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Abstract

From a problem in elasticity that uses a nonlinear stress-strain relation, we derive

an equation featuring the one-dimensional p-Laplacian operator with a periodic potential

term. This equation is nonlinear, but homogeneous, and we derive a modified Prüfer

transform to convert this second-order equation into a two-dimensional first-order system,

with radial and angular components. The homogeneity of the original equation is reflected

in the complete independence of the angular equation on any radial terms. This allows

us to restate conditions of periodic behaviour in terms of the angular component only.

Using these techniques, we compare the nonlinear equation with its linear counterpart,

the equation featuring the standard Laplacian operator. This linear equation can also be

converted into a first-order system, the linearity of which allows the effect of the equation

acting over one period to be written as a constant-valued matrix. This gives a certain

structure to the linear equation, which is almost completely absent from the nonlinear

case.

The p-Laplace equation with a constant potential has solutions that behave analo-

gously to the trigonometric functions. We detail methods of approximating these func-

tions and their inverses, along with proving accuracy bounds. In turn, we use these to

approximate an asymptotic average of the increase in the angular component as t→∞.

This function, called the rotation number, is dependent only on a spectral parameter in

our equation, and gives information about the stability of the solutions of the equation

at that spectral value.

In the linear case, the spectral values that give periodic and anti-periodic behaviour

can be characterised exactly as the boundary points on intervals over which this function

is constant. These values also separate values of the spectral parameter that give bounded

and unbounded behaviour. We shall show that this characterisation is no longer true in

the nonlinear case, specifically that periodic behaviour can stem from spectral values

inside these intervals, and that the intervals can occur outside of the bounds of the

(anti-)periodic spectral values.
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1 Introduction

We consider the movement of elastic solids, let u(t,x) be the displacement of the

particle initially at the point x ∈ Rn at time t ≥ 0. Let U be the domain of the solid,

then for any W ⊂ U , the force due to the acceleration of the solid over this subdomain

is given by

d

dt

∫
W

p ,

where the momentum of the solid, p ∈ R3, is of the form

p := %
∂u

∂t
.

The constant % ∈ R is a density term. The contact force due to the elasticity of the solid

is given by ∫
∂W

σν dS ,

where σ ∈ Rn×n is the stress acting on the solid. The vector ν is the normal vector to

each point on the surface ∂W being summed over. The stress-strain relation of certain

materials can be approximated by the linear Hooke’s law, that is, the deformation of the

solid at any point is a linear transformation of the stress forces acting on it. This means

that we can write the stress forces as σ = A∇u, for some constant tensor, A.

We also consider a potential term that models the external forces acting on the

solid, we assume this term is dependent on the spatial variable x and is linear in the

displacement u. Therefore, we take this term to be of the form −Q(x)u, for some

matrix-valued function, Q ∈ L1
loc(Rn×n), with locally integrable elements. The resultant

force due to the external forces acting on the volume W is therefore of the form

−
∫
W

Qu .
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These forces must be balanced in every volume W over the domain U , therefore, we

have

d

dt

∫
W

p = −
∫
∂W

σν dS−
∫
W

Qu . (1)

The negative sign on the stress integral reflects the fact that the stress force is acting

in the opposite direction to the acceleration. Next, we transform this integral using the

Gauss Divergence Theorem,

∫
∂W

σν dS =

∫
W

divx σ .

Implementing this in (1), we get

∫
W

∂p

∂t
+ divx σ +Qu = 0 ,

and since this equality holds over every subset W on the domain U , the following equation

holds,

∂p

∂t
= − divx σ −Qu .

Combining this with the expressions for p and σ results in the linear, second-order PDE

%
∂2u

∂t2
= − divx(A∇u)−Qu .

Taking A = −I, this equation becomes

%
∂2u

∂t2
= ∆u−Qu , (2)

where the operator ∆ := divx ·∇ is the Laplacian, an elliptic, linear operator that mea-

sures the rate at which the average value of u in a sphere surrounding the point x varies

with respect to the radius. This operator is well-studied, and has been used in elec-
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tromagnetics and quantum mechanics, as well as here in elasticity problems. Equations

of the form (2) are referred to as Wave Equations, and their use as an elasticity model

is found in the context of waves in acoustics, optics and fluids. See [12] for a further

discussion of the derivation and analysis of the equation (2).

On a one-dimensional spatial domain, i.e. n = 1 , x, u ∈ R, this equation models the

vibration of a string. Let % ≡ 1, the equation (2) can be written as

∂2u

∂t2
=
∂2u

∂x2
−Qu ,

for t ≥ 0, x ∈ [0, α), and some fixed α > 0. The classical technique for solving equations

of this form is the separation of variables, that is, assuming the solution can be written

in the form u(x, t) = v(x)w(t). Substituting this into the Wave Equation, we have

v(x)w′′(t) = v′′(x)w(t)−Q(x)v(x)w(t) ,

and dividing through by w(t),

v(x)
w′′(t)

w(t)
= v′′(x)−Q(x)v(x) .

Given that the term w′′(t)/w(t) does not depend on x, we replace it with the constant

−λ ∈ R, and derive the equation

v′′(x) + (λ−Q(x))v(x) = 0 . (3)

As the potential Q is not necessarily continuous, this equation is understood in the

Carathéodory sense, meaning that it is satisfied on the entirety of the domain except on

a set of measure zero (see [8][Chapter 2] for a detailed description of existence results

regarding this case). We call a function v a solution of (3) if it is in the set

V = {f : R→ R f, f ′ ∈ ACloc(R)} , (4)

9



and satisfies (3) almost everywhere on R. Note that the set ACloc(R) is the set of locally

absolutely continuous functions on R, that is, the set of functions that are absolutely

continuous on all compact subsets of R.

The next question is that of boundary conditions. Take the one-dimensional Wave

Equation, we have the initial profile of the string at time t = 0,

u(x, 0) = g(x) and
∂u

∂t
(x, 0) = h(x) ,

for some g, h ∈ L1
loc(R) . We can also give conditions on the spatial boundary, that is,

at the points x = 0 and x = α. One of the most common examples are the Dirichlet

Boundary Conditions, given by

u(0, t) = 0 and u(α, t) = 0 ,

for all t ≥ 0. These constraints model a situation in which the string is pinned-down

to fixed points at both ends. However, in this thesis we consider the Periodic Boundary

Conditions,

u(0, t) = u(α, t) and
∂u

∂x
(0, t) =

∂u

∂x
(α, t) , (5)

for all t ≥ 0. These are used to model the movement of a material over a large scale, that

has an internal structure that is periodic on a small scale. We divide the whole space into

small unit cells and assume that the behaviour of each unit cell is identical throughout

the space. Therefore, the solution u must be periodic throughout the space variable x,

and given that the Wave Equation is second-order, it is sufficient to impose periodicity

on the function and its first derivative. The equation (2), combined with these periodic

boundary conditions, is referred to as the Periodic Problem.

Naturally, as we are now assuming the string has a periodic structure on the small

scale, the initial profiles g(x) and h(x) must also be α-periodic. Similarly, the potential

term Q(x) must also be α-periodic for this model to be valid. Any interval [iα, (i+ 1)α),
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for any i ∈ N0, is referred to as a period of our problem.

With regards to the separation of variables detailed above, it suffices to impose the

following conditions on v,

v(0) = v(α) and v′(0) = v′(α) .

We now must deduce which values of λ ∈ R admit non-trivial solutions of the equation

(3) with these boundary conditions, such values are called the periodic eigenvalues of this

periodic problem, and the resulting solutions of (3) that satisfy these boundary conditions

are the periodic eigenfunctions.

This type of problem was first studied by Sturm and Liouville in 1836, although the

problem they studied had separable boundary conditions, rather than periodic bound-

ary conditions, (see [19] for the historical development of these problems). The earliest

research focused on the existence of such eigenvalues, the properties of the resulting eigen-

functions, and the possibility of the set of eigenfunctions forming a basis of the periodic

functions inside the set L2
loc(R). The same results have been shown for the periodic

problem, and we list the main results below.

Theorem 1.0.1. Let Q ∈ L1
loc(R), consider a second-order linear equation of the form

v′′ + (λ−Q)v = 0 .

There exist countably infinitely many periodic eigenvalues,

λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < . . . ,

that is, values λ ∈ R for which there exists a non-trivial solution of the equation with

periodic boundary conditions,

v(0) = v(α) and v′(0) = v′(α) .
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Furthermore, the eigenfunction corresponding to the eigenvalue λi, for any i ∈ N0, has

di/2e zeros on the interval [0, α).

The details of the proof of this theorem can be found in [7, Chapter 2]. We also state the

following result regarding completeness of the periodic eigenfunctions.

Theorem 1.0.2. Consider the countably infinite set {λ0, λ1, λ2, . . .} of periodic

eigenvalues of the equation

v′′ + (λ−Q)v = 0 .

For each eigenvalue λi , there either exists a one-dimensional eigenspace of α-periodic

solutions, or the whole solution space is α-periodic.

For each eigenvalue, take an orthonormal basis of eigenvectors for each corresponding

eigenspace, (orthonormal with respect to the standard inner product,

〈 f, g 〉 =

∫ α

0

f g ,

for any f, g ∈ L2
loc(R) ). The union of all of these bases forms an orthonormal basis of

L2
loc,per(R); the space of locally integrable, α-periodic functions on R.

Returning to the separation of variables argument, consider the periodic eigenvalues

λi ∈ R of the equation (3), for each i ∈ N0. We took w′′(t)/w(t) = −λ, therefore for each

eigenvalue we have

w′′(t) + λiw(t) = 0 .

Note that the solution space of this equation is spanned by the functions sin(
√
λi t) and

cos(
√
λi t). (We use the informal notation that for any λi < 0, sin(

√
λi t) = sinh(

√
−λi t)

and cos(
√
λi t) = cosh(

√
−λi t))

As per Theorem 1.0.2, we define vi(x) as eigenfunction corresponding to λi such that

the set {vi i ∈ N0} forms an orthonormal basis of C1
per(R); the space of continuously

differentiable, α-periodic functions on R. Then we have
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u(x, t) =
∞∑
i=0

αivi(x) sin(
√
λi t) + βivi(x) cos(

√
λi t) ,

with

αi =
1√
λi

∫ α

0

vi(x) h(x) dx and βi =

∫ α

0

vi(x) g(x) dx .

Therefore, every solution to the Wave Equation (2) can be expanded using the periodic

eigenfunctions of (3), and an analysis of any solution can be done by considering these

functions alone.

We now change the model to consider materials that do not obey Hooke’s law, and

instead rely on a nonlinear stress-strain relation. Specifically, Ludwick Solids, which have

a stress-strain relation given by

σ = Kφp(ε) ,

for some K > 0 and p > 1, where φp(x) = |x|p−2x . For example, High Speed Steel Alloy

(HSSA) obeys Ludwick’s law with exponent p = 1.11, similarly, 304 Stainless Steel has

exponent p = 1.45. Note that when p = 2, we have σ = Kε, and we return to the linear

case of Hooke’s law. The paper by Wei [27] gives a review of several types of nonlinear

adaptions of the wave equation that stems from this nonlinear relation.

We now adapt our previous model to fit this nonlinear case, we fix some value p > 1.

The stress matrix σ ∈ Rn×n will now be defined by

σ = φp(∇u) .

In the context of relativistic models, particles moving at speeds approaching the speed

of light have a nonlinear velocity-momentum relation, we therefore take the momentum

to be of the form
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p = %φp

(
∂u

∂t

)
.

Finally, we once again include a potential term, given by Q(x)φp(u).

We previously derived the following equation, relating the momentum, stress, and

displacement,

∂p

∂t
= − divx σ −Qu .

Substituting in the definitions for this new case, we get

%
∂

∂t

(
φp

(
∂u

∂t

))
= −∆pu−Qφp(u) , (6)

where the operator ∆p := divx(φp(∇u)) is the p-Laplacian. The monograph by Lindqvist

[18] gives a detailed analysis of inequalities and regularity theory associated with this

operator over multiple dimensions. We however, return to the case n = 1, for which the

equation (6) can be written as

%
∂

∂t

(
φp

(
∂u

∂t

))
= − ∂

∂x

(
φp

(
∂u

∂x

))
−Qφp(u) , (7)

for t ≥ 0 , x ∈ [0, α), where α > 0. This equation is effectively a model for the vibration

of strings made of certain metal alloys. If these alloys have a periodic structure on the

small scale, then once again, we implement periodic boundary conditions

u(0, t) = u(α, t) and
∂u

∂x
(0, t) =

∂u

∂x
(α, t) ,

for all t ≥ 0, as well as the initial string profile conditions

u(x, 0) = g(x) and
∂u

∂t
(x, 0) = h(x) ,

for some g, h ∈ L1
loc(R) . Note that we once again assume the functions g, h, and Q are
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all α-periodic.

Similar to the separation of variables used in the linear model, (2), we now assume

that u is of the form u(x, t) = eω tv(x). Substituting this into our nonlinear wave equation

(7), we get

%(p− 1)|ω|pe(p−1)ω tφp(v(x)) = −e(p−1)ω t(φp(v
′(x))′ − e(p−1)ω tQ(x)φp(v(x)) .

Dividing through by e(p−1)ω t and simplifying, the equation becomes

(φp(v
′(x))′ + (λ−Q(x))φp(v(x)) = 0 , (8)

where λ := %(p−1)|ω|p. Thus, we have a nonlinear, homogeneous, second-order equation

in x, with corresponding boundary conditions

v(0) = v(α) and v′(0) = v′(α) .

Again, this equation is understood in the Carathéodory sense. A function v is a

solution if it is in the set

Vp = {f : R→ R f, φp(f
′) ∈ ACloc(R)} ,

and satisfies (8).

This gives us a nonlinear eigenvalue problem; finding the values of λ ∈ R for which

there exist non-trivial solutions of (8), satisfying the periodic boundary conditions. For

any such value, λ̃ ∈ R, let ṽ be a corresponding eigenfunction, then there exists a solution

u of (7) of the form

u(x, t) = exp

( λ̃

%(p− 1)

)1/p

t

 ṽ(x) .

Unfortunately, as the equation (7) is nonlinear, there is no superposition principle that
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will allow us to deconstruct any general solution as some combination of all of the solutions

that stem from the eigenvalues, as was done in the linear case above. We can however

use methods from the Calculus of Variations to recharacterise the periodic eigenvalues

of this problem as the set of permissible energies of a Ludwick solid undergoing periodic

movement. By the Principal of Minimal Energy, it is valid to say that after energy is

continuously applied to such a solid, the movement of the solid in the long term occurs

in such a way as to minimise the total remaining energy. Therefore, excluding solutions

with eigenfunctions that are orthogonal to the induced movement, the solution of (2)

corresponding to the minimal eigenvalue gives the long term behaviour of the solid.

The Dirichlet Energy functional, given by

1

2

∫
Ω

|∇u(x)|2 dx ,

for any function u ∈ Rn, models the kinetic energy of certain elastic materials, see [13,

Chapter 10]. For n = 1, consider the model of Hookean strings moving periodically, with

a unit cell given by the period [0, α). We include an α-periodic potential energy term, Q.

The energy model becomes

E(v) =
1

2

∫ α

0

|v′(x)|2 −Q(x) |v(x)|2 dx ,

where v ∈ V is an α-periodic function. We further subject this functional to the constraint

1

2

∫ α

0

|v(x)|2 dx = 1 , (9)

to eliminate the trivial solution, which is always a minimiser of the functional E(v). By

the method of Lagrangian multipliers, minimising this functional subject to the constraint

(9) is equivalent to minimising the functional

Eλ(v) =
1

2

∫ α

0

|v′(x)|2 + (λ−Q(x)) |v(x)|2 dx ,
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over the space of α-periodic functions, v ∈ V . The Euler-Lagrange equation resulting

from this functional is the linear, second-order ODE (3). Therefore, the minimal eigen-

value λ0 of the resulting periodic problem gives an eigenfunction that minimises the total

energy of the string, and this eigenfunction models the movement of the string in x.

Minimising again, after adding the additional constraint,

∫ α

0

v0(x)v(x) dx = 0 ,

gives the next smallest possible energy of the string, corresponding to the next smallest

eigenvalue.

We now adapt this for Ludwick solids. Consider the functional

1

p

∫
Ω

|∇u(x)|p dx ,

for any function u ∈ Rn, sometimes referred to as the p-Dirichlet Energy functional. This

functional has been used to model tug-of-war games in Game Theory [9], the movement

of sandpiles [2], and is used in the process of denoising images [16]. Just as the Laplace

operator can be derived from the Euler-Lagrange equation stemming from the Dirichlet

Energy functional, the Euler-Lagrange equation resulting from this functional is

∆p(v) = 0 ,

where ∆p is the p-Laplace operator that we first saw in equation (6). The model for the

energy of a Ludwick string moving periodically, with unit cell given by the period [0, α),

is

Ep(v) =
1

p

∫ α

0

|v′(x)|p −Q(x) |v(x)|p dx ,

where v ∈ V is an α-periodic function. As before, we subject this functional to the

constraint

17



1

p

∫ α

0

|v(x)|p dx = 1 ,

to eliminate the trivial solution. The minimisers of this constrained functional are the

periodic eigenfunctions of (7), and the corresponding eigenvalues are the total energies

of the system.

The focus of this thesis is the stability of solutions of the equation

(φp(u
′(t)))′ + (λ−Q(t))φp(u(t)) = 0 , (10)

for t ≥ 0, λ ∈ R, and Q ∈ L1
loc(R), and how this stability is affected as the value λ is

changed. The concept of stability here, is defined as the boundedness of a solution over

the whole real line. The value λ is the spectral parameter of (10), and Q is the potential.

We choose all potentials, Q, to be α-periodic.

The existence and uniqueness of solutions to Dirichlet problems resulting from such

equations was first studied by Ôtani [21], and for a more general class of equations

involving the one-dimensional p-Laplacian, by Manásevich and Zanolin [20]. Eigenvalue

problems relating to the one-dimensional p-Laplacian have been studied extensively over

the last thirty years. Drábek and Robinson [10] showed the existence of eigenvalues of

Dirichlet problems relating to equations of the form (10), with extra terms individually

dependent on u and t. Walter [26] proved the existence of eigenvalues of the Dirichlet

problem relating to the radial p-Laplacian.

Existence results regarding equations with a more general weight term on the spectral

parameter were studied by Agarwal, Lü and O’Regan [1], and Huy and Thanh [15].

Multiplicity results of such Dirichlet problems were then proved by Ubilla [25], and Tanaka

and Naito [24], who showed the (non-)existence of non-trivial solutions to the Dirichlet

problems with a prescribed number of zeros in the domain. Eigenvalue problems of one-

dimensional p-Laplace operators with separable boundary conditions were studied by

Reichel and Walter [22], [23]. More recently, the spectrum of the periodic problem has
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been considered by Zhang [30], and Binding and Rynne [4], [5], [6].

We wish to derive results connecting the stability of solutions of (10) to the periodic

eigenvalues. When p = 2, this equation is linear, and there are many well-known results

regarding this connection. We state them briefly here, but [7, Chapters 1 and 2] and [29,

Chapter 2, Section 7] covers the topic in more detail.

The first step in the analysis of the equation

u′′(t) + (λ−Q(t))u(t) = 0 , (11)

is to convert it to a two-dimensional first-order system. Define

x := u and y := −u′ ,

then the second-order equation (11) is equivalent to the system x′ = Ax, where

x =

 x

y

 and A =

 0 −1

(λ−Q) 0

 .

The first result shows how the α-periodicity of A gives structure to certain solutions of

the system.

Theorem 1.0.3. Let Φ be a matrix-valued solution of the system x′ = Ax, with initial

value Φ(0) = I. Then for any t ≥ 0,

Φ(t+ α) = Φ(t)Φ(α) .

The value µ ∈ R is an eigenvalue of the matrix Φ(α) if and only if there is a non-trivial

solution, u of (11), with

u(t+ α) = µ u(t) ,

for all t ∈ R.
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The matrix Φ(α) is called the Monodromy matrix of the system. An analysis of the

characteristic equation of Φ(α) allows the stability of solutions of (11) to be characterised

by the trace of this matrix. As the equation (11) is often referred to as Hill’s equation,

we call the trace of the Monodromy matrix, the Hill’s discriminant of the system, and

denote it D(λ).

Theorem 1.0.4. Let D(λ) be the Hill’s discriminant of the equation (11).

• If |D(λ)| > 2, there exist two solutions of the equation (11) with

u1(t) = eC t g1(t) and u2(t) = e−C t g2(t) ,

for all t ≥ 0, for some C ∈ R, and α-periodic functions g1, g2 ∈ V (for V defined

in (4)).

• If |D(λ| < 2, there exist two solutions of the equation (11) with

u1(t) = cos(C t) g1(t)− sin(C t) g2(t) ,

and u2(t) = cos(C t) g2(t) + sin(C t) g1(t) ,

for all t ≥ 0, for some C ∈ R, and α-periodic functions g1, g2 ∈ V .

• If D(λ) = 2, either all solutions of (11) are α-periodic, or there exists an α-periodic

solution, u1 and a second solution of the form

u2(t) = g(t) + C t u1(t) ,

for all t ≥ 0, for some C ∈ R, and α-periodic function g ∈ V .

• If D(λ) = −2, then the solutions behave the same as in the previous case, except

we have α-antiperiodicity of at least one solution, instead of α-periodicity.
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Solutions of (11) with |D(λ)| > 2 are called Floquet solutions. By Theorem 1.0.3,

they have the property that

u(t+ α) = µu(t) ,

for some µ ∈ R. This value µ is the Floquet multiplier of the solution. In Chapter 4, we

re-derive this type of solution for the nonlinear equation (10). In the linear case, p = 2,

we know that for each λ ∈ R such that |D(λ)| > 2, there exists only a single pair of

Floquet solutions. However, for p 6= 2, given any n ∈ N, we prove conditions under which

it is possible to construct potentials for which there are n pairs of Floquet solutions, each

pair with its own set of distinct multipliers.

Theorem 1.0.4 tells us that the periodic eigenvalues of the equation (11) can be

characterised as values λ such that D(λ) = 2. Similarly, the anti-periodic eigenvalues

can be characterised as values λ with D(λ) = −2. Solutions of (11) in intervals in λ

for which |D(λ)| < 2 are bounded on R, and the solutions in intervals of λ for which

|D(λ)| > 2 are unbounded, hence, we refer to such intervals in λ as stability intervals and

instability intervals, respectively. By Theorem 1.0.4, stability and instability intervals

must be separated by (anti-)periodic eigenvalues.

We next consider the functional properties of the Hill’s discriminant, to determine

whether eigenvalues can fall in between two instability intervals.

Theorem 1.0.5. Let D(λ) be the Hill’s discriminant of the equation (11). At any value

λ such that D(λ) < 2, D is strictly monotonic. For any λ such that |D(λ)| = 2, if

D′(λ) = 0 then D(λ)D′′(λ) < 0, and all solutions of (11) for this λ are α-periodic.

This theorem tells us that periodic eigenvalues cannot exist in between two insta-

bility intervals, and can only separate instability and stability intervals, or two stability

intervals. If a periodic eigenvalue existed between two instability intervals, then for this

value λ, we have D(λ) = 2, and D′(λ) = 0. So by Theorem 1.0.5, D′′(λ) < 0 and so in

a neighbourhood to the right of λ, D < 2, and so this neighbourhood is in a stability

interval.
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Given that our p-Laplace equation, (10), is non-linear, we cannot apply any of the

above results. It is possible to convert this equation into a two-dimensional first-order

system, but as this system is nonlinear, there does not exist a Monodromy matrix, and

as a result, there is no Hill’s discriminant. However, further analysis of equations of the

type (11) has also been derived using Oscillation Theory. This uses the Prüfer Transform,

given by

x = r cos θ and y = r sin θ . (12)

If we consider the original solution components x, y as being coordinates in the phase-

plane, this transform effectively gives the equivalent solution in terms of a radial compo-

nent r, and and angular component, θ. We substitute the transformation (12) into the

system x′ = Ax, and derive the equations


r′ = r(λ−Q− 1) cos θ sin θ

θ′ = 1 + (λ−Q− 1) cos2 θ .

Although this transformed system is nonlinear, it has the advantage that the latter

equation is not dependent on the radial term, r. This reflects the homogeneity present

in the original equation (11), that is, for any given solution u of (11), the function C u

(for any C ∈ R) is also a solution. Given that (C u)′ = C u′, we also have

C u(0) = C u(α) and C u′(0) = C u′(α) ,

and so rescaling the solution by a scalar factor, C, does not affect whether the solution

satisfies the periodic boundary conditions.

Therefore, the periodicity (or lack thereof) of any solution cannot be affected by a

simple rescaling. Note that this technique can be applied to the nonlinear equation (10),

as nothing about this approach relies on linearity, only homogeneity, and the equation

(10) is also homogeneous.
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After removing any consideration of the radial term r, an analysis of the angular

term, θ, leads to the definition of a function called the rotation number. This is defined

using θ, and only depends on the spectral parameter, λ.

Definition 1.0.1. For any angular component θ to a solution of (11), the rotation num-

ber of the solution is given by

ρ(λ) := lim
t→∞

θ(t, λ)

t
,

for all λ ∈ R.

The rotation number gives an normalised, asymptotic average of the increase in θ over

each period. Note that whenever θ = π/2, the corresponding solution, u = r cos(π/2) = 0.

Therefore, an increase in θ by π over an interval, shows the existence of a zero of the

solution u inside the interval. Thus, the rotation number can also be viewed as an

normalised average of the number of zeros in all periods of a given length. We now state

a result linking the stability of solutions of (11) with the values of ρ.

Theorem 1.0.6. Let ρ be the rotation number resulting from the angular component,

θ, of the system x′ = Ax after a Prüfer transform. On any interval of λ in which

|D(λ)| < 2, the function ρ is strictly monotonically increasing. On any interval of λ in

which |D(λ)| > 2, the function ρ is constant.

The appearance of a graph of this function is therefore that of a function, increasing

without bound, with intervals in λ over which ρ is constant. The maximal intervals

of constancy of ρ are referred to as plateaus of the rotation number. We have already

seen that the point that separates stability and instability intervals is an (anti-)periodic

eigenvalue, therefore, the end-points of these plateaus are (anti-)periodic eigenvalues.

We have also shown that no periodic eigenvalues can occur in between two instability

intervals, and as such, there are no periodic eigenvalues in the interior of the plateaus.

It is however possible that there are periodic eigenvalues that are found between two

stability intervals, the rotation number can also be used to characterise these.
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Theorem 1.0.7. Let ρ be the rotation number resulting from the angular component, θ,

of the system x′ = Ax after a Prüfer transform. For any periodic eigenvalue, λ, of this

system,

ρ(λ) =
2nπ

α
,

for some n ∈ N0, where n is the number of zeros that the first component of x attains

over each period of length α

By Theorem 1.0.6, if a periodic eigenvalue is found between two stability intervals,

the image of the function ρ is locally strictly monotonic. Hence, the eigenvalue can be

evaluated as the boundary points on λ, of the preimage of the rotation number at the

value 2nπα−1, the aforementioned plateaus. The generalisation of this theory to the

nonlinear equation (10) was first derived by Zhang [30]. In that paper, it was shown that

the properties of ρ(λ) shown in Theorems 1.0.6 and 1.0.7 also hold for the nonlinear case.

Zhang conjectured however, that just as in the linear case, there could be no periodic

eigenvalues in the interior of the plateaus. This was disproven by Binding and Rynne [4]

who showed that for any m ∈ N, there exists a potential Q for which a plateau at any

given multiple of 2πα−1 has m periodic eigenvalues in its interior. In Chapter 2.5, we

re-derive this result by analysing the effect of a perturbation on the potential.

We briefly mentioned earlier that as well as plateaus at multiples of 2πα−1, the end-

points of which are the periodic eigenvalues, there can also exist plateaus at odd multiples

of πα−1, and the end-points of these plateaus correspond to the anti-periodic eigenvalues.

The remaining question is whether there can exist plateaus at levels outside of integer

multiples of πα−1.

We start by noting the connection between the rotation number, and the periodic

eigenvalue problem over several periods, the so-called iterated periodic problem. A func-

tion u is a solution to the iterated periodic problem over m periods, for some m ∈ N, if

u solves (10) and satisfies the conditions
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u(0) = u(mα) and u′(0) = u′(mα) .

Theorem 1.0.8. Let ρ be the rotation number resulting from the angular component, θ,

of the system x′ = Ax after a Prüfer transform. For any m ∈ N, all values, λ of the

spectral parameter, for which there exists a solution, u, that satisfies the iterated periodic

problem over m periods has rotation number

ρ(λ) =
2nπ

mα
,

for some n ∈ N0, where n is the number of zeros that the first component of x attains

over each period of length mα.

From this theorem, we deduce that for a plateau to exist at a rational, non-integer,

multiple of πα−1, there must exist two distinct spectral values λ, such that the resulting

solutions are mα-periodic, for some m > 2, each with n zeros in the interval [0,mα). We

now introduce a result that connects the periodic problem over m periods, to the periodic

problem over a single period.

Theorem 1.0.9. For any m ∈ N, the value λ ∈ R is a periodic eigenvalue of the iterated

periodic problem over m periods ( i.e., there exists a solution, u, that satisfies

u(0) = u(mα) and u′(0) = u′(mα) )

if and only if there exists an ω ∈ C such that ωm = 1, with

u(0) = ω u(α) and u′(0) = ω u′(α) .

