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Abstract
Introduction: Over the last decades, neurofeedback has been applied in variety of 
research contexts and therapeutic interventions. Despite this extensive use, its neu‐
ral mechanisms are still under debate. Several scientific advances have suggested 
that different networks become jointly active during neurofeedback, including re‐
gions generally involved in self‐regulation, regions related to the specific mental task 
driving the neurofeedback and regions generally involved in feedback learning 
(Sitaram	et	al.,	2017,	Nature Reviews Neuroscience,	18,	86).
Methods: To investigate the neural mechanisms specific to neurofeedback but inde‐
pendent from general effects of self‐regulation, we compared brain activation as meas‐
ured	with	functional	magnetic	resonance	imaging	(fMRI)	across	different	mental	tasks	
involving gradual self‐regulation with and without providing neurofeedback. Ten par‐
ticipants freely chose one self‐regulation task and underwent two training sessions 
during fMRI scanning, one with and one without receiving neurofeedback. During neu‐
rofeedback sessions, feedback signals were provided in real‐time based on activity in 
task‐related, individually defined target regions. In both sessions, participants aimed at 
reaching and holding low, medium, or high brain‐activation levels in the target region.
Results: During gradual self‐regulation with neurofeedback, a network of cortical 
control regions as well as regions implicated in reward and feedback processing were 
activated. Self‐regulation with feedback was accompanied by stronger activation 
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1  | INTRODUC TION

Despite its extensive use over several decades and broad evidence 
for neurofeedback induced changes that extend beyond the neuro‐
feedback training environment (including on memory Young et al., 
2017,	affect	Scheinost	et	al.,	2013;	Zilverstand,	Sorger,	Sarkheil,	&	
Goebel,	2015,	attention	Zilverstand	et	al.,	2017,	perception	Amano,	
Shibata,	Kawato,	Sasaki,	&	Watanabe,	2016	and	motor	performance	
Subramanian	 et	 al.,	 2011)	 the	 neural	mechanisms	 underlying	 neu‐
rofeedback are subject of an ongoing debate (for an overview see 
Sitaram	 et	 al.,	 2017).	 In	 a	 recent	 meta‐analysis,	 whole‐brain	 acti‐
vation during real‐time functional magnetic resonance imaging (rt‐
fMRI)	neurofeedback	was	compared	across	different	neurofeedback	
studies	(Emmert	et	al.,	2016).	Activation	during	neurofeedback	train‐
ing was observed in areas implicated in self‐regulation and cognitive 
control, as well as in areas recruited during visual feedback learning, 
even if these areas were not actually the target of the self‐regula‐
tion training. The activated network encompassed the dorsolateral 
(DLPFC)	and	ventrolateral	prefrontal	cortex	(VLPFC),	the	temporo‐
parietal	cortex	and	the	thalamus,	anterior	insula	(aINS),	the	posterior	
section	of	the	anterior	cingulate	cortex	(pACC),	visual	areas	and	the	
basal ganglia, with several local maxima distributed over the stria‐
tum.	Activity	 in	these	regions	most	 likely	reflects	several	different	
processes, including the preparation and execution of mental strat‐
egies supporting self‐regulation of brain activity, reward processing, 
self‐evaluation of performance based on feedback information and 
the updating of strategies, but an extensive body of research is still 
needed to disentangle these processes. To discriminate the neural 
basis of neurofeedback from networks also recruited during other 
forms of self‐regulation training, it remains to be understood which 
regions shared between different neurofeedback tasks are specific 
to neurofeedback and which are reflective of self‐regulation per se.

Marchesotti	et	al.	(2017)	detected	a	selective	activation	increase	
in the striatum during motor imagery with neurofeedback when 
comparing meta‐analytic activation maps of motor imagery with 
and	without	providing	neurofeedback	and	Johnston,	Boehm,	Healy,	
Goebel,	and	Linden	(2010)	had	reported	increased	activation	in	the	
ventral striatum with progression in neurofeedback training for up‐
regulating negative affect by providing neurofeedback from individ‐
ual areas that showed increased activation in response to negative 

affective image. In congruence with these reported activation in‐
creases in the striatum during neurofeedback, several theoretical 
frameworks note that BCI control/neurofeedback rewards subjects 
for a certain mental operation or neural state, notably by underling 
the crucial involvement of operant/instrumental conditioning in 
neurofeedback	(Fetz,	2007),	by	interpreting	BCI	control	training	as	
skill learning that is heavily dependent on plasticity in the basal gan‐
glia	(Birbaumer,	Ruiz,	&	Sitaram,	2013)	or	by	underlining	the	impor‐
tance	of	feedback	loops	for	biofeedback	learning	in	general	(Lacroix	
&	Gowen,	1981).	While	early	EEG‐neurofeedback	studies	lacked	di‐
rect evidence for involvement of the striatum in neurofeedback due 
to the limitations of EEG in coverage of subcortical areas (Grech et 
al.,	2008),	contemporary	approaches	on	EEG	and	fMRI	neurofeed‐
back agree with regard to the central role of striatal reward learning 
(Birbaumer	et	al.,	2013;	Davelaar,	2018).

In the present study, we extended the aforementioned line of 
research by comparing self‐regulation with and without neurofeed‐
back with a special focus on the striatum, a key region involved in 
feedback	 and	 reward	 processing	 (Balleine,	 Delgado,	 &	 Hikosaka,	
2007;	Bartra,	McGuire,	&	Kable,	2013;	Kohrs,	Angenstein,	Scheich,	
&	Brechmann,	2012),	the	central	hub	of	dopamine	based	reinforce‐
ment	learning	(Robbins	&	Everitt,	1996)	where	feedback	information	
is processed and further utilized to guide actions (O'Doherty et al., 
2004;	Samejima,	Ueda,	Doya,	&	Kimura,	2005)	and	constituting	the	
main hub for long‐term motivation of behaviour based on reward 
learning	 (Tricomi,	Balleine,	&	O'Doherty,	2009),	making	the	under‐
standing of how neurofeedback affects the striatum a crucial ele‐
ment of understanding the facilitating effects of neurofeedback in 
general.

As	 neurofeedback	 is	 most	 commonly	 used	 to	 guide	 a	 partici‐
pant's self‐regulation by reinforcing activation states via operant 
conditioning	with	 positive	 feedback	 (Birbaumer	 et	 al.,	 2013;	 Fetz,	
2007),	we	therefore	predicted	that	striatum	activation	would	con‐
stitute a crucial marker for differentiating between self‐regulation 
with neurofeedback and self‐regulation without neurofeedback, as it 
reflects external reward information that is utilized to guide ongoing 
behaviour	 (Balleine	et	al.,	2007),	which	 is	 lacking	 in	self‐regulation	
without neurofeedback.

While	 the	 striatum	 is	 a	 functionally	 heterogeneous	 structure	
(parcellation studies suggest that ventral/anterior portions are more 

within	the	striatum	across	different	mental	tasks.	Additional	time‐resolved	single‐trial	
analysis revealed that neurofeedback performance was positively correlated with a 
delayed brain response in the striatum that reflected the accuracy of self‐regulation.
Conclusion: Overall, these findings support that neurofeedback contributes to self‐
regulation through task‐general regions involved in feedback and reward 
processing.

