod 
protrusion of HGC (Hydraulic Gap Control) and tension meter 
detection accuracy have also been discussed by [11].  

Apart from equipment factors, inappropriate operation and 
parameter settings also account for the occurrence of strip snap. 
Several operating parameters related to the working roll such 
as diameter disparity between top and bottom working rolls, 
levelness of the bottom working roll and convexity degree of 
the working rolls have been discussed to be significant strip 
snap causes. Apart from working rolls, levelness and 
perpendicularity of the deflector rolls have also been proved to 
generate strip snaps as well [3].  

2.2. Characterizing the cold rolling process  

Regarding the modelling of the cold rolling process, many 
different models have been developed and presented over the 
past decade. These models generally consist of rolling 
parameters such as tension, roll force, torque and yield strength 
of the strip as well as several operating parameters. A model 
developed by Orowan was considered to be one of the most 
comprehensive among these cold rolling process models. 
Conventional rolling force formulas, however, provide not 
more than reasonably accurate approximations [12, 13]. 

Recognized to be a desirable approach to investigate the 
design of mill equipment and rolling operation practices, the 
mathematical modelling of the cold rolling process is 
conducive to productivity and quality improvement [14].  

However, many factors such as friction conditions, roll 
flattening, deflection of the rolling mill and temperature make 
the theoretical analysis of the rolling process very complicated 
and time-consuming. Since the exact values of these variables 
cannot be measured during the rolling process, there are many 
parameters needed for better accuracy of the mathematical 
model [15]. For example, strip snap has been analyzed using a 
strip deformation model. Nevertheless, the strip deformation 
models are dependent on parameters which are determined 
from a combination of approximations to existing rolling 
theory [16].  

3. Problem statement 

This paper deals with the occurrence of strip snap during a 
grain-oriented electrical steel cold rolling process. According 
to the domain experts, this type of steel is fragile due to a high 
silicon content which leads to a higher rate of strip snaps during 
cold reduction to 10% of the starting thickness. The occurrence 
of this undesired incident can result in yield loss due to the 
failure to achieve the final target thickness. In addition to this, 
when the cold rolling production resumes from this incident, an 
altered rolling performance may occur due to the unexpected 
disruption caused by strip snaps. This disruption may result in 
a variation of strip thickness, thus influencing the magnetic loss 
which is proportional to strip thickness. It is therefore of great 
significance to identify the causes of strip snap regarding 
production yield improvement and cost reduction for cold 
rolling processes.  

The objective of this study is to determine the causes of strip 
snap from multiple measurements in a cold rolling process. 
This study focuses on the cold rolling process rather than on 
the incoming material; therefore, variables related to materials 
are not in the scope of this research. In this context, two 
historical cold rolling databases that would have a significant 
influence on this strip snap problem were selected after 
discussions with the shop floor engineers at the mill of interest. 
In this paper, data analytics are used to infer possible causes of 
strip snap incident and cold rolling process variations. 

4. Methodology 

With the aim of discovering relevant features and discarding 
those that are irrelevant, data analytics were carried out to 
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discover potential variables influencing the occurrence of strip 
snaps. These tasks consist of discovering novel, interesting, and 
potentially useful patterns from large data sets and applying 
algorithms to extract information. In the scope of this study, the 
process data archived in the databases are massive due to the 
diversity of the cold rolling process measurements. A typical 
procedure of process data analytics includes the following 
steps: the collection of both normal and fault data which covers 
most of the operating regions is firstly carried out, following by 
data reconciliation. Subsequently, latent variables methods are 
applied to model the data. Fault detection indices and control 
limits are generated in the final step [17]. However, these 
conventional data analytics approaches are not connected to the 
recent progress in machine learning since the conventional data 
analytics require a set of carefully collected clean data with 
irregularly measured and unstructured data mostly unused.  