The case m = 1 simply gives the periodic eigenvalues, and so ω = 1. For the case

m = 2, we have ω2 = 1, and so ω = ±1. This shows that for any λ that gives periodicity

after two periods, either ω = 1, and λ is a periodic eigenvalue, or ω = −1, and λ is an

anti-periodic eigenvalue. We know that for the cases m ≤ 2, the eigenvalues can exist in
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pairs, each with geometric multiplicity one. However, for any m > 2, there exist values

ω with non-zero imaginary parts.

Let u be a periodic eigenfunction corresponding to one such ω, then as there are no

complex terms in the equation (11), the conjugate of this solution, ū is also a solution.

As the ratios ω = u(α)(u(0))−1 and ω̄ = ū(α)(ū(0))−1 are distinct, the two solutions are

linearly independent. By Theorem 1.0.9,

ū(0) = ū(mα) and ū′(0) = ū′(mα) .

Taking the linear combinations

u+ ū

2
and

u− ū
2i

,

results in two linearly independent, real-valued, mα-periodic solutions of the equation (3).

Therefore, there exist two linearly independent periodic eigenfunctions of the problem

over m periods. This means that the eigenvalue corresponding to these eigenfunctions

has geometric multiplicity two, and by Theorem 1.0.5, this eigenvalue exists between two

stability intervals. By Theorem 1.0.6, ρ is strictly increasing in a neighbourhood of this

eigenvalue, and therefore, there is no plateau at this level.

This technique however, does not work for the nonlinear equation, (10). For example,

the linear combinations taken above to produce the two real-valued solutions would not

produce a solution in the nonlinear case, as the superposition principle becomes invalid.

In fact, in Chapter 5 we show that for any rational value n/m, there exist potentials Q,

such that there exists an ‘extra’ plateau at the level Cn/m, for some fixed value C. This

highlights the many qualitative differences in the structure of the spectra of the linear

problem and the nonlinear problem.
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2 Background and Auxiliary Results

As mentioned in Chapter 1, a key tool for analysing the spectrum (and hence the

stability of solutions) of the equation (11) is the Prüfer Transform. This transform is

defined using the sin and cos functions. However, in the context of the equation (10),

such a transform is unsatisfactory. The goal is to find solutions in terms of a radial and an

angular component, where the angular component reflects the terms inside the argument

of the sin and cos functions, themselves solutions in the case λ−Q ≡ 1. But sin and cos

are no longer solutions to the equation (10) when p 6= 2, so we must redefine the Prüfer

transform in terms of some analagous functions.

2.1 The sinp and cosp Functions

To derive this p-Prüfer Transform for the nonlinear equation (10), we first define

the sinp and cosp functions. They are defined as solutions to (10) with λ − Q ≡ 1, and

become the standard sin and cos functions for the linear case, p = 2. The existence of

such solutions was first proved by Ôtani [21], and Lindqvist [17] derived several results

regarding their inverses, derivatives, and algebraic connections with other solutions that

parallel the properties of the standard trigonometric functions.

Definition 2.1.1. The solution of the equation (10), with λ = 1 and Q ≡ 0, and

initial conditions u(0) = 0, u′(0) = 1, is called the sinp function. The solution with initial

conditions u(0) = (p− 1)1/p, u′(0) = 0, is called the cosp function.

For the derivations below, we introduce a value

q =
p

p− 1
,

called the conjugate exponent of p. Such a construction is familiar from the duals of Lp

spaces, and throughout this thesis, we will use the properties
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1

p
+

1

q
= 1 , (p− 1)(q − 1) = 1 ,

without comment. One such consequence of the latter identity is that

φp ◦ φq = id ,

that is, φp and φq are inverses. It is this property that causes the value q to appear so

frequently in the following derivations.

It is worth mentioning that the concept of generalised p-trigonometric functions has

been extensively studied, and that several variants of the sinp and cosp functions have

appeared in the literature, each with different results. The papers [28] and [11] give a

good overview of these variants.

The sinp and cosp functions are periodic. For the linear case, p = 2, there exists

an integral formulation of the inverses of sin and cos, from which the value of π can be

derived. We generalise this here, to define values πp, and show that for any fixed p > 1,

the solutions sinp and cosp are 2πp-periodic.

Definition 2.1.2. For any p > 1, we define the value πp as

πp := 2

∫ (p−1)1/p

0

ds

(1− (|s|p/(p− 1)))
1/p

.

In Chapter 3, we derive numerical schemes for certain p-trigonometric functions.

Thus, it will be necessary to approximate the values πp, for any given p. Fortunately,

there exists a closed form expression for such values.

Lemma 2.1.1. For any p > 1,

πp =
2π(p− 1)1/p

p sin(π/p)
.

Proof. We make the substitution r = sp/(p− 1), from which we get
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dr

ds
=
p sp−1

p− 1
.

This transforms the integral expression in the definition of πp as follows,

πp := 2

∫ (p−1)1/p

0

dr

(1− (|r|p/(p− 1)))
1/p

=
2(p− 1)

p (p− 1)1/q

∫ 1

0

dr

r1/q (1− r)1/p
.

By the definition of the Beta function,

B(x, y) :=

∫ 1

0

tx−1 (1− t)y−1 dt ,

we have,

πp =
2(p− 1)1/p

p
B(1/p, 1/q) .

We use the following well known relation between the Beta function and the Gamma

function,

B(x, y) =
Γ(x) Γ(y)

Γ(x+ y)
,

to get

πp =
2(p− 1)1/p

p

Γ(1/p) Γ(1/q)

Γ(1/p + 1/q)
=

2(p− 1)1/p

p

Γ(1/p) Γ(1− 1/p)

Γ(1)
.

Finally, by the Euler Reflection Formula, and the fact that Γ(1) = 0! = 1, we have

πp =
2(p− 1)1/p

p

π

sin(π/p)
.

Using the symmetry of the Beta function, we also note the equality
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(a) cos1.2(t) on the domain [0, 2π1.2]. (b) cos3(t) on the domain [0, 2π3].

Figure 1: Examples of cosp functions.

πp =
2(p− 1)1/p

p
B(1/p, 1/q) =

2(p− 1)1/p−1

q
B(1/p, 1/q) =

2(q − 1)1/q

p
B(1/q, 1/p) = πq ,

where q is the conjugate exponent of p. In order to show that the functions sinp and cosp

are 2πp-periodic, we observe the following result regarding the inverses of these functions.

Theorem 2.1.1. Let t ∈ [0, πp/2). The function sinp satisfies the equation

t =

∫ sinp(t)

0

ds

(1− (|s|p/(p− 1)))
1/p

,

and cosp satisfies,

t =

∫ (p−1)1/p

cosp(t)

ds

(1− (|s|p/(p− 1)))
1/p

.

Proof. Consider the equation (10), with Q ≡ 0 and λ = 1,

(φp(u
′))′ + φp(u) = 0 .

Multiplying through by u′, we get
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(|u′|p−2u′)′u′ + |u|p−2uu′ = 0 ,

and by the product rule,

(|u′|p−2(u′)2)′ − |u′|p−2u′u′′ + |u|p−2uu′ = 0 .

Next, we integrate between both sides of this equation between 0 and t,

∫ t

0

(|u′|p−2(u′)2)′ −
∫ t

0

|u′|p−2u′u′′ +

∫ t

0

|u|p−2uu′ = 0 , (13)

and we can evaluate each of these individual integrals as:

∫ t

0

(|u′|p−2(u′)2)′ =

∫ t

0

(|u′|p)′ = |u′(t)|p − |u′(0)|p ,

∫ t

0

|u′|p−2u′u′′ =

∫ u′(t)

u′(0)

|s|p−2s ds =
|u′(t)|p

p
− |u

′(0)|p

p
,

∫ t

0

|u|p−2uu′ =

∫ u(t)

u(0)

|s|p−2s ds =
|u(t)|p

p
− |u(0)|

p
.

Substituting all of these into the equation (13), we get

|u′(t)|p
(

1− 1

p

)
+
|u(t)|p

p
= C ,

with C ∈ R, given by

C = |u′(0)|p − |u
′(0)|p

p
+
|u(0)|
p

.

We consider first the sinp function, substituting in u(0) = 0, u′(0) = 1, it follows that

C = 1− 1

p
,
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and therefore,

| sin′p(t)|p +
| sinp(t)|p

p− 1
= 1 . (14)

Similarly, for the cosp function, if we substitute the initial conditions u(0) = (p − 1)1/p,

u′(0) = 0, we get

C =
p− 1

p
= 1− 1

p
,

and similarly to (14), we have

| cos′p(t)|p +
| cosp(t)|p

p− 1
= 1 . (15)

When u = sinp, we have u(0) = 0 and u′(0) = 1, hence u > 0 and u′ > 0 for some

neighbourhood to the right of zero. Therefore, the equation for the sinp function can be

written as

sin′p =

(
1− | sinp |

p

(p− 1)

)1/p

,

and dividing through by the right-hand side gives us,

1 =
sin′p

(1− (| sinp |p/p− 1))
1/p

.

Finally, integrating this between 0 and t, we get

t =

∫ t

0

1 =

∫ t

0

sin′p

(1− (| sinp |p/(p− 1)))
1/p

=

∫ sinp(t)

sinp(0)

ds

(1− (|s|p/(p− 1)))
1/p

=

∫ sinp(t)

0

ds

(1− (|s|p/(p− 1)))
1/p

,
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and this equality holds for all t between 0 and the value t that gives sinp(t) = (p− 1)1/p,

at which point the integrand becomes singular. By Definition 2.1.2, this point is t = πp/2.

Similarly, for u = cosp, we have u(0) = (p−1)1/p, hence u > 0 for some neighbourhood

of zero. Therefore, the equation (15) can be written as

cos′p = −
(

1− | cosp |p

p− 1

)1/p

,

and dividing through by cos′p gives us,

1 =
− cos′p

(1− (| cosp |p/(p− 1)))
1/p

.

and integrating between 0 and t, we get

t =

∫ t

0

− cos′p

(1− (| cosp |p/(p− 1)))
1/p

=

∫ cosp(t)

cosp(0)

−1

(1− (|s|p/(p− 1)))
1/p

ds

=

∫ (p−1)1/p

cosp(t)

ds

(1− (|s|p/(p− 1)))
1/p

,

and again, this equality holds for all values t ∈ [0, πp/2], at which point cosp = 0.

If we let s ∈ [0, (p− 1)1/p), then |s|p/(p− 1) < 1 and the above integrand,

1

(1− (|s|p/(p− 1)))
1/p

,

is a positive and continuous function, therefore

∫ u

0

ds

(1− (|s|p/(p− 1)))
1/p

,

defines a continuous, strictly increasing function for u ∈ [0, (p−1)1/p], with range [0, πp/2],

and this gives us the implicit formulas for sinp(t) and cosp(t), for all t ∈ [0, πp/2].
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The reason for generalising the Prüfer transform is to derive a first-order system from

the equation (10). To do this, we will need to differentiate sinp and cosp functions. Ôtani

[21] proved the following result regarding the differentiability of these functions.

Theorem 2.1.2. For 1 < p < 2; sinp , cosp ∈ C2(R). For p > 2; sinp , cosp ∈ C1(R).

This can be proved through explicit computation of the derivatives. In fact, it can

be shown that the function sinp is real-analytic outside of the set {kπp/2 k ∈ Z}. For

1 < p < 2, it fails to have a continuous third derivative at multiples of πp, and for p > 2, it

fails to have a continuous second derivative at odd multiples of πp/2. We now find explicit

formulas for the derivatives of sinp and cosp, for use in our generalised Prüfer transform.

Theorem 2.1.3. For any t ∈ R,

sin′p(t) = (p− 1)
1/pφq(cosq(t)) and cos′p(t) = −(p− 1)

1/pφq(sinq(t)) .

Proof. We show that sin′p = (p − 1)1/pφq(cosq), or equivalently, (q − 1)1/qφp(sin
′
p) = cosq.

To do this, we show that both sides of the equality satisfy the same IVP. By definition,

the function cosq satisfies

(φq(cos′q))
′ + φq(cosq) = 0 ,

and similarly,

(φq((q − 1)
1/q(φp(sin

′
p))
′))′ + φq((q − 1)

1/qφp(sin
′
p)) = (q − 1)

1/p((φq((φp(sin
′
p))
′))′ + φq(φp(sin

′
p)))

= (q − 1)
1/p(φq(−φp(sinp))′ + sin′p)

= (q − 1)
1/p(− sin′p + sin′p) = 0 ,

where we have used the fact that the function sinp satisfies

(φp(sin
′
p))
′ + φp(sinp) = 0 .
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Also, for the initial values; by definition, sin′p(0) = 1, and we have

(p− 1)
1/pφq(cosq(0)) = (p− 1)

1/p · (q − 1)
1/q = 1 ,

so both functions have equal initial values. Also, for the initial values of the derivatives,

from the definition of sinp,

(φp(sin
′
p))
′(0) = −φp(sinp(0)) = −φp(0) = 0 ,

and similarly,

((φp((p− 1)
1/pφq(cosq))

′(0) = (p− 1)
1/q(φp(φq(cosq)))

′(0)

= (p− 1)
1/q cos′q(0)

= (p− 1)
1/q · 0 = 0 .

Thus, both sin′p and (p− 1)1/pφq(cosq) satisfy the same IVP, and therefore must coincide

everywhere. The proof is similar for the derivative of cosp.

Using this result, we can show that the sinp and cosp functions are both 2πp-periodic.

Theorem 2.1.1 gives an implicit formula for the sinp and cosp functions on [0, πp/2]. At

the point t̂ = πp/2, we have sinp(t̂) = (p− 1)1/p, and by Theorem 2.1.3,

sin′p(t̂) = (p− 1)
1/p cosq(t̂) = 0 .

So the zeroth and first derivatives of sinp at the point t = πp/2 are equal to the zeroth and

first derivatives of cosp at the point t = 0. Alternatively, the functions sinp(t+ πp/2) and

cosp(t) have the same initial conditions, and as the equation (10) is autonomous when

λ−Q ≡ 1, both satisfy (10). Therefore,
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sinp(t+ πp/2) = cosp(t) , (16)

for all t ∈ R.

Similarly, for cosp, at the point t̂ = πp/2, we have cosp(t̂) = 0, and

cos′p(t̂) = −(p− 1)
1/p φq(sinq(t̂)) = −(p− 1)

1/p (q − 1)
1/q = −1 .

Therefore, the zeroth and first derivatives of the cosp function at the point t = πp/2 are

equal to the zeroth and first derivatives of the function sinp at the point t = 0, multiplied

by minus one. Or alternatively, the functions cosp(t + πp/2) and − sinp(t) have the same

initial conditions, and as the equation (10) is autonomous and homogeneous, both satisfy

(10). Therefore,

cosp(t+ πp/2) = − sinp(t) ,

for all t ∈ R. Combining these last two equalities together, we see that for all t ∈ R,

sinp(t+ πp) = sinp((t+ πp/2) + πp/2) = cosp(t+ πp/2) = − sinp(t) ,

which is similarly valid for the function cosp,

cosp(t+ πp) = − cosp(t) .

Finally, we use this last result to derive the 2πp-periodicity of both of these functions,

sinp(t+ 2πp) = sinp((t+ πp) + πp) = − sinp(t+ πp) = sinp(t) .

Which, again, is also valid for cosp,

cosp(t+ 2πp) = cosp(t) .
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As a result of this, and Theorem 2.1.1, we can define the functions

arcsinp : [−(p− 1)
1/p, (p− 1)

1/p]→ [−πp/2, πp/2]

and arccosp : [−(p− 1)
1/p, (p− 1)

1/p]→ [0, πp] ,

by the formulas

arcsinp(t) =

∫ t

0

ds

(1− (|s|p/(p− 1)))
1/p

, arccosp(t) =

∫ (p−1)1/p

t

ds

(1− (|s|p/(p− 1)))
1/p

.

We also have the following analogue of the Pythagorean identity, sin2 + cos2 = 1, for

this nonlinear case.

Theorem 2.1.4. For any t ∈ R, we have:

| sinp(t)|p

p− 1
+
| cosq(t)|q

q − 1
= 1 . (17)

Proof. Differentiating the left-hand side of (17) with respect to t, we get

(
| sinp(t)|p

p− 1
+
| cosq(t)|q

q − 1

)′
=
p · φp(sinp(t))

p− 1
· (p− 1)

1/pφq(cosq(t))

+
q · φq(cosq(t))

q − 1
· (−(q − 1)

1/qφp(sinp(t)))

= p · (p− 1)1/p

p− 1
φp(sinp(t))φq(cosq(t))

− q

q − 1
· (q − 1)

1/qφq(cosq(t))φp(sinp(t))

= p · (p− 1)
1/p−1φp(sinp(t))φq(cosq(t))

− p · (p− 1)
− 1/qφp(sinp(t))φq(cosq(t)) ,

as q/(q − 1) = p. We then use the identity 1/p + 1/q = 1 to show,
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(
| sinp(t)|p

p− 1
+
| cosq(t)|q

q − 1

)′
= p · (p− 1)

1/p−1φp(sinp(t))φq(cosq(t))

− p · (p− 1)
− 1/qφp(sinp(t))φq(cosq(t))

= p · (p− 1)
− 1/qφp(sinp(t))φq(cosq(t))

− p · (p− 1)
− 1/qφp(sinp(t))φq(cosq(t))

= 0 .

Therefore, the derivative of right-hand side of (17) is identically zero, and so its value

is constant. We can use the initial values of these functions to determine this constant,

| sinp(0)|p

p− 1
+
| cosq(0)|q

q − 1
=

0

p− 1
+

((q − 1)1/q)q

q − 1
= 1 ,

and thus, we have the result.

For the purposes of the numerical schemes derived in Chapter 3, we define the analogue

to the cot function.

Definition 2.1.3. For any t ∈ R, the function cotp : R→ R is given by

cotp(t) :=
cosp(t)

(p− 1)1/pφq(sinq(t))
.

We also have a formulation for the derivative of cotp.

Theorem 2.1.5. For any t ∈ R, the function cotp is differentiable and

cot′p(t) = −
(

1 +
| cotp(t)|p

p− 1

)
.

Proof. By the definition of cotp,

cot′p =

(
cosp

(p− 1)1/pφq(sinq)

)′
,
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and by the Quotient Rule,

cot′p =
−(p− 1)2/p| sinq |2q−2 − (p− 1)2/q| cosp |p | sinq |q−2

(p− 1)2/p

= −1− 1

p− 1

| cosp |p

| sinq |q

= −
(

1 +
| cotp |p

p− 1

)
.

We will also need the inverse function, a function analogous to arccot when p = 2.

We give this definition below.

Definition 2.1.4. For any t ∈ R, the function arccotp : R → (−πp/2, πp/2), is given by

the relation

arccotp(cotp(t)) = cotp(arccotp(t)) = t .

In Chapter 3, the function arccotp will have to be approximated, so we use the

following integral formulation.

Theorem 2.1.6. For any t ≥ 0,

arccotp(t) =

∫ ∞
t

1

1 + |s|p/(p− 1)
ds .

Proof. By the definition of arccotp, and the Chain Rule,

(arccotp(cotp))
′ = arccot′p(cotp) cot′p = 1 ,

and by Theorem 2.1.5,

arccot′p(cotp) =
1

cot′p
=

−1

1 + | cotp |p/p− 1
.

Integrating both sides, we have
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arccotp(t) =

∫ t

a

− ds

1 + |s|p/(p− 1)
=

∫ a

t

ds

1 + |s|p/(p− 1)
,

for any t > 0, and some fixed a ∈ R. By the definition of cotp, we know that

lim
t→0

cotp(t) = lim
t→0

cosp(t)

(p− 1)1/pφq(sinq(t))
= +∞ ,

hence

lim
t→∞

arccotp(t) = 0 ,

therefore, a = +∞.

This gives us a way of approximating the arccotp function. In Chapter 3, we will

expand the integrand using a geometric series, integrate term-by-term, and prove con-

vergence. Note that as cosp is an even function, and sinq an odd function, cotp is also an

odd function. Similarly, the inverse, arccotp is odd, which allows us to focus on finding

approximations for the positive values of t only.

We also briefly mention the p-hyperbolic functions, which we will use in the approxi-

mation of the rotation number function in Chapter 3.

Definition 2.1.5. The solution of the equation (10), with λ = −1 and Q ≡ 0, and

initial conditions u(0) = 0, u′(0) = 1, is called the sinhp function. The solution with

initial conditions u(0) = (p− 1)1/p, u′(0) = 0, is called the coshp function.

For any t ∈ R, the inverses of these functions,

arcsinhp(t) =

∫ t

0

ds

(1 + (|s|p/(p− 1)))
1/p

and arccoshp(t) =

∫ t

(p−1)1/p

ds

((|s|p/(p− 1))− 1)
1/p

,

and the derivatives,

40



sinh′(t) = (p− 1)
1/p φq(coshq(t)) and cosh′(t) = (p− 1)

1/p φq(sinhq(t)) ,

can be computed similarly to the derivations of the p-trigonometric counterparts shown

in Theorems 2.1.1 and 2.1.3. We have the analogous Pythagorean-type identity

| coshp(t)|p

p− 1
− | sinhq(t)|q

q − 1
= 1 .

There is also a corresponding cothp, given by

cothp =
coshp

(p− 1)1/p φq(sinhq)
,

and an inverse, arccothp, that can be expressed as

arccothp(t) =

∫ (p−1)1/p

t

ds
|s|p/(p− 1)− 1

,

for all t ≥ 0.

From the cosp and sinp functions given in Definition 2.1.1, we can now define a more

suitable transformation for the system than the standard Prüfer transform, a transform

that we refer to as the p-Prüfer transform. This transform will allow us to convert

the equation (10) into a first-order system dependent on a radial component, r, and an

angular component, θ. The advantage of this is the independence of the θ equation (23)

from the radial component, a result of the homogeneity of the equation (10). This will

allow us to restate the periodic boundary conditions in terms of the angular component,

θ only.

In the rest of this chapter, we introduce the aforementioned p-Prüfer transform,

with which we convert the equation (10) into a first-order system dependent on a radial

component r, and an angular component θ. By a consideration of the relation between

r and θ, we can rewrite the periodic boundary conditions in terms of θ only. We then

introduce the renormalised Poincaré map, a function dependent on the initial angle of the
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system θ0 and the spectral parameter λ. This function gives the change in the angular

component of the solution to the problem (10) over one period. The periodic boundary

conditions given in this problem can be restated in terms of this function, and therefore

an analysis of the properties of this function will reveal properties of the spectrum of the

problem.
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2.2 The p-Prüfer Transform, the Renormalised Poincaré Map

and Periodic Eigenvalues

In this chapter, we introduce the p-Prüfer Transform, first derived by Zhang [30]. After

converting (10) to a first-order system, we apply this transform to change the system into

radial and angular parts. The advantage here, is that due to the homogeneity of equation

(10), the angular equation (23) does not depend on the radial term, and the radial term

can be calculated directly from the angular component θ. This will allow us to reduce

the periodic boundary conditions to conditions in terms of θ only.

We define

x := u and y := −φp(u′) ,

and from this, we have a (nonlinear) first-order system equivalent to (10),


x′ = −φq(y)

y′ = (λ−Q)φp(x) .

(18)

To define the transform, we evaluate x , y in the case λ − Q ≡ 1, with initial values

x(0) = (p − 1)1/p , y(0) = 0. By Definition 2.1.1, the solution to the system with these

initial conditions is given by,

x(t) = u(t) and y(t) = −φp(u′(t))

= cosp(t) = −φp(−(p− 1)
1/pφq(sinq(t)))

= (p− 1)
1/q sinq(t) ,

for all t ∈ R. Following this, we define the p-Prüfer transform as

x = r
2/p cosp θ and y = (p− 1)

1/qr
2/q sinq θ . (19)
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Note that for the case (λ − Q) ≡ 1, the angular component, θ(t) = θ0 + t, for some

initial angle, θ0 ∈ R, and the radial component r(t) ≡ r0, for some initial radius r0 > 0.

We can invert this transform by utilising the properties of the cosp and sinq functions,

most notably, the Pythagorean-type identity given in Theorem 2.1.4.

Lemma 2.2.1. Given variables x, y and r, θ , that satisfy the p-Prüfer relation (19),

we have

r = ((q − 1)|x|p + |y|q)1/2 ,

θ = arccotp

(
x

φq(y)

)
.

Proof. For the radial variable, r, we have

(q − 1)|x|p + |y|q = (q − 1)|r2/p cosp θ|p + |(p− 1)
1/qr

2/q sinq θ|q

= r2

(
| cosp θ|p

p− 1
+
| sinq θ
q − 1

)
= r2 ,

by the Pythagorean-type identity given in Theorem 2.1.4. For the angular variable θ,

we have

arccotp

(
x

φq(y)

)
= arccotp

(
r2/p cosp θ

φq((p− 1)1/qr2/qφq(sinq θ))

)
= arccotp

(
r2/p cosp θ

(p− 1)1/pr2/pφq(sinq θ)

)
= arccotp(cotp θ) = θ .

We now use this transform to convert the system (18) into an equivalent system

dependent on r and θ.

Theorem 2.2.1. The equation (10) under the p-Prüfer transform is equivalent to the

first-order system
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r′ = (q/2)(p− 1)1/p r(λ−Q− 1)φp(cosp θ)φq(sinq θ)

θ′ = 1 + (q − 1)(λ−Q− 1)| cosp θ|p .

Proof. We substitute the transform (19) into the system (18), resulting in

(2/p)r(2/p)−1r′ cosp θ − (q − 1)
1/pr

2/pφq(sinq θ))θ
′ = −(p− 1)

1/pr
2/pφq(sinq θ) , (20)

(p− 1)
1/q(2/q)r(2/q)−1r′ sinq θ + r

2/qφp(cosp θ))θ
′ = (λ−Q)r

2/qφp(cosp θ) (21)

Taking the combination q/2r2/qφp(cosp θ) · (20) + q/2(p− 1)1/pr2/pφq(sinq θ) · (21),

we get

r′ = ((q/2)(p− 1)
1/pr(λ−Q− 1)φp(cosp θ)φ(sinq θ)) (22)

Similarly, we take the combination −(p− 1)1/qr2/q−1 sinq θ · (20) + (q− 1)r2/p−1 cosp θ · (21)

to get

θ′ = 1 + (q − 1)(λ−Q− 1)| cosp θ|p (23)

The latter of these equations is a first-order equation depending only on θ. Therefore,

if this single equation is solved, the whole system can be solved too. This allows us to

characterise the eigenvalue problem in terms of θ only. We can now rewrite the initial

values in terms of the new Prüfer variables, with r0 as the initial radius, and θ0 as the

initial angle.

Theorem 2.2.2. A value λ ∈ R is a periodic eigenvalue of the problem (10) if and only

if there exists an initial angle θ0 ∈ R and some n ∈ N0 such that
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θ(α, r0, θ0, λ) = θ0 + 2nπp

r(α, r0, θ0, λ) = r0 .

Proof. Let u be a solution of the equation (10), satisfying the above hypotheses. By the

definition of the p-Prüfer Transform,

u = x = r
2/p cosp θ ,

hence at t = α, we have,

u(α, r0, θ0, λ) = (r(α, r0, θ0, λ))
2/p cosp(θ(α, r0, θ0, λ))

= r
2/p
0 cosp(θ0 + 2nπp)

= r
2/p
0 cosp(θ0)

= u(0, r0, θ0, λ) ,

using the first hypothesis, and the 2πp-periodicity of cosp. Similarly, by the definition of

the p-Prüfer Transform,

−φp(u′) = y = (p− 1)
1/qr

2/q sinq θ ,

and so, at t = α,

−φp(u′(α, r0, θ0, λ)) = (p− 1)
1/q(r(α, r0, θ0, λ))

2/q sinq(θ(α, r0, θ0, λ))

= (p− 1)
1/qr

2/q
0 sinq(θ0 + 2nπp)

= (p− 1)
1/qr

2/q
0 sinq(θ0)

= −φp(u′(0, r0, θ0, λ)) .

Hence,
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u(α, r0, θ0, λ) = u(0, r0, θ0, λ)

u′(α, r0, θ0, λ) = u′(0, r0, θ0, λ) ,

and so the periodic boundary conditions are satisfied. Conversely, if these two conditions

are satisfied, we can derive the two conditions given in the hypothesis using Lemma 2.2.1.

For the radius, we have

r(α, r0, θ0, λ) = ((q − 1)|x(α, r0, θ0, λ)|p + |y(α, r0, θ0, λ)|q)1/2

= ((q − 1)|x(0, r0, θ0, λ)|p + |y(0, r0, θ0, λ)|q)1/2

= r0 ,

and for the angle,

θ(α, r0, θ0, λ) = arccotp

(
x(α, r0, θ0, λ)

φq(y(α, r0, θ0, λ))

)
= arccotp

(
x(0, r0, θ0, λ)

φq(y(0, r0, θ0, λ))

)
= θ0 + 2nπp ,

for some n ∈ N0.

This still requires us to fulfill a constraint on the radial variable, so we use the

following connection between the angle and radius. Throughout this thesis, we will use

the notation ∂nf to refer to the partial derivative of f with respect to its nth argument.

