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ABSTRACT  

The direct synthesis of hydrogen peroxide (H2O2) from molecular hydrogen and oxygen could 

represent a green and economically attractive alternative to the current indirect anthraquinone 

process used for the industrial production of hydrogen peroxide. This reaction has been 

investigated using palladium supported on the Cs-containing heteropolyacid Cs2.5H0.5PW12O40. 

In addition, the effect of adding copper as a potential activity promoter was investigated. These 

catalysts were also evaluated for the subsequent degradation of hydrogen peroxide. The 

catalytic activity of the 0.5 wt.%Pd/Cs2.5H0.5PW12O40 catalyst towards hydrogen peroxide 

synthesis was greater than that of both the mono-metallic Cu or bi-metallic Pd-Cu analogues 

with the incorporation of Cu to Pd resulting in a significant decrease in catalytic selectivity for 

the formation of hydrogen peroxide. Moreover, 0.5 wt.%Pd/Cs2.5H0.5PW12O40 also showed low 

activity towards the degradation of hydrogen peroxide. Hence the use of the Cs-containing 

heteropolyacid as a support for Pd gives higher rates of hydrogen peroxide formation when 

compared with different supported Pd catalysts prepared using supports used in previous 

studies.  

 

KEY WORDS:  Green Chemistry; Copper; Palladium; Bimetallic catalysts;           

Heteropolyacids; Hydrogen peroxide. 

 

INTRODUCTION  

Hydrogen peroxide (H2O2), a green oxidant, is widely used in the chemical industry and 

environmental protection. Currently H2O2 is primarily used as a bleaching agent in the pulp 

and paper industry [1-3], as a disinfectant in the cosmetic and pharmaceutical industry, as an 

oxidant in water treatment [4, 5] and in the synthesis of bulk chemicals [6]. It is also used, in a 

highly purified form, for etching and cleaning in the electronics' industry [7]. The increasing 

demand for H2O2 has in part been driven for growing global demand for propene oxide, which 

finds application in the production of surfactants, polyurethane and resins [8]. It is estimated 

that by 2020 global annual demand for H2O2 will reach 5.2 million tons [9].   

 Current production of H2O2 on an industrial scale is limited to the well-established 

anthraquinone process, which is based on the process developed by Riedl and Pfleiderer of 

BASF in 1939 [10]. Although highly efficient, there are significant costs around the need for 
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continual replacement of the H2 carrier molecule, which undergoes unselective hydrogenation 

and the need to use stabilizing agents, in particular acids, to prevent the decomposition of H2O2 

while in transit. With the presence of these acids often leading to reactor corrosion and 

increased costs associated with their downstream removal.  

The direct synthesis of H2O2 from molecular H2 and O2 is an attractive means for producing 

H2O2 at point of use, overcoming many of the economic and environmental drawbacks 

associated with the anthraquinone process. However, catalytic selectivity towards H2O2 

production has long been an issue surrounding the direct synthesis approach. With many 

catalysts often requiring the use of halide [11-12] or acid additives [13] to minimize the over 

hydrogenation or decomposition pathways, which result in the unselective production of H2O, 

as shown in Figure 1.  

 

Figure 1. The reaction pathways involved in the direct synthesis of H2O2 reaction 

Bimetallic AuPd catalysts have been shown to be significantly more selective towards H2O2 

generation compared to analogous Pd supported catalysts, likely due to a combination of 

ensemble and electronic effects. Since the initial report of the activity of Au towards the direct 

synthesis of H2O2 by Landon et al.[14] the effect of Au addition to Pd-based catalysts has been 

well established in the literature on a range of common supports [15, 16]. With subsequent 

work investigating the combination of Pd with other precious metals including Pd-Pt [17, 18], 

