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Spatio-Temporal
3D Motion

Reconstruction for
Recovery

Jingyu Yang,Senior Member, IEEEXin Guo, Kun Li, Member, IEEEMeiyuan Wang,
Yu-Kun Lai, Member, IEEEand Feng Wufellow, IEEE

Abstract—This paper addresses the challenge of 3D motion
recovery by exploiting the spatio-temporal correlations of cor-
rupted 3D skeleton sequences. We propose a new 3D motion re-
covery method using spatio-temporal reconstruction, which uses
joint low-rank and sparse priors to exploit temporal correlation
and an isometric constraint for spatial correlation. The proposed
model is formulated as a constrained optimization problem,
which is ef ciently solved by the augmented Lagrangian method
with a Gauss-Newton solver for the subproblem of isometric
optimization. Experimental results on the CMU motion capture
dataset, Edinburgh dataset and two Kinect datasets demonstrate
that the proposed approach achieves better motion recovery
than state-of-the-art methods. The proposed method is applicable
to Kinect-like skeleton tracking devices and pose estimation
methods that cannot provide accurate estimation of complex
motions, especially in the presence of occlusion.

Index Terms—3D skeleton, motion recovery, spatio-temporal,
sparse, occlusion.

I. INTRODUCTION

BSERVATION of human activities has always been ap,

however is achieved at the cost of sacri cing capture accuracy,
so skeletons captured by these low-cost and portable devices
such as the Kinect often suffer from severe joint drifting and
motion jitter, especially in the presence of self-occlusion or
object occlusion [11]. The accuracy of skeleton estimation is
more satisfactory for controlled non-occluded simple motions,
such as standing upright and walking forward, which has
apparent limitations in real-world circumstances.

This paper addresses the challenge of recovering accurate
and smooth human motions from corrupted 3D skeleton se-
guences which is a fundamental problem in human motion
estimation. Our method is based on the observation of both
spatial and temporalinner correlation in skeleton sequences,
and thus is able to accurately recover clean and smooth
skeleton motions. In our model, the skeleton sequence is
regularized by joint low-rank and sparse priors to exploit
temporal correlation between frames and simultaneously by
an isometric prior to exploispatial correlation of skeleton
structure. To efciently solve this model, we derive an al-
rnating direction method under the augmented Lagrangian

active research topic in computer vision and COMpUtEy, yivjier (ADM_ALM) framework. The effectiveness of our

graphics, which includes many research eldsy, pose esti-

method is demonstrated by experiments on the CMU dataset

mation [1], [2], gesture recognition [3], [4], motion prediction; 51 Eginburgh dataset [13] [14] and two real captured Kinect
[5], [6], and 3D reconstruction [7], [8]. One of the I(eydatasets [15], obtaining better recovery accuracy than state-of-

technologies in these elds is the accurate estimation of hum

motion. However, few motion capture devices could seize
accurate human motion. Traditional motion capture systems
have increased the research cost of these specic elds with
their numerous shortcomings: inconvenient implementation,
expensive prices, dif culty to maintain, and requirement of
many manual operations. Microsoft Kinect for Xbox 360
(“Kinect”) has shed a light on human motion capture. With

the advent of Microsoft Kinect and similar devices, signi can

fHe-art methods.
The contributions of this paper are summarized as follows:

We propose a novelpatio-temporateconstruction model

to recover accurate and smooth motions from corrupt-
ed 3D skeleton sequences. The sparse and low-rank
constraints guarantee the plausibility of human motions
to ensure smooth recovery of motion sequences, while

t  the isometric constraint promotes the isometry of bone

effort and advances [9], [10] have been made in recent years
for low-cost, accessible human motion tracking systems. This
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lengths to ensure accurate recovery of joint positions. The
proposed method signi cantly extends 3D motion recon-
struction methods for direct recovery of 3D skeletons,
unlike most previous methods relying on 2D images or
1D motion trajectories;

We derive an ADMALM algorithm to decouple non-
differentiable terms into simpler subproblems, and inte-
grate the Gauss-Newton method to solve the non-liner
subproblem.

As the extended version of our previous conference papers

Yu-Kun Lai is with the School of Computer Science and Informaticg16], [17], this paper exploits both spatial and temporal con-
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Feng Wu is with University of Science and Technology of China, Hefel
China.
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straints in a uniform framework and adds a sparse prior with
Wavelet transform to improve the smoothness of recovery. The
comparison of these three methods are summed up in Table I.



2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

TABLE |
METHOD COMPARISON OF THIS WORK AND OUR PREVIOUS WORK
Method Priors Bene ts
Wang [16] low rank robust to noise and outliers
Li [17] low rank + isometry robust to noise and outliers and exploring spatial correlation
Ours low rank + isometry+ sparse smoothness robust to noise and outliers and exploring spatio-temporal correlation

We also perform thorough evaluation and include in-depth dispeed-limited motion, motion trajectories of skeletons only lie
cussion. Related work is summarized in Section Il. Section lih the manifold/subspace of their ambient signal space. Some
describes the proposed 3D motion recovery method, includingrks [16], [25], [26] used low-rank matrix completion to
motivation and a novel recovery model. Section IV providesxploit such low-dimensional structure so that missing mea-
the experimental results, and the conclusions are nally dravearements could be recovered from captured data. However,
in Section V. these models did not consider tkpatial correlation due to

the skeleton structure, which would result in large joint errors

Il. RELATED WORK in challenging cases. To address this limitationetial. [17]

?xplored thespatialcorrelation between skeleton sequences by

Motion recover is a challenging problem in compute X , : )
graphics and computer vision, and thus has attracted mditoducing an isometry constraint, which encourages the bone

and more attentions. Various models and algorithms ha§g@9th o be consistent. Despite the prominent performance for
been developed across different elds such as pose estimatiBAst cases, their result_s st_lll contain slight jittering due to the
and trajectory reconstruction. We review related work of twigck Of temporalregularization.