Lemma 2.2.2. For any t, θ0, λ ∈ R and r0 > 0, we have

∂3θ(t, r0, θ0, λ) =

(
r0

r(t, r0, θ0, λ)

)2

.
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Proof. Differentiating (23) with respect to the initial angle θ0, we have

∂3θ
′(t, r0, θ0, λ) =

∂

∂θ
(1 + (q − 1)(λ−Q− 1)| cosp θ|p) · ∂3θ(t, r0, θ0, λ)

= −p(q − 1)(p− 1)
1/p(λ−Q− 1)φp(cosp θ)φq(sinq θ) · ∂3θ(t, r0, θ0, λ)

= −q(p− 1)
1/p(λ−Q− 1)φp(cosp θ)φq(sinq θ) · ∂3θ(t, r0, θ0, λ)

= −2(log r(t, r0, θ0, λ))′ · ∂3θ(t, r0, θ0, λ) ,

by (22). Therefore,

(log ∂3θ(t, r0, θ0, λ))′ = −2(log r(t, r0, θ0, λ))′ .

Note that as θ(0, r0, θ0, λ) = θ0 , we have ∂3θ(0, r0, θ0, λ) = 1.

Also, since r(0, r0, θ0, λ) = r0, we get

log ∂3θ(t; θ0, λ) = −2 log

(
r(t, r0, θ0, λ)

r0

)
,

and taking the exponential of both sides,

∂3θ(t, r0, θ0, λ) =

(
r0

r(t; θ0, λ)

)2

,

giving us the result.

Lemma 2.2.2 shows that

∂3θ(t, r0, θ0, λ) = exp

(∫ t

0

−q(p− 1)
1/p(λ−Q− 1)φp(cosp θ)φq(sinq θ)

)
.

Therefore, the angular component θ is strictly monotonically increasing with respect to

the initial angle, θ0.
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Using this fact, we can rewrite the periodicity conditions given in Theorem 2.2.2 in

terms of θ and λ only. We introduce the renormalised Poincaré map of the equation

(10). This quantity gives the increase in θ for each initial angle θ0, and each spectral

value λ. Note that as the equation (23) is independent of the initial radius r0, the

renormalised Poincaré map is equal for all initial radial values, and we therefore suppress

any dependence on r0 in the notation.

Definition 2.2.1. The renormalised Poincaré map of the equation (10) is given by,

Ψ(θ0, λ) := θ(α, r0, θ0, λ)− θ0 ,

for all θ0, λ ∈ R.

We can now express the periodic boundary conditions in terms of the renormalised

Poincaré map.

Theorem 2.2.3. A value λ ∈ R is a periodic eigenvalue of the problem (10) if and only

if there exists an initial angle θ0 ∈ R and some n ∈ N0 such that

Ψ(θ0, λ) = 2nπp

∂1Ψ(θ0, λ) = 0 .

Proof. We assume that both of there exist a λ , θ0 ∈ R such that the two conditions are

satisfied. Take the first condition,

Ψ(θ0, λ) = 2nπp ,

then by the definition of Ψ, the corresponding angular component, θ, satisfies

θ(α, r0, θ0, λ) = θ0 + 2nπp .

If the second condition is satisfied, then
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∂1Ψ(θ0, λ) =
∂

∂θ0

(
θ(α, r0, θ0, λ)− θ0

)
= ∂3θ(α, r0, θ0, λ)− 1 = 0 ,

and hence, using Lemma 2.2.2,

(
r0

r(α, r0, θ0, λ)

)2

= ∂3θ(α, r0, θ0, λ) = 1 .

Therefore, we have

θ(α, r0, θ0, λ) = θ0 + 2nπp

r(α, r0, θ0, λ) = r0 ,

which by Theorem 2.2.2, is equivalent to the corresponding solution, u, satisfying the

periodic boundary conditions.

We also state three results regarding the renormalised Poincaré Map, Ψ(θ0, λ), that

will be used in the next chapter to find a characterisation for the periodic eigenvalues.

Lemma 2.2.3. For any θ0, λ ∈ R, and n ∈ N0,

Ψ(θ0 + nπp, λ) = Ψ(θ0, λ) .

Proof. Fix r0 > 0 , θ0, λ ∈ R. By definition, the angular solution θ(·, r0, θ0 + nπp, λ)

solves the equation

z′(t) = 1 + (q − 1)(λ−Q(t)− 1)| cosp z(t)|p ,

with initial value θ0 + nπp. Now consider z(·) = θ(·, r0, θ0, λ) + nπp, we have
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z′(t) = (θ(t, r0, θ0, λ) + nπp)
′

= θ′(t, r0, θ0, λ)

= 1 + (q − 1)(λ−Q(t)− 1)| cosp θ(t, r0, θ0, λ)|p

= 1 + (q − 1)(λ−Q(t)− 1)| cosp(z(t)− nπp)|p

= 1 + (q − 1)(λ−Q(t)− 1)| cosp z(t)|p .

Therefore, the functions θ(t, r0, θ0 +nπp, λ) and θ(t, r0, θ0, λ) +nπp both satisfy the same

ODE, and both have the initial value θ0 +nπp. Therefore, by the uniqueness of solutions,

they are identically equal.

By Rolle’s Theorem and Lemma 2.2.3, we know for each λ ∈ R, there must exist a

point θ0 that satisfies the second condition in Theorem 2.2.3. Next, we state a property

of the renormalised Poincaré map Ψ, on its second variable.

Theorem 2.2.4. For any θ0, λ ∈ R

∂2Ψ(θ0, λ) =
(q − 1)

r(α, r0, θ0, λ)

∫ α

0

|u(s, r0, θ0, λ)|p ds .

Proof. Fix r0 > 0. From (23), for any t ∈ R, we have

∂4θ
′(t, r0, θ0, λ) =

∂

∂λ

(
1 + (q − 1)(λ−Q(t)− 1)| cosp θ(t, r0, θ0, λ)|p

)
= (q − 1)| cosp θ|p − q(p− 1)

1/p(λ−Q(t)− 1)φp(cosp θ(t, r0, θ0, λ))

· φq(sinq θ(t, r0, θ0, λ))∂4θ(t, r0, θ0, λ)

= (q − 1)| cosp θ(t, r0, θ0, λ)|p − 2
r′(t, r0, θ0, λ)

r(t, r0, θ0, λ)
∂4θ(t, r0, θ0, λ)

Multiplying through by r2, we get
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r2∂4θ
′ + 2rr′∂3θ = (q − 1)| cosp θ|pr2 ,

and since (r2∂4θ)
′
= r2∂4θ

′ + 2rr′∂4θ, we have

(
r2∂4θ

)′
= (q − 1)| cosp θ|pr2 .

Integrating both sides, we get

r2∂4θ =

∫ t

0

(q − 1)| cosp θ(s, θ0, λ)|p r(s, θ0, λ)2 ds .

Note that as the initial angle, θ0, does not depend on λ, ∂4θ(0, r0, θ0, λ) = 0. Finally, we

get

∂4θ(t, r0, θ0, λ) =
(q − 1)

(r(t, r0, θ0, λ))2

∫ t

0

| cosp θ(s, r0, θ0, λ)|p(r(s, r0, θ0, λ))2 ds

=
(q − 1)

(r(t, r0, θ0, λ))2

∫ t

0

|(r(s, r0, θ0, λ))
2/p cosp θ(s, r0, θ0, λ)|p ds

=
(q − 1)

(r(t, r0, θ0, λ))2

∫ t

0

|u(s, r0, θ0, λ)|p ds

Letting t = α, we get

∂2Ψ(θ0, λ) = ∂4θ(α, r0, θ0, λ) =
(q − 1)

(r(α, r0, θ0, λ))2

∫ α

0

|u(s, r0, θ0, λ)|p ds ,

which gives us the result.

We can combine Lemma 2.2.3 and Theorem 2.2.4 to state the following result of the

dependence of Ψ(θ0, λ) on both of its variables.

Corollary 2.2.1. The map Ψ(θ0, λ) is πp-periodic in its first variable, and strictly mono-

tonically increasing its second variable.
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By the monotonicity property of Ψ on its second variable, we know that for any

θ0 ∈ R, and n ∈ N, there must exist a value λn such that Ψ(θ0, λn) = 2nπp, which is the

first eigenvalue condition stated in Theorem 2.2.3. As above, the periodicity property

of Ψ in its first variable gives the existence of a point θ0 ∈ R that satisfies the second

eigenvalue condition in Theorem 2.2.3. We combine these two properties in the next

chapter, to analyse the periodic eigenvalues of the equation (10).
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2.3 The Rotation Number

We now explore more properties of the Prüfer angle, and how it can be used to

characterise the periodic eigenvalues of the problem (10). We will use these properties to

define a function called the rotation number, dependent only on the spectral parameter λ.

We will show that this function encodes information about the spectrum of the problem,

namely that eigenvalues exist only over intervals of λ for which the image of this rotation

number function attains certain values.

The first result derives from the equation for θ in Theorem 2.2.1. As the potential Q,

is α-periodic, we have the following semigroup property for the Prüfer angle.

Lemma 2.3.1. For any t, θ0, λ ∈ R , r0 > 0, and any m ∈ N,

θ(t+mα, r0, θ0, λ) = θ(t, r0, θ(mα, r0, θ0, λ), λ) .

Proof. Fix r0 > 0 , θ0, λ ∈ R. Consider the shifted angular solution θ(· + mα, r0, θ0, λ),

by definition, this function solves

z′(t) = 1 + (q − 1)(λ−Q(t+mα)− 1)| cosp z(t)|p

= 1 + (q − 1)(λ−Q(t)− 1)| cosp z(t)|p ,

as Q is α-periodic. The initial value of this shifted solution is

θ(mα, r0, θ0, λ) .

Now consider the solution θ(·, r0, θ(mα, r0, θ0, λ), λ), this function solves

z′(t) = 1 + (q − 1)(λ−Q(t)− 1)| cosp z(t)|p .

By definition, the initial value of this solution is
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θ(mα, r0, θ0, λ) .

Therefore, the two functions satisfy the same equation, and have the same initial value.

By the uniqueness of solutions, they must coincide.

Following directly from this, we can rewrite this result in terms of an iterated gen-

eralisation of the renormalised Poincaré Map. For any m ∈ N, the iterated renormalised

Poincaré map over m periods gives the increase in the angular component over m periods

for all initial angles θ0 ∈ R at all spectral values, λ ∈ R.

Definition 2.3.1. Fix some m ∈ N, for any θ0, λ ∈ R, the iterated renormalised Poincaré

map over m periods is defined by,

Ψm(θ0, λ) := θ(mα, r0, θ0, λ)− θ0 .

Using Lemma 2.3.1, the iterated renormalised Poincaré map can be expressed as a

summation of the standard renormalised Poincaré map, evaluated at several points in the

orbit of θ.

Corollary 2.3.1. For any θ0, λ ∈ R and m ∈ N,

Ψm(θ0, λ) =
m−1∑
i=0

Ψ(θ(iα, r0, θ0, λ), λ) .

Proof. For m = 1,

Ψ1(θ0, λ) = Ψ(θ0, λ) =
0∑
i=0

Ψ(θ(iα, r0, θ0, λ), λ) ,

and so the result holds. Assume the result holds for some fixed m ∈ N, then for m + 1,

we have
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Ψm+1(θ0, λ) = θ((m+ 1)α, r0, θ0, λ)− θ0

= θ(α, r0, θ(mα, r0, θ0, λ)θ0, λ)− θ0 (by Lemma 2.3.1)

=
(
θ(α, r0, θ(mα, r0, θ0, λ)θ0, λ)− θ(mα, r0, θ0, λ)

)
+
(
θ(mα, r0, θ0, λ)− θ0

)
= Ψ(θ(mα, r0, θ0, λ), λ) + Ψm(θ0, λ)

= Ψ(θ(mα, r0, θ0, λ), λ) +
m−1∑
i=0

Ψ(θ(iα, r0, θ0, λ), λ) (by the inductive hypothesis)

=
m∑
i=0

Ψ(θ(iα, r0, θ0, λ), λ) ,

and so by induction, the argument holds for all m ∈ N.

Following the semigroup property shown in Lemma 2.3.1, we also have the following

bounds on the map Ψ(θ0, λ).

Lemma 2.3.2. Fix λ ∈ R, if

Ψ(θ̃0, λ) = nπp ,

for some θ̃0 ∈ R and n ∈ N, then

(n− 1)πp < Ψ(θ0, λ) < (n+ 1)πp ,

for all θ0 ∈ R.

Proof. Fix r0 > 0, for any θ0 ∈ [θ̃0 , θ̃0 + πp), we have

Ψ(θ0, λ) = θ(α, r0, θ0, λ)− θ0

< θ(α, r0, θ̃0 + πp, λ)− θ̃0 ,
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due to the monotonicity of θ in its third variable (a result of Lemma 2.2.2), and the fact

that θ̃0 ≤ θ0. By the proof of Lemma 2.2.3,

θ(α, r0, θ̃0 + πp, λ) = θ(α, r0, θ̃0, λ) + πp ,

and so

Ψ(θ0, λ) < θ(α, r0, θ̃0, λ) + πp − θ̃0

= Ψ(θ̃0, λ) + πp

= (n+ 1)πp ,

by the hypothesis, Ψ(θ̃0, λ) = nπp. We have proven this inequality on the interval θ0 ∈

[θ̃0 , θ̃0 + πp), by Lemma 2.2.3, it therefore holds for all θ0 ∈ R.

For the lower bound, we can take any θ0 ∈ [θ̃0 − πp , θ̃0), and similarly

Ψ(θ0, λ) = θ(α, r0, θ0, λ)− θ0

> θ(α, r0, θ̃0 − πp, λ)− θ̃0 ,

again, due to the monotonicity of θ in its third variable, and the fact that θ0 < θ̃0. Once

again, by the proof of Lemma 2.2.3, we have

Ψ(θ0, λ) > θ(α, r0, θ̃0, λ)− πp − θ̃0

= Ψ(θ̃0, λ)− πp

= (n− 1)πp .

This inequality holds on the interval θ0 ∈ [θ̃0 − πp , θ̃0), and by Lemma 2.2.3, it holds for

all θ0 ∈ R.

Lemma 2.3.2 tells us that the range of the renormalised Poincaré Map is bounded
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between the values (n − 1)πp and (n + 1)πp for some value n ∈ N. The final property

relates the monotonicity argument in Corollary 2.2.1 with the bounds on the range of

this map.

Lemma 2.3.3. The functions maxθ0∈R Ψ(θ0, λ), and minθ0∈R Ψ(θ0, λ), are continuous and

strictly monotonically increasing in λ.

Proof. We first show that maxθ0∈R(Ψ(θ0, λ)) is strictly monontone increasing in λ. By

Corollary 2.2.1, for any fixed θ̃0 ∈ R, the function Ψ(θ0, λ) is strictly increasing in λ. For

λ1 < λ2, we therefore have

Ψ(θ̃0, λ1) < Ψ(θ̃0, λ2) ≤ max
θ0∈R

(Ψ(θ0, λ2)) .

Taking a value of θ̃0 that maximises the function Ψ(·, λ1) on R, we find that maxθ0∈R Ψ(θ0, λ)

is a strictly increasing function in λ.

Next, we show the continuity of maxθ0∈R(Ψ(θ0, λ)) in λ. Let θ̂0 be a value of θ0 ∈ R

such that Ψ(θ0, λ2) attains its maximum, then using the strict monotonicity in the second

variable, we have

Ψ(θ̂0, λ1) ≤ max
θ0∈R

(Ψ(θ0, λ1)) < max
θ0∈R

(Ψ(θ0, λ2)) = Ψ(θ̂0, λ2) .

Therefore,

∣∣∣∣max
θ̂∈R

(Ψ(θ̃, λ1))−max
θ̃∈R

(Ψ(θ̃, λ2))

∣∣∣∣ ≤ |Ψ(θ̂0, λ1)−Ψ(θ̂0, λ2)|

= |(θ(α, r0, θ̂0, λ1)− θ̂0)− (θ(α, r0, θ̂0, λ2)− θ̂0)|

= |θ(α, r0, θ̂0, λ1)− θ(α, r0, θ̂0, λ2)| ,

and as the function θ(α, r0, θ̂0, λ) is continuous in λ (a consequence of Theorem 2.2.4),

the function maxθ0∈R(Ψ(θ0, λ)) is also continuous in λ.

The proof for the continuity and strict monotonicity of minθ0∈R(Ψ(θ0, λ)) in λ is

similar.
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We now define the rotation number, ρ(λ).

Definition 2.3.2. The rotation number of the Prüfer angle θ, is given by:

ρ(λ) := lim
t→∞

θ(t, r0, θ0, λ)− θ0

t
.

By the definition of Ψm, we can equivalently write the rotation number as

ρ(λ) = lim
m→∞

Ψm(θ0, λ)

mα
,

for which the limit in the definition of ρ is now taken over a countably infinite subset of

evenly-spaced points in t. The properties of Ψ proven in the Lemmas 2.2.2, 2.2.4, and

2.3.1 are used to prove the following results regarding the existence and properties of ρ.

Theorem 2.3.1. The rotation number, ρ(λ), exists for all λ ∈ R, and its value is inde-

pendent of the initial Prüfer angle, θ0.

Proof. First, we show that if ρ(λ) exists for some θ̃0 ∈ R, then it exists for all θ0 ∈ R.

Consider θ0 ∈ [θ̃0 − πp , θ̃0 + πp), by Lemmas 2.2.2 and 2.2.3, we have

θ(t, r0, θ̃0, λ)− πp = θ(t, r0, θ̃0 − πp, λ)

≤ θ(t, r0, θ0, λ)

≤ θ(t, r0, θ̃0 + πp, λ)

= θ(t, r0, θ̃0, λ) + πp .

If we divide by t, and taking the limit as t → ∞, the Squeeze Theorem shows that the

rotation number exists for all θ0, and the value is independent of θ0.

Next, we show that there always exists at least one value, θ0, such that the rotation

number ρ exists, without loss of generality, we take θ0 ∈ [0 , πp).
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For any θ1 ∈ R, there exists an m ∈ Z such that θ0 ≤ θ1−mπp ≤ θ0 +πp, and by Lemma

2.2.2,

θ(t, r0, θ0, λ) ≤ θ(t, r0, θ1 −mπp, λ) ≤ θ(t, r0, θ0 + πp, λ) .

By the proof of Lemma 2.2.3, we have,

θ(t, r0, θ0, λ) ≤ θ(t, r0, θ1, λ)−mπp ≤ θ(t, r0, θ0, λ) + πp .

Let γ = θ1 −mπp,

θ(t, r0, θ0, λ)− γ ≤ θ(t, r0, θ1, λ)− θ1 ≤ θ(t, r0, θ0, λ) + πp − γ .

Since θ0 ≤ γ ≤ θ0 + πp, we have

θ(t, r0, θ0, λ)− θ0 − πp ≤ θ(t, r0, θ1, λ)− θ1 ≤ θ(t, r0, θ0, λ)− θ0 + πp .

Given that 0 ≤ θ0 < πp, for any m ∈ Z,

θ(mα, r0, θ0, λ)− 2πp ≤ θ(mα, r0, θ1, λ)− θ1 ≤ θ(mα, r0, θ0, λ) + 2πp . (24)

By Lemma 2.3.1,

θ(2mα, r0, θ0, λ) = θ(mα, r0, θ(mα, r0, θ0, λ), λ) ,

and therefore

θ(2mα, r0, θ0, λ) = θ(mα, r0, θ(mα, r0, θ0, λ), λ)

= θ(mα, r0, θ(mα, r0, θ0, λ), λ)− θ(mα, r0, θ0, λ) + θ(mα, r0, θ0, λ) .

We use (24) with θ1 = θ(mα, r0, θ0, λ) to get
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2θ(mα, r0, θ0, λ)− 2πp ≤ θ(2mα, r0, θ0, λ) ≤ 2θ(mα, r0, θ0, λ) + 2πp ,

as θ0 ∈ [0, πp). Successively applying this, we get

n θ(mα, r0, θ0, λ)− nπp ≤ θ(nmα, r0, θ0, λ) ≤ n θ(mα, r0, θ0, λ) + nπp ,

for all n ≥ 0, and therefore

∣∣∣∣θ(nmα, r0, θ0, λ)

nm
− θ(mα, r0, θ0, λ)

m

∣∣∣∣ ≤ 2πp
m

,

for all n,m > 0.

Using the triangle inequality, we get

∣∣∣∣θ(nα, r0, θ0, λ)

n
− θ(mα, r0, θ0, λ)

m

∣∣∣∣ =

∣∣∣∣∣θ(nα, r0, θ0, λ)

n
− θ(nmα, r0, θ0, λ)

nm

+
θ(nmα, r0, θ0, λ)

nm
− θ(mα, r0, θ0, λ)

m

∣∣∣∣∣
≤
∣∣∣∣θ(nmα, r0, θ0, λ)

nm
− θ(nα, r0, θ0, λ)

n

∣∣∣∣
+

∣∣∣∣θ(nmα, r0, θ0, λ)

nm
− θ(mα, r0, θ0, λ)

m

∣∣∣∣
≤ 2πp

n
+

2πp
m

< ε ,

for some ε > 0, for large enough values of n,m. Therefore, elements of the sequence

θ(nα, r0, θ0, λ)n−1 form a Cauchy sequence, and the sequence therefore converges to a

limit.

This theorem explains one of the reasons why this function is useful in characterising

the spectrum of our operator, it is independent of any initial conditions that can be
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imposed on the solutions.

Theorem 2.3.2. The rotation number, ρ(λ), is continuous in λ.

Proof. Fix some values r0 , θ0 ∈ R, and consider the sequence of functions in λ given by

θ(nα, r0, θ0, λ)− θ0

nα
, (25)

for all n ∈ N. By Theorem 2.2.4, each of these functions is differentiable with respect to λ,

and therefore continuous in λ. The proof of Theorem 2.3.1 shows that the sequence (25)

converges to ρ(λ) at each λ ∈ R, and that this convergence is uniform in λ. Therefore,

by the Uniform Limit Theorem, the limiting function

ρ(λ) = lim
n→∞

θ(nα, r0, θ0, λ)− θ0

nα
,

is continuous in λ on R.

The characterisation of the spectrum requires local properties of the range of the

function ρ(λ), one of these is continuity, another is the monotonicity in λ, a property

that reflects the strict monotonicity shown in Lemmas 2.2.4 and 2.3.3. Note that as the

rotation number is a limit, this monotonicity is no longer strict.

Theorem 2.3.3. The rotation number, ρ(λ), is monotonically increasing in λ.

Proof. Let λ1 < λ2, by definition of ρ(λ),

ρ(λ1) := lim
t→∞

θ(t; θ0, λ1)− θ0

t

By Corollary 2.2.1, θ(t, r0, θ0, λ1) < θ(t, r0, θ0, λ2) ,

for all t ≥ α. Therefore

62



ρ(λ1) = lim
t→∞

θ(t; θ0, λ1)− θ0

t

≤ lim
t→∞

θ(t; θ0, λ2)− θ0

t

= ρ(λ2) .

Finally, we state some global properties of the range of the rotation number.

Theorem 2.3.4. The rotation number, ρ(λ), is non-negative for all λ ∈ R. There exists

a value λ̂ ∈ R such that ρ(λ) = 0 for all λ < λ̂, and limλ→∞ ρ(λ) = +∞.

Proof. Fix λ ∈ R, then suppose for some t0 ∈ R, we have

θ(t0, r0, θ0, λ) =
(2m− 1)πp

2
,

for some m ∈ N, this gives

cosp(θ(t0, r0, θ0, λ)) = cosp((2m− 1)πp/2) = 0 ,

then by (23),

θ′(t0, r0, θ0, λ) = 1 + (q − 1)(λ−Q(t0)− 1) · 0 = 1 > 0 .

Therefore, if

θ(t0, r0, θ0, λ) ≥ (2m− 1)πp/2 ,

for some t0 ∈ R, then

θ(t, r0, θ0, λ) ≥ (2m− 1)πp/2 , (26)
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for all t > t0.

Now, by Theorem 2.3.1, the value of ρ(λ) is independent of the choice of θ0, therefore

without loss of generality, choose θ0 = 0.

Finally, as θ(0, r0, θ0, λ) = θ0 = 0 > − πp/2 , then by the bound (26), we have

ρ(λ) = lim
t→∞

θ(t, r0, 0, λ)

t
≥ lim

t→∞

−πp
2t

= 0 .
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2.4 Rotation Number Plateaus and Periodic Eigenvalues

Given the characterisation of periodic eigenvalues derived in Theorem 2.2.3, we now

find connections between the renormalised Poincaré Map and the rotation number defined

in Chapter 2.3, and this will allow us to find a characterisation in terms of the rotation

number alone. This will prove useful as the rotation number is independent of any initial

conditions, and so would require fewer objects to be analysed.

As per Theorem 2.3.3, the rotation number is monotone increasing. This results in

intervals of the domain of this function over which the function is constant. Once again,

maximal intervals of constancy of ρ are referred to as plateaus of the rotation number.

The first connection between the renormalised Poincaré map, Ψ, and the rotation number,

ρ, is a direct calculation that shows the equivalence between these plateaus and values of

λ for which the renormalised Poincaré Map crosses a multiple of 2πp.

Theorem 2.4.1. Let λ ∈ R be such that there exists a θ0 ∈ R, and n ∈ N, with

Ψ(θ0, λ) = 2nπp ,

then the rotation number

ρ(λ) =
2nπp
α

.

Proof.

ρ(λ) = lim
k→∞

θ(kα, r0, θ0, λ)− θ0

kα

= lim
k→∞

θ0 + 2knπp − θ0

kα

= lim
k→∞

2knπp
kα

=
2nπp
α
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Theorem 2.4.1 shows us that any value of λ such that there exists a value θ0 at which

point the renormalised Poincaré Map, Ψ, crosses a multiple of 2πp corresponds to the

rotation number, ρ, being a multiple of 2πp α
−1. For the non-degenerate case, in which

the map Ψ is non-constant, this results in the rotation number having a plateau at this

level. If Ψ is constant however, these plateaus degenerate to a single point.

The following results are used to prove the converse, that any value of λ that gives

a rotation number that is a multiple of 2πp α
−1, corresponds to a renormalised Poincaré

Map that crosses a multiple of 2πp.

Lemma 2.4.1. For any λ ∈ R, we have

min
θ0∈R

Ψ(θ0, λ)

α
≤ ρ(λ) ≤ max

θ0∈R

Ψ(θ0, λ)

α

Proof. For all θ0 ∈ R and i ∈ N0, we have

min
θ0∈R

Ψ(θ0, λ)

α
<

Ψ(θ(iα, r0, θ0, λ), λ)

α
< max

θ0∈R

Ψ(θ0, λ)

α
.

Using this bound over the sum of Ψ(·, λ) evaluated in the orbit of θ over n − 1 periods,

we get,

nmin
θ0∈R

Ψ(θ0, λ)

α
<

n−1∑
i=0

Ψ(θ(iα, r0, θ0, λ), λ)

α
< nmax

θ0∈R

Ψ(θ0, λ)

α
,

and dividing through by n,

min
θ0∈R

Ψ(θ0, λ)

α
<

1

n

n−1∑
i=0

Ψ(θ(iα, r0, θ0, λ), λ)

α
< max

θ0∈R

Ψ(θ0, λ)

α
, (27)

for any n ∈ N0. From Corollary 2.3.1, we have

ρ(λ) = lim
n→∞

θ(nα, r0, θ0, λ)− θ0

nα
= lim

n→∞

1

n

n−1∑
i=0

Ψ(θ(iα, r0, θ0, λ), λ)

α
,

and from the bounds in (27), we have
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min
θ0∈R

Ψ(θ0, λ)

α
= lim

n→∞

(
min
θ0∈R

Ψ(θ0, λ)

α

)
≤ lim

n→∞

(
1

n

n−1∑
i=0

Ψ(θ(iα, r0, θ0, λ), λ)

α

)

= ρ(λ)

≤ lim
n→∞

(
max
θ0∈R

Ψ(θ0, λ)

α

)
= max

θ0∈R

Ψ(θ0, λ)

α
.

The following corollary shows the converse of Theorem 2.4.1.

Corollary 2.4.1. Let λ ∈ R, and n ∈ N0, then

ρ(λ) ≥ 2nπp
α

⇐⇒ max
θ0∈R

(Ψ(θ0, λ)) ≥ 2nπp

ρ(λ) ≤ 2nπp
α

⇐⇒ min
θ0∈R

(Ψ(θ0, λ)) ≤ 2nπp

Proof. First, we assume that

ρ(λ) ≥ 2nπp
α

,

then by Lemma 2.4.1,

max
θ0∈R

(Ψ(θ0, λ)) ≥ αρ(λ) ≥ 2nπp .

Similarly, if we assume

ρ(λ) ≤ 2nπp
α

,

then by Lemma 2.4.1,
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min
θ0∈R

(Ψ(θ0, λ)) ≤ αρ(λ) ≤ 2nπp .