Pd-Ru [19], Pd-Ir [20] and Pd-Ag [21, 22]. Deguchi et al. have recently compared the effect of 

the addition of precious metals to a Pd-polyvinylpyrrolidone colloid, with significant 

enhancements in catalytic activity observed with the addition of very low (0.5 at.%) 

concentrations of Pt and Ir [20]. However, the replacement of Au with a cheaper, more 

abundant, base metal would clearly be beneficial from an economic standpoint. We have 

recently reported that it is possible to significantly enhance the selectivity of Pd-based catalysts 

towards H2O2 through the encapsulation of small Pd nanoparticles in a suitable secondary metal 

oxide, removing the requirement of Au incorporation to achieve a highly selective Pd catalyst 

in the absence of acid or halide stabilizing agents [23]. With subsequent studies further 

demonstrating the remarkable effects of Pd modification by Sn [24, 25]. While others have 

investigated the beneficial effects of Zn [26], Ni [27], and Te [28] into Pd nanoparticles, with 

computational studies by Xu et al. predicting Pd-Pd and Pd-W as potential candidates for highly 

active catalysts for the direct synthesis of H2O2 [29].  

It is well known that the choice of support can dramatically effect catalytic selectivity towards 

H2O2, with those more acidic supports beneficial for catalytic selectivity and net yield of H2O2 

[30].  Due to their high acidity numerous studies have investigated the use of heteropolyacids 
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as both catalyst supports [31, 32] as well as solid acid additives used in addition to well 

established catalysts [33]. However, issues of low surface area and high solubility in polar 

solvents have dictated the need for the introduction of specific cations such as Cs+, K+ and Rb+ 

into the structure of the heteropolyacid or immobilization onto mesoporous supports [34, 35] 

Park et al.[31, 32, 36, 37]  and Sun et al. [38] have previously investigated the use of 

monometallic Pd nanoparticles supported on insoluble heteropolyacid (HPA) catalysts for the 

direct synthesis of H2O2 in the absence of any acid and/or halide additives. Sun et al. [38] have 

reported that Pd nanoparticles supported on HPAs comprising the Keggin structure showed 

higher H2O2 productivities with a corresponding improvement in H2O2 selectivity compared to 

conventional monometallic-Pd catalysts supported on common oxides. While, Park et al. [32] 

have investigated the effect of varying the extent of Cs-incorporation into the Keggin structure 

of Pd-exchanged heteropolyacids (Pd0.15CsxH2.7-xPW12O40) for H2O2 synthesis and report that 

catalytic activity is correlated with support acidity. Building on this work we investigated the 

effect of Au addition to these systems by both impregnation and ion-exchange, which resulted 

in an increased rate of H2O2 synthesis compared to the monometallic Pd catalysts, again 

demonstrating the beneficial effect of Au incorporation into a Pd catalyst [39, 40]. Indeed these 

catalyst show remarkable activity towards H2O2 synthesis under reaction conditions considered 

detrimental towards H2O2 [39]. More recently, we have demonstrated the dramatic 

enhancements in catalytic activity can be achieved when using insoluble Cs-exchanged 

phosphotungstic acid as a heterogeneous additive alongside a standard H2O2 synthesizing 

catalyst, with a near three-fold improvement in H2O2 synthesis rate reported [33].   

In this work, we extend these earlier studies and evaluate the performance of mono- and bi-

metallic Pd and Cu catalysts supported on Cs-containing heteropolyacids and magnesium oxide 

for their activity towards the direct synthesis of H2O2.  

EXPERIMENTAL SECTION 

Preparation of Cs2.5H0.5PW12O40 

The acidic salt Cs2.5H0.5PW12O40 (designated CsPW) were prepared by the addition of the 

required amount of aqueous cesium carbonate (0.47 M) drop-wise to an aqueous solution of 

H3PW12O40 (0.75 M) at 40 ⁰C with stirring. The obtained precipitate was aged in aqueous 

mixture for 48 h at room temperature and dried using a rotary evaporator at 45 ⁰C/25 Torr.  

Preparation of Cu-Pd /Cs2.5H0.5PW12O40 

Monometallic Pd catalysts supported on Cs2.5H0.5PW12O40, (designated Pd/CsPW,) were 

synthesized by stirring the pre-formed CsPW support with the required amount of palladium 

(II) acetylacetonate solution, to achieve a nominal loading of 0.5 wt.%, together in toluene at 

room temperature for 1 h. This was followed by slow evaporation of toluene in a rotary 

evaporator. Following this, the resulting solid underwent thermal reduction (H2, 250 ⁰C, 2 h, 

10 ⁰Cmin-1). The actual Cu and Pd content in the catalyst were determined by ICP. 