With reference to the procedure of both process data 
analytics and machine learning [18], the methodology in this 
study was conducted following this procedure: the first step of 
this data analytic approach is the collection of data from 
different data sources that are potentially related with strip 
snaps and then transforming the data into the same structure 
and format. Following this, data cleaning is conducted to filter 
out the noise and to discard idle states of the rolling mill. 
Subsequently, feature selection techniques are applied in order 
to find the relevant variables from the training dataset. Feature 
selection technique is used in conjunction with the classifier. 
The performance of this classifier is used to determine the 
preferable feature selection algorithm. Finally, by summarizing 
selected variables, potential variables affecting the quality 
issues are selected. Further investigation and knowledge 
discovery are conducted based on these selected variables. The 
flowchart of proposed methodology is illustrated in Figure 1.  

5. Case study 

5.1. Experiment setup 

This case study was conducted based on the historical data 
provided by an electrical steel mill. The company produces 
strip coil products which are cold rolled five passes back and 
forth through a reversing mill. With the silicon exceeding 3% 

and the thickness decreasing by up to 90%, these fragile strips 
often break undesirably during the cold rolling process. The 
broken strips were marked with a specific pass number by the 
shop floor engineer. Meanwhile, each strip coil was measured 
and recorded with detailed data gathering all types of variables.   

The following experiment is set up with the aim of 
determining variables that show the most discrimination degree 
to differentiate snap and good coils. In this context, with the 
advantage of gaining knowledge regarding the process that 
generated the data [8], a set of comparative experiments were 
conducted based on k-NN models built from different feature 
selection techniques. six feature selection techniques were used 
and compared to obtain the preferable feature selection result. 
The following feature selection techniques and k-NN 
classification experiments were carried out on Weka (Waikato 
Environment for Knowledge Analysis) with version 3.8 [19]. 

Feature selection approaches are classified as wrapper 
approaches and filter approaches. The filter approaches focus 
on the evaluation of every single attribute [20]. Meanwhile, the 
wrapper model requires one predetermined learning algorithm 
in feature selection and uses its performance to evaluate and 
determine which features are selected [21]. This approach tends 
to find features better suited to the predetermined learning 
algorithm, thus resulting in superior learning performance, but 
it also tends to be more computationally expensive than the 
filter model. When there is a high dimensional dataset, the filter 
model is usually chosen due to its computational 
efficiency [22]. In this study, considering both the high 
dimensionality of variables and the objective to select features 
based on general characteristics of the training dataset, six 
prevailing filter approaches were applied as listed in Table 1.  

Table 1. List of filter-based feature selection techniques applied in this study. 

Abbreviation  Name  

subset search algorithms  

CFSsub Correlation-based subset feature selection [23] 

feature weighting algorithms 

GR  Gain ratio [24] 

IG  Information Gain [24] 

SU  Symmetric uncertainty [24] 

RF  ReliefF [25] 

CFS Correlation-based feature selection [23] 

 
With the aim of measuring the correlation between variables 

and class concept, feature selection techniques with 
correlation-based evaluation criteria were selected. There are 
two approaches to measure this correlation [26]: one is based 
on linear correlation including CFS, the other one is based on 
information theory including GR, IG and SU. As a contrast 
with correlation-based evaluation criteria, the RF feature 
selection technique with distance evaluation criteria was also 
chosen. 

Within filter approaches, different feature selection 
techniques can be categorized into feature weighting 
algorithms and subset search algorithms [22]. For the subset 
search algorithms, the number of selected features is 
automatically generated; while this number is required to be set 
manually for feature weighting algorithms by setting a 

Fig. 1. The methodology flowchart. 
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feasibility threshold. There is the possibility that critical 
attributes may be omitted if the threshold is set too high [27]. 

In this case, the CFSsub algorithm was first applied to obtain 
the number of selected features for this subset search algorithm. 
Subsequently, by referring to this number, four comparative 
experiments were conducted for each feature weighting 
algorithms. These experiments were set with a different 
number of selected features in order to obtain the desired 
number for this parameter.  

With the determination of a desired number of selected 
features for each feature weighting algorithm,  these six feature 
selection techniques were compared through the classification 
performance of k-Nearest Neighbors (k-NN) [28].  