Conversely, if we take

max
θ0∈R

(Ψ(θ0, λ)) ≥ 2nπp ,

then we are left with two cases. Either there exists a θ0 ∈ R such that Ψ(θ0, λ) = 2nπp,

in which case, by Theorem 2.4.1,

ρ(λ) =
2nπp
α

,

or alternatively, we have the case minθ0∈R(Ψ(θ0, λ)) > 2nπp, for which we can use the

negation of the statement

ρ(λ) ≤ 2nπp
α

=⇒ min
θ0∈R

(Ψ(θ0, λ)) ≤ 2nπp ,

which is proven above. This shows that

max
θ0∈R

(Ψ(θ0, λ)) ≥ 2nπp =⇒ ρ(λ) ≥ 2nπp
α

,

the statement

min
θ0∈R

(Ψ(θ0, λ)) ≤ 2nπp =⇒ ρ(λ) ≤ 2nπp
α

,

can be proved similarly.

The next key result shows the characterisation of the periodic eigenvalues in terms of

the rotation number function. The proof uses Theorem 2.4.1 and Corollary 2.4.1.

Theorem 2.4.2. Let λ ∈ R be such that ρ(λ) = 2nπp α
−1 (for some n ∈ N), then there

exists a θ0 ∈ R, such that
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Ψ(θ0, λ) = 2nπp .

Proof. We can divide the values λ ∈ R into three distinct cases:

• Case 1: All values of θ0 ∈ R give Ψ(θ0, λ) < 2nπp.

As Ψ(θ,λ) < 2nπp, for all θ0 ∈ R, we have maxθ0∈R(Ψ(θ0, λ) < 2nπp.

Combining this with Corollary 2.4.1, we have,

ρ(λ) ≤ max
θ0∈R

(
Ψ(θ0, λ)

α

)
<

2nπp
α

.

• Case 2: There exists a θ0 ∈ R such that Ψ(θ0, λ) = 2nπp.

By Theorem 2.4.1, this means that

ρ(λ) =
2nπp
α

.

• Case 3: All values of θ0 ∈ R give Ψ(θ0, λ) > 2nπp.

As Ψ(θ,λ) > 2nπp, for all θ0 ∈ R, we have minθ0∈R(Ψ(θ0, λ) > 2nπp.

Combining this with Corollary 2.4.1, we have,

ρ(λ) ≥ min
θ0∈R

(
Ψ(θ0, λ)

α

)
>

2nπp
α

.

Therefore, we have a trichotomy, and if ρ(λ) = 2nπp α
−1, then there must exist a θ0 ∈ R

such that

Ψ(θ0, λ) =
2nπp
α

.
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This theorem can be restated in the following form, showing that the end-points of the

plateaus at multiples of 2πp α
−1 of the rotation number function are periodic eigenvalues.

Corollary 2.4.2. Let n ∈ N, then

λ := min{λ ∈ R : ρ(λ) = 2nπp α
−1} ,

and λ := max{λ ∈ R : ρ(λ) = 2nπp α
−1} ,

are periodic eigenvalues of (10).

Proof. By the monotonicity of ρ in λ, shown in Theorem 2.3.3,

λ < λ =⇒ ρ(λ) ≤ ρ(λ) =
2nπp
α

.

Also, by the assumption λ = min{λ ∈ R : ρ(λ) = 2nπp α
−1}, we have

λ < λ =⇒ ρ(λ) 6= 2nπp α
−1 ,

and so, for any λ < λ,

ρ(λ) < ρ(λ) = 2nπp α
−1 . (28)

By Corollary 2.3.3, as ρ(λ) < 2nπp α
−1,

max
θ0∈R

(Ψ(θ0, λ)) ≤ 2nπp .

If there existed a θ0 ∈ R such that Ψ(θ0, λ) = 2nπp, then by Theorem 2.4.1,

ρ(λ) =
2nπp
α

,

which would contradict (28). Therefore
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max
θ0∈R

(Ψ(θ0, λ)) < 2nπp , (29)

for all θ0 ∈ R.

At λ, ρ = 2nπp α
−1, and so by Theorem 2.4.2, there exists a θ̃0 ∈ R such that

Ψ(θ̃0, λ) = 2nπp .

From the bound (29), for any λ < λ,

Ψ(θ̂0, λ) < max
θ0∈R

(Ψ(θ0, λ)) < 2nπp ,

for all θ̂0 ∈ R. Therefore, this initial value θ̃0 must attain the maximum value for the

function Ψ(·, λ), i.e.

max
θ0∈R

(Ψ(θ0, λ)) = Ψ(θ̃0, λ) = 2nπp ,

and since Ψ(·, λ) is a continuously differentiable function that attains a local maximum

at θ̃0,

∂1Ψ(θ̃0, λ) = 0 .

Thus, both conditions of Theorem 2.2.3 are satisfied, and λ is therefore a periodic eigen-

value of the problem (10). The proof that λ also satisfies these conditions is similar.

Finally, we state a result regarding the case where the plateaus degenerate to a single

point.

Corollary 2.4.3. Fix n ∈ N and consider the values λ , λ as defined in Corollary 2.4.2.

The interval [λ, λ] degenerates to a single point, i.e. λ = λ, if and only if all solutions of

(10) for the spectral value λ = λ = λ are α-periodic.
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Proof. If we have

λ = min{λ ∈ R : ρ(λ) = 2nπp α
−1} = max{λ ∈ R : ρ(λ) = 2nπp α

−1} = λ ,

then by the montonicity of ρ, for all λ < λ,

max
θ0∈R

(Ψ(θ0, λ)) < 2nπp ,

and for all λ > λ,

min
θ0∈R

(Ψ(θ0, λ)) > 2nπp .

By the continuity of Ψ in both variables (a result of Lemma 2.2.2 and Theorem 2.2.4),

Ψ(θ0, λ) = 2nπp ,

for all θ0 ∈ R. As Ψ(·, λ) is constant,

∂1Ψ(θ0, λ) = 2nπp ,

for all θ0 ∈ R. Hence, by Theorem 2.2.3, all solutions to (10) for this spectral value, λ,

are α-periodic.

Conversely, if for any λ ∈ R, all solutions of (10) are α-periodic, then all initial values

θ0 ∈ R must give

Ψ(θ0, λ) = 2nπp .

Therefore, for any λ̃ < λ,

max
θ0∈R

(Ψ(θ0, λ)) < 2nπp ,

by the monotonicity of Ψ in its second variable. Similarly, for any λ̃ > λ,
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min
θ0∈R

(Ψ(θ0, λ)) > 2nπp .

By Corollary 2.4.1, this means that for any λ̃ < λ,

ρ(λ̃) <
2nπp
α

= ρ(λ) ,

and for any λ̃ > λ,

ρ(λ̃) >
2nπp
α

= ρ(λ) .

Therefore,

λ = min{λ ∈ R : ρ(λ) = 2nπpα
−1} = max{λ ∈ R : ρ(λ) = 2nπpα

−1} = λ .

For each fixed λ ∈ R, the set of solutions of the problem (10) is a two-dimensional

manifold in L1
loc(R). We note that by Corollary 2.4.3, if the pair of eigenvalues that occur

at the end-points of any rotation number plateau, λ , λ, are equal, then all eigenfunctions

are α-periodic. Thus, this solution manifold is completely included in the space of α-

periodic functions.

We call the case for which there exists a value λ, with

Ψ(θ0, λ) = 2nπp

for all θ0 ∈ R, the degenerate case, and say that the renormalised Poincaré map is

degenerate for this given spectral value λ. We also refer to the periodic eigenvalue λ

as a degenerate eigenvalue, note that for this value n ∈ N, this is the unique eigenvalue

for which the renormalised Poincaré map, Ψ(θ0, λ) = 2nπp, for any θ0 ∈ R. In the

next chapter, we derive conditions for which a perturbation of the function can cause a

degenerate Poincaré map to become non-degenerate.
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2.5 Effect of Perturbing the Potential on the Spectrum

In this chapter, we further examine the case of the renormalised Poincaré map being

constant-valued in θ0, for some periodic eigenvalue λ ∈ R; the degenerate case. Given a

potential for which there exists a degenerate eigenvalue λ, we consider the possibility of

perturbing this potential by some other potential function, the effect of which is to make

the map Ψ(·, λ) non-degenerate. We derive conditions on the perturbation that ensure this

non-degeneracy. We also derive conditions that cause the resulting renormalised Poincaré

map to oscillate about the levels 2nπp, in such a way as to guarantee the existence of

extra eigenvalues that occur in the interior of the rotation number plateaus.

We start by introducing a perturbation to the potential in the equation (10), and

quantify its effect on Ψ. Consider the modified equation

(φp(u
′))′ + (λ−Q1 − εQ2)φp(u) = 0 , (30)

for some perturbing potential Q2 ∈ L1
loc(R) , and some ε > 0. We now show how this

perturbation affects the renormalised Poincaré map.

Lemma 2.5.1. Consider the equation with potential Q1 ∈ L1
loc(R), and a perturbation

Q2 ∈ L1
loc(R), we have

∂3Ψ(θ0, λ, ε) =
−(q − 1)

(r(α, r0, θ0, λ, ε))2

∫ α

0

Q2(s) |u(s, r0, θ0, λ, ε)|p ds .

Proof. We have the equation for the evolution of the Prüfer angle of the system (10),

adapted for the εQ2 term,

θ′(t, r0, θ0, λ, ε) = 1 + (q − 1)(λ−Q1(t)− εQ2(t)| cosp θ(t, r0, θ0, λ, ε)|p ,

then differentiating with respect to the parameter ε, we get
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∂5θ
′(t, r0, θ0, λ, ε) =

∂

∂ε

(
1 + (q − 1)(λ−Q1 − εQ2 − 1)| cosp θ|p

)
= −(q − 1)| cosp θ|pQ2 − q(p− 1)

1/p(λ−Q1 − εQ2 − 1)φp(cosp θ)φq(sinq θ)∂5θ

= −(q − 1)| cosp θ|pQ2 − 2
r′

r
∂5θ .

If we then multiply through by r2, we have

r2∂5θ
′ + 2rr′∂5θ = −(q − 1)Q2 r

2| cosp θ|p ,

and since (r2∂5θ)
′
= r2∂5θ

′ + 2rr′∂5θ ,

(
r2∂5θ

)′
= −(q − 1)Q2 r

2| cosp θ|p

= −(q − 1)(r
2/p)p| cosp θ|p

= −(q − 1)|r2/p cosp θ|p

= −(q − 1)|u|p .

The initial angle, θ0, does not depend on the parameter, ε, so

∂5θ(0, r0, θ0, λ, ε) =
∂

∂ε

(
θ0

)
= 0 .

Therefore integrating both sides of

(r2∂5θ0)′ = −(q − 1)|u|p ,

we get

r2(t, r0, θ0, λ, ε) ∂5θ(t, r0, θ0, λ, ε) = −(q − 1)

∫ t

0

Q2(s) |u(s, r0, θ0, λ, ε)|p ds .

Finally, letting t = α,
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∂3Ψ(θ0, λ, ε) =
∂

∂ε

(
θ(α, r0, θ0, λ, ε)− θ0

)
= ∂5θ(α, r0, θ0, λ, ε)

=
−(q − 1)

(r(α, r0, θ0, λ, ε))2

∫ α

0

Q2(s) |u(s, r0, θ0, λ, ε)|p ds .

If we assume that we are perturbing away from a potential Q1, and a spectral value λ,

that gives a degenerate renormalised Poincaré map, then by Theorem 2.4.2 and Corollary

2.4.3, the resulting solution manifold of (10) will be entirely embedded within the space

of α-periodic functions. As such, we will have r(α, r0, θ0, λ, ε) = r0, at the point ε = 0.

This leads us to the following result.

Theorem 2.5.1. Let λ ∈ R be such that

Ψ(θ0, λ, 0) = 2nπp ,

for all θ0 ∈ R. Then if there exists a perturbing potential, Q2, such that

∫ α

0

Q2(s)|u(s, r0, θ1, λ, 0)|p ds > 0∫ α

0

Q2(s)|u(s, r0, θ2, λ, 0)|p ds < 0

...∫ α

0

Q2(s)|u(s, r0, θ2j, λ, 0)|p ds < 0

for some distinct θ1 < θ2 < . . . < θ2j ∈ [0, πp), with j ∈ N; then there exists some ε > 0

such that:

a) There are 2j points, ϑ1, . . . , ϑ2j, with
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Ψ(ϑi, λ, ε) = 2nπp , for all i ∈ {1, . . . , 2j} ,

∂1Ψ(ϑ2i, λ, ε) ≥ 0 , for all i ∈ {1, . . . , j} ,

∂1Ψ(ϑ2i−1, λ, ε) ≤ 0 ,

b) There are 2j periodic eigenvalues λ1, . . . , λ2j, with

Ψ(θ̃i, λi, ε) = 2nπp ,

for some corresponding θ̃1, . . . , θ̃2j ∈ R.

Proof. a) At ε = 0, all solutions are α-periodic. hence, r(α, r0, θ0, λ, 0) = r0, for all

θ0 ∈ R. By Lemma 2.5.1,

∂3Ψ(θi, λ, 0) = −(q − 1)

r2
0

∫ α

0

Q2(s) |u(s, r0, θi, λ, 0)|p ds ,

for each value θi . Hence,

∂3Ψ(θ1, λ, 0) < 0

∂3Ψ(θ2, λ, 0) > 0

...

∂3Ψ(θ2j, λ, 0) > 0 .

At ε = 0, Ψ(θ0, λ) = 2nπp for all θ0 ∈ R, therefore there exists some ε̃ > 0 such that
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Ψ(θ1, λ, ε̃) < 2nπp

Ψ(θ2, λ, ε̃) > 2nπp

...

Ψ(θ2j, λ, ε̃) > 2nπp .

By Lemma 2.5.1, the renormalised Poincaré map is continuous in ε. So by the Intermedi-

ate Value Theorem, there must exist 2j points ϑi, for i ∈ {1, . . . , 2j}, with θi < ϑi < θi+1,

for i ∈ {1, . . . , 2j − 1}, and θ2j < ϑ2j < θ1 + πp, such that

Ψ(ϑi, λ, ε̃) = 2nπp , for all i ∈ {1, . . . , 2j} ,

∂1Ψ(ϑ2i, λ, ε̃) ≥ 0 , for all i ∈ {1, . . . , j} ,

∂1Ψ(ϑ2i−1, λ, ε̃) ≤ 0 .

b) By Theorem 2.2.3, λ is a periodic eigenvalue of (10) if and only if

Ψ(θ0, λ) = 2nπp and ∂1Ψ(θ0, λ) = 0 ,

for some n ∈ N. Consider the values ϑi defined in part a). We have

Ψ(ϑi, λ, ε̃) = 2nπp ,

for all i ∈ {1, . . . , 2j}. By Rolle’s Theorem, and the periodicity of Ψ in the θ0 variable,

there must exist 2j points ϑ̃i that are all distinct (mod πp) such that

∂1Ψ(ϑ̃i, λ, ε̃) = 0 .
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for i ∈ {1, . . . , 2j}, with

Ψ(ϑ̃2i, λ, ε̃) > 2nπp , for all i ∈ {1, . . . , j} ,

Ψ(ϑ̃2i−1, λ, ε̃) < 2nπp .

Therefore, by the monotonicity of Ψ in the λ variable, there exist 2j values λ1, . . . , λ2j

such that

Ψ(θ̃i, λi) = 2nπp and ∂1Ψ(θ̃i, λi) = 0 ,

for some θ̃1, . . . , θ̃2j ∈ R.

Out of these 2j eigenvalues, the smallest and largest form the end-points of a plateau

in the rotation number function, and the remaining 2j − 2 are ‘extra’ eigenvalues in the

interior.

The only remaining question is whether or not there exist perturbing potentials Q2

that satisfy the properties stated in Theorem 2.5.1 . We can consider perturbing by

functions of the form

Q2 =
k∑
i=1

αi|u(t, r0, θi, λ, 0)|p ,

and then, by the conditions in Theorem 2.5.1 , it suffices to find values α1, . . . , αk that

satisfy the system

(∫ α

0

|u(s, r0, θi, λ, 0)|p|u(s, r0, θj, λ, 0)|p ds

)
i,j=1,...,k



α1

α2

...

αk


=



1

−1

...

−1


. (31)
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Given an inner product space, I, with inner product 〈· , ·〉, a square matrix A is

Gramian in I, if it can be written as

A = (〈vi , vj〉)i,j=1,...,k ,

for vectors v1, . . . , vk ∈ I. It has been shown, [14, Theorem 7.2.10], that Gramian matrices

are invertible if and only if the vectors v1, . . . , vk are linearly independent.

The matrix in the system (31) is Gramian in L2
loc,per(R), with inner product

〈 f, g 〉 =

∫ α

0

f g .

Therefore, to show that there exists a Q2 that satisfies the hypotheses of Theorem 2.5.1,

it would suffice to show that the functions |u(t, r0, θi, 0)|p are linearly independent for all

θi (for i ∈ {1, . . . , 2j}).

We conclude this chapter with a result regarding the genericity of non-degenerate

eigenvalues with respect to potentials Q ∈ L1
loc(R).

Theorem 2.5.2. All periodic eigenvalues λ for the equation (10) are non-degenerate for

Baire-almost all Q ∈ L1
loc(R).

Proof. For any fixed n ∈ N0, define Xn ⊂ L1
loc(R) to be the set of potentials for which

any periodic eigenvalue, λ ∈ R, with

Ψ(θ1, λ) = 2nπp ,

for some θ1 ∈ R, is non-degenerate. That is, there exists a value θ2 such that

Ψ(θ2, λ) 6= 2nπp .

We first show that Xn is open in L1
loc(R). Let

δ := sup
θ0∈R
|Ψ(θ0, λ)− 2nπp| .
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Consider a perturbation on the potential, with some function Q2, as in (30). By Lemma

2.5.1, Ψ is continuous in the ε variable. Hence, we can choose a value ε̃(δ) > 0 such that

|Ψ(θ0, λ, ε̃(δ))−Ψ(θ0, λ, 0)| < δ ,

for all θ0 ∈ R. Therefore,

sup
θ0∈R
|Ψ(θ0, λ, ε̃)− 2nπp| > 0 .

So for any perturbation, there exists a small enough ε > 0 such that the resulting

periodic eigenvalues with Ψ = 2nπp remain non-degenerate. Therefore Xn is open in

L1
loc(R).

Next, we prove that Xn is dense in L1
loc(R). To show this, we prove that any potential

Q1 ∈ L1
loc(R) \Xn is the limit of elements in Xn. Let Q1 be a potential, such that there

exists a periodic eigenvalue, λ with

Ψ(θ0, λ) = 2nπp ,

for all θ0 ∈ R. Again, consider a perturbation with some function Q2. Let θ1, θ2 ∈ R be

two initial angles that are distinct (mod πp), and fix some r0 > 0. From the initial values

alone, we know that the resulting functions

|u(t, r0, θ1, λ, 0)|p and |u(t, r0, θ2, λ, 0)|p ,

(where u(t, r0, θ0, λ, 0) is the solution of (10) for initial values r0, θ0 at the spectral value

λ), are linearly independent. Hence, there exist values α1 , α2 ∈ R such that

Q2 = α1 |u(t, r0, θ1, λ, 0)|p + α2 |u(t, r0, θ2, λ, 0)|p ,

such that
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Ψ(θ1, λ, ε̃) > 2nπp and Ψ(θ2, λ, ε̃) < 2nπp ,

for some ε̃ > 0. Therefore, a perturbation resulting from this Q2 causes the degeneracy

of the periodic eigenvalue to collapse. So Xn is dense in L1
loc(R).

Thus, each set L1
loc(R) \Xn for n ∈ N is nowhere dense in L1

loc(R), and the union

∞⋃
n=1

L1
loc(R) \Xn ,

is a set of the first Baire category in L1
loc(R), which gives us the result.

We will use these perturbation arguments in Chapter 5, to prove the existence of

‘extra’ plateaus at levels of the rotation number that are not multiples of πp α
−1. These

plateaus are linked with the non-degeneracy of eigenvalues of the iterated periodic prob-

lem over m periods for m > 2. As a consequence of Theorem 1.0.9, such plateaus do not

exist for p = 2. We link the existence of a perturbing function Q2 capable of creating

such non-degeneracy, with the linear independence of sums of certain solutions, and show

that such linear independence only occurs for p 6= 2.
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3 Numerical Schemes and Stability Analysis

In Chapter 2.4, we introduced the concept of a periodic eigenvalue being degenerate,

in the sense that the renormalised Poincaré map for that value of λ is constant in θ0 ∈ R,

i.e. for some n ∈ N,

Ψ(θ0, λ) = 2nπp ,

for all θ0 ∈ R. An example we will use throughout this thesis is the case where the

potential Q is constant, for which all periodic eigenvalues are degenerate.

Theorem 3.0.1. If the potential Q in the equation (10) is a constant, then given an

initial radius r0 > 0, initial angle θ0 ∈ R and spectral value λ ∈ R, the solution of (10)

takes one of the following forms:

• Case 1: λ−Q > 0

The solution u is a p-trigonometric function, given by:

u(t) = A cosp((λ−Q)
1/p(t− t0)) ,

for some A, t0 ∈ R.

• Case 2: λ−Q = 0

The solution u is a linear function, given by:

u(t) = At+B ,

for some A,B ∈ R.

• Case 3: λ−Q < 0 and |(Q− λ)1/p cotp θ0| > (p− 1)1/p

The solution u is a p-hyperbolic function, given by:

u(t) = A coshp((Q− λ)
1/p(t− t0)) ,
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for some A, t0 ∈ R.

• Case 4: λ−Q < 0 and |(Q− λ)1/p cotp θ0| < (p− 1)1/p

The solution u is a p-hyperbolic function, given by:

u(t) = A sinhp((Q− λ)
1/p(t− t0)) ,

for some A, t0 ∈ R.

• Case 5: λ−Q < 0 and (Q− λ)1/p cotp θ0 = (p− 1)1/p

The solution u is an exponential function, given by:

u(t) = A exp(−(q − 1)
1/p (Q− λ)

1/p t) ,

for some A ∈ R.

• Case 6: λ−Q < 0 and (Q− λ)1/p cotp θ0 = −(p− 1)1/p

The solution u is an exponential function, given by:

u(t) = A exp((q − 1)
1/p (Q− λ)

1/p t) ,

for some A ∈ R.

Furthermore, for all periodic eigenvalues, λ − Q > 0, and the periodic eigenvalues are

given by

λn = Q+
(2nπp

α

)p
,

for all n ∈ N. For each n, the periodic eigenvalue is degenerate.

For the case of a constant potential Q, by Corollary 2.4.3, each of the periodic eigen-

values results in an α-periodic solution for all initial values. Thus, the solution manifold

for each eigenvalue is completely embedded in the space of α-periodic functions.

We now consider the iterated problem, that is, the question of which values λ ∈ R

give periodic solutions over m periods, with m > 2. Trivially, all periodic eigenvalues are
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also periodic eigenvalues of the iterated problem, as α-periodic solutions are mα-periodic

for all m ∈ N. As a result of Theorem 1.0.9, in the linear case p = 2, any value λ ∈ R that

admits a solution u that is periodic after m intervals, but is not (anti-)periodic on [0, α)

has a solution space that is entirely embedded in the space of mα-periodic functions.

Therefore, by Corollary 2.4.3, any periodic eigenvalue of the iterated periodic problem

over m periods, with m > 2, that is not an (anti-)periodic eigenvalue of the problem over

a single period, is a degenerate eigenvalue. In this Chapter, we use numerical evidence

to illustrate that this is not true for the nonlinear case, p 6= 2.

For any value λ that is an eigenvalue of the iterated periodic problem over m periods,

for which the corresponding eigenfunction has n zeros, we have

ρ(λ) =
2nπp
mα

,

(see Theorem 5.1.2 for details). By Corollary 2.4.2, the existence of a pair of non-

degenerate periodic eigenvalues of the iterated problem over m periods (for m > 2)

is equivalent to the existence of a rotation number plateau, over which ρ does not equal

an integer multiple of πp α
−1.

To show the existence of non-degenerate eigenvalues of the iterated problem (for

m > 2) in the nonlinear case, we introduce a numerical scheme to approximate the

rotation number function of (10) for certain potentials, and use it to find these extra

plateaus, should they exist. For this scheme, we take all potentials Q to be piecewise-

constant, and use the analytic results derived in Chapter 2, as well as the form of the

solution given in Theorem 3.0.1, to find the number of zeros the solution has over each

subinterval over which Q is constant. We then prove bounds for the difference between

a normalisation of this enumeration of zeros and the rotation number function.
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3.1 Approximations of the p-Trigonometric Functions

Our numerical scheme for the approximation of the rotation number function relies

on the p-trigonometric functions, and we will therefore need reliable numerical schemes

to approximate them. For the sinp function, we observe the following result, due to

Biezuner, Ercole and Martins [3].

Theorem 3.1.1. Let t ∈ [0, πp/2], and define the functions ψi : [0, πp/2] → R, for any

i ∈ N0 by the recurrence relation


(φp(ψ

′
i+1))′ + φp(ψi) = 0

ψi+1(0) = ψ′i+1(πp/2) = 0 ,

with initial function ψ0 ≡ 1. Then the sequence of functions

(p− 1)1/p ψi
||ψi||∞

converges uniformly to sinp.

The above recurrence relation can be written as

ψi+1(t) =

∫ t

0

φq

(∫ πp/2

s

φp(ψi(r)) dr

)
ds ,

and we can approximate both integrals using a quadrature rule. In Chapter 6.1, we give

the pseudocode for an implementation of this using the trapezium rule. We calculate a

table of values of the sinp function on the interval [0, πp/2), and then use the periodicity

properties to evaluate the function at any other values.

By (16), the cosp function is simply a shift of the sinp function, and so this table of

values will suffice for the purpose of approximating values of cosp as well. Similarly, given

that cotp is the ratio of cosp and (p− 1)1/pφq(sinq), this table is also sufficient to compute

cotp. However, the algorithm also requires an approximation of the arccotp function. One
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could, in principle, derive the values from the approximation of cotp, but we detail a more

efficient way below.

To approximate the arccotp function, we use the formulation given in Theorem 2.1.6,

combined with a geometric expansion of the integrand. This expansion must be done

about different values of t depending on the value of t being approximated.

3.1.1 Expanding the arccotp Function for |t| < (p− 1)1/p

For |t| < (p− 1)1/p, we expand about t = 0, this can be achieved by using the identity

arccotp(t) + arctanp(t) =
πp
2
,

for all t ∈ R, which can itself be derived from the definition of arctanp

arctanp(t) :=

∫ t

0

1

1 + sp

(p−1)

ds .

Expanding this integrand using a geometric series, for |t| < (p− 1)1/p, we get

arctanp(t) =

∫ t

0

1

1 + sp

(p−1)

ds =

∫ t

0

∞∑
j=0

spj

(1− p)j
ds

=
∞∑
j=0

1

(1− p)j

∫ t

0

spj ds

=
∞∑
j=0

tpj+1

(1− p)j(pj + 1)
.

Therefore,

arccotp(t) =
πp
2
− arctanp(t)

=
πp
2
−
∞∑
j=0

tpj+1

(1− p)j(pj + 1)
.

We can then find error bounds on this expansion, let N ∈ N,
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∣∣∣∣∣arccotp(t)−
N∑
j=0

tpj+1

(1− p)j(pj + 1)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
j=0

tpj+1

(1− p)j(pj + 1)
−

N∑
j=0

tpj+1

(1− p)j(pj + 1)

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

j=N+1

tpj+1

(1− p)j(pj + 1)

∣∣∣∣∣
≤
∣∣∣∣ tp(N+1)+1

(1− p)N+1(p(N + 1) + 1)

∣∣∣∣ ,

as the term in the summation has an alternating sign. If we then use the restriction that

|t| < (p− 1)1/p, we have

∣∣∣∣∣arccotp(t)−
N∑
j=0

tpj+1

(1− p)j(pj + 1)

∣∣∣∣∣ ≤
∣∣∣∣ tp(N+1)+1

(1− p)N+1(p(N + 1) + 1)

∣∣∣∣
<

∣∣∣∣ (p− 1)N+1(p− 1)1/p

(1− p)N+1(p(N + 1) + 1)

∣∣∣∣
=

∣∣∣∣ (p− 1)1/p

p(N + 1) + 1

∣∣∣∣ .
3.1.2 Expanding the arccotp Function for |t| > (p− 1)1/p

For |t| > (p−1)1/p, we derive an expansion about t = +∞, we start with the substitution

r = s1−p, then

arccotp(t) =

∫ ∞
t

1

1 + sp

(p−1)

ds

=
1

p− 1

∫ t1−p

0

dr

s−p + 1
(p−1)

=

∫ t1−p

0

dr

(p− 1)rq + 1
.

As before, we apply a geometric series, to get
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∫ t1−p

0

dr

(p− 1)rq + 1
=

∫ t1−p

0

∞∑
j=0

(1− p)jrqjdr

=
∞∑
j=0

(1− p)j
∫ t1−p

0

rqjdr

=
∞∑
j=0

(1− p)jt(1−p)(qj+1)

qj + 1
.

This geometric series will converge for all |(1 − p)t(1−p)q| < 1, or equivalently, |t| >

(p− 1)1/p.

We can also find error bounds for this expansion, again let N ∈ N, then

∣∣∣∣∣arccotp(t)−
N∑
j=0

(1− p)jt(1−p)(qj+1)

qj + 1

∣∣∣∣∣ =

∣∣∣∣∣
∞∑
j=0

(1− p)jt(1−p)(qj+1)

qj + 1
−

N∑
j=0

(1− p)jt(1−p)(qj+1)

qj + 1

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

j=N+1

(1− p)jt(1−p)(qj+1)

qj + 1

∣∣∣∣∣
≤
∣∣∣∣(1− p)N+1t(1−p)(q(N+1)+1)

q(N + 1) + 1

∣∣∣∣ .