Monometallic Cu and bi-metallic Pd-Cu catalysts (designated Cu /CsPW and PdCu/CsPW) 

were synthesised using the same procedure with appropriate amounts of copper (II) 

acetylacetonate and palladium (II) acetylacetonate solutions to achieve the desired metal 

loadings. All catalysts were ground prior to calcination (150 °C/0.5 Torr, 1.5 h, 10 ⁰Cmin-1) 
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Preparation of Cu-Pd /MgO 

Monometallic Pd catalysts supported on MgO (designated Pd/MgO), were synthesised by 

stirring MgO powder (Lehmann) with required amount of palladium (II) acetylacetonate, to 

achieve a nominal loading of 0.5 wt.%. in toluene at room temperature for 1 h, followed by 

slow evaporation of toluene in a rotary evaporator. Following this, the resulting solid 

underwent thermal reduction (H2, 250 ⁰C, 2 h, ramp rate 10 ⁰Cmin-1). The actual copper and 

palladium contents in the catalyst were determined by ICP. Monometallic Cu and bi-metallic 

Pd-Cu supported catalysts (designated Cu / MgO and PdCu/ MgO respectively) were 

synthesised using the same procedure with appropriate amounts of copper (II) acetylacetonate 

and palladium (II) acetylacetonate to achieve the desired metal loading. All catalysts were 

ground prior to calcination (150 ⁰C/ 0.5 Torr, 1.5 h, ramp rate 10 ⁰Cmin-1). 

 Catalyst characterization. 

The phase identification and crystallinity of the prepared catalysts was identified using powder 

X-ray diffraction (XRD) on a Bruker X-ray diffractometer system equipped with a RINT 200 

wide-angle goniometer using Ni-filtered Cu Kα radiation with a generator voltage and current 

of 40 kV and 30 mA, respectively. A scan speed of 5⁰ (2θ min-1) with a scan step of 0.002⁰ (2θ) 

was applied during a continuous run in the 5-60⁰ (2θ) range. Phase identification was carried 

out using the reference database (JCPDS-files) supplied with the equipment.  

Copper and palladium contents in the different catalysts were measured by inductively coupled 

plasma-optical emission spectrometry (ICP-OES) analysis (Agilent, ICP-700). The Brunauer-

Emmett-Teller (BET) method, using a Quantachrome Corporation Autosorb, was used to 

determine the total surface area of the prepared catalysts by N2 adsorption/desorption at -196 

°C. FT-IR spectra were measured using a PerkinElmer Spectrum GX FT-IR spectrometer.  

The catalyst morphology, structure, and elemental composition of the samples were analyzed 

with transmission electron microscopy (TEM) technique. TEM analysis was carried out by 

using the TitanG2 80-300 ST microscope from FEI Company (Hillsboro, OR) that was also 

equipped with energy dispersive spectrometer (EDS) from EDAX (Mahwah, NJ). Prior to the 

analysis, the TEM specimens were prepared by dispersing the powders in ethanol and then 

dropping the resulting suspension onto 400-mesh holey carbon-coated copper (Cu) grids. 

TEM-analysis include the bright-field TEM (BF-TEM) and high-angle-annular-dark-field 

scanning TEM (HAADF-STEM) techniques in conjunction with EDS to determine the above-

mentioned properties of the prepared samples. 

Samples were analysed using a Quantachrome instruments ChemBET TPD/R/O. The samples 

(0.02-0.05 g) were degassed at 110 ⁰C for 1 h under helium to clean the surface prior to 

ammonia adsorption. The degassed sample was treated in a pure ammonia flow for 0.5 h at 60 
oC before further heat treatment at 100 ⁰C for 1 h to remove the physisorbed ammonia. The 

sample was then heated under helium to 800 oC at 20 oC min-1 and the ammonia desorption 

monitored by TCD.  

Catalyst Testing.  