K E Y W O R D S
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strongly involved in evaluating incoming reward, whereas medial to 
dorsal sections rather bias actions based on previously processed 
rewards	 (Balleine	 et	 al.,	 2007;	 Jung	 et	 al.,	 2014;	O'Doherty	 et	 al.,	
2004)),	 different	 functional	 processes	 in	 the	 striatum	 transition	
smoothly	 into	 each	 other	 (Haber,	 Fudge,	&	McFarland,	 2000)	 and	
timing of incoming rewards constitutes a crucial influence across dif‐
ferent processing stages in the striatum (Cardinal, 2006; Gustavo, 
Soares,	&	Paton,	2015;	McClure,	Berns,	&	Montague,	2003;	Pagnoni,	
Zink,	 Montague,	 &	 Berns,	 2002).	 So	 while	 previous	 studies	 have	
mainly concentrated on localizing the regions involved in neurofeed‐
back, we additionally applied a time‐resolved analysis on the blood 
oxygen	level	dependent	(BOLD)	signal	of	the	striatum,	to	determine	
the temporal properties of feedback processing.

Up to this date, most neurofeedback paradigms focused on de‐
creasing or increasing activation within a certain brain region (Caria 
et	al.,	2007;	Hamilton,	Glover,	Hsu,	Johnson,	&	Gotlib,	2011),	func‐
tional connectivity between brain regions (Megumi, Yamashita, 
Kawato,	&	Imamizu,	2015),	directional	connectivity	between	brain	
regions	 (Haller	et	al.,	2013),	or	 frequency‐bands	 (Gevensleben	et	
al.,	 2009;	Mottaz	 et	 al.,	 2015).	 These	 paradigms	 reinforced	 sub‐
jects to modulate the neurofeedback signal into one direction, that 
is, to either up‐ or down‐regulate the neurofeedback signal maxi‐
mally.	We	recently	demonstrated	feasibility	of	a	novel	type	of	neu‐
rofeedback paradigm in which participants focused on achieving 
and maintaining a specific target level of activation (Sorger, Kamp, 
Weiskopf,	Peters,	&	Goebel,	2018).	Participants	aimed	at	reaching/
maintaining a rtfMRI‐neurofeedback signal (visualized by means of 
a	thermometer	display)	corresponding	to	the	brain‐activation	level	
within individually defined brain regions at either 30%, 60% or 
90%	of	their	individual	maximal	activation	capacity.	We	found	that	
participants showed a significantly increased ability to gradually 
self‐regulate activation in the neurofeedback target regions, when 
receiving visually presented neurofeedback information compared 
to gradual self‐regulation without providing neurofeedback. In 
contrast	 to	 classical	 paradigms	 that	 train	 to	maximize	 (de)activa‐
tion or connectivity, participants trained according to the novel 
parametric activation paradigm received detailed neurofeedback 
information on the current brain‐activation level with every data 
point	(here	every	2	s)	visualized	as	deviation	of	the	actual	condition	
(actually	achieved	brain‐activation	level)	from	the	different	nomi‐
nal	conditions	(instructed	target	brain‐activation	levels).	Moreover,	
they could deviate from the task goal by both reaching too high or 
too low activation levels (not given in the conventional, maximiza‐
tion	paradigms).These	 features	considerably	 increase	 the	general	
task difficulty, and we would expect that successful task perfor‐
mance	is	being	experienced	as	strongly	rewarding	(see	DePasque	
Swanson	&	Tricomi,	2014).	Another	advantage	of	gradual	feedback	
for studies into the mechanisms of self‐regulation is that the vi‐
sual information provided during neurofeedback is more important 
for successful task performance than in maximization paradigms, 
as participants not only need to learn how activation could be in‐
creased or decreased best, but also how the actual magnitude of 
activation can be held at a particular target level. Gradual feedback 

protocols are thus particularly suited for studies that look into 
the learning mechanisms underlying successful neurofeedback 
training.

In the present study, we defined and applied a novel marker of 
self‐regulation success to a dataset from the aforementioned self‐
regulation	study	by	Sorger	et	al.	(2018).	This	marker	of	self‐regulation	
success represents the neurofeedback reward value as indicated by 
the visual information on the feedback display. In the study of Sorger 
et	al.	 (2018),	each	participant	chose	one	 individual	mental	task	for	
self‐regulation and all participants trained to self‐regulate their en‐
gagement with the chosen mental content gradually (chosen mental 
tasks included inner speech, motor imagery, mental calculation, vi‐
sual	imagery	and	auditory	imagery).	The	inter‐individual	heterogene‐
ity of self‐regulation strategies allows investigating the shared neural 
basis of neurofeedback. Participants underwent two self‐regulation 
sessions during fMRI, one with and one without receiving feedback 
information from individually defined neurofeedback target regions. 
This allows us to control for effects of self‐regulation that are unre‐
lated to neurofeedback as for example observed during meditation 
(Kjaer	et	al.,	2002;	Tang,	Hölzel,	&	Posner,	2015),	and	reveal	regions	
more related to the actual processing of neurofeedback and the 
implicated	 reward	 information.	 As	 the	 neurofeedback	 signal	 was	
provided continuously, the constant influx of feedback information 
created a demanding situation for the processing of reward informa‐
tion. Neurofeedback was constantly updated, while being delayed 
over several seconds in relation to the mental action actually causing 
a	change	in	the	neurofeedback	signal.	As	activation	in	the	striatum	
is known to be strongly influenced by the temporal properties of 
reward	information	(Cardinal,	2006;	Gustavo	et	al.,	2015;	McClure	
et	al.,	2003;	Pagnoni	et	al.,	2002),	analysis	has	to	take	the	temporal	
sensitivity	of	reward	processing	into	account.	Analysis	of	the	avail‐
able data therefore focused on the dynamic and delayed nature of 
the reward information provided by rtfMRI neurofeedback. This was 
achieved by extracting one value of neurofeedback performance 
for	every	data	point	acquired	during	gradual	self‐regulation	periods	
(every	2	s)	and	by	relating	this	information	to	striatum	activation	in	
different time windows.

Taking into consideration these ideas and in order to further 
study the neuronal mechanisms of rtfMRI neurofeedback, more par‐
ticularly the role of the striatum, the present study focused on the 
following research objectives:

(i)	 	Demonstrate	joint	activation	of	cortical	control	areas	and	areas	
related to feedback learning within a single sample during neu‐
rofeedback‐guided self‐regulation compared to rest, thereby 
investigating the replicability of recent meta‐analytical findings 
(combining data of several neurofeedback studies Emmert et al., 
2016)	and	their	reliability	in	smaller	samples.

(ii)	 	Separate	activation	related	to	feedback	processing	from	activa‐
tion related to self‐regulation during neurofeedback in the stria‐
tum and determine whether increased striatum activation during 
neurofeedback reflects a specific response to the information 
contained in the provided neurofeedback information.
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(iii)		 	Disentangle	which	 activation	 increases	 during	 neurofeedback	
indicate feedback processing and which are reflective of higher‐
order cognitive control processes involved in self‐regulation.

2  | METHODS AND DESIGN

2.1 | Participants

All	analyses	were	performed	on	the	dataset	acquired	by	Sorger	et	al.	
(2018):	10	healthy	participants	(mean	age:	27.0	years,	SD: 3.8 years, 
five	female,	one	 left‐handed),	all	students	or	staff	members	of	the	
Faculty	 of	 Psychology	 and	Neuroscience	 at	Maastricht	University	
with normal or corrected‐to‐normal vision participated in the study 
(see Sorger et al., 2018 for more detailed participant characteris‐
tics).	None	of	the	participants	had	participated	in	a	neurofeedback	
experiment before. Before each MRI scanning session, participants 
gave written informed consent. The experimental procedure was ap‐
proved	by	the	local	Ethics	Committee	of	the	Faculty	of	Psychology	
and Neuroscience at Maastricht University.