Where we once again use the fact that the term in the summation has an alternating

sign. If we now take |t| > (p− 1)1/p, we have

∣∣∣∣∣arccotp(t)−
N∑
j=0

(1− p)jt(1−p)(qj+1)

qj + 1

∣∣∣∣∣ ≤
∣∣∣∣(1− p)N+1t(1−p)(q(N+1)+1)

q(N + 1) + 1

∣∣∣∣
<

∣∣∣∣(1− p)N+1(p− 1)1/p(1−p)(q(N+1)+1)

q(N + 1) + 1

∣∣∣∣
=

∣∣∣∣(1− p)N+1(p− 1)− 1/q(p− 1)−(N+1)

q(N + 1) + 1

∣∣∣∣
=

∣∣∣∣ (p− 1)− 1/q

q(N + 1) + 1

∣∣∣∣
=

∣∣∣∣ (q − 1)1/q

q(N + 1) + 1

∣∣∣∣ .
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3.1.3 Expanding the arccotp Function for t = (p− 1)1/p

As the asymptotic expansion about t = 0 converges for all |t| < (p − 1)1/p, and the

asymptotic expansion about t = +∞ converges for all |t| > (p− 1)1/p, our final problem

is to find an expansion about t = (p− 1)1/p.

Again, using the identity

arctanp(t) + arccotp(t) = πp/2 ,

for all t ∈ R, we can reduce the problem to approximating the integral

∫ (p−1)1/p

0

ds

1 + sp/(p− 1)
.

Then using the substitution s = (p− 1)1/pr, we have

∫ (p−1)1/p

0

ds

1 + sp/(p− 1)
= (p− 1)

1/p

∫ 1

0

dr

1 + rp
.

Next, we repeatedly perform integration-by-parts to derive an expansion for this

integral.

∫ 1

0

dr

1 + rp
=

[
r

1 + rp

]1

0

+ p

∫ 1

0

rp

(1 + rp)2
dr

=
1

2
+

p

p+ 1

[
rp+1

(1 + rp)2

]1

0

+
2p2

p+ 1

∫ 1

0

r2p

(1 + rp)3
dr

=
1

2
+

p

4(p+ 1)
+

2p2

(p+ 1)(2p+ 1)

[
r2p+1

(1 + rp)3

]1

0

+
6p3

(p+ 1)(2p+ 1)

∫ 1

0

r3p

(1 + rp)4
dr .

Inductively, we can show that

∫ 1

0

dr

1 + rp
=

N∑
i=0

i! pi

2i+1(p+ 1) . . . (ip+ 1)
+

(N + 1)! pN+1

(p+ 1) . . . (Np+ 1)

∫ 1

0

r(N+1)p

(1 + rp)N+2
dr . (32)
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We now consider a bound for the remainder term, first, using the Binomial theorem,

we have

(1 + rp)N+2 =
N+2∑
i=0

(
N + 2

i

)
rip; ,

and since r ≥ 0 for the domain of integration,

(1 + rp)N+2 > (N + 2)rp .

The integrand in the left-hand side of (32) is therefore bounded by

r(N+1)p

(1 + rp)N+2
<

rNp

N + 2
.

Hence, the remainder term of the expansion (32) is bounded by

(N + 1)! pN+1

(p+ 1) . . . (Np+ 1)

∫ 1

0

r(N+1)p

(1 + rp)N+2
dr <

(N + 1)! pN+1

(p+ 1) . . . (Np+ 1)

[
rNp+1

(N + 2)(Np+ 1)

]1

0

=
(N + 1)! pN+1

(p+ 1) . . . (Np+ 1)

1

(N + 2)(Np+ 1)
.

Finally, as

N∏
i=1

(ip+ 1) > N ! pN ,

we have the bound
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∣∣∣∣∣
∫ 1

0

dr

1 + rp
−

N∑
i=0

i! pi

2i+1(p+ 1) . . . (ip+ 1)

∣∣∣∣∣ =
(N + 1)! pN+1

(p+ 1) . . . (Np+ 1)

∫ 1

0

r(N+1)p

(1 + rp)N+2
dr

<
(N + 1) p

(N + 2)(Np+ 1)

<
p

Np+ 1

<
1

N
.

Therefore,

∣∣∣∣∣ arccotp(1)−

(
πp
2
− (p− 1)

1/p

N∑
i=0

i! pi

2i+1(p+ 1) . . . (2ip+ 1)

)∣∣∣∣∣ < (p− 1)1/p

N
.

To gauge the accuracy of our scheme for approximating arccotp, we choose p = 2 and

use a built-in implementation of cot to plot the values of the functions arccotp(cot(t))− t

and cot(arccotp(t)) − t. Figure 2 shows that in both cases, the errors are of the order

10−13. The plots appear to spike at several points in the domain, which can be accounted

for by the different methods used to approximate the function for different values of t ∈ R.

(a) The values of | arccotp(cot(t))− t| for
p = 2, using our implementation of arccotp.

(b) The values of | cot(arccotp(t))− t| for
p = 2, using our implementation of arccotp.

Figure 2: Error plots of the approximation of arccotp.

We give the pseudocode for an implementation of this approximation in Chapter 6.2.
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3.2 Approximations of the p-Hyperbolic Functions

To approximate the sinhp function, we use the recurrence relation


(φp(ψ

′
i+1))′ − φp(ψi) = 0

ψi+1(0) = 0 , ψ′i+1(0) = 1 ,

with ψ0 ≡ 1, and derive the equivalent integral relation

ψi+1(t) = t+

∫ t

0

φq

(∫ s

0

φp(ψi(r)) dr

)
ds .

Then the resulting functional sequence

(p− 1)1/p ψi
ψ′i(0)

can be shown to converge uniformly to sinhp. A sequence can similarly be derived for

coshp. Unlike sinp and cosp, the functions sinhp and coshp are not related by a simple

shift, and so both must be approximated. However, there is an asymptotic relation that

connects the sinhp and coshp functions with an exponential function, and this can be used

to approximate these functions for large values of t ∈ R.

First, we observe the different solutions to the ODE

(φp(u
′(t)))′ − φp(u(t)) = 0 ,

with varying initial conditions. Obviously, any variation in the initial Prüfer radius r,

would only result in the solution being changed by a constant factor. Therefore, we

consider solutions with varying initial Prüfer angles θ0, on the domain (−πp/2, πp/2]. By

Lemma 2.2.3, this is sufficient for all initial angles, as the angular component θ, is πp-

periodic with respect to its initial value.

Consider the Pythagorean-type identity for the p-hyperbolic functions,
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| coshp |p

p− 1
− | sinq |

q

q − 1
= 1 ,

dividing through by | sinq |q gives

| cothp |p − (p− 1) =
1

| sinhp |p
> 0 ,

and hence

| cothp(t)| > (p− 1)
1/p ,

for all t ∈ R. Similarly, we can derive | tanhp(t)| < (p− 1)1/p for all t ∈ R.

Therefore, any solution u(t) = sinhp(t− t0), for some t0 ∈ R has

| cotp(θ0)| =
∣∣∣∣ u(0)

u′(0)

∣∣∣∣ =

∣∣∣∣ sinhp(t0)

(p− 1)1/pφq(coshq(t0)

∣∣∣∣ = | cothp(t0)| > (p− 1)
1/p .

Similarly, for equations of the form u(t) = coshp(t− t0) have

| cotp(θ0)| =
∣∣∣∣ u(0)

u′(0)

∣∣∣∣ =

∣∣∣∣ coshp(t0)

(p− 1)1/pφq(sinhq(t0)

∣∣∣∣ = | tanhp(t0)| < (p− 1)
1/p .

We have two remaining cases. The first being solutions that are multiples of

u(t) = exp((q − 1)1/p t), for which

− cotp(θ0) =
u(0)

u′(0)
=

exp((q − 1)1/p 0)

(q − 1)1/p exp((q − 1)1/p 0)
= (p− 1)

1/p ,

and finally constant multiples of u(t) = exp(−(q − 1)1/p t), which result in

− cotp(θ0) = −(p− 1)1/p .

The set of initial Prüfer angles for these four cases, after being mapped through the

cotp function, comprises the entirety of R. The image of R through the arccotp is the set

(−πp/2, πp/2]. As before, the set of solutions with these initial values consists of the whole

solution manifold, up to constant multiples. Thus, all of the solutions of the ODE
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(φp(u
′(t)))′ − φp(u(t)) = 0

can be written as one of the four cases considered.

Lemma 3.2.1. The functions sinhp and coshp are connected to the function

exp((q − 1)1/p·) through the following asymptotic relation,

sinhp(t) = exp((q − 1)
1/pt) +O(t) and coshp(t) = exp((q − 1)

1/p t) +O(t) ,

as t→∞.

Proof. We have the following formula for the inverse of sinhp,

arcsinhp(t) =

∫ t

0

ds

(1 + sp/(p− 1))1/p
, (33)

for all t > 0. As this integrand is bounded above by 1, and sinhp(0) = 0, we have the

inequality

arcsinhp(t) <

∫ t

0

ds = t . (34)

As the integrand in (33) is positive, the function arcsinhp is strictly monotonically

increasing, and therefore, sinhp is also a strictly increasing function. Therefore, mapping

both sides of the inequality (34) through the sinhp function preserves the inequality, and

we get

sinhp(t) > t ,

for all t > 0. From Lemma 2.2.1, the Prüfer radius of this solution is given by

r =

(
|x|p

p− 1
+ |y|q

)1/2

=

(
| sinhp |p

p− 1
+
| coshq |q

q − 1

)1/2

,
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and using the Pythagorean-type identity for p-hyperbolic functions,

r =

(
1 + 2

| sinhp |p

p− 1

)1/2

.

Therefore, from our lower bound on sinh. we have

r(t) > (1 + 2(q − 1)tp)
1/2 >

√
2(q − 1) t

p/2 ,

for all t ≥ 0. The solution coshp has radius

r =

(
| coshp |p

p− 1
+
| sinhq |q

q − 1

)1/2

=

(
1 + 2

| sinhq |q

q − 1

)1/2

,

hence we have the bound

r(t) > (1 + 2(p− 1)tq)
1/2 >

√
2(p− 1) t

q/2 , (35)

for all t ≥ 0. The solution exp((q − 1)1/p ·) has radius

r(t) =

(
exp((q − 1)1/p t)

p− 1
+ (q − 1)q−1 exp((q − 1)

1/p t)

)1/2

.

Therefore, for all θ0 ∈ A := (−πp/2, πp/2] \ {arccotp((p − 1)1/p)}, the Prüfer radius is

divergent as t → ∞. By Lemma 2.2.2, the effect of varying the initial Prüfer angle on

the angular component, θ, is given by

∂θ

∂θ0

(t) =

(
r0

r(t)

)2

,

Using the radial bound (35), for any θ0 ∈ A,

∂θ

∂θ0

(t)→ 0 ,

as t→∞. Therefore, for all Prüfer angles of solutions to this equation,
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θ(t, θ1) = θ(t, θ2) + o(1) .

as t→∞, for any θ1, θ2 ∈ A. The function cosp is continuously differentiable, and so

cosp θ(t, θ1) = cosp θ(t, θ2) +O(1) .

Similarly, φp(cosp)φq(sinq) is continuously differentiable in a neighbourhood of

− arccotp((p− 1)1/p), hence

exp(φp(cosp θ(t, θ1))φp(cosp θ(t, θ1))) = exp(φp(cosp θ(t, θ2))φp(cosp θ(t, θ2))) +O(1) ,

and so, by the radial equation, (22) (noting that λ−Q ≡ −1 here),

r(t, θ1) = r(t, θ2) +O(1) .

Therefore, u(t, θ1) = u(t, θ2) +O(1), for any θ1 , θ2 ∈ A.

So for large values of t ∈ R, we can approximate the sinhp and coshp functions, and

their shifts, using the function exp((q−1)1/p ·). Fix k ∈ N, then by radial bound (35) and

Lemma 2.2.2,

∂θ

∂θ0

(t) < max

{
1√

2(p− 1) (kα)p/2
,

1√
2(q − 1) (kα)q/2

}
for all t ≥ kα.

Therefore, the error resulting from truncating the tables for sinhp and coshp after k

periods is bounded by

πp max

{
1√

2(p− 1) (kα)p/2
,

1√
2(q − 1) (kα)q/2

}
.
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Finally, we briefly note that approximations for the arccothp function can be derived

similarly to the approximations for the arccotp function derived in Chapter 3.1. We use

the formulation,

arccothp(t) =

∫ ∞
t

ds
sp/(p− 1)− 1

,

and once again expand the integrand using a geometric series.
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3.3 Approximations of the Rotation Number

The rotation number gives an asymptotic average for how often solutions of our the

equation (10) rotate about the phaseplane, however, we note that the system completing

a single rotation about the phaseplane results in the solution attaining two zeros. We can

therefore derive an equivalent definition of the rotation number, in terms of an enumer-

ation of the zeros of the solution over the interval [0,+∞), and this definition can then

be implemented into our numerical scheme.

Theorem 3.3.1. Fix some r0 > 0, θ0, λ ∈ R, let z be the function defined as

z : [0,+∞)→ N0

t 7→ #{s ∈ (0, t) | u(s, r0, θ0, λ) = 0} ,

then the value of the rotation number for this solution at this value of λ is given by

ρ(λ) = lim
t→∞

πp z(t)

t
.

Proof. By the definition of the p-Prüfer transform, we have u = r2/p cosp θ. Therefore,

any solution u(·, r0, θ0, λ) has a zero at the point t > 0 if and only if θ(t, r0, θ0, λ) =

πp/2 + kπp, for some k ∈ Z.

Given this, we observe that by equation (23),

θ′(t, r0, θ0, λ) = 1 + (q − 1)(λ−Q− 1)| cosp θ(t, r0, θ0, λ)|p

= 1

> 0 .

Hence all of the zeros of the solution u occur discretely, and have total measure zero on

R.
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Let R(t) := θ(t, r0, θ0, λ)− z(t). Let

kπp − πp/2 < θ0 ≤ kπp + πp/2 ,

for some k ∈ Z. We now show that

kπp − πp/2 < R(t) ≤ kπp + πp/2 ,

for all t ≥ 0.

If we assume that there exists a point t1 > 0 such that R(t1) < kπp + πp/2, and some

t3 > t1 such that R(t1) > kπp + πp/2, then by the Intermediate Value Theorem, there also

exists a point t1 < t2 < t3 such that R(t2) = kπp + πp/2. Therefore,

θ(t2) = R(t2) + πp z(t2)

= πp/2 + (k + z(t2))πp ,

and since the image of z is the nonnegative integers, we have u(t2, r0, θ0, λ) = 0. Hence,

there exists some ε > 0 such that z(t) = z(t2) + 1, for all t ∈ (t2, t2 + ε).

By the continuity of θ in the fist variable, there exists a 0 < ε̃ < ε such that for all

t ∈ (t2, t2 + ε̃), θ(t, r0, θ0, λ) < (k + z(t2) + 1)πp. Then, for all t ∈ (t2, t2 + ε̃), we have

R(t) = θ(t, r0, θ0, λ)− πp z(t)

< (k + z(t2) + 1)πp − πp z(t2)− πp

= kπp .

Therefore, for any value t > t1 such that R(t) = kπp + πp/2, we have R(t) < kπp on some

right-neighbourhood of t. Hence R(t) ≤ kπp + πp/2 for all t > t1.
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Next, we consider the lower bound. If we assume there exists some t1 > 0 such that

R(t1) > kπp− πp/2, and some t3 > t1 such that R(t1) < kπp− πp/2, then again there exists

some t1 < t2 < t3, such that R(t2) = kπp − πp/2. Then,

θ(t2, r0, θ0, λ) = R(t2) + πp z(t2)

= −πp/2 + (k + z(t2))πp ,

and again, the image of z is the nonnegative integers, so therefore θ′(t2, r0, θ0, λ) > 0.

Hence,

θ(t, r0, θ0, λ) > −πp/2 + (k + z(t2))πp ,

for all t > t2. Therefore, any value t > t1 that is a zero of the solution u, must have a

p-Prüfer angle θ(t, r0, θ0, λ) > (k + z(t2))πp. Therefore, any increase in z corresponds to

the p-Prüfer angle increasing past a value πp/2 (mod πp), and this increase is balanced in

the difference R(t). So for any t > t1,

R(t) = θ(t, r0, θ0, λ)− πp z(t)

> − πp/2 + (k + z(t2))πp − πp z(t2)

= − πp/2 + kπp .

Finally, we have

R(0) = θ(0, r0, θ0, λ)− z(0) = θ0 ,

and given our initial bounds on θ0, combined with the the bounds on the variation of the

function R, we have
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− πp/2 + kπp < R(t) < πp/2 + kπp ,

for all t > 0. Given that the function R is bounded, we have R(t) = o(t), and therefore,

ρ(λ) := lim
t→∞

θ(t, r0, θ0, λ)− θ0

t
= lim

t→∞

πp, z(t) +R(t)

t
= lim

t→∞

πp z(t)

t
.

This recharacterisation of the rotation number requires the evaluation of solutions

of (10) at large values of t, causing large inaccuracies in numerical schemes. In order

to mitigate this, we instead restrict our consideration to piecewise-constant potentials.

Using Theorem 3.0.1, these solutions can be evaluated in a closed form on each interval of t

over which the potential is constant. The closed form expressions are however, dependent

on the p-trigonometric and p-hyperbolic functions. Thus, using the approximations we

derived in Chapters 3.1 and 3.2, we may increase the accuracy of any approximation of

ρ.

The algorithm for the approximation of the rotation number starts off with some

arbitrary initial conditions (arbitrary, as per the independence of ρ on θ0, shown in

Lemma 2.3.1). We use the forms of the solutions shown in Theorem 3.0.1 to find the

value of the solution and its derivative at the end of the first subinterval over which Q is

constant. We also count the number of zeros attained by the solution on this subinterval.

From the values of the solution and its derivative at the end of the first subinterval,

we may evaluate the form of the solution on the second subinterval, along with any

necessary constants. This allows us once more to find the value of the solution and its

derivative at the end of the second subinterval, along with a count of the number of zeros

the solution attained throughout. We can continue in this way to enumerate the zeros

over all subintervals of constant potential within the period [0, α), as well as finding the

values of u and u′ at the boundary points between them.

Once this has been completed, we use the values of u(α) and u′(α) as the new initial
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values and repeat this until we have found an approximation of the number of zeros that

the solution attains over m periods, for some m ∈ N. Finally, we sum the number of zeros

that occurred over each period, to find the number of zeros of the function on the whole of

[0,mα), and we multiply this number by a factor of πp (mα)−1, to give an approximation

for the value of the rotation number (as per Theorem 3.3.1).

The greater the value m, the more accurate this approximation becomes. If we

consider the bounds on the difference between the rotation number, and an approximation

of the ratio t−1θ(t) over the m periods, we get,

∣∣∣ρ(λ)− θ(mα, r0, θ0, λ)

mα

∣∣∣ < 2πp
m

,

(first seen in the proof of Theorem 2.3.1). Combining this with the bounds in Theorem

3.3.1, and using the triangle inequality, we have

∣∣∣ρ(λ)− πp z(mα)

mα

∣∣∣ =
∣∣∣ρ(λ)− θ(mα, r0, θ0, λ)

mα
+
θ(mα, r0, θ0, λ)

mα
− πp z(mα)

mα

∣∣∣
≤
∣∣∣ρ(λ)− θ(mα, r0, θ0, λ)

mα

∣∣∣+
∣∣∣θ(mα, r0, θ0, λ)

mα
− πp z(mα)

mα

∣∣∣
<

2πp
m

+
πp
mα

,

giving us bounds on the accuracy of the function πp (mα)−1z(mα) as an approximation

of ρ.

We now detail how the values of the solutions and their derivatives are calculated.

Consider the subinterval [a, b) on which the potentialQ is identically equal to some C ∈ R,

we can use Theorem 3.0.1 to find a form for the solution, and thus find the number of

zeros on [a, b). For all possible values of λ−C, and the ratio u(a)(u′(a))−1, we state the

corresponding solution form, a method to evaluate any necessary constants, and a brief

statement on how this form is used to enumerate the zeros.

Case 1: λ− C > 0
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The solution is of the form

u(t) = A cosp((λ− C)
1/p (t− t0)) ,

for some A, t0 ∈ R. In order to evaluate t0, we take the derivative

u′(t) = −A((λ− C)
1/p(p− 1)

1/pφq(sinq((λ− C)
1/p(t− t0)) .

From these two expressions, we have

−u(t)

(λ− C)1/pu′(t)
= cotp((λ− C)

1/p(t− t0)) .

Rearranging to get an expression for t0, this gives

t0 = a+
1

(λ− C)1/p
arccotp

(
u(a)

(λ− C)1/p u′(a)

)
.

We can also evaluate A, but it is unnecessary here as A is effectively the radial component,

i.e., the effect of changing A is a mere rescaling of the solution, which will not affect the

number of zeros it attains.

For any β, C, t0 ∈ R, the maximum number of zeros that the function cosp(C t+t0) can

attain over the interval [0, β) is bounded above by dCπ−1
p βe. Therefore, on the interval

[a, b), the solution can have a maximum of d(λ − C)1/p π−1
p (b − a)e zeros. Thus, we can

partition the subinterval [a, b) into smaller subintervals each with length less than

(d(λ − C)1/p π−1
p (b − a)e)−1 (b − a), and count how many times the sign of the solution

changes over all of them.

Case 2: λ− C = 0

The solution is of the form

u(t) = At+B ,
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for some A,B ∈ R. The values A and B can be calculated immediately from the initial

values. Non-trivial linear functions can attain a maximum of one zero, therefore to count

the number of zeros of the solution inside [a, b), it suffices to check whether the sign of

the solution has changed over [a, b).

Case 3: λ−Q < 0 and
∣∣∣ (C−λ)

1/pu(a)
u′(a)

∣∣∣ > (p− 1)
1/p

The solution is of the form

u(t) = A coshp((C − λ)
1/p(t− t0)) ,

for some A, t0 ∈ R. Differentiating, we get

u′(t) = A(C − λ)
1/p(p− 1)

1/pφq(sinhq((C − λ)
1/p(t− t0))) .

From these two expressions, we have

(C − λ)1/pu(t)

u′(t)
= cothp(((C − λ)

1/p(t− t0))) .

Rearranging to get an expression for t0, this gives

t0 = a− 1

(C − λ)1/p
arccothp

(
(C − λ)1/pu(a)

u′(a)

)
,

which is well-defined, as arccothp(t) is defined for all |t| > (p − 1)1/p. Once again, it is

unnecessary to calculate the value A, as that just gives a rescaling of the solution that

does not affect the number of zeros attained. The coshp function has no zeros on the real

line, so we do not check for zeros on [a, b).

Case 4: λ−Q < 0 and
∣∣∣ (C−λ)

1/pu(a)
u′(a)

∣∣∣ < (p− 1)
1/p

The solution is of the form
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u(t) = A sinhp((C − λ)
1/p(t− t0)) .

for some A, t0 ∈ R. Differentiating, we get

u′(t) = A(C − λ)
1/p(p− 1)

1/pφq(coshq((C − λ)
1/p(t− t0))) .

From these two expressions, we have

(C − λ)1/pu(t)

u′(t)
= tanhp(((C − λ)

1/p(t− t0))) .

Rearranging to get an expression for t0, this gives

t0 = a− 1

(C − λ)1/p
arctanhp

(
(C − λ)1/pu(a)

u′(a)

)
,

which is well-defined, as arctanhp(t) is defined for all |t| < (p − 1)1/p. Again, we do not

calculate A. The sinhp function attains only one zero on the real line, therefore to count

the number of zeros of the solution inside [a, b), it suffices to check whether the sign of

the solution has changed over [a, b).

Cases 5 and 6: λ−Q < 0 and (C−λ)
1/pu(a)

u′(a) = ±(p− 1)
1/p

The solution is of the form

u(t) = A exp(∓(q − 1)
1/p(C − λ)

1/p t) ,

for some A ∈ R. We do not calculate A, in fact, as the angle depends explicitly on the

ratio u(t)(u′(t))−1, and this ratio is constant for exponentials, we just take the value for

the solution and its derivative at the end of the subinterval to be equal to the initial

values. The exponential function has no zeros on the real line, so we do not check for

zeros on [a, b).

Note that even though the function arctanhp occurs in the above calculations, there
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is no need to derive a separate approximation for it, as

arctanhp(1/φq(t)) = (p− 1) arccothq(t) .

The pseudocode for this whole scheme is listed in Chapter 6.3. An implementation

of this code was used to plot Figure 3 below. The rotation number here was calculated

for p = 3, period α = 2π3, and the potential is piecewise-constant, given by

Q(t) =


−1 , if t ∈ [0, 2)

−4 , if t ∈ [2, 3)

1 , if t ∈ [3, 2π3) .

(36)

For these values, the periodic eigenvalues for which the corresponding solution has n

zeros in [0, 2π3) have,

ρ =
2nπp
α

=
2nπ3

2π3

= n ,

and for the anti-periodic eigenvalues,

ρ =
2nπp
2α

=
2nπ3

2 · 2π3

=
n

2
.

Therefore, we anticipate plateaus for which the rotation number is a half-integer. There

are clear plateaus at the levels ρ = 3/2, the end-points of which correspond to a pair of

anti-periodic eigenvalues, and ρ = 2, the end-points corresponding to a pair of periodic

eigenvalues. However, we notice a small extra plateau at the level ρ = 7/4. This would

imply the existence of a non-degenerate pair of eigenvalues of the periodic problem over

four periods. Non-degenerate eigenvalues for such a problem are precluded from existing

in the linear case, p = 2, by Theorem 1.0.9. We now verify this observation by using

further numerical schemes to evaluate the properties of solutions of the equation (10) for

values of the spectral parameter that fall inside such extra plateaus.
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Figure 3: Values of the rotation number, ρ(λ), on the domain 1 ≤ λ ≤ 10, with p = 3
and Q defined in (36).

3.4 Study of Stability and Instability in the Phase Plane

We next remove the constraint of considering only piecewise constant potentials,

and return to the general case Q ∈ L1
loc(R). We consider the analysis of the stability

of solutions to the equation (10) for fixed values of λ ∈ R. In Chapter 1, the linear

ODE (11) was converted to a first-order system, with matrix A. Theorem 1.0.3 shows

that the solution of this first-order system has the property that the effect of evaluating

the solution after an additional period is equivalent to multiplying the solution by the

Monodromy matrix.

The behaviour of the solutions of (10) is therefore characterised by the eigenvalues

of the corresponding Monodromy matrix. Given that trace(A) ≡ 0, an application of

Liouville’s formula to the matrix A shows that any matrix solution of x′ = Ax has a

constant determinant. For the solution Φ, Φ(0) = I, the determinant is identically equal

to one, therefore the product of the two eigenvalues of the Monodromy matrix is one. By

Theorem 1.0.4, we once can once again characterise the solutions of the equation (11) as

falling into one of four distinct cases:
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• Case 1: Stability The eigenvalues of the system are complex conjugate pairs,

µ, µ̄.

• Case 2: Instability The eigenvalues are a pair of real numbers, µ, µ−1.

• Case 3: Periodicity The eigenvalues are both equal to 1.

• Case 4: Anti-periodicity The eigenvalues are both equal to −1.

Furthermore, Theorem 1.0.6 shows that the case of stability exactly corresponds to the

values of λ such that the rotation number is strictly increasing, and the case of instability

corresponds to the values of λ inside the plateaus. As a consequence of Theorem 1.0.8,

the case of periodicity corresponds to the end-points of the plateaus at levels that are

even multiples of πp α
−1, and the case of anti-periodicity corresponds to the end-points

of the plateaus at levels that are odd multiples of πp α
−1.

This theory gives a full account of the stability of solutions of the equation (11) and

how they relate to the spectrum of the periodic problem. However, given that we have seen

qualitative differences in the behaviour of the spectrum for the nonlinear equation (10),

it is worth analysing the stability of solutions numerically to find any possible analogous

connection between the stability of solutions and the spectrum of the periodic problem.

For example, given that our numerical approximation of the rotation number suggested

the existence of non-degenerate eigenvalues of the iterated problem (for m > 2), we will

show if the newly formed plateaus also give rise to unstable solutions, and describe any

differences in the structure of the solution manifold.

As we noted in Chapter 1, Floquet Theory fails in the nonlinear case p 6= 2, so to

determine stability, we will need to consider a different method. To do this, we start by

plotting a locus of points of Prüfer radius one. By Lemma 2.2.1, this is the set of points

(x, y) ∈ R2 satisfying

(q − 1)|x|p + |y|q = 1 .
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We call this the unit p-circle. We plot a unit p-circle in the phaseplane, each point

of which gives a pair of initial values u(0), u′(0) of the solution. For each pair of initial

conditions, we use a standard numerical scheme (e.g. Runge-Kutta) to determine the

values, u(α), u′(α), of the solution after one period. We then plot how each point on the

circle has been affected after each additional period in t. We continue this for several

more iterations, which then gives us a picture for how each of the solutions behaves in the

long term. Importantly, as (22) shows that the behaviour of the solutions doesn’t change

with rescaling, the solutions that stem from this one circle give a complete picture of the

stability.