categories: model-based methods and learning-based method5N® reviewed works show that model-based methods have
achieved promising performance in various motion recovery

tasks. The key for accurate recovery is to fully take advantages

A. Model-based Methods of various correlation by imposing powerful priors. Along this

To recover 3D motion information from 2D images is avenue, our method exploits temporal correlation via joint low-
highly ill-posed problem due to many factors such as inagank and sparse priors, and exploits spatial correlation via an
curate joint detection and motion occlusion. In model-basésbmetric constraint. As a result, the proposed method achieves
methods, motion/pose information is recovered by solvirgccurate recovery for real motion data, and is robust to various
optimization models that incorporate priors for regularizatiomypes of degradation such as noise and occlusion.
Menier et al. [18] developed a generative model on a skele-
tal articulated structure to estimate 3D motion information ,
from multiple views, which is solved via the expectationb: L€arming-based Methods
maximization (EM) approach. This method is robust to severalln contrast to model-based methods, another category of
types of perturbations in the model or data, but the requirapproaches recover 3D motion signals via learning techniques.
ment of multi-view input limits its application to the moreToshevet al. [27] formulated the estimation of human poses
common single-view scenarios. For motion recovery froifilom RGB images as a joint regression problem solved by a
a monocular camera, Part al. [19] reconstructed a 3D Deep Neural Network. Ouyanrgf al. [28] fused three types of
smooth articulated trajectory from a 2-D trajectory extractdéatures, including appearance score [29], mixture type [30]
from a monocular image sequence by using the spherieald deformation [31], into a deep model to learn human
coordinate representation of a relative trajectory. To tackp®ses. However, as an image-based method, the performance
the NP-hard binary quadratic programming, a branch-ancbuld be affected by image quality. Since the prevalence of
bound routine with binary relaxation is used to approximatepth sensors [32], [33], pose estimation bene ts a lot from
the solution. To overcome the inefciency of branch-anddepth information. Weiet al. [34] developed an automatic
bound searching, Valmadret al. [20] proposed a dynam- motion capture system by integrating depth data, full-body
ic programming approach combining articulation constrainggometry, silhouette information, and temporal pose priors
with temporal smoothness. Leonardesal. [21] introduced into a Maximum A PosterioriMAP) framework, achieving
spherical tangent bundles and a Riemannian Extended Kalnséate-of-the-art capture accuracy. However, it is dif cult to give
Filter (REKF) model into the human motion reconstructiorgccurate pose hypothesis when the body part is invisible due
achieving accurate reconstruction from image sequences withocclusion.
corrupted skeletons. Many methods, such as skeleton-drivelThere are also data-driven approaches to recover 3D motion
skinning [22], [23] and character animation [24], rely on th&om incomplete and/or corrupted observations. Shotkbn
foreknown accurate skeleton structure obtained from captuwe [35] synthesized full-body motion from sparse control
systems or skeleton estimation methods. signals by learning a series of local models from a database

Various motion recovery models have been also designed &r human motion. To automatically detect and repair cor-
the recovery of degraded motion data from motion capture syspted/wrong joints, Chaiet al. [36] adopted local PCA
tems or body sensing devices. Due to the physical constraiffsincipal Component Analysis) to produce a manifold that
of human bodies such as articulated structure of skeletons amcludes various types of human motion data, and applied



YANG et al. SPATIO-TEMPORAL RECONSTRUCTION FOR 3D MOTION RECOVERY 3

it for synthesizing movements from low dimensional signalshe input motion matrix and is the approximated matrix
Aristidou et al. [37] proposed to automatically analyze andvith a small rank, and:k. represents the Frobenius-norm of
X motion capture sequences by using self-similarity analysig, matrix. As shown in Fig. 1(c), the approximation errors for
but they focused on the suppression of joint rotation errors aall the ve skeleton matrices decay dramatically and approach
did not consider motion dynamics or bone-length violationto zero as the rank of the reconstructed matrix increases, which
Saito et al. [38] recovered corrupted skeletons by nding assuggests the low-rankness of the skeleton matrix [39].
subspace of valid motions, namely the motion manifold. After 3) Sparse prior: The types of human motion are limited
learning the motion manifold with convolutional autoencodergiue to physical structure. We observe that skeleton trajec-
corrupted skeletons are projected onto the motion manifoldries, as shown in Fig. 1(b), are piece-wise smooth with
and valid motions are nally rebuilt through inverse projectiondiscontinuities at turning points of the motion, ardy and
Learning-based methods are able to learn highly non-linearcomponents of motion trajectories can also be considered
mappings such as the image-to-joint regression. Howevas 1-D temporal piece-wise smooth signals with a number of
huge amount of ground-truth motion data is dif cult to acsingularities, which are able to be ef ciently represented by
quire, particularly for the dataset scale required by the degpvelet transforms [40]-[42].
learning paradigm. It would be interesting to investigate mo- To verify this, Fig. 1(d) shows the energy compaction
tion recovery with learning techniques requiring less labelest ciency in terms of normalized energy with respect to the
data, such as few-shot learning, semi-supervised learning,pefcentage of retained largest wavelet coef cients of motion

unsupervised learning. signals. The curves in Fig. 1(d) indicate that the wavelet
transform is able to approximate joint trajectories with only
[1l. THE PROPOSEDMETHOD a small fraction of non-zero coef cients, and hence has a s-

In this section, we rst present the motivation of thd®@rse representation. Reliable approximation of motion signals