2.2 | Experimental design

Preceding the first MRI measurement, each participant freely chose 
one individual mental task for self‐regulation: Experimenters sug‐
gested various mental tasks (inner speech, motor imagery, mental 
calculation,	 visual	 imagery	 and	 auditory	 imagery)	 that	 had	 been	
proven to evoke robust brain activation in circumscribed brain re‐
gions in previous fMRI studies as possible activation strategies. 
Additionally,	 the	experimenters	 recommended	 several	modulation	
strategies that could be applied by participants to alter the brain‐
activation level. Basically, these strategies allowed for changing 
certain aspects of mental‐task performance parametrically (e.g., the 
speed,	 intensity	or	 complexity).	Participants	 selected	 their	 activa‐
tion strategies and initial modulation strategies based on personal 
preference or feeling of best mastery. Chosen self‐regulation tasks 
included inner speech, motor imagery, auditory imagery, and visual 
imagery. Importantly, no participant used voluntary emotion regula‐
tion as mental strategy, thereby forecoming that alterations in stria‐
tum activation were dominated by voluntarily generated affective 
states.

Participants received no feedback in one fMRI session, 
whereas in the other session they were provided with real‐time 
information	 on	 the	 current	 BOLD‐signal	 level	 in	 a	 predefined	
mental task‐related brain region. During neurofeedback sessions, 
participants	were	 asked	 to	modulate	 their	BOLD	 signal	 to	 three	
different target levels using the chosen mental task. The no‐feed‐
back and feedback fMRI sessions took place on separate days for 
all participants. The order of the type‐of‐training conditions (no 
feedback‐feedback	or	feedback‐no	feedback)	was	balanced	across	
participants. Both scanning sessions consisted of four training 
(modulation)	 runs	 in	 which	 participants	 were	 visually	 instructed	
to	modulate	 their	BOLD‐signal	magnitude	 to	 the	 three	different	
target levels. Each target‐level condition appeared three times per 

run in randomized order resulting in a total of twelve trials per 
target‐level and type‐of‐training condition. Each of the nine mod‐
ulation blocks and each of the ten resting blocks that alternated 
with the modulation blocks lasted 26 s resulting in a run length 
of	 8	min	 and	 14	s.	 A	 feedback	 scanning	 session	 started	 with	 a	
functional‐localizer run in order to select a mental task‐specific 
neurofeedback target region and to determine the individual max‐
imum	percent	signal	change	(maxPSC).	 In	the	functional‐localizer	
run,	 two	 target‐levels	 (50%	 and	 100%)	 were	 implemented	 (five	
trials	per	 target‐level	 condition).	The	 two	 target‐level	 conditions	
appeared	in	alternating	order.	Again,	the	duration	of	the	10	modu‐
lation trials and the eleven resting periods were 26 s adding up to 
a total run duration of 9 min and 6 s.

2.3 | Task instructions

Participants were instructed to keep their selected activation strat‐
egy constant across all functional runs (functional‐localizer, no‐feed‐
back	and	feedback	runs).	Thus,	they	should	not	change	their	general	
activation	strategy	across	time	(and	sessions).	In	order	to	modulate	
their	 BOLD	 signal	 to	 the	 different	 target	 levels,	 participants	were	
asked to apply the modulation strategies. Importantly, in the feed‐
back condition participants were instructed to consider the provided 
neurofeedback information and to explore which of the modula‐
tion strategies were most effective. Moreover, participants were 
explicitly allowed to adapt the suggested modulation strategies or 
even	generate	and	test	novel	(“own”)	modulation	strategies.	During	
functional‐localizer and no‐feedback runs, participants were asked 
to try to evoke different brain‐activation levels based on their cur‐
rent	hypothesis	on	how	the	BOLD‐signal	magnitude	can	be	altered	
systematically.

During	 self‐regulation	 (with	 and	 without	 feedback),	 a	 ther‐
mometer‐like display on black background was used consisting of 
10	white	rectangles	stacked	on	top	of	each	other	 (see	Figure	1).	
Participants	 were	 instructed	 to	 adjust	 their	 BOLD‐signal	 mag‐
nitude to a particular target level by displaying the outline of a 
certain rectangle in red for the duration of the modulation trial. 
Thus, the vertical position of the colored rectangle represented 
the desired brain‐activation target level. In the functional‐localizer 
run,	rectangle	5	(counted	from	bottom)	corresponded	to	the	50%	
condition and rectangle 10 represented the 100% condition of the 
individual maxPSC. In the modulation runs, rectangles 3, 6, and 9, 
corresponded to the low, medium, and high target‐level conditions, 
respectively. During resting periods, no rectangle was colored 
red. In the modulation runs of the feedback session, participants 
were additionally provided with continuously updated information 
about	 their	 current	BOLD‐signal	 level	within	 the	neurofeedback	
target	 region.	This	was	 realized	by	 filling	 in	 (with	gray	color)	 the	
thermometer's	rectangles	according	to	the	actual	current	BOLD‐
signal level within the neurofeedback target region. Participants 
were instructed to reach and hold the desired brain‐activation 
target level, thereby reducing the absolute distance between the 
BOLD‐signal	level	and	the	target	rectangle	(see	Figure	1).
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2.4 | Data acquisition

(f)MRI	 data	 were	 acquired	 using	 a	 1.5‐T	 whole‐body	 (Magnetom	
Sonata;	 Siemens	 AG,	 Erlangen,	 Germany)	 or	 a	 3‐T	 head	 scanner	
(Siemens	Allegra,	Siemens	AG).	Participants’	heads	were	fixated	with	
foam padding to minimize spontaneous or task‐related motion. The 
proportion	of	participants	undergoing	1.5	and	3T	scanning	was	bal‐
anced	(5/5)	and	each	participant	underwent	the	same	field	strength	
for both training sessions.

2.4.1 | Structural data acquisition

All	 participants	 received	 a	 high‐resolution	 T1‐weighted	 anatomi‐
cal	 scan	 using	 a	 three‐dimensional	 (3D)	 magnetization	 prepared	 
rapid‐acquisition	gradient‐echo	sequence	(1.5‐T	scanning:	192	slices,	 
slice	thickness	=	1	mm,	no	gap,	repetition	time	[TR]	=	2000	ms,	echo	 
time	[TE]	=	3.93	ms,	flip	angle	[FA]	=	15,	field	of	view	[FOV]	=	250	×	 
250	mm2,	matrix	 size	=	256	×	256,	 total	 scan	 time	=	8	min	 and	 34	s;	 
3‐T	scanning:	192	slices,	slice	thickness	=	1	mm,	no	gap,	TR	=	2,250	ms,	
TE	=	2.6	ms,	 FA	=	9,	 FOV	=256	×	256	mm2,	 matrix	 size	=	256	×	256,	
total	scan	time	=	8	min	and	26	s).

2.4.2 | Functional data acquisition

Repeated single‐shot echo‐planar imaging was performed. Except 
for	the	number	of	acquisitions	(functional‐localizer	run:	273	volumes;	
modulation	 runs:	 247	volumes),	 identical	 scanning	parameters	were	
used for all functional measurements (TR = 2000 ms, TE = 40 ms, 
FA	=	90,	 FOV	=	224	×	224	 mm2,	 matrix	 size	=	64	×	64,	 number	 of	

slices	=	25,	slice	thickness	=	3	mm,	1	mm	gap,	slice	order	=	ascending/
interleaved).

