
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/120748/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Naqvi, Sayed Tayyab Raza, Shirinfar, Bahareh, Hussain, Dilshad, Majeed, Saadat, Ashiq, Muhammad
Naeem, Aslam, Yasin and Ahmed, Nisar 2019. Electrochemical sensing of ascorbic acid, hydrogen peroxide
and glucose by bimetallic (Fe, Ni)-CNTs composite modified electrode. Electroanalysis 31 (5) , pp. 851-857.

10.1002/elan.201800768 

Publishers page: http://dx.doi.org/10.1002/elan.201800768 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



Electrochemical Sensing of Ascorbic Acid, Hydrogen Peroxide and Glucose by 

Bimetallic (Fe, Ni)-CNTs Composite Modified Electrode 

Sayed Tayyab Raza Naqvi,a Bahareh Shirinfar,b Dilshad Hussain,a,c Saadat Majeed,a ⃰  

Muhammad Naeem Ashiq,a  Yasin Aslama and Nisar Ahmedb,c,d ⃰ 

 

aDivision of Analytical Chemistry, Institute of Chemical Sciences, Bahauddin Zakariya 

University, Multan 60800, Pakistan  

bSchool of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom. 

cInternational Centre for Chemical and Biological Sciences, HEJ Research Institute of 

Chemistry, University of Karachi, Karachi 75270, Pakistan 

dSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3A, United 

Kingdom. 

*E-mail:saadat.majeed@bzu.edu.pk (SM), AhmedN14@cardiff.ac.uk (NA) 

 

  

mailto:saadat.majeed@bzu.edu.pk
mailto:AhmedN14@cardiff.ac.uk


Abstract 

In this research, bimetallic supported CNT modified electrode (Fe,Ni/CNTs/GCE) has been 

developed for sensitive, stable and highly elctroactive sensing of glucose, ascorbic acid and 

hydrogen peroxide. Transition metals such as Iron (Fe) and Nickel (Ni) offer high electrical and 

thermal conductance, high active surface-to-volume ratio and presence of d-band electrons gives 

enhanced electrocatalytic behavior. While, CNTs provide high surface area, stability and 

excellent conductivity. Synthesized material is characterized by SEM, EDS, XRD and FTIR to 

access morphology, elemental composition and structure. This unique combination is employed 

for the electrochemical sensing of ascorbic acid, glucose and hydrogen peroxide and different 

experimental parameters are optimized. Fe,Ni/CNTs/GCE shows good sensing efficiency at pH 

7.4 which is ideally suitable for variety of analytes. The modified electrode also show good 

reproducibility and sensitivity under optimized conditions and can be reused upto 30 cycles 

without compromising the efficiency. With good linearity, reproducibility and limit of detection, 

this material possess significant potential as non-enzymatic biosensor for variety of analytes. 
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1 Introduction 

Ascorbic acid, glucose and hydrogen peroxide are important biological compounds. Ascorbic 

acid, commonly known as Vitamin C, improves the immune system due to its unique antioxidant 

properties. It also protects against cancer and retina muscular degeneration [1]. Ascorbic acid 

also aids the body to produce collagen which is an important constituent of the connective 

tissues, gums, blood vessels and bones. Furthermore, it facilitates the recovery of tissues after 

surgery and different type of wounds [2]. Ascorbic acid deficiency may cause Scurvy, a disease 

in which patient suffers to swollen gums, muscle weakness, bleeding under the skin layer, 

bleeding through gums, depression and tiredness and loss of teeth [3]. Abundance of ascorbic 

acid in human tissues can cause breakdown of alcohol and its high dose may lead to kidney 

stones, nausea, vitamin B12 deficiencies, diarrhea, increased need for oxygen and copper 

deficiencies [4]. 