Direct Synthesis of H2O2. 
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Catalyst testing was performed using Parr Instruments stainless steel autoclave batch reactor 

(equipped with an overhead stirrer and temperature/pressure sensors) with a nominal volume 

of 70 ml and a maximum working pressure of 14 MPa. To evaluate catalytic activity towards 

the direct synthesis of H2O2, the autoclave was charged with catalyst (0.01 g) and solvent (5.6 

g MeOH and 2.9 g H2O). The charged autoclave was purged three times with 5 %H2/CO2 (100 

psi) and then filled with 5 %H2/CO2 (420 psi) and 25 %O2/CO2 (160 psi). The temperature was 

allowed to decrease to 2 oC followed by stirring (1200 rpm) of the reaction mixture for 0.5 h. 

H2O2 yield was determined by titrating aliquots of the final filtered solution with acidified 

Ce(SO4)2 (1.18 x 10-2 molL-1). The Ce(SO4)2 solution was standardised against 

(NH4)2Fe(SO4)2.6H2O using ferroin as indicator. 

H2O2 Degradation.  

The reaction was carried out in the same stainless steel autoclave reactor described previously. 

Before charging the autoclave with the catalyst and solvent mixture, the initial moles of H2O2 

were determined by titrating aliquots of the initial solvent mixture (0.68 g H2O2 (50wt.%) 2.22 

g H2O and 5.6 g MeOH) with acidified Ce(SO4)2 (1.18 x 10-2 mol L-1). The autoclave was then 

charged with the catalyst (0.01 g), solvent (0.68 g H2O2, 2.22g H2O and 5.6 g MeOH), purged 

three times with 5 %H2/CO2 (100 psi) and then filled with 5 %H2/CO2 (420 psi). The 

temperature was allowed to decrease to 2 oC followed by stirring (1200 rpm) of the reaction 

mixture for 0.5 h. The final concentration of H2O2 was determined by titration of aliquots of 

the final filtered solution with acidified Ce(SO4)2 (1.18 x 10-2 mol L-1). The Ce(SO4)2 solution 

was standardised against (NH4)2Fe(SO4)26H2O using ferroin as indicator. The hydrogenation 

of H2O2 was determined by the following calculation:  

Moles of H2O2 consumed = Mol H2O2 INIAL – Moles H2O2 FINAL 

Degradation =   (Moles of H2O2 consumed / kg cat x h) 

 

Results and discussion.  

Catalyst Characterization. 

XRD analysis of the three Cs2.5H0.5PW12O40  based catalysts; CsPW, 0.5 wt.%Cu/CsPW, and 

0.5 wt.% Cu-0.5 wt.% Pd/CsPW, as seen in Figure 2, revealed no reflections associated with 

Cu and or Pd indicating the high dispersion of these species. Indeed regardless of the 

immobilisation of Pd and Cu the reflections observed can all be assigned to Cs2.5H0.5PW12O40, 

with negligible change in peak width, or intensity observed with Pd and Cu immobilisation, 

the detected reflections consistent with the cubic structure of H3PW12O40 (ICDD reference 

number 00-050-0657).    
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Figure 2: Powder XRD diffractograms of freshly prepared catalysts supported on CsPW. A: CsPW,      

B: 0.5wt.%Cu/CsPW, C: 0.5 wt.%Cu-0.5wt.%Pd/CsPW 

 

Figure 3 shows the XRD patterns for the three MgO (which is used as an example of a basic 

oxide support) supported catalysts: 0.5 wt.%Cu/MgO, 0.5 wt.% Pd-0.5 wt.% Cu/MgO, and 0.5 

wt.%Pd/MgO. It can be observed that the crystal structure of MgO (ICDD reference number 

01-0178-0430) was maintained upon incorporation of Cu and Pd metals. Interestingly, unlike 

with the analogous CsPW supported catalyst,  reflections associated with PdO can be observed 

for the monometallic 0.5 wt.%Pd /MgO catalyst, as seen in Figure 3, (2θ =39.8, 46.5, 67.93). 

However, upon addition of Cu these reflections are no longer observed, indicating the potential 

ability of Cu to better disperse Pd.    