3  | DATA ANALYSIS

3.1 | Selection and definition of neurofeedback 
target regions

After	 completion	of	 the	 functional‐localizer	 run,	 the	 first	 two	vol‐
umes were discarded from further analysis to account for T1‐satu‐
ration	 effects.	 Functional	 data	 were	 then	 preprocessed	 (motion	
correction, linear‐trend removal, temporal high‐pass filtering [three 
cycles/time	course]).	Eventually,	a	multiple‐regression	general	linear	
model	 (GLM)	was	calculated	voxel‐wise	applying	predictors	 corre‐
sponding to the two target‐level conditions (predictor time courses 
being derived from a boxcar function convolved with a standard 
hemodynamic response function (single‐gamma function Boynton, 
Engel,	Glover,	&	Heeger,	1996).	Candidate	neurofeedback	target	re‐
gions were identified by contrasting the mean brain activation dur‐
ing both target‐level conditions to the mean activation during the 
interleaved	 resting	 periods.	 From	 the	 obtained	 F‐maps	 (p	<	0.05,	
Bonferroni‐corrected),	 a	 region	 of	 interest	 (ROI)	 was	 defined	 for	
each participant (for details of neurofeedback target regions see 
Sorger	et	al.,	2018).

3.2 | Calculation of the feedback signal

For	 an	 extensive	 description	 of	 how	 the	 neurofeedback	 signal	
was	created	the	reader	is	referred	to	Sorger	et	al.	(2018).	In	short,	

F I G U R E  1  Absolute	distance	of	achieved	activation	level	to	instructed	target	activation	level.	Participants	evaluated	the	appropriateness	
of	their	mental	operation	(and	therewith	their	self‐regulation	success)	based	on	the	visually	provided	neurofeedback	information.	They	
could assess their self‐regulation success by obtaining the absolute distance between the magnitude of the actually achieved activation 
level	(provided	neurofeedback	information)	and	the	instructed	target	activation	level	(indicated	by	the	red	rectangular).	A	smaller	and	larger	
distance to the target activation level represented a superior and inferior self‐regulation performance, respectively
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functional images were reconstructed and written to the scanner 
console's hard disk in real‐time during neurofeedback sessions. 
The real‐time data analysis software (Turbo‐BrainVoyager, Brain 
Innovation	B.V.,	Maastricht,	the	Netherlands)	was	used	to	extract	
and	average	the	BOLD‐signal	values	of	all	voxels	in	the	individual	
neurofeedback target region at each TR. The resulting means were 
normalized	to	the	range	[0–10],	 in	relation	to	the	preceding	base‐
line	period	 (constituting	a	value	of	0)	and	an	 individual	maximum	
percent‐signal change value, derived from the localizer run (consti‐
tuting	a	value	of	10).	The	resulting	value	range	was	binned	into	10	
segments and all segments of the thermometer display up to the 
given	 feedback	 value	were	 greyed.	 Feedback	was	updated	 every	
2 s.

3.3 | (f)MRI data preprocessing

To	answer	the	specific	research	questions	of	the	current	paper,	of‐
fline	analysis	of	the	(f)MRI	data	was	performed	using	BrainVoyager	
QX	 (v2.8,	 Brain	 Innovation,	 Maastricht,	 the	 Netherlands).	
Anatomical	 data	 sets	 were	 corrected	 for	 spatial	 intensity	 inho‐
mogeneity.	For	all	participants,	 the	anatomical	data	set	from	the	
first	 session	was	 transferred	 into	ACPC	 space	 and	 the	 anatomi‐
cal data set from the second session was automatically aligned to 
the	ACPC	version	of	 the	first	data	set.	Both	data	sets	were	spa‐
tially	normalized	by	Talairach	 transformation.	All	 functional	data	
sets underwent slice scan‐time correction and temporal high‐pass 
filtering	 (three	 cycles	 per	 time	 course).	 Three‐dimensional	 (3D)	
head‐motion detection and correction was applied by spatially 
aligning all functional volumes of a session to the first functional 
volume	of	 the	 first	 run	within	 that	session.	Finally,	all	 functional	
runs were spatially normalized to Talairach space and interpolated 
to a 3‐mm3	voxel	 resolution.	For	whole‐brain	and	masked	analy‐
sis,	 functional	 data	 were	 smoothed	 in	 3D	 with	 a	 4‐mm	 FWHM	
Gaussian kernel.

3.4 | Extraction of striatum time‐series

One ROIs for the striatum was defined for each hemisphere 
based on peak coordinates from a recent meta‐analysis on re‐
ward	 processing	 in	 fMRI	 (see	 Figure	 2).	 For	 both	 hemispheres,	
selected coordinates marked the maximal spatial overlap of ac‐
tivation increases in response to reward of 126 fMRI studies 
(Bartra	et	al.,	2013).	The	MNI	coordinates	reported	in	the	meta‐
analysis	were	 converted	 into	Talairach	 coordinates	 (Talairach	&	
Tournoux,	1988)	using	the	Yale	BioImage	Suite	Package	tal2mni	
tool	 (Lacadie,	 Fulbright,	 Rajeevan,	 Constable,	 &	 Papademetris,	
2008).	Spherical	volumes	of	interest	(one	left‐	and	one	right‐hem‐
ispheric)	with	a	3‐mm	radius	were	created	around	the	particular	
coordinates. Both ROIs were located in the anterior section of 
the corpus striatum, centered between caudate head and an‐
terior putamen (left striatum: 123 voxels, x	=	−14,	 y	=	7,	 z	=	−2,	
right striatum: 123 voxels, x	=	−11,	 y = 3, z	=	−3;	 see	 Figure	 2).	
The described approach increased the probability of detecting 
reward‐related activation in the brain while not making a priori 
assumptions regarding anatomical sub‐regions of the striatum 
contributing	to	the	processing.	For	further	analysis,	the	resulting	
striatum ROI in the hemisphere of the individual neurofeedback 
target	 region	 was	 chosen	 for	 each	 participant.	 As	 cortico‐stri‐
atal structural connectivity is known to be dominantly ipsilateral 
(see	for	example	Innocenti,	Dyrby,	Andersen,	Rouiller,	&	Caminiti,	
2016,	 Jarbo	 &	 Verstynen,	 2015)	 this	 approach	 increased	 the	
probability of detecting striatal activation specifically related 
to the cortical processes involved in the individual self‐regula‐
tion	task.	For	each	ROI,	eight	time	courses	(from	each	of	the	four	
self‐regulation	 runs	 per	 training	 condition)	 were	 extracted	 per	
participant.

Moment‐to‐moment neurofeedback stimulation images (as 
presented to the participant during the neurofeedback experi‐
ment)	were	re‐created	applying	the	same	procedure	as	described	

F I G U R E  2   Definition of striatum regions of interest. The figure shows the right‐ and left‐hemispheric striatum regions of interest 
(R	=	right,	L	=	left)	overlaid	on	the	mean	of	all	individual	anatomical	data	sets	and	slice	positions	of	displayed	coronal	(orange)	and	axial	
(purple)	slices.	Regions	of	interests	included	all	voxels	in	a	3‐mm	sphere	centered	around	peak	coordinates	from	a	recent	meta‐analysis	
on	reward	processing	representing	maximal	overlap	of	BOLD‐signal	increase	in	response	to	positive	reward	(Bartra	et	al.,	2013).	Provided	
coordinates are in Talairach space
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in	Sorger	et	al.	(2018)	for	the	feedback	sessions	and	the	same	pro‐
cedure was applied post hoc for no‐feedback sessions, resulting 
in one picture per TR/scanned volume during modulation periods 
for both types of training. Using in‐house software written in 
MATLAB	(v8.1	R13;	The	MathWorks,	Natick),	values	of	feedback	
magnitude	 were	 extracted	 from	 picture	 files.	 For	 each	 TR,	 one	
index of self‐regulation accuracy was created by calculating the 
absolute difference between the target level and the feedback 
magnitude	 actually	 achieved	 by	 the	 participant.	 Subsequently,	
the time series of accuracy indices were convolved with a he‐
modynamic response function to create a self‐regulation perfor‐
mance‐predictor time course (representing the neurofeedback 
task	accuracy	at	each	TR	across	time)	for	subsequent	correlation	
analysis with ROI time‐courses.