 Similarly, glucose is the main energy source in living organisms and it is a very common 

fuel in biological system, especially used in muscles and brain[5]. In most organisms, from 

bacteria to humus, it provides energy through fermentation, aerobic respiration and anaerobic 

respiration [6]  and approximately3.75 kilocalories of energy can be attained per gram with the 

aid of aerobic respiration [7]. Although glucose provides energy but overdose is problematic 

especially for diabetic patients. High sugar level can lead to tooth decay and health problem, 

weight gain and diabetes  [8]. Animals store glucose in the form of glycogen and plants store 

glucose in the form of starch which provides immunity against parasites and insecticides as well 

as for cancerous cells [9]. These cells usually do not have mechanism to break down the 

hydrogen peroxide thus they act as proved anti-cancer agents [10]. Excessive level of hydrogen 

peroxide with normal endogenous level of antioxidant enzyme cause oxidative stress in brain and 



cause apoptosis and cell tissue damage. Due to its oxidative stress in human body fluids and 

metabolism it may cause diabetes mellitus, cancer and hepatic diseases [11].  

 Therefore it is very important to design sensitive, easy, accurate and point of care sensing 

devices for sensing and detection of glucose, hydrogen peroxide and ascorbic acid in clinical 

treatment and diagnosis. In past decade, variety of techniques has been involved in sensing of 

redox active biological molecules including spectrophotometry, immunoassay, fluorescence 

colorimetry, chemiluminescence and electrochemical techniques [12]. Among these techniques, 

electrochemical detection and sensing differentiate itself due to less complexity, rapid response, 

user-friendliness and low cost [13]. Conventionally, electrochemical sensors have been 

developed by immobilizing enzyme on electroactive species [14]. In spite of providing high 

sensitivity and selectivity, enzymatic electrochemical sensors suffer from several disadvantages 

such as difficult purification of enzyme, less environmental stability, laborious immobilization, 

loss of enzyme activity during immobilization, denaturation, high cost and time consuming [15].  

 As solution, non-enzymatic electrochemical sensors have been developed as an 

alternative to enzymatic electrochemical sensors [16]. These non-enzymatic electrochemical 

sensors are based on various nanofabricated materials owing to their inherent catalytic behavior 

towards electrochemically active biological molecules, low cost and non-laborious development, 

and their operative ease and long lasting stability [17]. Different types of non-enzymatic 

electrochemical sensors have been developed including gels [18], conductive polymers [19], 

nanoparticles and nanocomposites of transition metals [20], fabricated metal organic framework 

[21], and carbon based materials [22]. 

 Metals and their composites, due to their specific electronic arrangement shows high 

electrical and thermal conductance, high active surface-to-volume ratio and presence of d-band 



electrons give enhanced electrocatalytic behavior [23], have been vastly employed in 

development of non-enzymatic electrochemical transducers for sensing of biomolecules [24]. 

These types of sensors face disadvantages of reduced selectivity and sensitivity, high price and 

disappearance of activity due to deposition of intermediate compounds and chloride ion. On the 

other hand, with notable progress in synthesis of modified nanomaterials for electro-catalysis, 

various non-metallic nanomaterials have also been utilized [25]. For modified electro-catalyst 

nanomaterials, various supporting materials like graphene, carbon nanotubes, nanofoams and 

polymers, showing good conductance and stability, have been used to develop modified electro-

catalyst and electrochemical sensing of biomolecules [26]. These modified electro-catalyst also 

experience certain drawback during development such as the addition of supporting material 

block many active sites on catalyst, resulting small number of active sites involve in electro-

catalysis. So transition metal based electrochemical sensors, like Ni, Fe, Cu, Co, and Mn based 

nanomaterials, have attracted the interest of researchers in recent years [27]. Composites of 

metals with other metals, with polymers and carbon based materials have often resulted in 

superior performance of the sensing material because each part of the composite plays its role in 

sensing [28]. These materials, in composite form, have higher surface area, provide multiple 

active sites for the attachment of target molecule and offer unique chemistry to improve the 

sensitivity and selectivity of biomolecules [29]. 