In the binary classification problem domain, the confusion 
matrix (shown in Table 2), also known as an error matrix, 
allows the visualization of the results of correctly and 
incorrectly recognized samples [29].  

Table 2. Confusion matrix. 

 Positive prediction Negative prediction 

Positive class True positive (TP) False negative (FN) 

Negative class False positive (FP) True negative (TN) 

 
Conventionally, the accuracy rate is a common metric for 

binary classification. Nevertheless, regarding the unbalanced 
dataset in this study, the accuracy rate is no longer an 
appropriate index since it does not distinguish between the 
numbers of correctly classified instances of different 
classes [30]. To evaluate the classification performance of 
positive and negative classes independently, we can obtain the 
following two metrics from the confusion matrix [31]: 

True positive rate (TPR) is the percentage of positive 
instances correctly classified: 

 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹  (1) 

True negative rate (TNR) is the percentage of negative 
instances correctly classified: 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇   (2) 

However, none of these measures is adequate to evaluate the 
classification performance since classification intends to 
achieve good results for both positive and negative classes. In 
this case, the receiver operating characteristic (the ROC curve) 
graph is a way to combine these measures to produce an 
evaluation measurement [32]. The ROC allows the 
visualization of the trade-off between the FPR (x-axis) and the 
TPR (y-axis). The area under the ROC curve (AUC) provides 
a single measure of a classifier's performance for the evaluation 
regarding which model is better on average.  

5.2. Data collection and preprocessing  

The case study is conducted by the support of a real 
reversing cold rolling mill with Production Data Acquisition 
(PDA) equipment installed on site. PDA is a system which 
measures more than 1000 cold rolling parameters including 

setup values, operation variables and measured process 
variables. These parameters of cold rolling are monitored and 
recorded in real-time at the frequency of 100 Hz.  

Although the PDA system records more than 1,000 process 
variables, discarding the non-informative variables delivered, 
only 454 variables relevant to the reversing mill were selected. 
With the aim to record the continuous working condition of the 
mill, the PDA system recorded these variables in continuous a 
manner. There are lots of data being recorded even though the 
mill is not in operation. Thus, these data were discarded. 

The cold rolling process is analyzed under the circumstance 
that lubricating performance can be tolerated while the high 
heat capacity of water is required. The emulsion, therefore, acts 
as both the coolant and lubricant which influence the rolling 
friction of the cold rolling process [33]. Therefore, apart from 
PDA data, the emulsion record which keeps track of the daily 
emulsion information was another source of data.  

Since this study focuses on the reversing cold rolling process 
rather than on the incoming material, the training dataset 
contains 288 coils with the same incoming material grade, 
covering three months of production.   

As a batch process, the collected dataset from the cold 
rolling process was a three-dimensional array 
(coils×variables×time) [34] which is not compatible with 
conventional feature selection techniques.  

For the cold rolling procedure conducted on this reversing 
mill, incoming coils are passed back and forth for at least five 
passes depending on the final thickness required. An example 
demonstrating the different gauge targets set for each pass is 
listed in Table 3. Apart from the gauge, many other variables 
such as speed, tension and load are all varying within certain 
ranges among each pass. In the scope of a reversing rolling 
process, different passes can be considered as different rolling 
stages. Process variables are more similar in the same pass than 
other passes due to the different rolling characteristic. 

Table 3. An example of rolling passes with gauge target. 

 
Input  

gauge 
Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 

Output  

gauge 

Gauge[35] 2.300 1.450 0.980 0.550 0.360 0.205 0.230 

 
Therefore, considering the similarity of process variables in 

each pass, the mean values of each variable during different 
passes are extracted in order to transform the three-dimensional 
array into two-dimensional by the following procedure,  

given a time series of a variable in a single coil: 

 𝑆𝑆 = {𝑐𝑐 1, 𝑐𝑐 2, … , 𝑐𝑐 n}  (3) 

S in this study is represented as: 

𝑆𝑆 = {< 𝑐𝑐 is, 𝑐𝑐 ie >}  (4) 

i denotes the pass number in the cold rolling process; 
is and ie denotes the start and end points of i pass 

respectively; 
<cis, cie> is the mean value of data points in the ith pass 

segment.  
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After data transformation, the three-dimensional array 
(coils×variables×time) was transformed into a two-
dimensional array (passes×variables) which acted as the 
training dataset in this experiment. A pass in this array acted as 
an instance , the mean value of each variable within this pass is 
taken as the value of this instances. According to the running 
log from the shop floor, every pass is marked with a note 
indicating whether there was a snap occurred during this snap 
or not.  