proposed model, and then detail the proposed 3D skeletpuld require aboutl0% of wavelet coef cients, includipg
recovery model which explores spatio-temporal correlatidiPt Only the DC component but also many other meaningful
with joint low-rank and sparse priors and an isometric priofomPonents. We also evaluate the approximation performances
Finally, we derive an efcient algorithm under the ALM o_f f_our well-known (b|-)orthogon_al wavelet transforms with
framework. similar Iter lengths and vanishing momenteg,g, Coi ets
(coif3), Symlets (sym5), Biorthogonal wavelets (bior4.4), and
o Daubechies wavelets (db5) on a sequence in Fig. 1(d). The four
A. Motivation wavelets are equally powerful in representing the 3D motion
Human skeleton sequences captured by devices like #a of skeleton with only a small fraction of coef cients. In
Kinect are often polluted by severe noise or outliers, espgur implementation, we use the Daubechies wavelet transform
cially in the presence of self-occlusion or object occlusiofigr its slightly better performance although others yield similar
which makes the skeleton recovery problem challenging yeisults. This motivates us to use a wavelet sparsity prior
important for practical applications. Most skeleton recovety model the temporal correlation of joint motions, comple-
approaches [21], [19], [18] require either RGB-D images @nenting the low-rank prior that emphasizes both spatial and
silhouettes as auxiliary input which are not always availablgsmporal correlation.
We observe that a skeleton sequence is a set of time serieBased on the key observations above, we propose a skeleton
that lies in a low-dimensional subspace, and is possible fgcovery model from partially-observed and noisy data with
be recovered from a partially-observed and/or noisy versiahe isometric prior and joint low-rank and sparse priors.
Speci cally, we observe the following priors for skeleton
signals:
1) Isometric Prior: As shown in Fig. 1(b), the motion B- The Proposed Model
trajectories of a parent joint and its child joietg, joint 3 and Let nj = (N ; Ny ; Ny )" be thei-th joint of the skeleton,
joint 4, are often nearly parallel as the length of the rigid bonghere nj, , ny and nj; represent the joint'sx, y and z
is constant over the time. We also note that such an isomeggordinates, respectively, 2 f 1;2; :Sg, and S is the
property only occurs between the parent joint and child jointumber of skeletal joints. Denote by the coordinates of
corresponding to the ends of a bone. As shown in Fig. 1(khei-th joint at framet, and byT the number of frames. The
there is no obvious correlation between the trajectories of joidérrupted motion matrixD 2 R3T S is denoted by:

3 and joint 19. Therefore, we impose an isometric constraint 0 1
. . ni ::: nd
Eiso (A) to encourage isometry during the recovery. 1 S
2) Low-Rank Prior: Human motions lie in a low- D= % oo E{ ; (1)
dimensional subspace [36]. Low-rank approximation is a re- nl ng

cent advance in low-dimensional representation of signals.

To investigate the potential of a low-rank prior in modelingvhere each group of three rows corresponds to a skeleton
skeleton signals, we form a motion matfx by concatenating at one frame, and each column corresponds to the temporal
the skeleton positions over time (see the de nition in Eq. (1)jfajectory of one joint. We assume an additive observation
and evaluate low-rank approximation accuracy in terms Bfodel:

relative errorRE := kD Dkg=kDkg, whereD denotes D=A+E; (2)
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Fig. 1. Motivation for the proposed priors: (a) skeleton structure, (b) motion trajectories of skeletal joints No. 3, 4, 19 and 20 of subject 05 sequence 02
in the CMU dataset [12], (c) relative error.r.t. matrix rank, and (d) energy compaction ef ciency for four wavelets (Jetixis) on a sequence and for ve
sequences with the same Daubechies wavelet (yightis) w.r.t. the percentage of retained largest wavelet coef cients.

where A is the latent clean skeleton matrix, afd repre- term while should be small enough to provide suf cient
sents the error matrix. Skeleton corruption often happens exibility in formulating the wavelet term. See Section IV for
challenging scenarios such as occlusion, so the error nfatrixhe parameters used in our experiments.
should be sparse. Base on the three observations in Sec. 11I-Al) Exploring Spatial Correlation with IsometryThe isom-
the 3D motion recovery problem can be formulated as etry termE;g is designed to model the spatial correlation of
i motions on the skeleton structure, usually known as an articu-
fin rank (A)+ KEk, + EEiso (A)+ E smoon(A) 3) lation skeleton, so that the recovered motions are reasonable.
st D= A +E: An articulated skeleton is usually described by a tree structure,
where each node represents a skeletal joint and each edge
whererank (A) is the rank of matriA , KEk, isthe’o norm  petween nodes represents a bone. The body size is xed for a
of matrix E which represents the number of non-zero entriggticular actor and the bones have constant lengths over time.
in the matrix,Ejso (A ) is the isometry term encouraging bone- Tnerefore, we exploit spatial coherence of skeletons by
length isometryEsmooin(A) is the smoothness term to ensurgromoting isometry i(e. length preservation) of bones [17].
smooth motion recovery, and> 0, > 0, > 0are |gtG:=(V;E) be a skeleton, wher¥ is the set of skeletal
weighting parameters to balance these terms. joints, andE is the set of bones; represents the bone of the
The problem in Eq. (3) is NP-hard due tank(A) and  skeleton connecting thieth and thej -th joints. We introduce

KEK,. This is made tractable by replacimgnk (A) with its a3 energy term that penalizes non-isometric deformation:
convex substitute known as the nuclear ndtk = ; |,

where ; is a singular value of matrid, and by replacingo E(A)= XX @ ntnt 2 2
norm of matrixE with the 'y normkEk, = jEj j [43]. so(A) = i i

So, we obtain the following optimization problem: t=1 ey 28

; )

I

(4) hotes the distance between joinfsandn| , andd n{;nj :=

stt D=A+E: ni nj ,is the Euclidean distance betwesh andn| at

) time instance.

where the isometry terEis(A) and smoothness term  pq jsometry term aims at preserving the bone lengths of the
E5m°°‘h(.A) are detailed in Section Ill-B1 and Section 1-B2.qy ojeton. Such a constraint helps to avoid inaccurate recovery
respectively. Low-rankness measured by the nuclear nojm,ynich relative positions of joints are beyond a reasonable
regularizes that the rows of the motion matéx are highly range.
linearly dependent as the motion patterns of human skeletorb) Exploring Temporal Correlation with Wavelet Transfor-
lie ?n allow—.dimensional subgpace in Fhe ambient signal SPagss The types of human motion are limited due to physical
Wh'(,:h implies Fhat. the motion matr_l)A can be expressed structure. Motion trajectories are mainly smooth signals with
as linear combinations of some basis poses. Proper Selecgﬂ{bularities, which can be well modeled by wavelet transform.

of the parameter is crucial to recovery accuracy [44]: getw be the wavelet basis matrix withlevel decompositions