 In this research work, bimetallic supported carbon nanotubes (CNTs) modified electrode 

(Fe,Ni/CNTs/GCE) has been developed for fast and sensitive detection of glucose, ascorbic acid 

and hydrogen per oxide. CNTs have been used due to their enhanced surface area, high stability 

and excellent conductivity. In order to achieve combined electrochemical activities of both 

metals, Nickel and Iron, bimetallic nanoparticles have been synthesized by co-precipitation 



method. These bimetallic nanoparticles have been supported on CNT modified electrode 

(Fe,Ni/CNTs/GCE) for electrochemical studies of three biologically important molecules.  

2 Experimental Section 

2.1 Chemicals and Reagents 

All reagents and chemicals used in this work were of analytical grade and used without any 

further purification. NiCl2.6H2O (Sigma Aldrich), FeSO4.7H2O (Sigma Aldrich), NaOH(Anal 

R), Sodium borohydride (Anal R), Deionized water, Acetone (Sigma Aldrich), Ethanol (Merck), 

Glucose (KANTO Chemical CO.), Hydrogen peroxide (KANTO Chemical CO.), Ascorbic acid 

(Anal R), potassium Dihydrogen phosphate (KANTO Chemical CO.), Dipotassium hydrogen 

phosphate (Merck), Carbon nanotubes (Merck) , Methyl silicone oil (Sigma Aldrich). 

2.2 Synthesis of Bimetallic (Ni, Fe) Nanocomposites 

12.3 g of FeSO4.7H2O [44 mmol] and 3.0 g of NiCl2.6H2O [12.6 mmol] were dissolved in 100 

mL deionized water and stirred for 10 minutes. Then pH of the solution was maintained at 7 by 

using 0.1M NaOH. The solution was taken two neck flask and 6g sodium borohydride was added 

to the reaction mixture which act as reducing agent and stirred at 60 ºC for 30 minutes. After 30 

minutes precipitates were formed which were separated by filtration. The precipitates were 

washed thrice with distilled water and acetone, respectively and dried in oven at 100 ºC for three 

hours. The precipitates were grinded to a fine powder and stored in desiccator prior to further use 

[30]. 

2.3 Instrumentation and Characterization Techniques 

FTIR was performed for functional group determination of sample. Crystal structure was 

determined by X-Ray diffraction (XRD, advance diffractometer). SEM and EDS analysis was 

performed for morphology and elemental composition of bimetallic composite. All the 



electrochemical experiments were performed by using the AutoLab (Potentiostat) in Bahauddin 

Zakariya University Multan and Quaid-e-Azam, University, Islamabad.  

2.4 Electrochemical Measurements 

For standardization of modified electrode a solution of potassium ferrocyanide [K4(CN)6Fe] of 

known concentration was prepared. For this purpose, 0.04 g of 1mM solution of potassium 

ferrocyanide and 7.4 g of 0.1M potassium chloride were dissolved in 100 mL of deionized water. 

Electrode was prepared to check its redox behavior in potassium ferrocyanide solution. The 

electrodes were washed thrice first with detergent, ethanol and followed by distilled water, 

sonicated for 15 minutes, and dried in oven. 2 mg of sample and 4mg of carbon nano tubes 

(CNTs) were mixed and grounded with the help of pestle and mortar. 50 µL of methyl silicone 

oil was added to the mixture as binder. Thick slurry was formed and this slurry was further used 

to fill the glassy carbon electrode by using micro spatula. The electrode surface was cleaned 

regularly before every run of sample. 

The solutions of different concentration of glucose, hydrogen peroxide, and ascorbic acid were 

prepared in phosphate buffer solution. The oxidation and reduction behavior of glucose, ascorbic 

acid and hydrogen peroxide was observed by cyclic voltammetry at optimized conditions of pH, 

scan rate and concentration.Three electrode system consisting of a working electrode (glassy 

carbon electrode), standard electrode (platinum wire) and counter electrode (silver/silver 

chloride) was used for all the electrochemical measurements. 