We now compare the rotation number plots with these phaseplane plots, to see if the

concept of the plateaus being regarded as instability intervals is valid in the case p 6= 2.

Consider the example in Figure 3, the value λ = 6.3 clearly falls outside of any plateau.

In the linear case, Theorem 1.0.6 shows that we can expect the resulting solutions to be

stable. That is, they must be bounded over R. Furthermore, the image of λ = 3.1 does

not appear to be a integer/half-integer, and we can therefore claim it is not a periodic or

anti-periodic eigenvalue. From this, we would anticipate that the phaseplane plots would

similarly be bounded, and indeed, Figure 4a shows stable behaviour.

(a) Circle in phaseplane after each of the
first 30 periods, with p = 3, λ = 6.3.

(b) Circle in phaseplane after each of the
first 30 periods, with p = 3, λ = 3.1.

Figure 4: Phaseplane Plots for Q defined in (36), at varying values of λ ∈ R.

Compare this with the value λ = 3.1. This seems to fall inside the plateau at the
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level ρ = 3/2. Corollary 2.4.2 shows that even in the nonlinear case, the end-points of this

plateau are anti-periodic eigenvalues. However, we do not yet know whether all solutions

with spectral parameter, λ, inside this plateau produce divergent behaviour, as in the

linear case. If this were true, then we would expect the corresponding phaseplane plots

to diverge, and the plot in Figure 4b does indeed show unstable behaviour.

Figure 5: Circle in phaseplane after each of the first 30 periods, with p = 3, λ = 5.1
and Q defined in (36). Note that as the p-radius is increasing after each period, we have
unstable behaviour.

Theorem 1.0.9 shows that in the linear case p = 2, plateaus can only exist at multiples

of πp α
−1. The potential Q in the system used in the Figure 3 therefore seems to have an

extra plateau at the level ρ(λ) = 1.75. Reading off the rotation number plot, we can see

that λ = 5.1 is a value that falls in the interior of this plateau, therefore we would expect

unstable behaviour of the phaseplane plot. Indeed, Figure 5 shows that the effect of this

operator on the unit p-circle includes initial conditions that produce divergent behaviour.

We observe that this extra plateau is significantly smaller than the other standard

plateaus, and the behaviour of the solution for λ = 5.1 of the system is somewhat ‘less

unstable’ than the system for λ = 3.1, which falls inside the more sizeable plateau at the

level ρ = 3/2. Note that in the latter case, the phaseplane plot expands out to the order
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Figure 6: Values of the rotation number, ρ(λ), on the domain 3 ≤ λ ≤ 5, with p = 5 and
Q defined in (37) .

of 108, whereas in the former case, it merely reaches an order of 101.

Also note that as the end-points of the plateau at ρ = 3/2 are anti-periodic eigenvalues,

all values of λ between these points there exist initial conditions for which the angular

component is anti-periodic. That is, the solution components in the phaseplane rotate by

an odd multiple of π3. This results in the phaseplane plot, Figure 4b, having two ‘horns’,

because points that lie on one horn at a certain iteration are mapped to the other horn

at the next iteration. We can then check for consistency for values of λ inside extra

plateaus. For example, the case p = 5, with potential Q given by

Q(t) =


−1 , if t ∈ [0, 2)

−4 , if t ∈ [2, 3)

1 , if t ∈ [3, 2π5) .

(37)

In Figure 6, we observe extra plateaus at levels ρ = 4/3, (e.g at λ = 3.8); and at

ρ = 11/8, (e.g. at λ = 4.5). The resulting phaseplane plots are given in Figures 7a and

7b, respectively.
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(a) Circle in phaseplane after each of the
first 30 periods, with p = 5, λ = 3.8. Note
that we have 6 horns.

(b) Circle in phaseplane after each of the first
30 periods, with p = 5, λ = 4.5. Note
that we have 8 horns.

Figure 7: Phaseplane Plots for a piecewise-constant potential, Q, at varying values of
λ ∈ R.

For the value λ = 3.8, as ρ(λ) = 4/3, we expect each solution to rotate, on average, by

about 8π5/3. This results in the phaseplane plot having six horns, three due to the average

rotation per period, and another three due to the same property and the symmetry of

the phaseplane plots. Similarly, the value λ = 4.5, as ρ(λ) = 11/8, we expect each solution

to rotate, on average, by about 11π5/4. This results in the phaseplane plot having eight

horns. Chapter 4 discusses the number of horns expected in each plot in more detail, as

well as proving the validity of this argument.

We can quantify stability more precisely by plotting the log of the ratio of the radii

of the inner circle of the plot (that is, the largest circle, centred at the origin, that fits

inside the curve) and the outer circle (the smallest circle, centred at the origin, that fits

outside the curve) after each period. In the linear case, by Theorem 1.0.4, every unstable

solution u has corresponding radius r(t) ∼ A exp(C t), for some A,C ∈ R. Therefore, the

resulting plots would have a linear asymptotic.

We now check to see if the plots are similar for the nonlinear case. We calculate the

radius for each set of initial values x, y after each iteration, and find the maximum and

minimum values. The results for different values of λ with the potential Q defined in (37)
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are given in Figure 8.

(a) λ = 4.3, this is a case of stability, so
there is no overall increase.

(b) λ = 4.5, this is a case of instability, so
there is an overall increase.

Figure 8: The logarithm of the ratio of the radii after each of the first 30 periods, for
p = 5, and Q defined in (37).

Note that in the case of instability in Figure 7b, as ρ(λ) = 11/8, we have these ratios

increasing in patterns of four. These patterns correspond to the four pairs of horns that

are given in the corresponding phaseplane plot, each of which corresponds to a jump

of the solution after one period by approximately 11π5/4. Note that in the linear case,

the gradient between the points of each of these four separate cases are just the Floquet

multipliers (the eigenvalues of the Monodromy matrix). However, in the linear case we

could never have unstable behaviour at the level ρ(λ) = 11/8, so we would in general only

find patterns of two points, corresponding to one pair of horns.

In Chapter 4, we validate the claim that the horns in the phaseplane plots are the

result of values of λ inside the instability intervals that result in initial angles for which

the Prüfer angle is periodic, but the Prüfer radius is not. These are analogous to the

Floquet solutions in the linear case; solutions of (11) for which D(λ) > 2 that have the

form u(t) = exp(C t) g(t), for some periodic g ∈ V . In Chapter 5, we prove the existence

of extra plateaus for certain potentials, using a perturbation argument similar to the one

in Chapter 2, proving that the extra plateaus appearing in Figures 3 and 6 are artifacts

of the nonlinearity of the problem, and not a by-product of any numerical inaccuracies.
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4 Floquet Type Solutions

4.1 A Generalisation of Floquet Solutions and Multipliers to

the p-Laplace Equation

In Theorem 2.4.2, we characterised the plateaus of the rotation number as values of

λ ∈ R for which there exists an initial angle θ0 ∈ R with angular periodicity, i.e.,

Ψ(θ0, λ) = 2nπp , (38)

for some n ∈ N. In the linear case, p = 2, the rotation number plateaus coincide with the

so-called instability intervals of the spectral parameter; values of λ such that there exist

solutions that increase without bound. In particular, these solutions have the property

that the effect of shifting the function argument by one period is to multiply the value

by some fixed, positive constant. Consider a spectral value λ that lies in the interior

of a rotation number plateau, then there exists a θ0 ∈ R such that (38) holds (with

πp = π2 = π). By the definition of the renormalised Poincaré map Ψ,

θ(α, r0, θ0, λ) = θ0 + 2nπ ,

for some initial values r0, θ0 ∈ R. Given this, by the definition of the p-Prüfer Transform

for p = 2, we have

u(α, r0, θ0, λ) = r(α, r0, θ0, λ) cos(θ(α, r0, θ0, λ))

= r0 exp

(∫ α

0

(λ−Q− 1) cos(θ(s, r0, θ0, λ)) sin(θ(s, r0, θ0, λ)) ds

)
cos(θ0 + 2nπ)

= exp

(∫ α

0

(λ−Q− 1) cos(θ(s, r0, θ0, λ)) sin(θ(s, r0, θ0, λ)) ds

)
r0 cos(θ0)

= µu(0, r0, θ0, λ) ,

where
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µ = exp

(∫ α

0

(λ−Q− 1) cos(θ(s, r0, θ0, λ)) sin(θ(s, r0, θ0, λ)) ds

)
.

In general, for the solutions of (10) at any value t ∈ R, and any initial values r0, θ0 ∈ R,

u(t+ α, r0, θ0, λ) = µu(t, r0, θ0, λ) .

In the linear case, this type of solution is referred to as a Floquet solution, and the value

µ as its Floquet multiplier. We show now that even in the nonlinear case, the rotation

number plateaus comprise spectral values that always result in unstable solutions.

Lemma 4.1.1. Let λ ∈ R be such that there exists an initial angle θ0 ∈ R with the

renormalised Poincaré map

Ψ(θ0, λ) = 2nπp ,

then solutions to the equation (10) with this initial angle have the form

u(t+ α, r0, θ0, λ) = µ u(t, r0, θ0, λ) ,

where

µ = exp

(∫ α

0

(p− 1)
− 1/q(λ−Q(s)− 1)φp(cosp θ(s, r0, θ0, λ))φq(sinq θ(s, r0, θ0, λ)) ds

)
.

Proof. By the assumption, we have

θ(α, r0, θ0, λ) = θ0 + 2nπp ,

and from the radial equation (22),
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r(t+ α, r0, θ0, λ) = r0 exp

(∫ t+α

0

(q/2)(p− 1)
1/p(λ−Q(s)− 1)φp(cosp θ(s, r0, θ0, λ))

· φq(sinq θ(s, r0, θ0, λ)) ds

)

= r0 exp

(∫ α

0

(q/2)(p− 1)
1/p(λ−Q(s)− 1)φp(cosp θ(s, r0, θ0, λ))

· φq(sinq θ(s, r0, θ0, λ)) ds

)
· exp

(∫ t+α

α

(q/2)(p− 1)
1/p(λ−Q(s)− 1)

· φp(cosp θ(s, r0, θ0, λ))φq(sinq θ(s, r0, θ0, λ)) ds

)

= r0 exp

(∫ α

0

(q/2)(p− 1)
1/p(λ−Q(s)− 1)φp(cosp θ(s, r0, θ0, λ))

· φq(sinq θ(s, r0, θ0, λ)) ds

)
· exp

(∫ t

0

(q/2)(p− 1)
1/p(λ−Q(s)− 1)

· φp(cosp θ(s, r0, θ0, λ))φq(sinq θ(s, r0, θ0, λ)) ds

)
,

using the substitution t 7→ t−α in the latter integral, and using the fact that the period

Q is α-periodic, and that by our assumption, the angle θ is α-periodic, modulo 2πp. We

therefore have,

r(t+ α, r0, θ0, λ) = µ
p/2 r0 exp

(∫ t

0

(q/2)(p− 1)
1/p(λ−Q(s)− 1)φp(cosp θ(s, r0, θ0, λ))

· φq(sinq θ(s, r0, θ0, λ)) ds

)
= µ

p/2 r(t, r0, θ0, λ) .

Therefore, by definition
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u(t+ α, r0, θ0, λ) = (r(t+ α, r0, θ0, λ))
2/p cosp θ(t+ α, r0, θ0, λ)

= (µ
p/2 r(t, r0, θ0, λ))

2/p cosp(θ(t, r0, θ0, λ) + 2nπp)

= µ (r(t, r0, θ0, λ))
2/p cosp θ(t, r0, θ0, λ)

= µ u(t, r0, θ0, λ) .

This type of behaviour is analogous to the Floquet solutions seen in the classical,

linear case p = 2. Motivated by this observation, we now generalise this definition.

Definition 4.1.1. Fix λ ∈ R, if there exists a θ0 ∈ R such that the corresponding solution

to the equation (10) has the form

u(t+ α, r0, θ0, λ) = µu(t, r0, θ0, λ) ,

for some µ ∈ R, then we call it a Floquet Type solution.

For any value λ such that there exists a solution of (10) with

Ψ(θ0, λ) = 2nπp ,

for some θ0 ∈ R, n ∈ N, the ratio of the increase in radius,

r(α, r0, θ0, λ)

r0

,

is equal to µp/2. By Lemma 2.2.2,

µ =

(
r(α, r0, θ0, λ)

r0

)2/p

= (∂3θ(α, r0, θ0, λ))
− 1/p = (∂1Ψ(θ0, λ) + 1)

− 1/p ,

and therefore,
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µ < 1 ⇐⇒ ∂1Ψ(θ0, λ) < 0 ,

µ = 1 ⇐⇒ ∂1Ψ(θ0, λ) = 0 ,

µ > 1 ⇐⇒ ∂1Ψ(θ0, λ) > 0 .

This shows that at any λ ∈ R, there exist unbounded solutions of (10) if and only if

there exists an initial angle θ0 ∈ R such that

Ψ(θ0, λ) = 2nπp and ∂1Ψ(θ0, λ) 6= 0 .

By Theorem 2.4.2, for any value of λ in the interior of a rotation number plateau, there

exist initial angles θ1 , θ2 such that

Ψ(θ1, λ) < 2nπp and Ψ(θ2, λ) > 2nπp ,

for the corresponding value n ∈ N. By the continuity of Ψ(·, λ), and the Intermediate

Value Theorem, there exists a value θ0 ∈ [θ1, θ2] such that

Ψ(θ0, λ) = 2nπp .

Through the monotonicity of Ψ in λ, the set of points (θ0, λ) that satisfy this equality is

a connected curve. By Sard’s Theorem, the set of points on this curve that also satisfy

∂1Ψ(θ0, λ) = 0 ,

has measure zero. Therefore, for almost all values λ in the interior of a rotation number

plateau, there exists a solution of (10) that is unbounded in t. This validates the charac-

terisation of rotation number plateaus as being instability intervals, even in the nonlinear

case.
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The next question we consider is, for any value λ ∈ R that results in the existence

of Floquet Type solutions, the number of other initial angles, θ0 ∈ R, that also result in

Floquet Type solutions.
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4.2 Existence and Multiplicity of Floquet Type Solutions

In the linear problem, Floquet theory demonstrates that for any value of λ inside an

instability interval, there exist two Floquet solutions with Floquet multipliers µ1, µ2 ∈ R

such that µiµ2 = 1. In the nonlinear case, we can also show that such solutions occur in

pairs.

Lemma 4.2.1. Fix some initial radius r0 > 0 and let λ ∈ R be such that the problem

(10) has a Floquet Type solution, u, i.e.

u(t+ α, r0, θ1, λ) = µ1u(t, r0, θ1, λ) ,

for some initial angle θ1 ∈ R and µ1 ≥ 1, then there exists an initial angle θ2 ∈ R such

that the corresponding solution has the form

u(t+ α, r0, θ2, λ) = µ2u(t, r0, θ2, λ) ,

with µ2 ≤ 1.

Proof. In Lemma 4.1.1, we showed that any λ ∈ R that resulted in the existence of a

value θ0 ∈ R such that

Ψ(θ0, λ) = 2nπp ,

for some n ∈ N, corresponds to the problem (10) having a Floquet Type solution. Con-

versely, if the problem (10) has such a solution

u(t+ α, r0, θ0, λ) = µ1u(t, r0, θ0, λ) ,

we can show that the renormalised Poincaré map at this spectral value, Ψ(·, λ), similarly

attains the value 2nπp (for some n ∈ N) at the point θ0.

By Lemma 2.2.1, we have
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θ = − arccotp(u/u′). (39)

Given that

u(t+ α, r0, θ1, λ) = µ1u(t, r0, θ0, λ)

u′(t+ α, r0, θ1, λ) = µ1u
′(t, r0, θ0, λ) ,

then by (39),

θ(t+ α, r0, θ1, λ) = − arccotp

( u(t+ α, r0, θ1, λ)

u′(t+ α, r0, θ1, λ)

)
= − arccotp

( µ1u(t, r0, θ1, λ)

µ1u′(t, r0, θ1, λ)

)
= − arccotp

( u(t, r0, θ1, λ)

u′(t, r0, θ1, λ)

)
= θ(t, r0, θ1, λ) + 2nπp ,

for some n ∈ N.

From this, at the point t = 0, we can deduce

Ψ(θ1, λ) = θ(α, r0, θ1, λ)− θ1 = 2nπp .

Similarly, for the Prüfer radius,

r =

(
|u|p

p− 1
+ |u′|p

)1/2

,

we have
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r(t+ α, r0, θ1, λ) =
( |u(t+ α, r0, θ0, λ)|p

p− 1
+ |u′(t+ α, r0, θ0, λ)|p

)1/2

=
( |µ1u(t, r0, θ0, λ)|p

p− 1
+ |µ1u

′(t, r0, θ0, λ)|p
)1/2

= (µ1)
2/p
( |u(t, r0, θ0, λ)|p

p− 1
+ |u′(t, r0, θ0, λ)|p

)1/2

= µ
2/p
1 r(t, r0, θ1, λ) ,

and by Lemma 2.2.2, at t = 0,

∂3θ(α, r0, θ1, λ) =
( r0

r(α, r0, θ1, λ)

)2

=
( r0

µ
2/p
1 r0

)2

=
1

µ
4/p
1

≤ 1 ,

and so,

∂1Ψ(θ1, λ) =
∂

∂θ1

(θ(α, r0, θ1, λ)− θ1) = ∂3θ(α, r0, θ1, λ)− 1 ≤ 0 .

By Corollary 2.2.1, the map Ψ(·, λ) is continuous and πp-periodic. Therefore, by the

Intermediate Value Theorem, there exists a point θ2 that is distinct from θ1, modulo πp,

such that

Ψ(θ2, λ) = 2nπp and ∂1Ψ(θ2, λ) ≥ 0 .

Again, by Lemma 2.2.2, we have

r(α, r0, θ2, λ) = µ
2/p
2 r0 ,

for some µ2 ≤ 1. Also, since Ψ(θ2, λ) = 2nπp, then by Lemma 4.1.1,

u(t+ α, r0, θ2, λ) = µ2u(t, r0, θ2, λ) ,

for any t ∈ R.
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For the linear case with any such λ ∈ R, constant multiples of either one of this pair

form the set of all Floquet solutions of the problem. However, in the nonlinear case,

this is no longer true. In Chapter 2.5, we have shown that rather than the renormalised

Poincaré map oscillating just twice per period, for any n ∈ N there exist potentials for

which the Ψ(·, λ) oscillates about a value 2nπp at least n times. Any angle θ0 such that

Ψ(θ0, λ) = 2nπp gives the existence of another Floquet Type solution, and Theorem 2.5.1

shows us that any potential that has a degenerate eigenvalue λ, can be perturbed to give

arbitrarily many such θ0 ∈ R.

Theorem 4.2.1. Let λ ∈ R be such that

Ψ(θ0, λ) = 2nπp ,

for all θ0 ∈ R. Let Q2 be an α-periodic function such that

∫ α

0

Q2(s)|u(s, r0, θ1, λ, 0)|p ds > 0∫ α

0

Q2(s)|u(s, r0, θ2, λ, 0)|p ds < 0

...∫ α

0

Q2(s)|u(s, r0, θ2j, λ, 0)|p ds < 0

for some distinct θ1 < θ2 < . . . < θ2j ∈ [0, πp), with j ∈ N; then there exists some ε > 0

such that the equation (30) has n Floquet Type solutions given by

u(t+ α, r0, ϑi, λ, ε) = µi u(t, r0, ϑi, λ, ε) ,

for values 0 ≤ ϑ1 < . . . < ϑi < . . . < ϑj < πp such that
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µi ≤ 1 , if i even,

µi ≥ 1 , if i odd.

Proof. By Theorem 2.5.1, there exist values ϑ1 ∈ R, . . . , θ2j such that

Ψ(ϑi, λ, ε) = 2nπp ,

∂1Ψ(ϑi, λ, ε) ≥ 0 , if i even,

∂1Ψ(ϑi, λ, ε) ≤ 0 , if i odd.

Therefore, by Lemma 4.1.1, each solution corresponding to any of these initial angles

ϑi are Floquet Type solutions; and by Lemma 2.2.2

µi =
( r0

r(α, r0, ϑi, λ, ε)

)p/2
= (∂1Ψ(ϑi, λ, ε))

p/2 ,

and the values µi alternate above and below the value 1 accordingly.

We now consider the enumeration of the number of distinct initials angles, θ0 ∈ R,

that result in Floquet Type solutions. We introduce a function, λ∗, that allows this

quantity to be determined by the analysis of the image of this function over one interval

[0, πp).
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4.3 Quantitative Measure of Multiplicity of

Floquet Type Solutions

Determining the number of linearly independent Floquet Type solutions that the

equation (10) has for each λ ∈ R can be difficult if one only considers the renormalised

Poincaré maps, Ψ(θ0, λ). This is because a new renormalised Poincaré map must be

analysed for each λ. We instead introduce a function that allows us to consider how the

number of linearly independent Floquet Type solutions varies as we move through an

instability interval. This function depends only on the parameter θ0, so all the analysis

for each instability interval can be done from this single function only.

Lemma 4.3.1. For each θ0 ∈ R and n ∈ N, there exists a unique value λ ∈ R such that:

Ψ(θ0, λ) = 2nπp . (40)

Proof. First, we show that there exists some λ ∈ R such that Ψ(θ0, λ) < 2πp.

For any λ ∈ R, and an initial angle θ0 (without loss of generality, take θ0 ∈ [−πp/2 , πp/2).

For any t0 > 0, if θ(t0, r0, θ0, λ) = − πp/2, then by (10),

θ′(t0, r0, θ0, λ) = 1 + (q − 1)(λ−Q− 1)| cosp(θ(t0, r0, θ0, λ)|p

= 1 + (q − 1)(λ−Q− 1)| cosp(−πp/2)|p

= 1 > 0 ,

and as θ(0, r0, θ0, λ) = θ0 > −πp/2,

θ(t, r0, θ0, λ) > − πp/2 ,

for all t > 0. Given this bound, we have
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Ψ(θ0, λ) = θ(α, r0, θ0, λ)− θ0

> −πp/2− πp/2

= −πp .

By the πp-periodicity of Ψ(·, λ), shown in Lemma 2.2.3, this inequality holds for all

θ0, λ ∈ R.

Fixing some value θ0 ∈ R, by Theorem 2.2.4, Ψ(θ0, ·) is a strictly monotonically

increasing function. Therefore, any sequence of values of λ taken as λ → −∞ gives a

sequence of values Ψ(θ0, λ) that are strictly decreasing and bounded below. Therefore,

lim
λ→−∞

Ψ(θ0, λ)

λ
= 0 , (41)

and we may also define the limiting function

θ−∞(t) := lim
λ→−∞

θ(t, r0, θ0, λ) .

Let λ < 0, then

Ψ(θ0, λ)

λ
=
θ(α, r0, θ0, λ)− θ0

λ

=
1

λ

∫ α

0

θ′(s, r0, θ0, λ) ds

=
1

λ

∫ α

0

(
1 + (q − 1)(λ−Q− 1)| cosp θ|p

)
ds .

As λ → −∞, this integrand tends to (q − 1)| cosp θ−∞|p almost everywhere, and is

bounded by 3 + |Q|. Therefore, by the Lebesgue Dominated Convergence Theorem, and

the limit (41), we have
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0 =

∫ α

0

| cosp θ−∞|p .

This implies that | cosp θ−∞|p = 0 almost everywhere. In fact, we can show that θ−∞ =

πp/2 + kπp almost everywhere. Let λ < 0, then

Ψ(θ0, λ) = θ(α, r0, θ0, λ)− θ0

=

∫ α

0

1 + (q − 1)(λ−Q− 1)| cosp θ|p

≤
∫ α

0

1− (q − 1)(Q+ 1)| cosp θ|p .

Hence, once again using the Lebesgue Dominated Convergence Theorem, as λ→ −∞

we have

θ−∞(t)− θ0 ≤
∫ t

0

1− (q − 1)(Q+ 1)| cosp θ−∞|p .

Given that | cosp θ−∞|p = 0 almost everywhere,

θ−∞(t)− θ0 ≤
∫ t

0

1 = t ,

which is absolutely continuous in t. Now since θ0 < πp/2 + (k + 1)πp,

θ−∞(t) < πp/2 + (k + 1)πp ,

for all t ∈ R. Hence θ−∞(t) = πp/2 + kπp for any t > 0. Similarly, θ−∞ = πp/2 + kπp in any

right-neighbourhood of any point where θ−∞ = πp/2 + kπp, and so,

θ−∞(t) =


θ0 , t = 0

πp/2 + kπp , t > 0 .

Therefore, since θ−∞ is the limiting function, there must exist a λ ∈ R such that
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Ψ(θ0, λ) < πp/2 + (k + 1)πp − θ0

< πp/2 + (k + 1)πp + πp/2− kπp

= 2πp .

Next, we show that for any n ∈ N, there exists some λ ∈ R such that Ψ(θ0, λ) > 2nπp.

Consider θ(α, r0, θ0, λ), as λ→∞. Assume that this function is bounded in λ, then define

θ∞(t) := lim
λ→∞

θ(t, r0, θ0, λ) .

Take λ > 1, then we have

θ(t, r0, θ0, λ)− θ0 ≥
∫ t

0

1 + (q − 1)Q| cosp θ|p . (42)

Since we assumed that the function θ(α, r0, θ0, λ) is bounded in λ, it follows that

lim
λ→∞

Ψ(θ0, λ)

λ
= lim

λ→∞

θ(α, r0, θ0, λ)− θ0

λ
= 0 .

So again, as

Ψ(θ0, λ)

λ
=

1

λ

∫ α

0

1 + (q − 1)(λ−Q− 1)| cosp θ|p ,

if we take the limit λ→∞, we have

∫ α

0

| cosp θ|p = 0 ,

and hence, | cosp θ|p = 0 almost everywhere. Therefore, taking (42) and passing to the

limit λ→∞,

θ∞(t)− θ0 ≥
∫ t

0

1 + (q − 1)Q| cosp θ∞|p =

∫ t

0

1 = t ,
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once again using the Lebesgue Dominated Convergence Theorem. Therefore, for all

t > 2nπp , θ∞(t)− θ0 ≥ 2nπp, which implies that

θ∞(t) ≥ πp/2 + (k + 2n)πp ,

Hence, there exists some λ ∈ R such that

Ψ(θ0, λ) > πp/2 + kπp − θ0

> πp/2 + (k + 2n)πp − πp/2− kπp

= 2nπp .

Using this lemma, we now know that the following function is well-defined.

Definition 4.3.1. Fix n ∈ N, then the function λ∗n : R→ R is given by the relation

Ψ(θ0, λ
∗
n(θ0)) = 2nπp ,

where such a value λ∗n(θ0) exists, and is unique, as a result of Lemma 4.3.1.

We now list several properties of this λ∗n function, starting with periodicity.

Lemma 4.3.2. For any fixed n ∈ N, the function λ∗n is πp-periodic.

Proof. If Ψ(θ0, λ) = 2nπp for some λ ∈ R, then Corollary 2.2.1, Ψ(θ0 + mπp, λ) = 2nπp,

for all m ∈ N.

As we have seen in Theorem 2.2.3, the conditions for λ ∈ R to be a periodic eigenvalue

can be expressed in terms of the value of the function Ψ, and its derivative in the θ0

variable. As a result of this, we shall see that these conditions can be rewritten with

respect to this λ∗ function. First however, we must show that this function is indeed

differentiable.
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Lemma 4.3.3. For any fixed n ∈ N, the function λ∗n is differentiable, and for all θ0 ∈ R,

(λ∗n)′(θ0) =
1− exp

(
−q(p− 1)1/p

∫ α
0
(λ∗n −Q− 1)φp(cosp θ)φq(sinq θ)

)
(q − 1)

∫ α
0
|u|p

Proof. Ψ(θ0, λ) is differentiable in θ0 (by Lemma 4.3.1), and in λ (by Theorem 4.3.1).

Also, by Theorem 4.3.1, ∂2Ψ(θ0, λ) > 0, so applying the Implicit Function Theorem to

(40), we see that λ∗n(θ0) is differentiable in θ0 and:

0 =
dΨ

dθ0

(θ0, λ
∗
n(θ0))

= ∂1Ψ(θ0, λ
∗
n(θ0)) + ∂2Ψ(θ0, λ

∗(θ0)) · (λ∗n)′(θ0)

Therefore, we have

(λ∗n)′(θ0) =
−∂1Ψ(θ0, λ

∗
n(θ0))

∂2Ψ(θ0, λ∗n(θ0))

=
1− exp

(
−q(p− 1)1/p

∫ α
0
(λ∗n −Q− 1)φp(cosp θ)φq(sinq θ)

)
(q − 1)

∫ α
0
|u|p

We now rewrite the conditions in Theorem 2.2.3 in terms of this λ∗n function, and

show that any λ ∈ R is a periodic eigenvalue if it is in the image of this function, for

some initial angle θ0 ∈ R, and has a zero derivative at this point.

Theorem 4.3.1. For any fixed n ∈ N, and any angle θ0 ∈ R, the value λ∗n(θ0) is an

eigenvalue of the problem (10) if and only if (λ∗n)′(θ0) = 0.