The original training dataset (1,297×464) consists of 1,297 
instances and 464 attributes (459 variables collected from the 
PDA system, nine variables collected from emulsion record 
and the snap label). Among these 1,297 instances, 106 were 
labelled as “snap”. 

It should be noted that within this dataset, there are negative 
values in certain variables, thus indicating the vector direction 
related to the reversing mill process. The absolute value of 
these negative values was taken before a Min-Max 
normalization was conducted on this dataset. 

5.3. Experiments 

Firstly, by applying the CFSsub algorithm on the training 
set, 18 attributes were selected. The results from BestFirst and 
GreedyStepwise searching methods are quite similar. There 
were 18 variables selected after applying this algorithm. 
Concerning this number, four different numbers of selected 
features (10, 15, 20 and 25) were tested on the five chosen 
feature weighting algorithms.  

Subsequently, starting from correlation-based feature 
selection (CFS) technique, four subsets of variables were 
selected by applying this method using different numbers of 
selected features. The performance of the k-NN classification 
models built on these four subsets was compared in Table 4. 
The metrics to evaluate the performances were TPR (positive 
class = snap) and AUC which is a quantitative representation 
of the ROC curve. TPR was selected to indicate the probability 
of snap detection while AUC was selected to minimize the 
negative influence of the classifier performance resulted from 
skewed classes distributions [36]. 

Table 4. TPR (positive class=snap) and AUC of the classification model built 
on different numbers of selected features using CFS. 

Number of selected features 10 15 20 25 

TPR 0.736 0.802 0.783 0.755 

AUC 0.872 0.903 0.897 0.881 

 
The desired number of selected features was selected based 

on the results shown in Table 4. The best result 15 was obtained 
by selecting the highest TPR and AUC.  

Table 5. The desired number of selected features. 

Feature selection techniques Desired number of selected features 

GR 

IG 

RF 

SU 

10 

10 

20 

10 

CFS 15 

Similarly, by comparing the TPR and AUC for other feature 
weighing algorithms, the desired numbers of selected features 
are listed in Table 5. 

The classification was conducted for comparing these 
feature selection techniques. For a start, a k-NN classification 
model was built on the training dataset without applying any 
feature selection techniques. The algorithm yielded the best 
performance when k was set to 1 under 5-fold cross-validation. 
Afterwards, the six filter-based feature selection techniques 
(shown in Table 1) were used in conjunction with a k-NN 
classifier with the desired number of selected features. Table 6 
shows the classification performance based on selected features 
for each feature selection technique. 

5.4. Results and Discussions 

Table 6. TPR (positive class=snap) and AUC of k-NN on selected features for 
each feature selection technique. 

Title Full set CFSsub GR IG SU RF CFS 

TPR 0.538 0.717 0.811 0.792 0.820 0.717 0.802 

AUC 0.762 0.860 0.890 0.879 0.891 0.854 0.903 

As shown in Table 6, correlation-based feature selection, 
Symmetric uncertainty and Gain ratio generally performed 
better than other feature selection techniques. Selected features 
of these three feature selection techniques were summarized in 
Table 7. Regarding AUC, without applying feature selection, 
the AUC of the k-NN algorithm is 0.762. In contrast, when 
feature selection techniques were applied, the AUCs of the k-
NN algorithms were obviously higher than 0.762. 

Table 7. Selected features from better-performed feature selection techniques.  