 

 

Figure 3: Powder XRD diffractograms of freshly prepared catalysts supported on MgO.                                  

A: 0.5wt.%Cu/MgO, B: 0.5wt.%Cu- 0.5 wt.%Pd/MgO, C: 0.5wt.%Pd/MgO  
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ICP analysis was used in order to determine the variation between theoretical and actual metal 

loadings with the results seen in Table 1. Reasonable agreement was obtained between the 

actual content and calculated content for each metal of Cu and Pd in all Cs-containing 

heteropolyacid-supported catalysts.  

Table 1: Total metal loading of Cu and Pd supported catalysts as determined by ICP analysis.  

 Cu / wt.% Pd / wt.% 

Catalyst Calc. Actual Calc. Actual 

0.5 wt.% Cu/CsPW 0.5 0.46 - - 

0.5 wt % Cu-0.5 wt.% Pd/CsPW 0.5 0.44 0.5 0.53 

0.5 wt.% Pd/CsPW - - 0.5 0.48 

0.5 wt.% Cu/MgO 0.5 0.45 - - 

0.5 wt.% Cu-0.5 wt.% Pd/MgO 0.5 0.46 0.5 0.47 

0.5wt.% Pd/MgO - - 0.5 0.46 

 

Surface area analysis of the catalysts was determined by N2 adsorption and the results are given 

in Table 2. Park et al. [41] have previously reported that upon Cs-incorporation the surface area 

of the parent phosphotungstic acid increases significantly, from 6 m2/g to 105 m2/g which is in 

keeping with surface areas reported in Table 2.  

Table 2. Surface area and pore analysis as determined via N2 adsoption. 

Catalyst 
Surface Area 

(m²/g) 
Pore size (A°) Pore volume (cm3/g) 

0.5 wt.% Cu/CsPW 109 0.110 0.43 

0.5 wt.% Cu-0.5 wt.%Pd/CsPW 95 0.095 0.39 

0.5 wt.% Pd/CsPW 105 0.101 0.37 

0.5 wt.% Cu/MgO 145 48 0.85 

0.5 wt.% Cu-0.5 wt.% Pd/MgO 136 42 0.78 

0.5 wt.% Pd/MgO 152 47 0.80 

 

FT-IR analysis of the 0.5 wt.%Cu/CsPW, 0.5 wt.%Pd/CsPW and 0.5 wt.%Cu-0.5 

wt.%Pd/CsPW catalysts can be seen in Figure 4. It can be observed that the spectral positions 

of the peaks were similar for all compounds and showed the characteristic features of 

phosphotungstic acids comprising the Keggin structure have been maintained after metal 

loading, indicating that the bulk structure of the catalysts remain unchanged after metal 

immobilisation. Moreover, it can be observed that four peaks are mainly observed. These peaks 

have been assigned in previous study [42] with the first peak at 1080-1060 cm-1 corresponding 

to a vas (P-Oa) vibration mode, the second peak at 990-960 cm-1 to a vas (W-Od) vibration mode, 
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the third peak at 900-870 cm-1 to a vas (M-Ob-M) vibration mode and the fourth peak at 810-

780 cm-1 to a vas (M-Oc-M).   

 

 

Figure 4: FT-IR spectra of the fresh prepared catalysts: Red: 0.5 wt.%Cu-0.5 wt.%Pd/CsPW, Blue: 0.5 

wt.%Pd/CsPW, Black: 0.5 wt.%Cu /CsPW 

 

Investigation of the 0.5 wt.%Cu/CsPW, 0.5 wt.%Cu- 0.5 wt.%Pd/CsPW and 0.5 wt.% 

Pd/CsPW and the analogous MgO supported catalysts by transmission electron microscopy 

(TEM) are shown in the Figure 5 and Figure 6 . For both supports, no distinct nanoparticles are 

observed, indicating that Pd and Cu are well dispersed on the MgO and CsPW supports. 

 

Figure 5: TEM micrographs of (a) 0.5wt.%Cu/CsPW, (b) 0.5wt.%Cu-0.5wt.%Pd/CsPW, (c) 

0.5wt.%Pd/CsPW. 