3 Results and Discussion 

3.1 Characterization of Material                                                                                           

For characterization of bimetallic composite ATR analysis is carried out and ATR spectra of 

bimetallic nanoparticles is given in Fig. S1 (supporting Information). Presence of distinct band at 



3349 cm-1 indicate OH bond which is present on the surface of metal oxides and metal oxide 

composites. Peak appeared at 1347 cm-1 is due to the stretching vibration of the C-O group. 

Peaks present in fingerprint region (767 and 745 cm-1) indicate the presence of metal oxide bond 

which is attributed to longitudinal vibrations. The Ni-O and Fe-O bonds vibrations can contribute 

to the spectral region of low wavenumbers (less than 800 cm-1) and the supported oxide can give 

rise to new sites with different chemical environments (Ni-O-Fe). The XRD patterns of 

bimetallic nanocomposites are given in Fig. S2 (Supporting Information). Peak at 480 is observed 

for Ni nanoparticles which are diffraction peaks related to the cubic structure. The diffraction 

peak at 2Ɵ 39.60 and 82.70 related to crystal plane diffraction peaks of a-Fe2O3 (JCPDS #33-

0664) respectively for bimetallic nanoparticles. Moreover, SEM and EDS analysis is carried out 

to access the morphology, particle size of the bimetallic composite and elemental composition of 

the prepared nanocomposites. Fig. S3A and S3B shows the SEM image and EDX graph of the 

material. Composite material has irregular morphology and particle size is around 80 to 100 nm. 

On the other hand, all the constituents of the composite material are present in appropriate ratio 

(Fig. S3B). 

3.2 Sensing of Ascorbic Acid by Fe, Ni/CNTs/GCE 

Figure 1 shows electrochemical redox behavior of Fe,Ni/CNTs/GCE and bare GCE in potassium 

ferrocyanide solution. No obvious peak (red) observed at bare glassy carbon electrode, 

indicating no electrocatalytic behavior. However, at Fe,Ni/CNTs/ GCE two well defined 

oxidation and reduction peaks (black) are observed at +0.8V and 0.4 V (vs Ag/AgCl), 

respectively. The result indicates that as prepared electrode good redox behavior and can be use 

further for analysis of analytes. 



 

Fig. 1. CV curves for Fe, Ni/CNTs/GCE (black) and bare GCE (red) in potassium ferrocyanide 

solution.  

   Then material is applied for sensing of ascorbic acid. Fig. 2A shows the oxidation and 

reduction peaks at various concentrations (1mM, 10mM, 15mM, 30mM and 40mM) of ascorbic 

acid which are prepared in PBS of pH 7.4 and analyzed in a potential window of 0.0V to +1.0V. 

A blank solution is also run on cyclic voltammetry, and no oxidation reduction peak is observed 

in that solution. With increasing the concentration of analyte (ascorbic acid) current also 

increased linearly at +0.6V potential. The maximum oxidation current is observed for 40mM 

solution. These results show that Fe, Ni/CNTs/ GCE possess significant potential for sensing of 

ascorbic acid. A graph is plotted between concentration of analyte and the current produced. Fig. 

2B shows the linear graph indicating a direct relationship between the current and the 

concentration of ascorbic acid. The current produced at different concentration is taken from the 

oxidation peaks. The electrode contain linear dependence (y = mx+c) and R2 in the range of 



0.995, limit of detection was 3.60 μM and the relative standard deviation was 4.98%. The results 

indicate the good sensing ability and highly sensitive behavior of prepared material for ascorbic 

acid. 