Name Name 

1. Bottom Hydraulic pressure 
feedback 

2. SU mass flow Ki 

3. SU setup counter 

4. Left-hand deflector roll diameter 

5. Right-hand deflector roll 
diameter 

6. Servo back position B 

7. Mean Trim 1_4 

8. Top BUR diameter 

9. Bottom BUR diameter 

10. Top WR diameter 

 

11. Bottom WR diameter 

12. DS capsule servo input 
supply pressure 

13. The rate of change of total 
load reference 

14. Gap control on permits 

15. Run mode 

16. Back capsule tilt 

17. OS screw firing angle 

18. DS screw firing angle 

19. Gemlant OP GEM RX2 
Receive last argument error 

20. Gemlant OP GEM RX2 
Receive last argument error 

 
CFS and CFSsub share the same evaluation for feature 

goodness for classification, while the CFS with desired number 
of selected features performed better that CFSsub regarding 
both AUC and TPR. This indicated that the automatically 
generated number of selected features for subset search 
algorithm could be deficient. 

However, the filter approaches of feature selection 
techniques are incapable to remove the redundant features. 
Even if many of the selected features are highly correlated to 
each other, these features are still selected so long as they are 
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feasibility threshold. There is the possibility that critical 
attributes may be omitted if the threshold is set too high [27]. 

In this case, the CFSsub algorithm was first applied to obtain 
the number of selected features for this subset search algorithm. 
Subsequently, by referring to this number, four comparative 
experiments were conducted for each feature weighting 
algorithms. These experiments were set with a different 
number of selected features in order to obtain the desired 
number for this parameter.  

With the determination of a desired number of selected 
features for each feature weighting algorithm,  these six feature 
selection techniques were compared through the classification 
performance of k-Nearest Neighbors (k-NN) [28].  

In the binary classification problem domain, the confusion 
matrix (shown in Table 2), also known as an error matrix, 
allows the visualization of the results of correctly and 
incorrectly recognized samples [29].  

Table 2. Confusion matrix. 

 Positive prediction Negative prediction 

Positive class True positive (TP) False negative (FN) 

Negative class False positive (FP) True negative (TN) 

 
Conventionally, the accuracy rate is a common metric for 

binary classification. Nevertheless, regarding the unbalanced 
dataset in this study, the accuracy rate is no longer an 
appropriate index since it does not distinguish between the 
numbers of correctly classified instances of different 
classes [30]. To evaluate the classification performance of 
positive and negative classes independently, we can obtain the 
following two metrics from the confusion matrix [31]: 

True positive rate (TPR) is the percentage of positive 
instances correctly classified: 

 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹  (1) 

True negative rate (TNR) is the percentage of negative 
instances correctly classified: 

𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇
𝐹𝐹𝐹𝐹+𝑇𝑇𝑇𝑇   (2) 

However, none of these measures is adequate to evaluate the 
classification performance since classification intends to 
achieve good results for both positive and negative classes. In 
this case, the receiver operating characteristic (the ROC curve) 
graph is a way to combine these measures to produce an 
evaluation measurement [32]. The ROC allows the 
visualization of the trade-off between the FPR (x-axis) and the 
TPR (y-axis). The area under the ROC curve (AUC) provides 
a single measure of a classifier's performance for the evaluation 
regarding which model is better on average.  

5.2. Data collection and preprocessing  

The case study is conducted by the support of a real 
reversing cold rolling mill with Production Data Acquisition 
(PDA) equipment installed on site. PDA is a system which 
measures more than 1000 cold rolling parameters including 

setup values, operation variables and measured process 
variables. These parameters of cold rolling are monitored and 
recorded in real-time at the frequency of 100 Hz.  

Although the PDA system records more than 1,000 process 
variables, discarding the non-informative variables delivered, 
only 454 variables relevant to the reversing mill were selected. 
With the aim to record the continuous working condition of the 
mill, the PDA system recorded these variables in continuous a 
manner. There are lots of data being recorded even though the 
mill is not in operation. Thus, these data were discarded. 