A B

B 
C 
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Figure 6: TEM micrographs of (a) 0.5%Cu/MgO, (b) 0.5%Cu-0.5%Pd/MgO, (c) 0.5%Pd/MgO. 

 

NH3-TPD analysis, as seen in Figure 7A-F, were carried out in order to elucidate the nature of 

the acid sites present for the Cs-exchanged tungstophosporic acid supported palladium and 

copper  mono- and bi-metallic catalysts. Total acidity (NH3 uptake) calculated from the peak 

area for all samples, and compared to the acidity of standard ZSM-5 material is summarized in 

Table 3. Pd/CsPW catalyst exhibited larger acidity than Cu/CsPW and Cu-Pd/CsPW. It can be 

seen that the bimetallic catalyst showed no acidity which might be attributed to the blockage 

of pores of CsPW by Cu-Pd clusters. The heteropolyacid supported catalysts were found to 

completely decompose at approximately 700 oC. The MgO supported samples displayed the 

largest NH3 uptake and a complex desorption pattern compared to the heteropolyacid supported 

samples.  
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Figure 7: NH3-TPD profiles of A: 0.5wt.%Cu/CsPW, B: 0.5wt.%Cu/MgO, C: 0.5wt.%Cu-

0.5wt.%Pd/CsPW: D: 0.5wt.%Cu-0.5wt.%Pd/MgO; E: 0.5wt.%Pd/CsPW; F: 0.5wt.%Pd/MgO. 

Table 3: Total acidity analysis using NH3-TPD  

  Catalyst NH3 uptake/mmol/g 

0.5 wt.% Cu/CsPW 0.08 

0.5 wt.% Pd/CsPW 0.17 

0.5 wt.% Cu-0.5 wt.% Pd/CsPW 0 

0.5 wt.% Cu/MgO 9.29 

0.5 wt.% Pd/MgO 6.48 

0.5 wt.% Cu-0.5 wt.% Pd/MgO 6.97 

ZSM-5 1.15 

 

Catalytic performance towards the direct synthesis of hydrogen peroxide. 

Table 4 shows the catalytic performance of the mono- and bi-metallic of Pd and Cu catalysts 

supported on Cs-containing heteropolyacids and MgO respectively for the direct synthesis of 

H2O2 as well as its subsequent degradation. The high activity of the 0.5 wt.% Pd/CsPW catalyst 

towards H2O2 synthesis should first be noted, despite a ten-fold decrease in Pd loading catalytic 
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activity is approximately 60 % of that reported for 5 wt.%Pd/Cs2.8H0.2PW12O40, possibly due 

to increased selectivity towards H2O2.  

Comparison of the MgO and Cs-exchanged heteropolyacid support catalyst reveals the much 

greater selectivity of the CsPW supported catalyst, with the catalytic activity of the 0.5 

wt.%Pd/CsPW and 0.5 wt.%Pd/MgO catalysts towards the degradation of H2O2 reported as 13 

and 33 % respectively, and  an associated increase in net yield of H2O2. This is in keeping with 

our previous work, investigating the role of support acidity in the direct synthesis of H2O2 [30] 

and confirms the ability of acidic supports to inhibit catalytic activity towards the degradation 

of H2O2 to H2O.  

Table 4:  Catalytic activity of Pd and Cu monometallic and Cu-Pd bimetallic catalysts supported on Cs-

containing heteropolyacids and magnesium oxide towards the direct synthesis and subsequent 

degradation of H2O2. 

Catalyst Productivity 

(molH2O2kgcat
-1h-1)a 

H2O2 Degradation (molH2O2kgcat
-1h-

1)b 

Referencec 

Cs2.5H0.5PW12O40 0 124 40 

Cs2.8H0.2PW12O40 1 162 39 

MgO 0 206 30 

Pd based catalysts 

0.5 wt.% Pd/ CsPW 85 76 This study 

Pd0.15Cs2.5H0.2PW12O40 96 221 39 

5 wt.%Pd/Cs2.8H0.2PW12O40 136 281 39 

5 wt.% Pd/CeO2 97 329 42  

5 wt. % Pd /TiO2 30 288 30  

5 wt. % Pd /Al2O3 

 