3.5 | Statistical analysis

3.5.1 | Whole‐brain analysis

To determine whether our sample showed activation dur‐
ing neurofeedback in coherence with recent meta‐analytical 
evidence on neurofeedback, we analyzed whole‐brain data in 
BrainVoyager	 QX	 by	 computing	 a	 group	 random‐effects	 GLM,	
including	 the	 types	 of	 training	 (feedback,	 no	 feedback),	 target	
levels (low: 30%, medium: 60%, high: 90% of the individual 
maxPSC),	as	well	as	six	motion	parameters	as	confounding	pre‐
dictors	to	estimate	beta	values.	We	employed	a	two‐way	within‐
subject design with target‐level	(low,	medium	and	high)	and	type 
of training	(no	feedback	and	feedback)	as	factors.	Subsequently,	
we compared activity increases during self‐regulation with neu‐
rofeedback to passive viewing of neurofeedback (i.e. the resting 
condition)	by	contrasting	activation	across	all	target‐level	condi‐
tions during modulation periods with neurofeedback to baseline, 
during which participants passively observed fluctuations in the 
neurofeedback signal.

3.5.2 | Striatum ROI analysis

To determine whether striatum activation increases during rtfMRI 
neurofeedback‐based self‐regulation compared to self‐regulation 
without neurofeedback and whether this effect is influenced by the 
height of the desired target level, we performed a standard volume 
of interest analysis in BrainVoyager QX: Time‐courses of all voxels 
within the meta‐analytically defined striatum ROIs were averaged to 
create one time‐course of each functional run. By computing a group 
random‐effects	 GLM	 on	 the	 striatum	 ROI	 time‐courses,	 including	
the	HRF‐convoluted	predictors	 for	 types	of	 training	 (feedback,	no	
feedback),	target	levels	(low:	30%,	medium:	60%,	high:	90%	of	the	
individual	maxPSC),	as	well	as	six	motion	parameters	as	confounding	
predictors	to	estimate	beta	values.	We	employed	a	two‐way	within‐
subject design with target‐level	(low,	medium,	and	high)	and	type of 
training	(no	feedback	and	feedback)	as	factors.	A	two‐way	repeated	
measures	analysis	of	variance	(ANOVA,	F‐test)	with	factors	for	target 

level and type of training was performed on the resulting striatum 
beta estimates.

3.5.3 | Time‐resolved analysis of neurofeedback 
performance and striatal activation

To investigate whether striatum activation during neurofeedback 
is modulated by the displayed information on self‐regulation ac‐
curacy, performance‐predictor time courses were correlated 
to striatum time courses. In order to also detect temporally de‐
layed activation changes, the predictor time courses were shifted 
in	 time	 (see	Figure	3).	For	all	 time	points	during	 the	modulation	
periods, predictor time courses were correlated to the striatum‐
ROI time courses within runs. One correlation coefficient was 
acquired	 separately	 for	 each	 temporal	 shift,	 with	 the	maximum	
shift being seven TRs, resulting in eight correlation coefficients 
per run (including the correlation coefficient for the nonshifted 
time	course).

Correlation	 coefficients	 were	 subsequently	 Fisher	 z‐trans‐
formed and first averaged within subjects and conditions. To cre‐
ate stable estimates of the correlation between the two variables 
with expected high variability, resulting correlation means were 
temporally smoothed by averaging the z‐transformed correlation 
means within two time‐windows that were sufficiently distant in 
time	 to	 capture	 different	 BOLD	 response	 peaks:	 The	 early	 time	
window	(0–3	TR	shifts)	included	immediate	BOLD	changes	with	a	
margin	for	variability	in	BOLD	timing	and	shape	and	delay	in	neu‐
ral	reactions.	The	late	time	window	(4–7	TR	shifts)	included	BOLD	
changes	delayed	for	at	least	8	s	after	an	immediate	BOLD	response	
would	be	expected,	so	that	BOLD	changes	in	the	late	time	window	
rather reflect a secondary stage of processing, as for example re‐
sponse preparation, not an immediate reaction to the rewarding 
feedback.

This procedure resulted in one correlation coefficient per sub‐
ject, time window and type of training (four correlation coefficients 
per	 participant).	Z‐transformed correlation coefficients were com‐
pared between types of training separately within the two time win‐
dows using student's paired‐sample t tests and applying Bonferroni 
correction for multiple comparison correction. Effect sizes were cal‐
culated	based	on	Cohens	D	(Cohen,	1988)	adapted	for	paired	mea‐
sures	(Morris	&	DeShon,	2002).

3.5.4 | Masked voxel‐wise analysis of the 
neurofeedback network

To identify activation increases during neurofeedback independ‐
ent of self‐regulation across the whole neurofeedback network, the 
voxel‐wise	group	random‐effects	GLM	was	restricted	to	a	mask	con‐
stituting	of	voxels	within	15‐mm	radii	around	cortical	and	20‐mm	radii	
around the two subcortical meta‐analytic peak voxels, that marked 
activation increases across several neurofeedback studies compared 
to	 rest,	using	 the	peak	voxels	described	by	Emmert	et	al.	 (2016)	 in	
the	pACC,	aINS,	vlPFC,	dlPFC,	temporo‐parietal	and	occipital	cortex,	
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and two subcortical peak coordinates that constituted local maxima 
of several subcortical substructures (putamen, caudate, nucleus ac‐
cumbens,	 globus	 pallidus,	 thalamus).	 The	 coordinates	 were	 trans‐
ferred into Talairach space using the Yale BioImage Suite Package 
tal2mni	 tool	 (Lacadie	 et	 al.,	 2008).	 Differences	 between	 the	 two	
training conditions were compared by contrasting activation during 
modulation periods with neurofeedback to modulation periods with‐
out neurofeedback across the three target levels. Results were clus‐
ter corrected using Monte‐Carlo simulations with 1,000 iterations, a 
FWHM	of	1,608	with	an	initial	threshold	of	p	<	0.01.	Additionally,	a	
liberal correction threshold was applied deliberately for decreasing 
the likelihood of missing potentially lower/more scattered activation 
in prefrontal control areas.

4  | RESULTS

4.1 | Effect of self‐regulation

The contrast for self‐regulation with neurofeedback compared to 
passive	 viewing	 of	 neurofeedback	 (i.e.	 rest)	 revealed	 an	 extensive	
network	of	regional	increases	(FDR	corrected,	q	<	0.05),	encompass‐
ing the bilateral precentral gyrus, the bilateral aINS, bilateral visual 
cortices,	bilateral	dorsolateral	prefrontal	cortex	(dlPFC),	left	VLPFC,	
bilateral	 supplementary	 motor	 area,	 bilateral	 posterior	 pACC,	 left	
frontopolar cortex and an extensive subcortical cluster encompass‐
ing	the	striatum,	thalamus	and	claustrum	and	deactivation	(Figure	4)	
across the bilateral default mode network (transverse temporal gyrus, 

F I G U R E  3   Time‐resolved analysis of 
striatum activation in response to self‐
regulation success. The figure displays 
the logic of the performed correlation 
analysis. Simulated data during gradual 
self‐regulation	is	shown:	(a)	An	HRF‐
convolved time series of performance 
indices is created from the absolute 
distance to the target activation level. 
Successful self‐regulation (i.e., accurate 
regulation of the feedback signal to the 
target	activation	level)	is	represented	by	
a	low	value.	(b)	When	a	corresponding	
activation increase in the striatum ROI 
is	delayed	(in	this	example	6	TR),	the	
activation peak is not paired to the 
improvement in performance during 
correlation	analysis.	(c)	Only,	when	the	
striatum time‐course is shifted 6 TRs 
backwards, the increase in striatum 
activation is aligned to the decrease in 
absolute distance during correlation 
analysis
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angular	gyrus,	precuneus,	medial	prefrontal	cortex	[mPFC])	and	the	
posterior	insula	(pINS)	bilaterally	(Table	1).	No	significant	differences	
between target levels or interactions were observed.