. herel; is th I h joint.n!; nt -
T.'E” KAk + KEk, + EEiso(A)"' E smoon(A) wherelj is the bone length between two joints.ni;n; de

should be small enough to remove noise (by keeping the _ 5 j, oy experiments). The wavelet coef cients of

variance low to obtain high stability), and large enough n keleton motion should be sparse. Therefore, the sparseness of

to overshrink the original matrix (by keeping the bias oW, smoothness terBamoom(A ) is measured by the,  norm
for exible motion). and are set to balance the energy

of corresponding terms. Since the error of the isometry term E A)= KWA k. 6
could be extremely small due to the bone-length error to smootn(A) 1 ©)

the fourth order (details will be provided later), should Substituting the smoothness term (6) and the isometry term
be large enough to maintain the importance of the isometfy) into Eq. (4), the 3D motion recovery model is rewritten
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as: 1) C-subproblem: Those terms irrelevant @ are con-
) sidered as constants. Then, we obtain the followipgiorm
N KAk + kEK + SEiso(A)+ kWA K;: minimization:
The isometry term exploits the spatial correlation of a ck*I =ggmin Cck _+ Dzk;ck WA kE
skeleton sequence by suppressing positional errors of skeletal ck !
joints, while the smoothness term with sparse prior exploits + 3 ck wAak i ;
the temporal correlation of skeleton sequence by ensuring the 2

piece-wise smoothness of the recovered motion. In this wayhich has the following explicit solution:

11)

the proposed model is able to fully exploit the characteristics WA K %zg ) The shrinkage operator
H 3
of skeleton motions. S (x) := sgn(x)max(jxj ;0) is applied to the matrix
entry-wise.
C. Augmented Lagrangian Algorithm 2) E-subproblem: Similarly, th&-subproblem is equivalent

The proposed model (7) contains a low-rank term, a nolf the following optimization problem ignoring constant terms

differentiable term (wavelet term), and a nonlinear term (Y—V'th respect toE:

. . - . D E
sometry term), which are dif cult to optimize simultaneously. K+l . K K. —k K
. o ) = + : +

Therefore, we introduce two auxiliary variabl€sandN to E arg rrgkn S Z1;E7 D+A

e . i L )
decouple these terms, resulting in the following formulation. + = EX D+AK 2, (12)

min kAk + KEk, + KkCk,+ =Ejso(N . . - .
AE;C;N 1 o2 so(N) (8) which  has the following  explicit  solution:

st D=A+E; N=A; C=WA: S-,D Ak L1z},

To convert Problem (8) with equality constraints into un- 3) A-subproblem: The A-subproblem is the following nu-

. L . .clear norm minimization problem
constrained optimization, we utilize the augmented Lagrangian

method [45]. For compact notation, denote the variable set by Akt =argmin AK
, fA;E;C;Ng, the multiplier set byZ , fZ1;Z5;Z30, D Ak E
and the penalty parameter set by , f 1; »; 30. The + ZK-EX D+AK + 1 EK D+AK i
augmented Lagrangian function of (8) is de ned as follows. D E 2 )
+ ZKNK Ak + 2 Nk Ak
L( ;Z; )=kAk + KkEk, + EEiSO(N)+ kCk, D E 2 o
3
+HIZGE D+ A+ LKE D+ AK: FOZECT WAT o CEWAT (@)
+ N Ai+ —2kN Akﬁ Note that Eq. (13) is not a standard nuclear minimization
2 problem that has the closed-form solution. For easier optimiza-
+ hZ3;;C WA+ 2kC WA kﬁ ; (9) tion, we choose an orthogonal wavelet ba3emubechies 10
_ . 2 _ “which impliesi@/ > W = |, wherel is the identity matrix.
whereh; i denotes the inner product of two matrices conadrhen, we have ZK:CK WA X = w>zk:w>ck Ak
ered as long vectors.
Under the ALM framework, the original Problem (8) isand C* WA ¥ .= w>ck A% _. with substitution,
solved by iteratively minimizing the unconstrained augmentds]. (13) is transformed into the following standard nuclear
Lagrangian function [45]. norm minimization:

K+l =min L ;z%; % ;
Updatez **1 and **1;

(10) MinkAk + hZi;E D+Ai+ElkE D+ AK:

. +hZ;N  Ai+ 2kN  AKZ
where the update of multipliers and penalty parameters are 2 2 F
2 .

detailed in Algorithm 1. + W”Zs:W>C A + -2 w>C A " o(4)

However, jointly optimizing variables in in (10) is still 2
dif cult since the three regularizer terms in terms Af, E, Supposéd 'Yl =D EK1 Lzk H‘g“l = Nk 4 17K
1 ! 2 !

and C, respectively, are non-differentiable. Note that, und%rnde+1 = W > C**L + LW > Zk. Then the solution of Eq
3 - 73 3. .

mild conditions, the alternating optimization converges to th . : .
solution of the original joint optgi]migation [46]. We res?)rt to the(e‘\m) is the closed-form singular value tDL%ih(EISL@d‘.::k:
alternating direction method (ADM) to solve variables in US ( )V, where(U; ;V) = svd Aot
separately as subproblems instead of directly solving Problemd =1=( X+ %+ X).

(20). In each subproblem, only one variable is optimized 4) N-subproblem: By applying theN -subproblem, the
while other variables are xed at their up-to-date values. As@aroxy variableN is regularized to conform to the isometry
result, each subproblem becomes simpler and easier to solve@sstraint, otherwise the skeleton would deform to unreason-
many terms in (8) are irrelevant as constants. The alternatiaigle shapes. Such a constraint is passed to the target variable
optimization of subproblems are detailed as follows: A by solving theA -subproblem, which involves the auxiliary
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variableNX, in the iterative optimization procedure. The- 035

subproblem is a nonlinear least squares (NLS) problem: MU dataset
Edinburgh dataset
— Kinectdataset

=}
w

minL (A;E;N;C;Z4;75,75); (15)

o
)
@

which does not have a closed-form solution as previous three
sub-problems. We solve the NLS using the Gauss-Newton
method. Speci cally, we rewrite Eq. (5) into the following
standard NLS problem:

Eiso(N) = KF (N)K*;F (N) =[raa (N);  srem (NI
(16)

o
r

Total Energy
<
o

o
=]
&

i L

wherery, () is the energy term related to tieth bone of the — Bow o ow oW |
t-th frame. GivenNk, we linearizeF (N) by the rst-order L eaone ™
Taylor expansion:

=}
I

K K K Fig. 2. The convergence curves of random sequences in CMU dataset [12],
F(N) F N +J N v =N N (17) Edinburgh dataset [13], [14] and Kinect dataset.

whereJ NK s the Jacobian ofF evaluated atNk, and
is the deviation againgNk. Instead of solving Eq. (15),

we optimize the approximate objective function to obtain the 1:  Input: observed skeleton matri2 2 R™ "

update ofN to decrease the energy cost: 2: Initialize: A°=0,E°=0,N°= D,

0 _ 0 _ 0 _
“lzargmin F N¥ +J N* *. (18) 21=0,22=025=0,

Algorithm 1: ADM_ALM algorithm for 3D motion recovery

1; 25 3> 0, 1; 2; 3> 1, maxiter =1000
The optimal update step“*? is the solution of the corre- 3:  while not converged do
sponding normal equations: 4 k= 373+ K 1
z5 5 Nk oAk JTr N
5: Nk+l - Nk + k
which can be solved using iterative solution techniques I|ke6_ ck = S wa K %23"

JNKTINK = JNKTFENK; @19

preconditioned conjugate gradient (PCG). Previous work- X
s [47], [48] demonstrate the feasibility of this strategy in a 7 E** = s_ D Ak L7k
GPU optimization framework for dynamics simulation and 1 '

.. . . . .. . 8: Hk+1 =D Ek+1 Azk
non-rigid registration, respectively. Combining Eq. (9) with © 1 141

the Gauss-Newton solver, the unknown updafé' can be — 9: H§™ = N¥** + L7}

solved by: 10: HST = w>ckt + %W>Z§
1 . k+1l —
SEIERENUN R (00 AT S
Zk ok Nk Ak PE - M . fHI™ e k3™ KHgt
2 2 ' ke K £+ 5+ %
k Kk . 12: Zk+1 - Zk + k Ek+l D + Ak+l
whereJ andF refertoJ N* andF NX | respectively. The : 1 1t o1
overall ALM algorithm is summarized in Algorithm 1. 13: zK™t = zk+ 5 Nk AR
14: z§" =Z5+ 5 ckowA K
D. Convergence Analysis 15 = % 1>
The global convergence of ALM is proven in the case of 16: 5™ = , % »,> 1
two blocks, but it does not naturally apply to the cases of 7. k1 - k. .5

three or more blocks [46]. However, many signal processinglgl
tasks usually involve ALM problems of multiple blocks [26],
[49], including our model (9) with four blocks, i.e., A, E, N, 19: Output A, E
and C. Under mild conditions, the iteratively-updated variables
of the ALM algorithm with multiple blocks converge to the
Karush Kuhn Tucker (KKT) conditions, which are neces-
sary conditions of the rst-order optimality. We refer interested
readers to dedicated literatures [46], [49]. Numerically, our In this section, we rst test the in uence of the parameters
algorithm usually converges to promising results after 38h the recovery quality (Section IV-A) and then evaluate the
iterations and is stable for various sequences. Fig. 2 shopreposed method on the public CMU dataset [12], Edinburgh
three typical examples on the decreasing of the normalizddtaset [13] [14] (Section IV-B) and two real datasets [15]
total energy in iterations. captured by Kinect v2.0 (Section IV-C). Both quantitative and

End while

IV. EXPERIMENTAL RESULTS
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Fig. 3. The average bone error (ABE) and the average joint error (AdBXi§) comparison on four randomly selected sequences (from left to right) of the
CMU dataset [12] forl0% and 20% corrupted cases with respect to the parameters @fop), (Middle), and (Bottom) -axis).

gualitative results are presented. For quantitative evaluatign, Parameter Sensitivity Experiments
the metrics of recovery error, known as Average Joint Error (A-

In order to demonstrate the generality of our chosen values
‘]Ez anldpb\vlgrage Bone-length Errorl(ABlg), Bre calcul?ted & parameters, we test the inuence of the parameters on

t.nt —
T osT o d mpinp and = TE D, . rltJ i the recovery quality by randomly selecting four sequences
ij
respectivelyr|, andn!, are the ground truth and reconstructeg On':utnhi(r: Cgﬂalihdat:faerzgezg. (\)/\Ygre%ae!u?rftee:ggigmz Zp[do'??ﬁe
joint positionsIf andl! are the ground truth and reconstruct>Y 9 para . 9P
! parameter space while &(ittlng other parameters at the xed

ij
ed bone lengths of theth bone at the-th frame.! and
9 Weassonable values:=1= T, =100, =0:0L
This parameter adjusts the importance of the data

represent the average absolute difference over joints and bo
term and the sparse term. The error matéx should be

in all the frames, respectively. Finally, the running times of all

the methods are reported in Section IV-D. o :
sparse because of occlusion in the real world. Ag:grdmg to

the principal component analysis [44], we seE 1= T in

X u@Y
< ‘ ‘ | Il5% corrupted our implementation, wher@ is the number of frames. The
[110% corrupted . . .
o [J15% corrupted . dashed line in the top row of Fig. 3 shows that our chosen
B20% corrupted 1 value consistently gives the minimum function error.

i 2) : This parameter promotes isometry of bones on the
skeleton by exploiting spatial coherence of skeletons. As this
term is typically small due to the fourth order of error, we
choose = 100 for balancing the importance of the data term
and the length preservation term. The middle row of Fig. 3
7 shows that the error curve gradually declines and then tends
. to be the same after = 100. Therefore, we set = 100 in
| I I our experiments.
Test Sets 3) : The human motion can be modeled by wavelet
transform owing to physical structure characteristics. Given
Fig. 4. Average joint errors in meters for different sequences of subject that the human movement is smooth with singularities, we
using our method for motion recovery. add sparse prior to the wavelet term. The strength of wavelet
approximation is controlled by the weight associated with