 

9 200 30 

5 wt. % Pd /MgO 

 

29 582 30 

0.5wt.% Pd/ MgO 5 194 This study 

Cu based catalysts 

0.5 wt.% Cu/ CsPW 0 0 This study 

0.5wt.% Cu/ MgO 0 118 This study 

Pd-Cu based catalysts 

0.5 wt.% Pd- 0.5 wt.% Cu / 

CsPW 

4 41 This study 

0.5 wt.% Pd- 0.5 wt.% 

Cu/MgO 

0 118 This study 

a Reaction conditions: Catalyst (0.01 g), 8.5 g solvent (2.9 g H2O, 5.6 g MeOH), 5% H2/CO2 (420 psi), 25 % 

O2/CO2 (160 psi), 2 °C, 1200 rpm, 0.5 h. b Reaction conditions: Catalyst (0.01 g), H2O2 (0.68 g 50 wt.%), solvent  

(2.22 g H2O, 5.6g MeOH), 5% H2/CO2 (420 psi), 2°C, 1200 rpm, 0.5 h. c Comparison of productivities for selected 

catalysts reported in the literature. 

 

It can be seen that the H2O2 synthesis activtiy of the 0.5 wt.%Pd/CsPW catalyst is significantly 

greater (85 molH2O2kgcat
-1h-1) to that of either 0.5 wt.%Cu/CsPW (0 molH2O2kgcat

-1h-1) or 0.5 

wt.%Pd-0.5 wt.%Cu/CsPW (4 molH2O2kgcat
-1h-1) despite all three catalysts having similar 

textural properties; namely surface area and total acidity. This is in keeping with our previous 

studies into the effect of Cu addition to 2.5 wt.%Au-2.5 wt.%Pd/TiO2, with catalytic activity 

towards both H2O2 synthesis and degradation decreasing significantly with Cu incorporation, 

with H2O2 synthesis rate decreasing from 83 to 11 molH2O2kgcat
-1h-1 (more than 85 %) with the 



12 
 

addition of Cu [44]. Possibly indicating that the presence of Cu results in the blocking of active 

sites responsible for H2 activation to H2O2. Indeed this is in agreement with previous 

computational studies by Joshi et al. who have determined through extensive DFT calculations 

that the formation of the intermediate hydroperoxy (OOH*) species, formed through the 

addition of hydrogen to molecular O2, is thermodynamically unfavourable and as such H2O2 

production is inhibited over Cu-containing supported catalysts [45]. 

The MgO based catalysts: 0.5 wt.%Cu/MgO, 0.5 wt.%Pd/MgO, and 0.5 wt.%Pd-0.5 

wt.%Cu/MgO showed very low catalytic activity towards H2O2 production, with the 

incorporation of Cu to a 0.5 wt.%Pd/MgO catalyst leading to a complete deactivation of 

catalytic activity towards H2O2 synthesis. In contrast, these catalysts displayed the greatest 

activity for H2O2 degradation, with a significant proportion of this activity attributed to the 

support, which has previously been demonstrated to be highly active towards H2O2 degradation 

[30]. 

CONCLUSION  

Pd-only, Cu-only and Cu-Pd catalysts supported on  Cs-exchanged tungstophosphoric acid and 

MgO have been investigated for the direct synthesis of H2O2 from molecular hydrogen and 

oxygen. The heteropolyacid-based Pd catalyst is observed to be far more effective for H2O2 

formation than the corresponding Cu-only and Cu-Pd catalysts prepared using an analogous 

procedure. Comparison of Pd-catalysts supported on oxides including MgO, TiO2 and Al2O3 

revealed that comparable H2O2 synthesis activity could be achieved when utilizing Cs-

exchanged tungstophosphoric acid as the support despite having significantly lower Pd content, 

with this attributed in part to the acidic nature of the support. Moreover, we have been able to 

confirm computational studies that had previously suggested that the formation of H2O2 may 

be inhibited by the presence of Cu through preventing the formation of hydroperoxy species, 

which is a key intermediate in the production of H2O2.    
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