Proof. By definition, Ψ(θ0, λ
∗
n(θ0)) = 2nπp, therefore for λ∗n(θ0) to be an eigenvalue, we

only require ∂1Ψ(θ0, λ
∗
n(θ0)) = 0. By Lemma 4.3.3, this is true if and only if (λ∗n)′(θ0) = 0.
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The main use of the λ∗n function is as a way of enumerating the Floquet Type solutions,

for any value λ of the spectral parameter. For this purpose, we characterise all Floquet

Type solutions in terms of the image of the λ∗n function, and note that the condition for

the existence of such a solution is exactly the first of the two conditions in Theorem 2.2.3,

that are required for any such λ to be a periodic eigenvalue.

Theorem 4.3.2. For any λ̂ ∈ R, a solution with initial Prüfer angle θ0 is a Floquet Type

solution if and only if λ∗n(θ0) = λ̂, for some n ∈ N.

Proof. By definition, if λ∗n(θ0) = λ̂ for some n ∈ N0, then Ψ(θ0, λ̂) = 2nπp, and by Lemma

4.1.1, the corresponding solution is of the Floquet type:

u(t+ α, r0, θ0, λ̂) = µ u(t, r0, θ0, λ̂) ,

for some µ > 0.

Now that we have demonstrated the properties of the function λ∗n, we determine how

the image of this function can be used to enumerate the number of initial angles, θ0 ∈ R,

that result in Floquet Type solutions.
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4.4 Using the λ∗n Function for the Analysis of the Structure

of the Spectrum

Theorem 4.3.2 tells us how many Floquet Type solutions (with distinct initial angles,

modulo πp) we have for a given λ̂, and that this number is equal to the number of

θ0 ∈ [0, πp) such that λ∗n(θ0) = λ̂, for some n ∈ N0. Note that by Lemma 2.3.2, if there

exists a θ̃0 ∈ R with

Ψ(θ̃0, λ̂) = 2nπp ,

then for all θ0 ∈ R,

(n− 1)πp < Ψ(θ0, λ̂) < (n+ 1)πp .

Therefore, if there exists an n ∈ N0 with λ∗n(θ0) = λ̂, for some θ0 ∈ R, then for all other

j ∈ N0,

λ∗n(θ0) 6= λ̂ ,

for all θ0 ∈ R.

From this, we deduce that the number of Floquet Type solutions with distinct initial

angles remains constant as we vary the value λ̂, unless we come across a point with

(λ∗n)′(θ0) = 0 for some θ0. By Theorem 4.3.1, this is true if and only if this λ̂ is an

eigenvalue of the problem (10). So the number of distinct Floquet Type solutions can

only change when we vary λ through an eigenvalue of the problem.

We also note that if the ‘creation’ of new distinct Floquet Type solutions corresponds

to a peak on these graphs, the matching ‘annihilation’ corresponds to a trough. So the

Floquet Type solutions that are created between two adjacent peaks in these graphs are

cancelled out by the resulting troughs in between them. We can therefore consider cycles

of eigenvalues that stem from one eigenvalue that creates a Floquet Type solution, to

the next eigenvalue that annihilates it, continuing by periodicity (Lemma 4.3.2) until we
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return to the first eigenvalue. Also, the fact that the λ∗n function is well-defined (Lemma

4.3.1) also shows that there cannot be any separate closed cycles other than the main

cycle, as this would result in a closed contour on our graph separate from the main graph,

which would mean that λ∗ is not a function.

(a) The function λ∗1(θ0), on the domain
0 ≤ θ0 ≤ π3, for p = 3, and some piecewise
constant Q. Note that over a single
πp-period, there is a single oscillation,
showing that there is only a single pair of
eigenvalues that give a rotation number
ρ = 1.

(b) The function λ∗1(θ0), on the
domain 0 ≤ θ0 ≤ π3, for p = 3, and another
piecewise constant Q. Note that over a single
πp-period, there are three oscillations, showing
that there are three pairs of eigenvalues that
give a rotation number ρ = 1; the end-points of
the plateau, and four others in the interior.

Figure 9: The function λ∗1(θ0) for differing piecewise-constant potentials.

In this section, we discuss the properties of solutions of the iterated periodic problem

over m periods. We once again use the iterated renormalised Poincaré map over m

periods, for some m ∈ N, given by

Ψm(θ0, λ) := θ(mα, r0, θ0, λ)− θ0 .

We consider solutions of (10) for which the iterated renormalised Poincaré map is

non-degenerate. Note that in the linear case, p = 2, by Theorem 1.0.9, all iterated

renormalised Poincaré maps over m periods (for any m > 2) are degenerate. However,

this is not necessarily true for p 6= 2, and indeed, in Chapter 5, we will derive conditions

on a perturbation in the potential such that the iterated renormalised Poincaré map

becomes non-degenerate.
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We have shown in Theorem 2.4.2 that for any value of λ inside an instability intervals,

say at the level ρ(λ) = 2nπp/mα, there exists at least one value θ0 ∈ R such that

Ψm(θ0, λ) = 2nπp .

By the equation (22), we know that the effect of rescaling the initial Prüfer radius is to

rescale the whole solution at any t ∈ R by the same ratio. Therefore, each initial angle θ0

gives a solution that increases or decreases the radius by a certain factor after one period,

and this factor is independent of the initial radius.

The following lemma shows that the given mα-periodicity in the angular component,

the Prüfer angle forms a cycle of m values after each period. We will then show that each

of these angles can be associated with a corresponding radial increase/decrease.

Lemma 4.4.1. Let λ ∈ R be such that there exists a value θ0 ∈ [0, πp) with

Ψm(θ0, λ) = 2nπp ,

for some m,n ∈ N with m,n coprime. Then there exist m − 1 other distinct values

θ1, . . . , θm−1 ∈ [0, πp) such that

Ψm(θi, λ) = 2nπp ,

for i ∈ {1, . . . ,m− 1}.

Proof. Let θi = θ(iα, r0, θ0, λ) + hπp , with h ∈ Z the unique value of h such that

θi ∈ [0, πp). Then for each θi, we have
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θ(mα, r0, θi, λ) = θ(mα, r0, θ(iα, r0, θ0, λ) + hπp, λ)

= θ(mα, r0, θ(iα, r0, θ0, λ), λ) + hπp (by Theorem 2.2.3)

= θ((m+ i)α, r0, θ0, λ) + hπp (by Theorem 2.3.1)

= θ(iα, r0, θ(mα, r0, θ0, λ), λ) + hπp

= θ(iα, r0, θ0 + 2nπp, λ) + hπp (by the hypothesis on θ0)

= θ(iα, r0, θ0, λ) + (2n+ h)πp

= θi + 2nπp ,

and so it follows that

Ψm(θi, λ) = θ(mα, r0, θi, λ)− θi

= θi + 2nπp − θi

= 2nπp ,

for all the θi. These values are all distinct, else there would exist two values θj, θk in this

set, such that

θk = θj + 2lπp ,

for some l ∈ N. This is equivalent to the statement

Ψk−j(θj, λ) = 2lπp ,

but since we already know that

Ψm(θj, λ) = 2nπp ,
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then k − j divides m, and more precisely, ml = (k − j)n. But we assumed that m and n

were coprime, so this is a contradiction. Therefore all of the θi are distinct.

Following from this, we formalise the aforementioned concept that after each iteration

of this type, each of the angles θi has an associated ratio of radial increase/decrease, and

this translates to the solution u being rescaled through one of m distinct factors after

each iteration.

Theorem 4.4.1. Let λ ∈ R be such that there exists a θ0 ∈ R with

Ψm(θ0, λ) = 2nπp ,

for some coprime m,n ∈ N. By Lemma 4.4.1, there exist m − 1 other values θi (with

i ∈ {1, . . . ,m− 1}) that along with θ0, are all distinct modulo πp, and have the property

that

Ψm(θi, λ) = 2nπp .

For each of the values θi, with i ∈ {0, . . . ,m− 1}, we have

u(t+ α, r0, θi, λ) = µiu(t, r0, θi+1, λ) ,

where

µi = exp

(∫ α

0

(p− 1)
− 1/q(λ−Q(s)− 1)φp(cosp θ(s, r0, θi, λ))φq(sinq θ(s, r0, θi, λ)) ds

)
.

Note that the values θi form a cycle modulo πp, that is θm ≡ θ0 (mod πp), and we therefore

take θm+i ≡ θi for all i ∈ {0, . . . ,m− 1}.

Proof. The existence of the θi that are all distinct modulo πp, is shown by Lemma 4.4.1.

As before, we take θi = θ(iα, r0, θ0, λ) + hπp, with h ∈ Z such that θi ∈ [0, πp). As such,

we have
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θm = θ(mα, r0, θ0, λ) + hπp

= θ0 + 2nπp + hπp ,

We assumed that θ0 ∈ [0, πp), and so h = −2n, and θm = θ0. The values θi therefore

form a cycle, and θm+i = θi for all i.

We have

r(t+ α, r0, θi, λ) = r0 exp

(∫ t+α

0

(q/2)(p− 1)
1/p(λ−Q(s)− 1)φp(cosp θ(s, r0, θi, λ))

· φq(sinq θ(s, r0, θi, λ)) ds

)

= r0 exp

(∫ α

0

(q/2)(p− 1)
1/p(λ−Q(s)− 1)φp(cosp θ(s, r0, θi, λ))

· φq(sinq θ(s, r0, θi, λ)) ds

)
· exp

(∫ t+α

α

(q/2)(p− 1)
1/p(λ−Q(s)− 1)

· φp(cosp θ(s, r0, θi, λ))φq(sinq θ(s, r0, θi, λ)) ds

)

= r0 exp

(∫ α

0

(q/2)(p− 1)
1/p(λ−Q(s)− 1)φp(cosp θ(s, r0, θi, λ))

· φq(sinq θ(s, r0, θi, λ)) ds

)
· exp

(∫ t

0

(q/2)(p− 1)
1/p(λ−Q(sα)− 1)

· φp(cosp θ(s+ α, r0, θi, λ))φq(sinq θ(s+ α, r0, θi, λ)) ds

)
,

by a substitution. We note that the function Q is α-periodic, and by the Theorem 2.3.1,

we know that θ(s+α, r0, θi, λ) = θ(s, r0, θ(α, r0, θi, λ), λ). Also, by Lemma 4.4.1, we have

θi+1 + 2kπp = θ(α, r0, θi, λ), for some k ∈ N0, therefore

θ(s+ α, r0, θi, λ) ≡ θi+1 ( mod 2πp) .
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Combining this with the expression for r(t+ α, r0, θi, λ) above, we have

r(t+ α, r0, θi, λ) = r0 exp

(∫ α

0

(q/2)(p− 1)
1/p(λ−Q(s)− 1)φp(cosp θ(s, r0, θi, λ))

· φq(sinq θ(s, r0, θi, λ)) ds

)
exp

(∫ t

0

(q/2)(p− 1)
1/p(λ−Q(s)− 1)

· φp(cosp θ(s, r0, θi+1, λ))φq(sinq θ(s, r0, θi+1, λ)) ds

)

= exp

(∫ α

0

(q/2)(p− 1)
1/p(λ−Q(s)− 1)φp(cosp θ(s, r0, θi, λ))

· φq(sinq θ(s, r0, θi, λ)) ds

)
r(t, r0, θi+1, λ)

= µ
p/2
i r(t, r0, θi+1, λ)

then by the definition of r and θ,

u(t+ α, r0, θi, λ) = (r(t+ α, r0, θi, λ))
2/p cosp θ(t+ α, r0, θi, λ)

= (µ
p/2
i r(t, r0, θi, λ))

2/p cosp θ(t, r0, θ(α, r0, θi, λ), λ)

= µi (r(t, r0, θi+1, λ))
2/p cosp θ(t, r0, θi+1, λ)

= µi u(t, r0, θi+1, λ)

As before, we have the following corollary, which validates these solutions being

referred to as Floquet Type solutions of the iterated problem.

Corollary 4.4.1. Let λ ∈ R be such that there exists a value θi ∈ R with

Ψm(θi, λ) = 2nπp ,

for some m,n ∈ N. Let
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µ :=
m−1∏
i=0

µi

where each µi is defined as in Theorem 4.4.1, then

u(t+ kmα, r0, θi, λ) = µku(t, r0, θi, λ) ,

for any k ∈ N0.

These results provide an analytic basis for the behaviour we have seen on the phase-

plane plots in Chapter 3, namely that there are values of λ for which each iteration

deforms the unit circle outwards along some arcs, the greatest deformation occurring at

angles to form horns. Likewise, other arcs are deformed inwards, forming horns that

point towards the origin. The existence of these horns can be deduced from these initial

angles θi that are periodic after m iterations.

If we take some fixed value λ ∈ R, such that there exists a value θ0 with

Ψm(θ0, λ) = nπp ,

for some coprime m,n ∈ N, and such that this iterated renormalised Poincaré map is

non-degenerate, then by Lemma 4.4.1, there are m values θi with angular periodicity. By

Corollary 4.4.1, the radial rescaling after m periods is equal for all m of these values, and

Lemma 2.2.2 shows that this radial rescale is equal to the inverse of the square root of the

gradient of the iterated renormalised Poincaré map at each of these θi. As a result, the

gradient of Ψm(·, λ) is equal at each θi. The assumption that this map is non-degenerate

means that Ψm(·, λ) is not constant, as such every point θi with angular periodicity and

a positive gradient implies the existence of some ϑi that also has angular periodicity, and

a negative gradient, and vice versa. The values θi such that

Ψm(θi, λ) = 2nπp and ∂1Ψm(θ0, λ) > 0 ,
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each give a chain of m values of θ with an overall radial decrease after m periods.

Regarding the phaseplane, this tells us that at each θi, the radius will decrease af-

ter m periods, and so there exists a region of decreasing radius in the phaseplane with

the extreme point being a inward-pointing horn. The same is true of values ϑi with

∂1Ψm(ϑi, λ) < 0, corresponding instead to a chain of points with an overall increasing

radius. These show the existence of horns pointing outwards. By continuity of the nor-

malised Poincaré map in θ0, the points of increasing/decreasing gradient are interlacing,

and as such, the horns of increasing and decreasing radius must also alternate.

As demonstrated in Lemma 4.4.1, if n is even, then there are m distinct values θi in

each chain, and this simply gives m horns in the phaseplane. If however, n is odd, then

after the first m iterations, we have anti-periodicity, and there are a further m values

that are distinct, modulo 2πp. Therefore, if n is even, the phaseplane plot resulting from

the system with this λ will have m horns, and if n is odd, the plot will have 2m horns.

We can also generalise the λ∗n function, defined in Definition 4.3.1, to the iterated

problem, by modifying the definition of λ∗n(θ0) to map each θ0 ∈ R to the unique λ such

that:

Ψm(θ0, λ) = 2nπp ,

for some fixed m,n ∈ N.

Definition 4.4.1. Fix m,n ∈ N, then the function λ∗,mn : R→ R is given by the relation

Ψm(θ0, λ
∗,m
n (θ0)) = 2nπp .

Lemmas 4.3.1 through 4.3.3 are similarly true here, as the iterated renormalised

Poincaré map, Ψm(θ0, λ), has many of the same properties as Ψ(θ0, λ) (e.g. differentia-

bility, periodicity). So analogously to Theorem 4.3.1, we have:
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(λ∗,mn )′(θ0) =
−∂1Ψm(θ0, λ

∗,m
n (θ0))

∂2Ψ(θ0, λ
∗,m
n (θ0))

=
1− exp

(
−q(p− 1)1/p

∫ mα
0

(λ∗,mn −Q− 1)ϕp(cosp θ)ϕq(sinq θ)
)

(q − 1)
∫ mα

0
|u|p

,

and similarly λ∗,mn (θ0) is an eigenvalue if and only if (λ∗,mn (θ0))′ = 0. We have an analogue

for Theorem 4.3.2.

Lemma 4.4.2. Fix m ∈ N. For any λ̂ ∈ R, a solution with initial Prüfer angle θ0 is a

Floquet Type solution after m periods if and only if λ∗,mn (θ0) = λ̂, for some n ∈ N.

Proof. By definition , if λ∗,mn (θ0) = λ̂, then Ψm(θ0, λ̂) = 2nπp, and by Theorem 4.4.1, the

corresponding solution is of the Floquet type:

u(t+mα, r0, θ0, λ) = µ u(t, r0, θ0, λ) ,

for some µ > 0.

In conclusion, we have shown that the characterisation of the plateaus of the rotation

number function as instability intervals is valid even in the nonlinear case, and that the

existence of the so-called Floquet solutions can be generalised for solutions here too.

We do however, note several key differences. Given that this problem is nonlinear, for

any value of λ inside an instability interval, not all solutions of the problem are linear

combinations of the Floquet Type solutions.

Also, as a result of the perturbation arguments in Chapter 2.5, there may be more

than two Floquet Type Solutions, as opposed to the simple pairs that occur when p =

2. However, even in the nonlinear case, for every Floquet Type solution with Floquet

multiplier µ1 > 1, there exists a Floquet Type solution with Floquet multiplier µ2 < 1,

and vice-versa. Therefore, the Floquet Type solutions are still paired, in this sense.
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5 The Periodic Problem on Multiple Periods

The results regarding the stability of solutions in Chapters 3 and 4, particularly the

results regarding the existence of Floquet Type solutions, can now be extended to the

behaviour of solutions of the equation (10) over m periods, for any m ∈ N. As before, we

have the equation

(φp(u
′))′ + (λ−Q)φp(u) = 0 ,

but we now modify the periodic boundary conditions to

u(mα) = u(0)

u′(mα) = u′(0) ,

to define the Iterated Periodic Problem on m periods.

5.1 The Iterated Renormalised Poincaré Map and the

Rotation Number

Once again, we consider the iterated renormalised Poincaré map over m periods Ψm,

given in Definition 2.3.1. As demonstrated for the case m = 1 in Theorem 2.2.3, we have

a characterisation of periodic eigenvalues of the iterated problem in terms of the map

Ψm.

Theorem 5.1.1. A value λ ∈ R is a periodic eigenvalue of the iterated problem if and

only if there exists a θ0 ∈ R such that

Ψm(θ0, λ) = 2nπp

∂1Ψm(θ0, λ) = 0 ,

for some m,n ∈ N.

143



We can also link this characterisation of periodic eigenvalues of the iterated periodic

problem with conditions on the rotation number.

Theorem 5.1.2. Given a spectral value λ ∈ R such that there exists a θ0 ∈ R, and

l,m ∈ N, with

Ψm(θ0, λ) = lπp ,

then the rotation number

ρ(λ) =
lπp
mα

.

Proof.

ρ(λ) = lim
k→∞

Ψkm(θ0, λ)

kmα

= lim
k→∞

θ0 + klπp − θ0

kmα

= lim
k→∞

klπp
kmα

=
lπp
mα

The converse is also proved below, and from this we can show that the periodic eigenvalues

of the problem after m periods exactly correspond to the end-points of the intervals at

which ρ = 2nπp(mα)−1, for some n ∈ N. We start by considering the following lemma.

Lemma 5.1.1. For any m ∈ N, and any λ ∈ R, we have

min
θ0∈R

(
Ψm(θ0, λ)

mα

)
≤ ρ(λ) ≤ max

θ0∈R

(
Ψm(θ0, λ)

mα

)
Proof. We note that for any k ∈ N, θ0 ∈ R, we have
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Ψkm(θ0, λ) =
k∑
i=1

θ(imα, r0, θ0, λ)− θ((i− 1)mα, r0, θ0, λ) ,

and therefore

min
θ0∈R

Ψkm(θ0, λ) = min
θ0∈R

(
k∑
i=1

θ(imα, r0, θ0, λ)− θ((i− 1)mα, r0, θ0, λ)

)

= min
θ0∈R

(
k∑
i=1

θ(mα, r0, θ(iα, r0, θ0, λ), λ)− θ(mα, r0, θ((i− 1)α, r0, θ0, λ), λ)

)

≥
k∑
i=1

min
θ0∈R

(θ(mα, r0, θ0, λ)− θ0)

= kmin
θ0∈R

(θ(mα, r0, θ0, λ)− θ0)

= kmin
θ0∈R

Ψm(θ0, λ) ,

giving us

min
θ0∈R

Ψm(θ0, λ) ≤ min
θ0∈R

Ψkm(θ0, λ)

k

Dividing both sides of this inequality by mα, and taking the limit as k →∞, we get

min
θ0∈R

(
Ψm(θ0, λ)

mα

)
≤ min

θ0∈R

(
lim
k→∞

Ψkm(θ0, λ)

kmα

)
= ρ(λ)

Similarly;

max
θ0∈R

(
Ψm(θ0, λ)

mα

)
≥ max

θ0∈R

(
lim
k→∞

Ψkm(θ0, λ)

kmα

)
= ρ(λ)

We now prove the converse of Theorem 5.1.2.

Theorem 5.1.3. Given a spectral value λ ∈ R such that

ρ(λ) =
lπp
mα

,
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(for some l,m ∈ N), there exists a θ0 ∈ R, such that

Ψm(θ0, λ) = lπp .

Proof. We can divide the values λ ∈ R into three distinct cases:

• Case 1: All values of θ0 ∈ R give Ψm(θ0, λ) < lπp

By Lemma 5.1.1, this means that:

ρ(λ) ≤ max
θ0∈R

(
Ψm(θ0, λ)

mα

)
<
lπp
mα

• Case 2: There exists a θ0 ∈ R such that Ψm(θ0, λ) = lπp

By Theorem 5.1.2, this means that:

ρ(λ) =
lπp
mα

• Case 3: All values of θ0 ∈ R give Ψm(θ0, λ) > lπp

By Lemma 5.1.1, this means that:

ρ(λ) ≥ min
θ0∈R

(
Ψm(θ0, λ)

mα

)
>
lπp
mα

Therefore, we have a trichotomy, and if ρ(λ) = lπp
mα

, then there exists a θ0 ∈ R such that:

Ψm(θ0, λ) = lπp .

From this theorem, we derive the following characterisation of periodic eigenvalues of the
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problem (10) after m periods.

Corollary 5.1.1. The end-points of the interval for which the rotation number takes the

value 2nπp(mα)−1 are eigenvalues of the periodic problem over m periods, the eigenfunc-

tions of which each have 2n zeros over m periods.

Proof. By Theorem 5.1.3, for any value of λ inside this interval, there exists some θ0 ∈ R

such that

Ψm(θ0, λ) = 2nπp ,

and also that for any point to the left of this interval, no such θ0 exists, in fact

max
θ0∈R

(Ψm(θ0, λ)) < 2nπp .

Therefore, at the left end-point of the interval, we have λ such that

max
θ0∈R

(Ψm(θ0, λ)) = 2nπp .

As the function Ψm is differentiable in its first variable, and the point at which the

maximum is attained is a stationary point, this is equivalent to saying that there exists

a θ̃0 ∈ R such that

Ψm(θ̃0, λ) = 2nπp and ∂1(Ψm(θ̃0, λ)) = 0 .

By Theorem 5.1.1, these conditions are equivalent to λ being an eigenvalue of the periodic

problem over m periods.

Similarly, for the right end-point, λ ,

min
θ0∈R

(
Ψm(θ0, λ)

)
= 2nπp ,

and again, this is equivalent to saying that there exists a θ̂0 ∈ R such that
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Ψm(θ̂0, λ) = 2nπp and ∂1(Ψm(θ̂0, λ)) = 0 ,

which tells us that λ is also a periodic eigenvalue of this iterated problem.

We now return to an analysis of perturbation arguments, and introduce a perturbation

in the potential. Let λ ∈ R be a periodic eigenvalue over several periods, but not a

periodic eigenvalue over the problem on a single period. In the linear case, p = 2, such an

eigenvalue must be degenerate, that is, the entire resulting solution space is mα-periodic.

However, we will show through these perturbation arguments, that there exist potentials

that result in non-degenerate eigenvalues of the iterated problem, that are similarly not

periodic eigenvalues of the problem on a single period.
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5.2 Existence of Potentials Generating Non-Standard Rotation

Number Plateaus

We continue our consideration of the problem extended over several periods, and

apply the results from the perturbation arguments discussed in Chapter 2.5. We once

again have the equation (30),

(φp(u
′))′ + (λ−Q1 − εQ2)φp(u) = 0 ,

with some α-periodic perturbation Q2 ∈ L1
loc(R), and we require the boundary conditions

u(mα) = u(0)

u′(mα) = u′(0) ,

to be satisfied for some m ∈ N. Any value λ ∈ R for which the equation has a non-trivial

solution that satisfies these boundary conditions is a periodic eigenvalue after m periods.

For ε = 0, there are certain potentials Q1 ∈ L1
loc(R) for which an eigenvalue λ results

in a solution manifold that lies entirely within the space of mα-periodic functions. As

before, we refer to these eigenvalues as degenerate. For example, Q1 ≡ 0, has mα-periodic

eigenvalues of the form

λn =

(
2nπp
mα

)p
,

and all of these eigenvalues have a resulting space of solutions given by

A cosp

(
2nπp
mα

(t− t0)

)
,

for some A, t0 ∈ R. Since all solutions of this form are mα-periodic, these eigenvalues are

degenerate.

From Chapter 2, we know that the end-points of plateaus of the resulting rotation
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number are periodic eigenvalues, but unlike the linear case, it has been shown that there

may also exist periodic eigenvalues in the interior of the plateaus, [4]. Each plateau

corresponds to a set of values, λ, such that for the remormalised Poincaré map, there exits

an initial Prüfer angle that increases a multiple of 2πp over one period. For degenerate

eigenvalues, this map is constant, as all initial angles map to the same multiple of 2πp,

the resulting rotation number plateau therefore degenerates to a single point.

The alternative to the degeneracy of an eigenvalue is a set of values λi that all result

in the same value of the rotation number, two of these are the end-points of the plateau,

and all others are in the interior. We now consider whether any α-periodic potential,

Q1 , that has a degenerate periodic eigenvalue λ (after m periods) can be perturbed by

some α-periodic Q2 such that the degenerate mα-periodic eigenvalue, λ , is perturbed to

become several non-degenerate mα-periodic eigenvalues, λi . This is akin to ‘opening up’

a plateau of the resulting rotation numbers, as ε diverges from zero. Our first step is to

state a generalisation of Lemma 2.5.1 for the iterated problem.

Lemma 5.2.1. Consider the equation (30) with potential Q1 ∈ L1
loc(R), and a perturba-

tion Q2 ∈ L1
loc(R), we have

∂3Ψm(θ0, λ, ε) =
−(q − 1)

(r(mα, r0, θ0, λ, ε))2

∫ mα

0

Q2(s) |u(s, r0, θ0, λ, ε)|p ds .

The proof of this Lemma can be adapted from the proof of Lemma 2.5.1. We can apply

this lemma to the perturbation of degenerate renormalised Poincaré maps. We know that

degenerate renormalised Poincaré maps are constant in θ0, so for any α-periodic potential

Q1 and degenerate eigenvalue λ, it suffices to find a perturbation of the potential such

that the renormalised Poincaré map becomes non-constant.

Theorem 5.2.1. Let λ ∈ R be such that

Ψm(θ0, λ, 0) = 2nπp ,

for all θ0 ∈ R, for some coprime m,n ∈ N. If there exists an α-periodic function Q2 such
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that

∫ mα

0

Q2(s)|u(s, r0, θ1, λ, 0)|p ds > 0∫ mα

0

Q2(s)|u(s, r0, θ2, λ, 0)|p ds < 0

for some distinct θ1, θ2 ∈ [0, πp) , then the mth-iterated Poincaré map, Ψm(·, λ) will

become non-constant for some ε > 0.

Proof. As the periodic eigenvalue λ is degenerate, we know that all resulting solutions

are α-periodic, and so, for ε = 0, we have r(mα, r0, θ0, λ, 0) = r0 for any r0 ∈ R. Also,

from Lemma 5.2.1 , we have

∂3Ψm(θ1, λ, 0) =
−(q − 1)

(r(mα, r0, θ1, λ, 0))2

∫ mα

0

Q2(s) |u(s, r0, θ1, λ, 0)|p ds

= −(q − 1)

r2
0

∫ mα

0

Q2(s) |u(s, r0, θ1, λ, 0)|p ds

< 0 ,

by the hypotheses on Q2. Similarly,

∂3Ψm(θ2, λ, 0) > 0 .

Therefore, since Ψm(θ1, λ, 0) = Ψm(θ2, λ, 0) = 2nπp, there exists some ε > 0 such that

Ψm(θ1, λ, ε) < 2nπp

Ψm(θ2, λ, ε) > 2nπp

Therefore, the map Ψ(·, λ, ε) is non-constant.

The effect of this perturbation is that a single degenerate eigenvalue will become (at
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least) two separate eigenvalues, each of which has a one-dimensional solution manifold.

As mentioned above, this can be stated in terms of ‘opening up’ the plateau of the rotation

number functions.

Corollary 5.2.1. Let λ ∈ R be such that

Ψm(θ0, λ, 0) = 2nπp ,

for all θ0 ∈ R, for some m,n ∈ N. Then the corresponding rotation number

ρ(λ, 0) =
2nπp
mα

.

We also have

ρ(λ, 0) <
2nπp
mα

for all λ < λ, and

ρ(λ, 0) >
2nπp
mα

for all λ > λ.