Average Joint Error (m)
4
T
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the smoothness term. should be large enough to emphasizan terms of accuracy and smoothness. Each skeleton in the
the sparseness of the smoothness and small enough to pro@di#J dataset [12] contains 25 skeletal joints (with nger joints
suf cient exibility in formulating the wavelet term. The removed) and 24 bones (as demonstrated in Fig. 1(a)), while
bottom row of Fig. 3 shows the error curves, and so we dsie skeleton in the Edinburgh dataset and Kinect dataset has
= 0:01 for all our experiments which consistently give1 joints (also without nger joints) and 20 bones. The CMU
good results. dataset captures human motion by placing makers on every
4) Other relevant parameter settingShere is no require- subject and recording the markers' positions, and thus can be
ment for the sequence length and the number of joints in oused as ground truth for evaluation. We simulate corruptions
algorithm, as long as computer memory permits. Considén-the skeleton data. Speci cally, random noise is added to
ing the time consumption and computational precision, it & fraction of entities in the ground-truth skeleton mathix
better to take 50 to 300 frames. In the experiment, we ssitaining the observed skeleton matfx The noise in the
1= 2= 3=05 1= 2= 3=1:3 polluted joints is uniformly distributed in the range of [-25 25]
Based on the results in Fig. 3 and the associated analysiin each spatial dimension. This range is selected according
we found that the performance of our model was stable witb the average length of arms and legs because noisy joints
respective to various sequences and parameters. Thereforeameunlikely to go beyond this range. The length of bones is
use a set of xed parameters in the rest of the experiments Gomputed according to the given skeleton. As for the skeleton
Section IV-B and Section IV-C) instead of tuning parametetsptured without ground truth, the bone length is estimated
for each sequence. by the average of the bone lengths over the less-corrupted
TABLE I sequence. Recovery errors in terms of AJE are presented in
AVERAGE JOINT ERROR COMPARISON FOR SKELETON RECOVERY on THE F19- 4. Four different percentages of polluted entitieBini.e.,
CMU DATASET [12] WITH DIFFERENT CORRUPTION PERCENTAGESM). 5%, 10%, 15%, and 20% are tested, which are similar to real
Sub. | Method 1 5% | 10% | 15% | 20% | 80% captured situation. As shown in Fig. 4, our method can achieve
Wang [16] | 0.066 | 0.070 | 0.073 | 0.075 | 0.093 consistent_ recovery errors for different motion sequences of_the
05 Li [17] 0.002 | 0.005| 0.008| 0.011| 0.074 same subject with respect to the same proportion of corruption.
ours 0.002 | 0.005| 0.007 | 0.009 | 0.064 We also measure the average bone-length error (ABE) in
Wang [16] | 0.076 | 0.079 | 0.083 | 0.085 | 0.122 centimeters in Fig. 5, compared with our previous work [16],
09 Li[17] | 0.005| 0.007 | 0.010| 0.014 | 0.073| [17]. It can be observed that our method and the method
Ours 0.004 | 0.005| 0.006 | 0.008!| 0.063 in [17] recover the skeletons with more accurate bone lengths
Wang [16] | 0.073 | 0.076 | 0.078 | 0.085 | 0.105 due to the isometry constraint than the method in [16]_. Ou_r
13 Li [17] 0.008| 0011 | 0012 | 0.016 | 0.072| method has the smallest error due to the sparse constraint with
ours 0.006 | 0.010!| 0.012| 0017 | 0073 wavelet transform which guarantees the smoothness of the
Wang [16] | 0.069 | 0.075 | 0.078 | 0.082 | 0.114 recovered trajgctory_ and the roby_stness of the method. Fig. 6
24 Li [17] 0.004 | 0.007 | 0.008| 0.013| 0.075 shows the trajectories (3D positions over time) of the root
ours 0.003 | 0.005| 0.008| 0.012 | 0.070 joint recovered by different methods. It can be seen that our
Wang [16] | 0.068 | 0.073 | 0.077 | 0.080 | 0.118 me_thod can recover a more smooth and stable j_oin'; motion
56 Li [17] 0.003 | 0.006| 0.009| 0.013| 0.074 trajectory thanks to the proposed temporal regularization. In a
ours 0.003 | 0.005| 0.008| 0.010!| 0.068 word, our method recovers the corrupted skeleton sequences
Wang [16] | 0.072 | 0.075 | 0.077 | 0.083 | 0.121 with high accuracy anq reasonaple smoothness by explo?ting
86 Li [17] 0.003 | 0.006 | 0.008| 0.012 | 0.076 the temporal and spatial correlations of the skeleton matrix.
ours 0.003 | 0.006 | 0.009!| 0.011 | 0.066 For detailed comparison, we test the recovery performance
Wang [16] | 0.068 | 0.071 | 0.075 | 0.081 | 0.098 of _several gkeleton sequences from different_ subjects with
03 Li [17] 0.003 | 0.008| 0.010!| 0.011| 0.081 various motions and temporal durations. Speci cally, we use
ours 0.001 | 0.005| 0.008 | 0.010!| 0.069 sequences from subject 05 to subject 140, including a variety
Wang [16] | 0.072 | 0.076 | 0.078 | 0.085 | 0.130 of actions_ such as _running, ben(_jing, kicking,_d_ancieg; _
115 Li [17] 0.007 | 0.005| 0.012| 0.015| 0.062 Table Il gives quantitative evaluation (average joint errors in
ours 0.006 | 0.004| 0.009 | 0.015| 0.052 meters) for different subjects. One extreme case with 80%
Wang [16] | 0.061 | 0.063 | 0.070 | 0.080 | 0.108 corrupted element_s is include(_j. It can be seen that our method
140 Li [17] 0.003 | 0.005| 0.010!| 0.012 | 0053 and the method in [17] obviously outperform the method
Ours 0.004 | 0.006| 0.009| 0.011| 0.049 in [16] due to the use of isometry constraint. Thanks to the
Wang [16] | 0.068 | 0.073 | 0.079 | 0.081 | 0.104 proposed sparse constraint that guarantees the_plausibility of
Total |  Li[17] 0.005 | 0.007 | 0.009| 0.012 | 0.073| human motions to ensure smooth recovery of motion sequence,
ours 0.004 | 0.006 | 0.007 | 0.010| 0.067 our method achieves the most accurate recovery result for
most cases. Even for the case with 80% corrupted elements,
our method can still reconstruct reasonable motion within
0.07 m in terms of AJE. In ve cases, the errors of the
B. Results on Public Datasets method in [17] are smaller than ours by 0.001 because the
In this section, we evaluate the performance of our methpdoposed sparse constraint improves the smoothness at the
on the CMU dataset [12] and the Edinburgh dataset [13] [1ékpense of slight drop of precision especially for complex
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Fig. 5. Average bone-length errors in centimeters for different sequences of subject 09 recovered by Wang [16], Li [17] and our method. Different corrupted
percentages are compared: (a) 5%, (b) 10%, (c) 15%, and (d) 20%.