4.2 | Effect of neurofeedback information on 
striatum activation

The main effect for type of training was significant (p = 0.036, 
one‐sided,	 Figure	 5a)	 but	 there	was	 no	main	 effect	 of	 target level 
(p	=	0.14,	 one‐sided)	 and	 no	 significant	 interaction	 (p = 0.08, one‐
sided).	 Correspondingly,	 eight	 out	 of	 ten	 participants	 showed	 in‐
creased mean beta values during self‐regulation with neurofeedback 
compared to self‐regulation without neurofeedback but striatum ac‐
tivation did not differ in a consistent fashion between target levels 
across	participants	(see	Figure	5b).

4.3 | Modulation of striatum activation by self‐
regulation success

An	extensive	analysis	of	task	performance	in	the	given	sample	can	be	
found	in	Sorger	et	al.	(2018).	In	short,	participants	were	able	to	increase	
the	BOLD	signal	magnitude	to	target	levels	in	a	gradual	fashion	across	
both	training	conditions	(no‐feedback	and	feedback),	but	most	partici‐
pants demonstrated slightly increased ability to differentiate between 
target levels when provided with neurofeedback information. Both 
training conditions were matched closely with regard to the absolute 
distance to the desired target level (absolute distance mean (feed‐
back)	=	3.866,	 SEM	=	0.19;	 mean	 (no	 feedback)	=	3.858,	 SEM = 0.22; 
p	=	0.96).

Correlation analysis between performance‐predictor time 
courses and the striatum time courses resulted in one mean z‐
transformed correlation coefficients per type‐of‐training con‐
dition	 (feedback,	 no	 feedback)	 and	 the	 two	 predefined	 time	
windows	(early,	late):	Early	time	window:	Neurofeedback‐rz	=	0.047,	

SEM = 0.01; No‐feedback‐rz	=	−0.018,	 SEM	=	0.02;	 Late	 time	 win‐
dow: Neurofeedback‐rz	=	−0.065,	 SEM = 0.03; No‐feedback mean 
rz	=	0.017,	SEM	=	0.02	(Figure	6a).	Subsequent	paired	t tests  between 
training types indicated a significant difference between correlation 
coefficients only for the late time window (p = 0.044 (Bonferroni 
corrected),	 Cohens	 d	=	0.912)	 but	 not	 for	 the	 early	 time	 window	
(p	=	0.13	 (Bonferroni	 corrected),	 Cohens	 d	=	−0.677).	 The	 effect	
was	consistent	across	participants	(see	Figure	6b):	8	out	of	10	par‐
ticipants showed a more negative mean correlation during gradual 
self‐regulation with feedback compared to gradual self‐regulation 
without feedback in this time window.

4.4 | Sub‐components of the neurofeedback 
network involved in feedback processing

Voxel‐wise analysis restricted to regions showing increased 
 activation during neurofeedback (as defined based on meta analytic 
coordinates	 from	Emmert	 et	 al.,	 2016)	 revealed	 no	 significant	 dif‐
ferences between self‐regulation with neurofeedback compared to 
self‐regulation	 without	 neurofeedback	 (FDR	 corrected,	 q	<	0.05).	
Deliberately applying a liberal correction threshold for decreasing 
the likelihood of false negatives in the our small sample revealed ac‐
tivation differences in the left anterior striatum, right aINS and left 
visual cortices and lower activation in the bilateral posterior stria‐
tum/thalamus remained, cluster corrected using Monte‐Carlo simu‐
lations with an initial threshold of p < 0.01.

5  | DISCUSSION

5.1 | Brain activation in response to neurofeedback 
during gradual self‐regulation

The main aim of this study was to identify activation related to neu‐
rofeedback processing during neurofeedback‐guided self‐regulation. 

F I G U R E  4  Self‐regulation	with	neurofeedback	compared	to	passive	viewing	of	neurofeedback.	(a)	In	comparison	to	the	rest	condition,	
self‐regulation with neurofeedback was accompanied by increased activation in prefrontal control regions and regions involved in feedback 
processing	(visual	cortices,	anterior	insula)	as	well	as	decreased	activation	in	the	default	mode	network	and	the	posterior	insula.	(b)	An	
extended increase in subcortical activation was present during self‐regulation with neurofeedback, encompassing the striatum, thalamus, 
claustrum	and	the	brainstem.	The	figure	shows	the	whole‐brain	RFX	contrast	map	thresholded	at	FDR	corrected	q	<	0.05	on	a	sample	
participant's	inflated	cortex	segmentation	(a)	and	on	the	average	of	the	individual	anatomical	data	sets	(b)
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We	investigated	this	 research	question	through	analysis	at	whole‐
brain level, in the striatum, a key region implicated in feedback and 
reward processing, and within a whole network of regions that reli‐
ably shows increased activation during neurofeedback as identified 
by a recent meta‐analysis.

We	 could	 replicate	 recent	 meta‐analytical	 findings	 (Emmert	
et	al.,	2016)	within	a	single	sample	with	regard	to	joint	activation	
of cognitive control areas and areas involved in feedback learning 
by observing extended activation increases in prefrontal control 
hubs	(pACC,	lateral	and	posterior	PFC)	as	well	as	regions	involved	
in	feedback	and	reward	processing	(aINS,	striatum,	visual	cortices),	
the thalamus and deactivation in the default network across differ‐
ent mental tasks during neurofeedback. ROI analysis focussed on 
the striatum revealed significantly higher activation during grad‐
ual self‐regulation with rather than without feedback, suggesting 
that during neurofeedback, the observed striatum modulations 
reflect feedback learning and not self‐regulation per se, as partic‐
ipants achieved successful self‐regulation already without receiv‐
ing feedback (for an extensive discussion of self‐regulation in the 
sample	see	Sorger	et	al.,	2018)	and	both	self‐regulation	conditions	
did not differ with regard to the provided visual markers of task 
performance,	that	 is	absolute	distance	to	target	level.	As	partici‐
pants were engaged in different self‐regulation task domains, the 
observed increase in activation was not related to a specific task 
domain,	 but	 specifically	 driven	 by	 neurofeedback.	 Subsequent	
analysis on the relationship between visual information pro‐
vided during neurofeedback and striatum activation showed that 
more accurate neurofeedback performance was accompanied by 
an	 increased	BOLD‐signal	 level	 in	 the	anterior	 striatum	 in	 a	 late	
time window (8–14 s after a particular neurofeedback value was 
visually	 displayed),	 suggesting	 that	 the	 observed	 striatal	 activa‐
tion increases during neurofeedback are indeed reflecting the 
processing	of	feedback	 information.	While	ROI	analysis	revealed	
increased activation during neurofeedback compared to self‐regu‐
lation without neurofeedback in the anterior striatum, we failed to 
detect activation differences during voxel‐wise analysis within the 
network of regions commonly involved in neurofeedback (Emmert 
et	al.,	2016).	As	we	cannot	exclude	the	absence	of	activation	dif‐
ferences within other regions of the network (especially in feed‐
back processing regions and visual areas as suggested by liberal 
cluster	corrected	analysis),	further	research	with	higher	statistical	
power is needed to describe the distribution of activation within 
the whole network in comparison to self‐regulation without neu‐
rofeedback, as the sample size of the given study constituted a 
limitation with regard to statistical power, as well as a potentially 
slight variance introduced by different MR systems.