The cold rolling process is analyzed under the circumstance 
that lubricating performance can be tolerated while the high 
heat capacity of water is required. The emulsion, therefore, acts 
as both the coolant and lubricant which influence the rolling 
friction of the cold rolling process [33]. Therefore, apart from 
PDA data, the emulsion record which keeps track of the daily 
emulsion information was another source of data.  

Since this study focuses on the reversing cold rolling process 
rather than on the incoming material, the training dataset 
contains 288 coils with the same incoming material grade, 
covering three months of production.   

As a batch process, the collected dataset from the cold 
rolling process was a three-dimensional array 
(coils×variables×time) [34] which is not compatible with 
conventional feature selection techniques.  

For the cold rolling procedure conducted on this reversing 
mill, incoming coils are passed back and forth for at least five 
passes depending on the final thickness required. An example 
demonstrating the different gauge targets set for each pass is 
listed in Table 3. Apart from the gauge, many other variables 
such as speed, tension and load are all varying within certain 
ranges among each pass. In the scope of a reversing rolling 
process, different passes can be considered as different rolling 
stages. Process variables are more similar in the same pass than 
other passes due to the different rolling characteristic. 

Table 3. An example of rolling passes with gauge target. 

 
Input  

gauge 
Pass 1 Pass 2 Pass 3 Pass 4 Pass 5 

Output  

gauge 

Gauge[35] 2.300 1.450 0.980 0.550 0.360 0.205 0.230 

 
Therefore, considering the similarity of process variables in 

each pass, the mean values of each variable during different 
passes are extracted in order to transform the three-dimensional 
array into two-dimensional by the following procedure,  

given a time series of a variable in a single coil: 

 𝑆𝑆 = {𝑐𝑐 1, 𝑐𝑐 2, … , 𝑐𝑐 n}  (3) 

S in this study is represented as: 

𝑆𝑆 = {< 𝑐𝑐 is, 𝑐𝑐 ie >}  (4) 

i denotes the pass number in the cold rolling process; 
is and ie denotes the start and end points of i pass 

respectively; 
<cis, cie> is the mean value of data points in the ith pass 

segment.  
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After data transformation, the three-dimensional array 
(coils×variables×time) was transformed into a two-
dimensional array (passes×variables) which acted as the 
training dataset in this experiment. A pass in this array acted as 
an instance , the mean value of each variable within this pass is 
taken as the value of this instances. According to the running 
log from the shop floor, every pass is marked with a note 
indicating whether there was a snap occurred during this snap 
or not.  

The original training dataset (1,297×464) consists of 1,297 
instances and 464 attributes (459 variables collected from the 
PDA system, nine variables collected from emulsion record 
and the snap label). Among these 1,297 instances, 106 were 
labelled as “snap”. 

It should be noted that within this dataset, there are negative 
values in certain variables, thus indicating the vector direction 
related to the reversing mill process. The absolute value of 
these negative values was taken before a Min-Max 
normalization was conducted on this dataset. 

5.3. Experiments 

Firstly, by applying the CFSsub algorithm on the training 
set, 18 attributes were selected. The results from BestFirst and 
GreedyStepwise searching methods are quite similar. There 
were 18 variables selected after applying this algorithm. 
Concerning this number, four different numbers of selected 
features (10, 15, 20 and 25) were tested on the five chosen 
feature weighting algorithms.  

Subsequently, starting from correlation-based feature 
selection (CFS) technique, four subsets of variables were 
selected by applying this method using different numbers of 
selected features. The performance of the k-NN classification 
models built on these four subsets was compared in Table 4. 
The metrics to evaluate the performances were TPR (positive 
class = snap) and AUC which is a quantitative representation 
of the ROC curve. TPR was selected to indicate the probability 
of snap detection while AUC was selected to minimize the 
negative influence of the classifier performance resulted from 
skewed classes distributions [36]. 

Table 4. TPR (positive class=snap) and AUC of the classification model built 
on different numbers of selected features using CFS. 

Number of selected features 10 15 20 25 

TPR 0.736 0.802 0.783 0.755 

AUC 0.872 0.903 0.897 0.881 

 
The desired number of selected features was selected based 

on the results shown in Table 4. The best result 15 was obtained 
by selecting the highest TPR and AUC.  