Fig. 6. Comparison results of trajectories (3D positions over time) of joint No.1 (the root joint) of subject 05 sequence 02: (a) ground truth, (b) 20% damaged
trajectory, (c) recovered trajectory by [16], (d) recovered trajectory by [17], and (e) recovered trajectory by our method.

Fig. 7. Comparison results for different sequences of different subjects in the CMU dataset [12]. From top to bottom: ground-truth skeletons, corrupted
skeletons, skeletons recovered by [16], [17], and our method. The corruption rates are: (a)-(c) 5%, (d)-(f) 10%, (g)-(i) 15%, and (j)-(I) 20%.

motions. Fig. 7 gives 12 examples for different subjects witimethods. The method in [16] recovers reasonable skeleton
different motions and different corruptions, compared with twmotions by sacri cing some motion details, but the recovered
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Fig. 8. Comparison results for different sequences of different subjects in the CMU dataset [12] (left in each sub gure) and the Edinburgh dataset [13]
[14] (right in each sub gure). From top to bottom: ground-truth skeletons, corrupted skeletons, skeletons recovered by [16], [17], [14], and our method. The
corruption rates are: (a) 5%, (b) 10%, (c) 15%, and (d) 20%.

motions are too rigid compared with ground truth. The methdd the pre-processing for deep learning including scaling to a
in [17] recovers more accurate skeleton motions thanks uwoi ed skeleton structure, removing global translation around
the isometry constraint, but the recovered motions still sufférexz plane and global rotation around thexis, and limiting
from jitter artifacts. Our method is able to recover accuratme foot on the oor, which ensures the smoothness of the
motion with rich details thanks to the elegant design of spatisovement but the accuracy is lost. Therefore, the recovered
temporal constraints. skeleton sequences by this method look visually good and
smooth without jitter during the time, but the accuracy of the
We also compare with two popular deep learning methodgints is not very high. Fig. 8 shows the qualitative comparison
method [14] in Table IIl on the CMU dataset [12] and in Tablgf the four methods. Due to the constraint on the foot and
IV on the Edinburgh dataset [13] [14], and method [50] ifthe removal of global rotation around tlyeaxis, the method
Table V on the CMU dataset [12]. The visual comparison is [14] has a serious deviation at the shoulders and the
presented in Fig. 8 and Fig. 9. Because the method in [I#kt. On the contrary, our method achieves the most accurate
contains many pre-processing steps and handles the B¥dovery without any pre-processing. Moreover, our method
format data, we compare with this method in a separatgn deal with data of arbitrary format including original global
table and gure. The noise in the polluted joints is uniformlyoordinates. For method [50], we set the number of joints to 25
distributed in the range of [-2.5, 2.5] inches and ve differenind the other parameters to the best provided by the author.
percentages of polluted entities D are tested: 5%, 10%, Since the LSTM (long short term memory)-based model is
15%, 20%, and 80%. Consistent with the method in [14petter than the time-window-based model, we only compare

21 joints are used. As shown in Table Il and Table IV, th@iith the former. Following the author, we randomly selected
method in [14] has the lowest accuracy. This is mainly due
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Fig. 9. Comparison results for sequence 01 of subject 05 (left in each sub gure) and sequence 01 of subject 14 (right in each sub gure) in the CMU dataset
[12] . From top to bottom: ground-truth skeletons, corrupted skeletons, skeletons recovered by [50], and our method. The corruption ra&e%,afle} (a)
10%, (c) 15%, and (d)20%.

25 different folders from the CMU dataset [12] for trainingmore accurate motion.
testing and validation. We use sequence4and sequence
05 01 as test sequences, in which subject 14 is in the traini

set, while subject 05 is not in the training set. The input o _ ) )
the network in [50] requires a mask to indicate the missing The motions captured by most motion capture devices such

joint points. Because the simulated noise data is genera?édthe Kinect often suffer from severe joint drifting and motion
randomly, we set the mask to all 1 for our input. The whollitter, especially for occlusion. To validate the performance of
noise matrix is input and the output of the network is takePUr method in practical applications, we experiment on two
as the nal result. As shown in Table V, method [50] ha&eal captured Kinect datasets collected by ourselves and [15].
the lowest accuracy, especially for sequencedds due to the The actor starts at a non-occluded pose, and the motion is
insuf cient generalization ability of the model and the need€"y slight in the rst few frames. Therefore, we choose the
for precise mask in denoising. Fig. 9 shows the qualitati?/erage length for each_ bone in the rst several frames as the
comparison of [50] and ours. The whole network structuféférence bone length in Eq. (5).

in [50] tends to recover human structure without considering F19- 10 shows the comparison results for two fram_es of
accuracy, especially in the case of subjects not included in & Kinect datasets. It can be seen that the method in [16]
training set. Moreover, method [50] requires retraining daf§constructs reasonable motions from the corrupted skeletons,
for different skeleton structure, which cannot be restored fBHt the recovered skeletons lose many motion details, and
occluded Kinect data. However, our method does not halfg¢ motion looks rigid and unnatural. The method in [17]

such requirements and only need tens of frames to reco@&d our method recover accurate motion with certain motion
details preserved. We also measure the 3D trajectory of the