Overall, our findings are in line with recent theoretical ap‐
proaches that suggest different sub‐components of the neurofeed‐
back network for feedback processing and self‐regulation (Sitaram 
et	al.,	2017).	While	the	anterior	striatum	appears	to	serve	a	unique	
function	 in	 response	 to	 neurofeedback,	 especially	 the	 lateral	 PFC	
and	the	ACC	(of	the	network	activated	during	neurofeedback	in	this	
study)	have	been	defined	as	key	regions	in	cognitive	control	in	gen‐
eral	(MacDonald,	Cohen,	Stenger,	&	Carter,	2000).	Both	regions	are	
also jointly activated during various task modalities that involve cog‐
nitive	control,	including	emotion	regulation	(Etkin,	Egner,	&	Kalisch,	
2011;	 Goldin,	McRae,	 Ramel,	 &	 Gross,	 2008),	 response	 inhibition	
(Cai	et	al.,	2015)	and	attentional	control	(Weissman,	Gopalakrishnan,	

TA B L E  1   Self‐regulation with neurofeedback compared to 
passive viewing of neurofeedback

Increased 
activation

Peak voxel 
coordinates Peak voxel statistics

Visual feedback 
and reward x y z t p

Subcortical	L/
anterior	insula	L

−18 −4 4 12.3283 0.000001

Anterior	insula	R 33 20 10 10.0164 0.000004

Subcortical R 18 8 16 9.4796 0.000006

Visual	cortex	L −39 −82 −9 6.2985 0.000141

Visual cortex R 36 −85 7 5.8471 0.000245

Self‐regulation and attention

Supplementary 
motor area 
bilateral

3 −1 58 13.0617 0.000001

Ventrolateral 
PFC/precentral	
gyrus	L

−60 11 16 8.7361 0.000011

Dorsal anterior 
cingulate 
bilateral

0 14 43 7.7295 0.000029

Precentral gyrus 
L

−39 29 28 7.2432 0.000049

Precentral Gyrus 
R

51 2 46 7.2152 0.000055

Frontopolar/
dorsolateral 
PFC	L

−45 48 13 7.0833 0.000058

Decreased activation

Precuneus −3 −55 31 −10.6369 0.000002

Posterior insula R 39 −22 19 −9.4743 0.000006

Posterior	insula	L −51 −22 13 −8.4177 0.000015

Medial	PFC 0 41 −9 −7.5212 0.000036

Posterior temoral 
cortex/angular 
gyrus	L

−60 −58 23 −6.7828 0.000081

Posterior temoral 
cortex/angular 
gyrus R

48 −61 25 −6.7624 0.000082

Note. Self‐regulation with neurofeedback was accompanied by increased 
activation in prefrontal control regions (dorsolateral and ventrolateral 
PFC,	 dorsal	 anterior	 cingulate,	 precentral	 gyrus,	 supplementary	motor	
area)	and	regions	involved	in	feedback	processing	(visual	cortices,	ante‐
rior	insula	and	an	extended	subcortical	cluster)	as	well	as	decreased	acti‐
vation in the default mode network and the posterior insula. The table 
contains coordinates and statistics of peak voxels for the whole‐brain 
RFX	contrast	map	thresholded	at	FDR	corrected	q	<	0.05	(coordinates	in	
Talairach	space).	PFC,	Prefrontal	cortex;	L,	left;	R,	right.
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Hazlett,	&	Woldorff,	2004),	supporting	their	role	as	the	general	basis	
of	self‐regulation.	Fittingly,	participants	were	instructed	to	dynami‐
cally engage and disengage from their mental task during self‐regu‐
lation (indeed participants confirmed to have followed these general 
strategies	 closely,	 see	 Sorger	 et	 al.,	 2018),	 thereby	 shifting	 their	
focus of attention to and away from the mental content driving the 
feedback, modulating activation in their attentional system during 
self‐regulation as in accordance with the observed prefrontal and 
parietal activation.

To our knowledge, this is the first study providing evidence 
for a linear relationship between the provided visual neurofeed‐
back information and activation increases within the striatum. 
Conforming to the observed modulations of striatum activation by 
neurofeedback, most theoretical approaches on neurofeedback 
underline the importance of reward processing during neurofeed‐
back, although several different working mechanisms have been 
proposed	(for	a	recent	overview	see	Sitaram	et	al.,	2017).	As	the	
parametric activation paradigm applied in this study differs from 
previous research regarding the possibility to receive rewarding 
neurofeedback by up‐ as well as by down‐regulating activation ad‐
equately	 in	 relation	 to	 the	 target	 level,	 it	 remains	open	whether	
graded neurofeedback, as employed here, recruits the striatum 
differently compared to neurofeedback studies aiming at max‐
imizing the neurofeedback magnitude, as task load and reward 

probability are known to modulate activation strength and timing 
of reward system activation (Cardinal, 2006; Stalnaker, Calhoon, 
Ogawa,	Roesch,	&	Schoenbaum,	2012).	Additionally,	 it	would	be	
important for further research to examine strategically whether 
modulating the reward contained in neurofeedback can be used to 
optimize its influence on the striatum, for example by investigat‐
ing	the	effect	of	monetary	reward	for	performance.	Furthermore,	
to ensure that participants could optimally perform gradual self‐ 
regulation in both conditions, and focus on the relevant marker of 
performance (i.e. either derived from neurofeedback or in the no‐
feedback	 condition	 from	 introspection),	 no	 blinding	was	 applied	
in	the	current	study.	As	the	lack	of	(double)	blinding	constitutes	a	
limitation of our design, future research should investigate the ef‐
fects of blinding on the reward system during self‐regulation with 
neurofeedback.

5.2 | The influence of neurofeedback on different 
stages of reward processing

We	 also	 investigated	 how	 neurofeedback	 influences	 different	
stages of reward processing. In the current study, reward values 
were assigned to the distance between the instructed target acti‐
vation level and the achieved activation level, which was updated 
every 2 s. Interestingly, the observed neurofeedback effect was 

F I G U R E  5  Effect	of	gradual	self‐regulation	success	on	striatum	activation	(group	and	single‐subject	results).	The	figure	visualizes	
the	BOLD‐signal	level	within	the	striatum	region	of	interest	ipsilateral	to	the	neurofeedback	target	region	for	the	two	type‐of‐training	
conditions	and	across	the	different	target‐level	conditions:	(a)	Mean	beta	values	for	each	target‐level	condition	across	all	participants	
separately	for	the	no‐feedback	(blue)	and	feedback	(red)	condition.	Error	bars	represent	standard	errors	of	the	means.	When	pooling	the	
data	across	the	target‐level	conditions,	the	difference	of	mean‐beta	values	for	the	two	type‐of	training	conditions	(feedback,	no‐feedback)	
was significant (p	<	0.05,	Bonferroni‐corrected,	one‐sided).	(b)	Single‐subject	mean	beta	values	separately	for	each	target‐level	and	type‐
of‐training	condition.	In	80%	of	participants	(red‐rimmed),	the	mean	striatum	activation	(i.e.,	pooled	activation	across	the	three	target‐level	
conditions)	was	higher	in	the	feedback	compared	to	the	no‐feedback	condition.	Remark. Participants with black underline underwent the 
feedback	condition	first	and	no‐feedback	condition	second.	Abbreviations	for	mental	strategies:	IS	=	Inner	speech,	MO	=	mental	orchestra,	
VM = visual motion imagery, MD = mental drawing, MS = mental sounds, MR = mental running
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substantially delayed (a significant difference between both train‐
ing conditions was observed only in a time window 8–14 s after 
a	 corresponding	 feedback	 information	was	 provided).	 Taking	 into	
account that rtfMRI‐based neurofeedback is delayed over several 
seconds, the reward information provided during and shortly after 
a mental action is unrelated to the neural activity subserving the 
mental action itself. It remains to be determined if reception of 
conflicting reward information during performance of a mental ac‐
tion leads to alterations in neurofeedback processing, as besides 
attributing value to a certain stimulus, the striatum also detects 
relations	 between	 performed	 actions	 and	 rewards	 (FitzGerald,	
Schwartenbeck,	&	Dolan,	2014;	Haruno	et	al.,	2004;	Kim,	Sul,	Huh,	
Lee,	&	Jung,	2009)	and	predicts	when	a	reward	should	occur	(Kohrs	
et	al.,	2012).	Additionally	to	receiving	noncorresponding	feedback	
during or shortly after a mental action, the predictability of reward 
information is also reduced due to noise or other confounding fac‐
tors that distort the neurofeedback signal. Violations of reward 
expectancies as well as uncertainty of receiving rewards lead to 
alterations in striatum activation (Kohrs et al., 2012; McClure et 
al.,	 2003;	 Pagnoni	 et	 al.,	 2002).	 Both	 uncertainty	 and	 conflicting	
reward information could contribute to the difficulty to detect an 
immediate neurofeedback response in an early time window after 
the	feedback	is	presented.	Focusing	on	creating	more	direct	closed‐
loop	approaches	(El	Hady,	2016;	Potter,	El	Hady,	&	Fetz,	2014),	for	
example, by neurofeedback‐guided brain stimulation systems that 
stimulate the striatum directly, could help to detect optimal time 