 

Fig. 2. CV curves (A) and linear plot (B) for concentration optimization of ascorbic acid at 

Fe,Ni/CNTs/GCE. Conditions: Scan rate 0.5V/s, potential 0.0V to +1.0V, concentration of 

ascorbic acid; blank (0mM), 1, 10, 20, 30, 40 mM), pH 7 PBS. (N=3, 90% confidence limit). 

3.3 Sensing of Glucose on Modified Fe, Ni/CNTs/GCE  

Then material is also tested for the electrochemical sensing of glucose. Fig. 3A shows the redox 

behavior of glucose in different lower concentrations ranging from 1mM to 20 mM solution in 

PBS (pH 7.4). It is obvious from the graph that when concentration of the glucose increases the 

current also increase. Highest current is observed for 20 mM solution and lowest for 1mM. Fig. 

3B shows the good linear correlation between the concentration of glucose and the current 

indicating a direct relationship between the two parameters. For glucose, the modified electrode 

contain linear dependence of R2 = 0.661. The limit of detection and relative standard deviation 

are also calculated which are 16.89 µM and 13.57%, respectively. With further increase in 



concentration to higher value from 40 mM to 90 mM, the current intensity increased constantly 

(Fig. S4A). Fig. S4B shows the good linear correlation between the concentration and the 

current with linear dependence for R2 = 0.96. The limit of detection and relative standard 

deviation is also calculated which are 1.23 µM and 4.85%, respectively. These results indicate 

that detection is more accurate at higher concentration and linearity is also improved 

significantly.  

 

 

Fig. 3. CV curves (A) and linear plot (B) for optimization of concentration of glucose at 

Fe,Ni/CNTs/GCE. Conditions: Scan rate 50 mV/sec, potential of the window 0.0V to 1.0V, 

lower concentration range of glucose, blank (0mM) and 1, 5, 10, 15 and 20 mM, pH 7.4 PBS.  

 Furthermore, scan rate is also optimized to access the best possible redox conditions. Fig. 

4A shows the cyclic voltammogram of glucose at different scan rates (from 10mV/s to 50mV/s). 

It is observed that with increasing the scan rate from 10mV/s to 50mV/s there is a constant 

increase in the current. The maximum current is observed at 50mV/s scan rate and minimum 

current is for 10mV/s. There is direct relation between scan rate and current as the scan rate 



increased the current also increased. Moreover, Fig. 4B shows the correlation between the 

potential and current at different scan rates. There is a direct relationship between current and 

potential for the current produced due to oxidation and reduction at different scan rates. 

Maximum oxidation current and minimum reduction current is observed at 50mV/s scan rate 

while maximum reduction current and minimum oxidation current is observed at 10mV/s. 

Therefore, graph shows two straight lines for anodic and oxidative current respectively. R2 value 

for oxidation and reduction are 0.97 and 0.99, respectively. 

 

Fig. 4. CV curve for scan rate effect (A) and linear plot (B) for glucose at Fe, Ni/CNTs/GCE. 

Conditions:  potential window 0.0V to 1.0V, glucose 10mM, pH 7.4 PBS.Scan rate 

10,20,30,40,50 mV/s, (N=3, 95% confidence limit). All other conditions are same. 

   Stability of the electrode is accessed on glucose for 30 cycles. Fig. 5 shows the electrode 

stability for glucose acquired between the potential (on x-axis) versus current (y-axis). This 

stability is achieved by repeating the redox behavior thirty times using 10 mM glucose solution 

in PBS, pH 7.4. After thirty cycles, it is observed that both oxidation and reduction peak curves 

are obtained at +0.8V and +0.4V, respectively. This indicate excellent stability of 



Fe,Ni/CNTs/GCE, upto thirty cycles without any significant change. So, it can be reused several 

times without compromising the efficiency, showing good reproducibility and cost-effectiveness 

of the material.  

 

Fig. 5. Stability and reproducibility of Fe, Ni/CNTs/GCE for glucose sensing at the ratio of (1:2) 

up to 30 cycles. Glucose 10mM, scan rate 50 mV/sec, potential window 0.0 to +1.0V, pH 7.4 

PBS. 