Table 5. The desired number of selected features. 

Feature selection techniques Desired number of selected features 

GR 

IG 

RF 

SU 

10 

10 

20 

10 

CFS 15 

Similarly, by comparing the TPR and AUC for other feature 
weighing algorithms, the desired numbers of selected features 
are listed in Table 5. 

The classification was conducted for comparing these 
feature selection techniques. For a start, a k-NN classification 
model was built on the training dataset without applying any 
feature selection techniques. The algorithm yielded the best 
performance when k was set to 1 under 5-fold cross-validation. 
Afterwards, the six filter-based feature selection techniques 
(shown in Table 1) were used in conjunction with a k-NN 
classifier with the desired number of selected features. Table 6 
shows the classification performance based on selected features 
for each feature selection technique. 

5.4. Results and Discussions 

Table 6. TPR (positive class=snap) and AUC of k-NN on selected features for 
each feature selection technique. 

Title Full set CFSsub GR IG SU RF CFS 

TPR 0.538 0.717 0.811 0.792 0.820 0.717 0.802 

AUC 0.762 0.860 0.890 0.879 0.891 0.854 0.903 

As shown in Table 6, correlation-based feature selection, 
Symmetric uncertainty and Gain ratio generally performed 
better than other feature selection techniques. Selected features 
of these three feature selection techniques were summarized in 
Table 7. Regarding AUC, without applying feature selection, 
the AUC of the k-NN algorithm is 0.762. In contrast, when 
feature selection techniques were applied, the AUCs of the k-
NN algorithms were obviously higher than 0.762. 

Table 7. Selected features from better-performed feature selection techniques.  

Name Name 

1. Bottom Hydraulic pressure 
feedback 

2. SU mass flow Ki 

3. SU setup counter 

4. Left-hand deflector roll diameter 

5. Right-hand deflector roll 
diameter 

6. Servo back position B 

7. Mean Trim 1_4 

8. Top BUR diameter 

9. Bottom BUR diameter 

10. Top WR diameter 

 

11. Bottom WR diameter 

12. DS capsule servo input 
supply pressure 

13. The rate of change of total 
load reference 

14. Gap control on permits 

15. Run mode 

16. Back capsule tilt 

17. OS screw firing angle 

18. DS screw firing angle 

19. Gemlant OP GEM RX2 
Receive last argument error 

20. Gemlant OP GEM RX2 
Receive last argument error 

 
CFS and CFSsub share the same evaluation for feature 

goodness for classification, while the CFS with desired number 
of selected features performed better that CFSsub regarding 
both AUC and TPR. This indicated that the automatically 
generated number of selected features for subset search 
algorithm could be deficient. 

However, the filter approaches of feature selection 
techniques are incapable to remove the redundant features. 
Even if many of the selected features are highly correlated to 
each other, these features are still selected so long as they are 
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deemed relevant to the class concept [37]. This can be observed 
from the selected features in Table 7 that “Left-hand deflector 
roll diameter” and “Right-hand deflector roll diameter” are 
somehow related since the diameter of the left-hand deflector 
should match the diameter of the right-hand deflector roll. The 
filter approach feature selection technique here only selects the 
relevant variables without removing the redundant variables. 

6. Conclusions 

The result of the final evaluation test shows that the 20 
variables shown in Table 7 are the main critical parameter for 
snap coils suggesting that there is no uniform cause or structure 
for snap coils. This coincides with the real situation that strip 
snaps could be classified into various types according to 
different manifestation such as pinch, stress, straight line and 
so on.       

Among these 20 variables, there are some variables usually 
not covered under the conventional analysis while they could 
be relevant and important. For example, setup counter which 
records the number of attempts for setting up the reserving mill. 
Further investigation is needed to understand the influence of 
such variable.  

In addition, the representation of time series process data in 
this study has not considered the dynamic change of variables. 
Our further work will focus on a more approximate way to 
represent this process data with less distortion.  
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