windows for operant conditioning and increase the efficacy of neu‐
rofeedback strongly.

With	 respect	 to	 the	 interpretability	 of	 the	 current	 results	
regarding different phases of reward processing, it is also to be 
noted that different stages of feedback processing do not only 
differ in time, but also recruit different sub‐regions of the stria‐
tum	(Balleine	et	al.,	2007;	Sleezer	&	Hayden,	2016;	Tanaka	et	al.,	
2004).	As	the	current	study	aimed	at	describing	the	temporal	re‐
lationship between visual neurofeedback information and stria‐
tum activation for the first time, regions of interest were chosen 
based on meta‐analytic peak coordinates on reward processing 
in fMRI, to increase the probability of detecting reward related 
activation. Due to this region‐of‐interest selection approach, dif‐
ferent anatomical sub‐regions of the anterior striatum contribute 
to	the	observed	activation,	and	as	a	consequence	we	cannot	make	
any strong claims regarding the exact anatomical sub‐structures 
 underlying this activation pattern.

However, the ventral section of putamen and caudate indeed 
have been shown to create reward predictions using temporal infor‐
mation	(Hiebert	et	al.,	2014)	supporting	the	interpretation	that	here	
temporal properties of reward information are crucial. Especially an‐
terior caudate has also been associated with biasing actions based 
on reward information (O'Doherty et al., 2004; Tanaka, Balleine, 
&	 O'Doherty,	 2008;	 Tricomi,	 Delgado,	 &	 Fiez,	 2004;	 Valentin,	
Dickinson,	&	O'Doherty,	2007),	suggesting	that	the	ROI	signal	rep‐
resents merged processes of reward prediction and action selection, 

F I G U R E  6  Relationship	between	self‐regulation	success	and	striatum	activation	level	(group	and	single	subject	results).	Relationship	
between	absolute	distance	to	target	activation	level	and	striatum	activation	separately	for	the	two	type‐of‐training	conditions.	(a)	Mean	
Fisher	z‐transformed correlation coefficients between self‐regulation success and striatum activation separately for an early time window 
(0–3	TR	shift,	immediate	and	slightly	delayed	striatum	activation)	and	a	late	time	window	(4–7	TR	shift,	delayed	striatum	activation).	The	
difference	of	the	correlation	values	with	respect	to	the	two	type‐of‐training	conditions	(feedback,	no	feedback)	was	only	significant	for	
the late time window (p	<	0.05,	Bonferroni‐corrected,	one‐sided).	(b)	Single‐subject	results	for	the	late	time	window.	Eighty	percent	of	
participants showed a more negative correlation between distance to target‐level and striatum activation during gradual self‐regulation 
when receiving neurofeedback. Remark. Participants with black underline underwent feedback condition first and no‐feedback condition 
seconds.	Abbreviations	for	mental	tasks:	IS	=	Inner	speech,	MO	=	mental	orchestra,	VM	=	visual	motion	imagery,	MD	=	mental	drawing,	
MS = mental sounds, MR = mental running
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thereby reflecting the interwoven transitions between different re‐
ward	processing	stages	in	the	striatum	(Haber	et	al.,	2000).

5.3 | Linking mental actions to the information 
contained in neurofeedback

Neurofeedback differs from other domains of feedback learning dur‐
ing the learning process in that actions driving the reward are purely 
mental actions. To understand which mental actions lead to rewards, 
participants rely on introspection. The conscious monitoring of men‐
tal	 actions	 requires	 meta‐awareness,	 which	 recruits	 a	 distributed	
network	of	areas,	including	the	pACC	and	the	insula	(Schooler	et	al.,	
2011).	In	a	loop‐like	fashion,	these	hubs	have	been	suggested	to	in‐
teract with other higher‐order cognitive networks involved in work‐
ing memory and attention, the striatum, the thalamus and regions 
recruited by the specific self‐regulation task during neurofeedback 
(Emmert	et	al.,	2017;	McCaig,	Dixon,	Keramatian,	Liu,	&	Christoff,	
2011;	Sitaram	et	 al.,	 2017).	Neural‐feedback	 loops	between	 these	
networks and the striatum could be crucial in identifying a relation‐
ship between mental actions and corresponding reward values. The 
complex pattern of continuous top‐down input from other regions 
to	the	striatum	during	reward	processing	(Haruno	&	Kawato,	2006),	
could be an important contributing factor for the observed delay in 
striatum reactivity to neurofeedback.

However, action‐effect mapping is not selectively dependent on 
conscious	introspection	(Hommel,	1996).	Accordingly,	recent	studies	
(Ramot,	Grossman,	 Friedman,	&	Malach,	 2016)	 demonstrated	 that	
covert neurofeedback, that is, during which participants are not 
aware of the fact that they received neurofeedback, was accompa‐
nied	by	increased	striatum	activation	(Ramot	et	al.,	2016).	Both	au‐
tomatic reward processing as well as conscious self‐regulation have 
been	 argued	 to	 be	 crucial	 in	 neurofeedback	 (Sitaram	 et	 al.,	 2017)	
but	a	mechanistic	model	of	how	automatic	and	subsequent	stages	
of reward processing interact during neurofeedback is still lacking. 
For	future	research	to	tackle	this	issue,	the	temporal	properties	of	
neurofeedback should be taken into account because action‐reward 
mapping is known to be strongly influenced by the delay of a reward 
(Dobryakova	&	Tricomi,	2013;	Tanaka	et	al.,	2004).

6  | CONCLUSION

This study demonstrates that neurofeedback contributes to self‐
regulation through regions involved in feedback and reward pro‐
cessing, which share activation between different mental tasks. 
Focussing	 on	 the	 striatum	 as	 a	 key	 region	 in	 reward	 processing,	
we demonstrated increased activation in the anterior striatum 
during self‐regulation with neurofeedback, which correlated with 
self‐regulation success. The substantial delay in the observed ef‐
fect suggests that these modulations reflect later stages of reward 
processing beyond simple detection of external rewards, but fur‐
ther research is needed to understand the mechanisms of neuro‐
feedback	reward	learning.	As	trained	associations	between	actions	

and	rewards	(for	example	during	operant	conditioning)	are	key	to	
learning, the given results provide a promising outlook for neuro‐
feedback to facilitate learning with the potential for operant condi‐
tioning of mental actions.
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