Furthermore, if there exists an α-periodic function Q2, such that

∫ mα

0

Q2(s)|u(s, r0, θ1, λ, 0)|p ds > 0∫ mα

0

Q2(s)|u(s, r0, θ2, λ, 0)|p ds < 0; ,

for some distinct θ1, θ2 ∈ [0, πp) , then there exists some ε > 0 such that for the resulting

perturbed problem (30) with this value ε, there exist two values λ, λ such that λ < λ < λ,

and

152



ρ(λ̂, ε) =
2nπp
mα

,

for all λ̂ ∈ [λ, λ].

Proof. For ε = 0, at the periodic eigenvalue λ, we have

ρ(λ, 0) = lim
t→∞

θ(t, r0, θ0, λ, 0)− θ0

t

= lim
k→∞

θ(kmα, r0, θ0, λ, 0)− θ0

kmα

= lim
k→∞

θ0 + 2knπp − θ0

kmα

=
2nπp
mα

.

By our assumption,

Ψm(θ0, λ, 0) = 2nπp ,

for all θ0 ∈ R. For any fixed value θ0, we have monotonicity in the second variable, and

taking λ < λ, thus

Ψm(θ0, λ, 0) < 2nπp .

This holds for any value of θ0, therefore

max
θ0∈R

Ψm(θ0, λ, 0) < 2nπp ,

and by Theorem 5.1.3,

ρ(λ, 0) <
2nπp
mα

.

By the same argument,
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ρ(λ, 0) >
2nπp
mα

,

for any λ > λ.

By Lemma 5.2.1, we know that there exists an ε > 0 such that

Ψ(θ1, λ, ε) < 2nπp

Ψ(θ2, λ, ε) > 2nπp .

By the continuity and monotonicity of the map Ψ(θ0, λ, ε) in the second variable, there

exist values λ < λ < λ such that

Ψ(θ1, λ, ε) = 2nπp

Ψ(θ2, λ, ε) = 2nπp .

Therefore, we have

ρ(λ, ε) = ρ(λ, ε) = ρ(λ, ε) =
2nπp
mα

,

We now turn our attention to whether or not such a perturbing potential Q2 ∈ L1
loc(R),

that satisfies the conditions in Theorem 5.2.1, can actually exist. As in Chapter 2.5, the

conditions can be phrased in terms of linear independence, but given that we are looking

for a Q2 that is α-periodic, we must first rewrite the integral conditions into conditions

on the domain [0, α).

Lemma 5.2.2. Let m ∈ N, for any α-periodic function Q2 ∈ L1
loc(R) and mα-periodic

function f ∈ L∞loc(R), we have
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∫ mα

0

Q2(s) f(s) ds =

∫ α

0

Q2(s)

(
m−1∑
i=0

f(s+ iα)

)
ds

Proof. First, we note that the integrand is integrable by Hölder’s Inequality, combined

with the fact that Q2 is absolutely locally integrable, and f is bounded. Next, divide the

domain of integration into subintervals of length α,

∫ mα

0

Q2(s) f(s) ds =
m−1∑
i=0

∫ (i+1)α

iα

Q2(s)f(s) ds .

For each integral in this summation, we have the substitution

∫ (i+1)α

iα

Q2(s) f(s) ds =

∫ α

0

Q2(s) f(s+ iα) ds ,

for all i ∈ {0, . . . ,m− 1}. Therefore, we have

∫ mα

0

Q2(s) f(s) ds =
m−1∑
i=0

∫ α

0

Q2(s)f(s+ iα) ds =

∫ α

0

Q2(s)

(
m−1∑
i=0

f(s+ iα)

)
ds .

Next, we apply this Lemma to the integrals in the conditions stated in Theorem 5.2.1

to create equivalent conditions that give sufficient conditions for the existence of a Q2.

Lemma 5.2.3. The integral conditions stated in Theorem 5.2.1 are equivalent to finding

a function Q2 ∈ L1
loc(R) such that

∫ α

0

Q2(s)

(
m−1∑
i=0

(r(iα, 1, θ1, λ, 0))p|u(s, r0, θ(iα, r0, θ1, λ, 0), λ, 0)|p
)

ds > 0

∫ α

0

Q2(s)

(
m−1∑
i=0

(r(iα, 1, θ2, λ, 0))p|u(s, r0, θ(iα, r0, θ2, λ, 0), λ, 0)|p
)

ds < 0 ,

for some distinct θ1, θ2 ∈ [0, πp/2).
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Proof. Use Lemma 5.2.2, with f(t) = |u(t, r0, θ0, λ, 0)|p, for any θ0 ∈ R. Note that the

solutions are continuous, and at ε = 0, the solutions are mα-periodic. So the solutions

are all bounded, and we can apply Lemma 5.2.2. Then we have

f(t+ iα) = |u(t+ iα, r0, θ0, λ, 0)|p

= |u(t, r(iα, r0, θ0, λ, 0), θ(iα, r0, θ0, λ, 0), λ, 0)|p

= (r(iα, 1, θ0, λ, 0))2 |u(t, r0, θ(iα, r0, θ0, λ, 0), λ, 0)|p .

We can now use this to formulate conditions for the existence of a perturbing potential,

Q2.

Corollary 5.2.2. For any two fixed initial angles, θ1, θ2 ∈ R, there exists a Q2 ∈ L1
loc(R)

that satisfies the conditions in Theorem 5.2.1 if the functions

m−1∑
i=0

(r(iα, 1, θ1, λ, 0))2|u(t, r0, θ(iα, r0, θ1, λ, 0), λ, 0)|p and

m−1∑
i=0

(r(iα, 1, θ2, λ, 0))2|u(t, r0, θ(iα, r0, θ2, λ, 0), λ, 0)|p ,

are linearly independent.

Proof. Let

f(t, θ0) :=
m−1∑
i=0

(r(iα, 1, θ0, λ, 0))2|u(t, r0, θ(iα, r0, θ0, λ, 0), λ, 0)|p ,

for any θ0 ∈ R. If we choose Q2(t) = α1 f(t, θ1) + α2 f(t, θ2), then for Q2 to satisfy the

conditions in Theorem 5.2.1, the values α1, α2 ∈ R satisfy the system

(∫ α

0

f(s, θi) f(s, θj) ds

)
i,j=1,2

α1

α2

 =

 1

−1

 .
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This matrix is Gramian, and therefore is invertible if and only if the functions in the

inner products are all linearly independent, [14, Theorem 7.2.10]. Therefore, for such a

Q2 to exist, it is sufficient for the functions f(t, θ1) and f(t, θ2) are linearly independent.

For the unperturbed problem, ε = 0, we assumed that the solutions we were consid-

ering were mα-periodic, and therefore, the functions

m−1∑
i=0

(r(iα, 1, θ0, λ, 0))2|u(t, r0, θ(iα, r0, θ0, λ, 0), λ, 0)|p

are also mα-periodic, for all θ0 ∈ R. We now state a result that can be used to prove

linear independence of these functions, for distinct values θ0 ∈ R.

Lemma 5.2.4. Let f : R → R be a real-valued function which is differentiable, non-

constant and α-periodic for some period α > 0, then there exists some γ ∈ (0, α) such

that the shifted function f(·+ γ) is linearly independent of f(·).

Proof. Assume that every shift of f is linearly dependent of f , then there exists a function

m : R→ R such that

f(t+ c) = m(c)f(t) ,

for all c ∈ R. At t = 0, we have

f(c) = m(c)f(0) .

Hence if f(0) = 0, it follows that f ≡ 0, contradicting the assumption that f is non-

constant. Since f(0) 6= 0, we can rewrite the first equality as

f(t+ c) =
f(c)

f(0)
f(t) ,

Differentiating this w.r.t. c, we have
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f ′(t+ c) =
f ′(c)

f(0)
f(t) ,

and so if we take, for example, c = 0, then we have

f ′(t) = Cf(t) ,

where C = f ′(0)/f(0). The general solution of this ODE is of the form

f(t) = A exp(Ct) ,

with A ∈ R. But since we assumed f to be periodic, the only possibility is C = 0, which

would mean f is constant, but this also gives a contradiction. Therefore, there exists a

linearly independent shift of f .

We use this lemma to prove the existence of such a perturbing potential Q2 in the

case Q1 ≡ 0. The solutions of the unperturbed problem (ε = 0) are of the form

A cosp(λ
1/p (t− t0)) ,

for some A, t0 ∈ R. We fix m ∈ N, then using Lemma 5.2.3, we show that it is sufficient

to prove that the function

m−1∑
i=0

∣∣∣∣cosp

(
t+

2iπp
m

)∣∣∣∣p (t ∈ R) ,

is non-constant.

Lemma 5.2.5. Let m ∈ N, and p 6= 2. Then the function

| cosp(t)|p +
m−1∑
i=1

∣∣∣∣cosp

(
t+

2iπp
m

)∣∣∣∣p (t ∈ R) ,

is non-constant.
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Proof. Suppose that

| cosp(t)|p +
m−1∑
i=1

∣∣∣∣cosp

(
t+

2iπp
m

)∣∣∣∣p ≡ C (t ∈ R) , (43)

for some C ∈ R. The function | cosp |p is positive on the interval (0, πp/2), and so from

(43), we would have

cosp(t) =

(
C −

m−1∑
i=1

∣∣∣∣cosp

(
t+

2iπp
m

)∣∣∣∣p
)1/p

(t ∈ (0, πp/2)) . (44)

By definition, the function cosp solves the ODE

(φp(u
′))′ + φp(u) = 0 ,

and so if (44) is true, then v, defined by

v(t) :=

(
C −

m−1∑
i=1

∣∣∣∣cosp

(
t+

2iπp
m

)∣∣∣∣p
)1/p

(t ∈ (0, πp/2)) ,

also solves the same ODE. Note that, by Theorem 2.1.3, we have the following expressions

for the derivatives of cosp and sinp,

cos′p = −(p− 1)
1/p φq(sinq) ,

sin′p = (p− 1)
1/p φq(cosq) .

From our expression for v, we have
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v′(t) =
1

p

(
C −

m−1∑
i=1

∣∣∣∣cosp

(
t+

2iπp
m

)∣∣∣∣p
)1/p−1(

−
m−1∑
i=1

∣∣∣∣cosp

(
t+

2iπp
m

)∣∣∣∣p
)′

= (p− 1)
1/p

(
m−1∑
i=1

φp

(
cosp

(
t+

2iπp
m

))
φq

(
sinq

(
t+

2iπp
m

)))

×

(
C −

m−1∑
i=1

∣∣∣∣cosp

(
t+

2iπp
m

)∣∣∣∣p
)−1/q

,

and so

φp(v
′)(t) = (p− 1)

1/qφp

(
m−1∑
i=1

φp

(
cosp

(
t+

2iπp
m

))
φq

(
sinq

(
t+

2iπp
m

)))

×

(
C −

m−1∑
i=1

∣∣∣∣cosp

(
t+

2iπp
m

)∣∣∣∣p
)−(p− 1)/q

.

Differentiating again, we have
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(φp(v
′))′(t) = (p− 1)1+1/q

∣∣∣∣∣
m−1∑
i=1

φp

(
cosp

(
t+

2iπp
m

))
φq

(
sinq

(
t+

2iπp
m

))∣∣∣∣∣
p−2

×

(
m−1∑
i=1

φp

(
cosp

(
t+

2iπp
m

))
φq

(
sinq

(
t+

2iπp
m

)))′

×

(
C −

m−1∑
i=1

∣∣∣∣cosp

(
t+

2iπp
m

)∣∣∣∣p
)−(p− 1)/q

− (p− 1)2+1/q

p
· φp

(
m−1∑
i=1

φp

(
cosp

(
t+

2iπp
m

))
φq

(
sinq

(
t+

2iπp
m

)))

×

(
C −

m−1∑
i=1

∣∣∣∣cosp

(
t+

2iπp
m

)∣∣∣∣p
)−((p− 1)/q)−1

×

(
−

m−1∑
i=1

∣∣∣∣cosp

(
t+

2iπp
m

)∣∣∣∣p
)′

=

∣∣∣∣∣
m−1∑
i=1

φp

(
cosp

(
t+

2iπp
m

))
φq

(
sinq

(
t+

2iπp
m

))∣∣∣∣∣
p−2

×

[
(p− 1)1+1/q ·

(
m−1∑
i=1

φp

(
cosp

(
t+

2iπp
m

))
φq

(
sinq

(
t+

2iπp
m

)))′

×

(
C −

m−1∑
i=1

∣∣∣∣cosp

(
t+

2iπp
m

)∣∣∣∣p
)−(p− 1)/q

− (p− 1)2+1/q

p

(
m−1∑
i=1

φp

(
cosp

(
t+

2iπp
m

))
φq

(
sinq

(
t+

2iπp
m

)))

×

(
C −

m−1∑
i=1

∣∣∣∣cosp

(
t+

2iπp
m

)∣∣∣∣p
)−((p− 1)/q)−1

×

(
−

m−1∑
i=1

∣∣∣∣cosp

(
t+

2iπp
m

)∣∣∣∣p
)′ ]

.

We know that all of the derivatives in this expression exist in a neighbourhood of

zero, as the functions | cosp(t+ 2jπp/m)|p are twice differentiable at all t /∈ {jπp/2 : j ∈ N},

for 1 < p ≤ 2. If p > 2, then we can use the Pythagorean type identity,

| cosp |p

p− 1
+
| sinq |q

q − 1
= 1
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to rephrase the condition (43) in terms of functions | sinq |q. A simple shift in t again

rewrites the condition as a sum of functions | cosq |q,the same argument can then be

repeated with the exponent 1 < q < 2, removing the problem of differentiability in a

neighbourhood of zero. So without loss of generality, we can take 1 < p ≤ 2.

Next, differentiating (43), we have

φp(cosp(t))φq(sinq(t)) +
m−1∑
i=1

φp

(
cosp

(
t+

2iπp
m

))
φq

(
sinq

(
t+

2iπp
m

))
≡ 0 ,

and since, at t = 0,

φp(cosp(0))φq(sinq(0)) = 0 ,

we have

m−1∑
i=1

φp

(
cosp

(
t+

2iπp
m

))
φq

(
sinq

(
t+

2iπp
m

))
= 0 ,

at t = 0. Therefore, for p 6= 2 , by the continuity of cosp and sinp ,

∣∣∣∣∣
m−1∑
i=1

φp

(
cosp

(
t+

2iπp
m

))
φq

(
sinq

(
t+

2iπp
m

))∣∣∣∣∣
p−2

→ 0 , (45)

as t→ 0, and by the above expression for (φp(v
′))′ , (φp(v

′))′(t)→ 0 , as t→ 0. Note that

if p = 2, the exponent of the summation in (45) is zero, and thus the term is identically

one for all t ∈ R. Therefore, for p = 2, the limit (45) is one instead of zero.

However, by (44) , φp(v(t)) = φp(cosp(t))→ (p− 1)1/q , as t→ 0 . Therefore, v does

not satisfy the equation

(φp(u
′))′ + φp(u) = 0 ,

and so v 6= cosp.
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We can combine the results of Corollary 5.2.2, and Lemmas 5.2.4 and 5.2.5, to prove

the existence of a perturbing potential, Q2 ∈ L1
loc(R), that matches the conditions in

Theorem 5.2.1. Thus, for the potential Q1 ≡ 0, there exists a Q2 such that the (degener-

ate) periodic eigenvalues of this problem over m periods, can be perturbed to form sets

of non-degenerate eigenvalues.

Theorem 5.2.2. Let p 6= 2 and m ∈ N, consider the unperturbed problem with Q1 ≡ 0,

the periodic eigenvalues of the problem over m periods are given by

λn =

(
2nπp
mα

)p
,

for any n ∈ N. All of these eigenvalues are degenerate, and the associated space of

solutions for each eigenvalue is given by

u(t, r0, θ0, λn, 0) = A cosp(λ
1/p
n (t− t0))

= A cosp

(
2nπp
mα

(t− t0)

)
,

where the constants A, t0 ∈ R are dependent on the initial values r0, θ ∈ R.

For any fixed value n that is coprime to m, there exists an α-periodic function Q2 ∈

L1
loc(R) such that the eigenvalue λn becomes a pair of non-degenerate eigenvalues µn, µn.

Proof. For the unperturbed problem, we have solutions of the form

A cosp(λ
1/p(t− t0)) , (46)

for some A, t0 ∈ R. By Lemma 2.2.1,

θ(t, r0, θ0, λ, 0) = − arccotp

(
u(t, r0, θ0, λ, 0)

u′(t, r0, θ0, λ, 0)

)
= − arccotp

(
A cosp(λ

1/p(t− t0))

−λ1/pA (p− 1)1/p φq(sinq(λ
1/p(t− t0))

)
= − arccotp(λ

−1/p cotp(λ
1/p(t− t0))) ,
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and at the periodic eigenvalue λn ,

θ(t, r0, θ0, λn, 0) = − arccotp

(
mα

2nπp
cotp

(
2nπp(t− t0)

mα

))
. (47)

Therefore, by the definition of Ψm ,

Ψm(θ0, λn, 0) = θ(mα, r0, θ0, λn, 0)− θ0

= − arccotp

(
mα

2nπp
cotp

(
2nπp −

2nπp t0
mα

))
− arccotp

(
mα

2nπp
cotp

(
2nπp t0
mα

))
= arccotp

(
mα

2nπp
cotp

(
2nπp t0
mα

))
− arccotp

(
mα

2nπp
cotp

(
2nπp t0
mα

))
= kπp ,

for some k ∈ N. The iterated renormalised Poincaré map is constant in θ0, and is therefore

degenerate. So each λn is a degenerate periodic eigenvalue. Consider the function f , given

by

f(t, t0) :=
m−1∑
i=0

∣∣∣∣A cosp

(
2nπp
mα

(t+ iα− t0)

)∣∣∣∣p (t ∈ R) .

The function f(t, t0) is constant in t ∈ R, if and only if the function

f̃(t, t0) :=
1

|A|p
f

(
mα

2nπp
(t+ t0), t0

)

is constant in t, as f̃ just results in a shift, and a horizontal and vertical rescaling of f .

The function f̃ is given by,

f̃(t, t0) =
m−1∑
i=0

∣∣∣∣cosp

(
t+

2niπp
m

)∣∣∣∣p .
By Lemma 5.2.5, for all p 6= 2, the function f̃ is non-constant in t on R, and thus, so is

the function f . Note that we require n,m to be coprime here in order to ensure that the

terms in the shifts 2nm−1πp i follow the same sequence (modulo 2πp) as 2m−1πp i, which
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is the sequence of shifts in the hypothesis of Lemma 5.2.5. Therefore, by Lemma 5.2.4,

for any t1 ∈ R, there exists some value γ ∈ R such that f(t+γ, θ1) is linearly independent

of f(t, θ1).

However, we have

f(t+ γ, t1) = f(t, t1 − γ) ,

and if we define t2 := t1 − γ, then there exist two values t1, t2 such that the functions

f(t, t1) and f(t, t2) are linearly independent. By the equation (47), for any t0 in (46),

cotp θ0 = − mα

2nπp
cotp

(
2nπp t0
mα

)
,

and so the initial Prüfer angles, θ0 , are surjective with respect to the values t0 . The

values t1, t2 must give distinct values θ1, θ2 ∈ R, or else they would differ by a radial

rescaling, and thus be linearly dependent, which would be a contradiction.

By Corollary 5.2.2, there exist two values α1, α2 ∈ R such that the function

Q2(t) := α1f(t, t1) + α2f(t, t2) ,

satisfies the conditions in Theorem 5.2.1.

Therefore, by Corollary 2.4.2, there exists some value ε > 0 such that for this per-

turbed problem, there are two values λ < λ < λ, with

ρ(λ, ε) = ρ(λ, ε) = ρ(λ, ε) =
2nπp
mα

.

Thus, there exists a non-trivial plateau at the level 2nπp(mα)−1, and we can label the

end-points of this plateau µn , µn. From Theorem 2.4.2, the values µn , µn are periodic

eigenvalues of the problem over m periods, and we have µn < λn < µn.
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We conclude by stating an open problem that is relevant to the perturbation argu-

ments used above. The question is whether for any λ ∈ R that is a degenerate periodic

eigenvalue of the problem over m periods, the functions

m−1∑
i=0

(r(iα, 1, θ0, λ))2|u(t, r0, θ(iα, r0, θ0, λ)|p ,

are linearly independent for any two initial Prüfer angles, θ1 , θ2 ∈ R such that

θ(iα, r0, θ1, λ) 6= θ2 + 2nπp ,

for any i, n ∈ N. If this were true for the solutions resulting from any potential Q ∈

L1
loc(R), we could derive a genericity result similar to Theorem 2.5.2. Specifically, we

could prove that the set of potentials Xn ,m (for any n,m ∈ N) , for which there exists a

value λ ∈ R such that,

Ψm(θ0, λ) = 2nπp ,

for all θ0 ∈ R, is open and dense in L1
loc(R). As a result, all periodic eigenvalues of

the problem over any number of periods would be non-degenerate, Baire-almost all Q ∈

L1
loc(R). This would show that for p 6= 2, general rotation number functions have plateaus

at every rational level, potentially having fractal properties akin to the Cantor function.
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6 Appendix

In this appendix, we list the codes used throughout the thesis. These codes are

implementations of the algorithms described in Chapter 3.

6.1 Table of Values of sinp

def sinp_vals(p,n,m): # n is the number of steps

# m is the number of iterations of the recurrence relation

l=[1]*(n+1) # This list is the set of values of the approximation

after each iteration.

for i in range(0,m):

l_int1=[0] # This list is the set of values

of the inner integral, with limits 0 to i

for j in range(1,n+1):

l_int1.append(l_int[j-1]+0.5*(l[j-1]**(p-1) \

+l[j]**(p-1))*(pi_p(p)/(2*n))) # Implementation of

the Trapezium Rule

l_int2=[l_int1[n]-l_int1[i] for i in range(0,n+1)] # This

list is the set of values of the

integrand of the inner integral,

with limits i to pi_p(p)/2

l=[0] # We redefine l to generate the next

approximation by applying the Trapezium Rule

to the list l_int2

for j in range(1,n+1):

l.append(l[j-1]+0.5*(((l_int2[j-1])**(1/(p-1))) \

+((l_int2[j])**(1/(p-1))))*(pi_p(p)/(2*n))) # Trapezium Rule

return [(l_[i]*((p-1)**(1/p)))/l[n] for i in range(1,n+1)] # Return the

normalised list of values

167



6.2 The arccotp Function

def arccotp(t,p,n): # n is the number of terms in the sum

q=p/(p-1) # Define useful constants

a=(p-1)**(1/p)

b=(q-1)**(1/q)

if t>=0:

if t<a: # Case 1

s=0

j=0

while a/(p*(j+1)+1)>1/n: # From accuracy bounds

in Chapter 3.1

s=s+(t**(p*j+1))/((p*j+1)*((1-p)**j))

j=j+1

return pi_p(p)/2-s

if t<a: # Case 2

s=0

j=0

while b/(q*(j+1)+1)>1/n: # From accuracy bounds

in Chapter 3.1

s=s+((1-p)**j)*(t**((q*j+1)*(1-p)))/(q*j+1)

j=j+1

return s

if t=a: # Case 3

s=0

j=0

while a/j>1/n: # From accuracy bounds

in Chapter 3.1

l=[i*p+1 for i in range(1,j)]
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s=s+(factorial(j)*(p**j))/((2**(j+1))*product(l))

j=j+1

return pi_p(p)/2-a*s

else:

return -arccotp(-t,p,n) # As arccotp is an odd function
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6.3 The Rotation Number

def rotation_number(lambda,C,pts,p,a,n,m,k):

# lambda is the spectral parameter

# C is the list of values of the potential at

each subinterval over one period

# pts is the list of end-points of each

subinterval over one period (first point 0, final point alpha)

# a is the number of periods over which the rotation

number is approximated

# n is the number of steps in p-trig approximations

# m is the number of iterations of p-trig approximations

# k is the number of periods over which p-hyperbolics

are calculated in the table

f=(p-1)**(1/p) # f is the value of the solution

d=0 # d is the value of the derivative of the solution

t_0=0 # t is the value of the shift in the argument

of the p-trig functions

z=0 # z is a count of the number of zeros of the solution

C=[lambda-j for j in C] # Redefine C to make it the set of

coefficients of the p-trig and p-hyperbolic

functions, to the power of p

l=len(C)

def map_1(f,d,z,C_j): # For the case lambda-C>0

C_j=C_j**(1/p) # Redefine C_j as the coefficient of

the p-trig function on the

subinterval being analysed

if d!=0:
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t_0=arccotp(C_j*f/d,p,n)/C_j

else:

t_0=0

b=ceil(C_j/pi_p(p))

sub_pts=[(pts[j+1]-pts[j])*k/b for k in range(0,b+1)]

for k in range(0,b): # Evaluation of total number

of zeros in whole subinterval

by considering whether sign

changes on several smaller intervals

if cosp(C_j*sub_pts[k]+t_0,p,n,m) \

*cosp(C_j*sub_pts[k+1]+t_0,p,n,m)<0:

z=z+1

f=cosp(C_j*sub_pts[b]+t_0,p,n,m)

d=C_j*((p-1)**(1/p))*phi(sinp(C_j*sub_pts[b]+ \

t_0,p/(p-1),n,m),p/(p-1))

return f,d,z

def map_2(f,d,z,C_j): # For the case lambda-C<0

C_j=(-C_j)**(1/p) # Redefine C_j as the coefficient

of the p-hyperbolic function on the

subinterval being analysed

if abs(C_j*f/d)>(p-1)**(1/p): # Initial values resulting

in coshp, we do not enumerate

zeros because coshp has no zeros

if d!=0:

t_0=arccothp(C_j*f/d,p,n)/C_j

else:

t_0=0

f=coshp(C_j*(pts[j+1]-pts[j])+t_0,p,n,m)
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d=C_j*((p-1)**(1/p))*phi(sinhp(C_j*(pts[j+1]-pts[j])+ \

t_0,p/(p-1),n,m),p/(p-1))

return f,d,z

if abs(C_j*f/d)<(p-1)**(1/p): # Initial values resulting

in sinhp, we only check for

one zero on the subinterval,

as sinhp is zero at one

point only

if d!=0:

t_0=(p-1)*arccothp(\phi(C_j*f/d,p),p/(p-1),n)/C_j

else:

t_0=0

if sinhp(C_j*(pts[j+1]-pts[j])+t_0,p,n,m)* \

coshp(t_0,p,n,m)<0:

z=z+1

f=sinhp(C_j*(pts[j+1]-pts[j])+t_0,p,n,m)

d=C_j*((p-1)**(1/p))*phi(coshp(C_j*(pts[j+1]-pts[j])+ \

t_0,p/(p-1),n,m),p/(p-1))

return f,d,z

if abs(C_j*f/d)=(p-1)**(1/p): # Initial values resulting

in exponentials, exponentials

do not have zeros, and the ratio

f/d is constant, so nothing

needs to be done in this case

return f,d,z

def map_3(f,d,z): # For the case lambda-C=0, resulting in linear

solutions, we only check for one zero, as non-trivial

linear functions are zero at one point only
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if f*(f+d*(pts[j+1]-pts[j]))<0:

z=z+1

f=f+d*(pts[j+1]-pts[j])

return f,d,z

for i in range(0,a*l): # Iterate over all l subintervals for a periods

if C[j%l]>0:

f,d,z=map_1(f,d,z,C[j%l])

if C[j%l]<0:

f,d,z=map_2(f,d,z,C[j%l])

if C[j%l]=0:

f,d,z=map_3(f,d,z)

return pi_p(p)*z/a # Return normalised count of zeros
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[21] Mitsuharu Ôtani. A remark on certain nonlinear elliptic equations: Dedicated to

the memory of Professor M. Fukawa. Proceedings of the Faculty of Science of Tokai

University, 19:23–28, 1984.

[22] Wolfgang Reichel and Wolfgang Walter. Radial solutions of equations and inequali-

ties involving the p-Laplacian. J. Inequal. Appl, 1(1):47–71, 1997.

[23] Wolfgang Reichel and Wolfgang Walter. Sturm–Liouville type problems for the p-

Laplacian under asymptotic non-resonance conditions. Journal of differential equa-

tions, 156(1):50–70, 1999.

[24] Satoshi Tanaka and Yuki Naito. Existence of solutions with prescribed numbers

of zeros of boundary value problems for ordinary differential equations with the

one-dimensional p-Laplacian (dynamics of functional equations and numerical sim-

ulation). 2006.

[25] Pedro Ubilla. Multiplicity results for the 1-dimensional generalized p-Laplacian.

Journal of mathematical analysis and applications, 190(2):611, 1995.

[26] Wolfgang Walter. Sturm–Liouville theory for the radial ∆p-operator. Mathematische

Zeitschrift, 227(1):175–185, 1998.

[27] Dongming Wei. Nonlinear wave equations arising in modeling of some strain-

hardening structures. stainless steel, 1275:0–45, 2005.

[28] Dongming Wei and Yu Liu. Some generalized trigonometric sine functions and their

applications. Applied Mathematical Sciences, 6(122):6053–6068, 2012.

[29] Anton Zettl. Sturm–Liouville theory. Number 121. American Mathematical Soc.,

2005.

[30] Meirong Zhang. The rotation number approach to eigenvalues of the one-dimensional

p-Laplacian with periodic potentials. Journal of the London Mathematical Society,

64(1):125–143, 2001.

176