3.4 Sensing of Hydrogen Peroxide on Fe,Ni/CNTs/GCE 

Finally, sensing ability of Fe,Ni/CNTs/GCE is evaluated on hydrogen peroxide. Different 

concentration solution of hydrogen peroxide is prepared at different pH in order to check the pH 

effect on sensing of hydrogen peroxide. Very small oxidation and reduction peaks are observed 

at pH: 10 (Fig. S5, Supporting Information). The best oxidation and reductions trend is observed 

at pH 7 and clear peaks are observed at pH 7. So, 7.4 pH of phosphate buffer solution is selected 



as optimized pH for further experiments. Cyclic voltammogram between pH and current shows 

that the maximum cathodic current is observed at pH 7.4 but with increasing the pH resulted 

decrease in current (Figure S6). It suggests that, pH 7.4 is optimum pH for sensing of hydrogen 

peroxide. Hydrogen peroxide is quite stable at pH 7.4, its degradation is also very low upto pH 

10. At very high pH (11, 12), decomposition is very high which can interfere the results due to 

the production of oxygen. We tested the material at different pH and results indicate that sensing 

efficiency of bimetallic electrode is best at pH 7.4 at which decomposition is negligible. With 

increase in pH, the produced current decreases. This might be due to the degradation of hydrogen 

peroxide and oxygen production, as a result of degradation. 

   Then concentration of hydrogen peroxide is also optimized (Fig. 6A). The 

voltammogram shows the oxidation and reduction peaks of various concentration of hydrogen 

peroxide in a potential window of 0.0V to 0.8V. A blank solution is also run on cyclic 

voltammetry and no peak is observed. Different concentrations (1mM, 5mM, 10mM and 15mM) 

are analyzed on cyclic voltammetry using Fe, Ni/CNTs/GCE. Similar trend is observed in this 

case also, with increasing the concentration of analyte (hydrogen peroxide) the amount of 

current also increased and maximum oxidation current is observed for 15 mM solution. The 

graph shows the linear relationship of hydrogen peroxide concentration from 1mM, 5mM, 

10mM and 15mM versus current (Fig. 6B) with linear dependence (R2) 0.9571. Limit of 

detection and relative standard deviation are 16.89µM and 13.57%, respectively.  



 

Fig. 6. CV curves (A) and linear plot (B) for concentration optimization of hydrogen peroxide at 

Fe,Ni/CNTs/GCE. Conditions: Scan rate 50mV/s, potential of the window 0.0V to 0.8V, 

hydrogen peroxide (1mM, 5mM, 10mM and 15mM), pH 7.4 PBS. (N=3, 90% confidence limit) 

4 Conclusion 

In this work we prepared a sensing material based on bimetallic (Fe, Ni)-CNTs composite by co-

precipitation method and the prepared material is successfully characterized with different 

techniques including SEM, EDX, FTIR and XRD. This bimetallic composite is used for the 

sensing of various redox active species (hydrogen peroxide, glucose and ascorbic acid) which are 

important biomolecules. To maintain their level in biological fluids is very important and any 

increase or decrease of these molecules could lead to various diseases. The prepared material 

show a sensitive and reproducible electrochemical sensing of various redox active species and 

showed good detection limit for ascorbic acid, hydrogen peroxide and glucose. Materials showed 

excellent reproducibility and stability upto 30 cycles, with compromising the sensing efficiency. 

All the molecules tested in this study have distinct oxidation potential value and 

Fe,Ni/CNTs/GCE has the ability to sense these molecules in a very low concentration. And we 



assume that under optimized conditions (scan rate, pH and concentration), this material has the 

potential to distinguish between the molecules with very close oxidation potentials. With further 

optimization, this material can be used for variety of other biologically important analytes also 

with good accuracy and sensitivity. 
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