2 Results on Kinect Data



12 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

TABLE Il . .
AVERAGE JOINT ERROR COMPARISON FOR SKELETON REcovery on  Of dynamic human body. The method in [16] and the method
CMU DATASET [12] (BVH FORMAT) WITH DIFFERENT CORRUPTION in [17] both Iter out some obvious outliers, but fail to smooth
PERCENTAGES the whole trajectory. The method in [16] would even cause
Sub. Method 5% | 10% | 15% | 20% | 80% | error during the recovery procedure. On the contrary, our

Wang [16] | 0.058 | 0.125| 0.185 | 0.251 | 0.904 | method recovers accurate and smooth motion thanks to the
0501 Li [17] 0.030 | 0.077| 0.117| 0.170 | 0.743 | sparse wavelet constraint. Hence, in practical cases which
Holden [14] | 0.637 | 0.672 | 0.753 | 0.856 | 1.636 | have complex human motions and are lack of ground-truth
Ours 0.013 | 0.033 | 0.057 | 0.085 | 0.564 | bone length to ensure isometry, our method can still recover
Wang [16] | 0.077 | 0.156 | 0.229 | 0.312 | 1.028 | reasonable and smooth motion.
05 14 Li [17] 0.045 | 0.097 | 0.154 | 0.215| 0.858
Holden [14] | 0.952 | 1.012 | 1.088 | 1.141 | 1.867 | D. Running Times
Ours 0.017 | 0.031| 0.055| 0.095 | 0.582
Wang [16] | 0.044 | 0.094 | 0.145 | 0.190 | 0.733
13 29 Li [17] 0.021 | 0.051 | 0.088 | 0.128 | 0.707
Holden [14] | 0.923 | 0.976 | 1.037 | 1.113 | 1.880
Ours 0.010 | 0.024 | 0.045 | 0.071 | 0.527
Wang [16] | 0.047 | 0.094 | 0.140 | 0.185| 0.700
13 38 Li [17] 0.027 | 0.057 | 0.092 | 0.133| 0.688
Holden [14] | 0.919 | 1.015| 1.040 | 1.104 | 1.711
Ours 0.012 | 0.031 | 0.061 | 0.095| 0.647

The running times for the CMU dataset [12] are given in
Table VI. All the experiments are performed on a desktop
computer with an Intel i5-4690K 3.5GHz CPU and 8GB RAM.
Four skeleton sequences with an increasing frame length are
tested. In order to compare with the deep learning method
[14], we divide each sequence into 240 overlapping windows
according to the method in [14] and calculate the average
recovery time for all the methods. The running times of the
method in [16], the method in [17], the method in [14] and
our method are 0.576416.493%, 34.491G, and 19.7044,

TABLE IV respectively.
AVERAGE JOINT ERROR COMPARISON FOR SKELETON RECOVERY ON THE
EDINBURGH DATASET [13] [14] WITH DIFFERENT CORRUPTION TABLE VI
PERCENTAGES THE RUNNING TIMES ON THECMU DATASET.
Sub. | Method 5% | 10% | 15% | 20% | 80% Sequences | Frame Length| Methods | Running Time(s)
Wang [16] | 0.126 | 0.181 | 0.240 | 0.308 | 1.160 Wang [16] 10983
07 Li[17] | 0.063| 0.108 | 0.161| 0.219 | 0.884 Sub.21 Seq.03 272 Li [17] 22,7150
Holden [14] | 0.905 | 0.996 | 1.016 | 1.093 | 1.896 ours 247055
Ours | 0.013| 0.030 | 0.058 | 0.091 | 0.679 Wang [16] 14027
Wang [16] | 0.112] 0.166 | 0.225| 0.292 | 1.160 Sub.115 Seq.03 584 Li [17] 47 5670
08 Li[17] | 0.058| 0.103 | 0.152 | 0.210 | 0.894 ours 60.7618
Holden [14] | 1.253 | 1.410 | 1.498 | 1.597 | 2.242 Wang [16] 24831
Wang [16] | 0.134| 0.193| 0.252 | 0.323| 1.178 ours 148.7628
09 | Li[17] | 0.062| 0.113| 0.163 | 0.227 | 0.907 Wang [16] 53.9200
Holden [14] | 0.948 | 1.029 | 1.097 | 1.183 | 1.919 Sub.56 Seq.06 6784 Li [17] 478.3740
Ours | 0.011| 0.031 | 0.053 | 0.085 | 0.651 ours 586.2765
Wang [16] | 0.121 | 0.177 | 0.237 | 0.300 | 1.162
10 Li [17] 0.061 | 0.110 | 0.162 | 0.217 | 0.886
Holden [14] | 0.740 | 0.842 | 0.904 | 1.007 | 1.809
Ours 0.011| 0.028 | 0.054 | 0.080 | 0.645 V. CONCLUSIONS
This paper proposes a novel skeleton recovery method
TABLE V using spatio-temporal reconstruction. The corrupted skeleton

AVERAGE JOINT ERROR COMPARISON FOR SKELETON RECOVERY ON sequence is integrated into a skeleton matrix, and we use a
CMU DATASET [12] WITH DIFFERENT CORRUPTION PERCENTAGES 5t |ow-rank and sparse prior to exploit temporal correlation

Sub. Method 5% | 10% | 15% | 20% | 80% | and an isometric constraint for spatial correlation. The whole
Kucherenko [50] | 0.329 | 0.330 | 0.326 | 0.325 | 0.331 | mqodel is solved under an iterative ALM framework, and a
0501 Ours 0.002 | 0.005 | 0.007 | 0.009 | 0.044 | Gayuss-Newton solver is introduced to solve the nonlinear

Kucherenko [50]| 0.076 | 0.076 | 0.074 | 0.074 | 0.075

| r roblem. Experimental r | n th li
14 01 ours 0.005 | 0.006 | 0.007 | 0.009 | 0039 east squares subproble perimental results on the public

CMU dataset, the Edinburgh dataset and two real captured
Kinect datasets demonstrate the accuracy and robustness of
the proposed method compared with state-of-the-art methods.
captured motion in Fig. 11. For better visualization, the regiol@ur method can be used to pre-process a large amount of
highlighted by rectangles are enlarged and shown aside. d@maged skeletons to improve the accuracy of downstream
shown in Fig. 11(a), jitter artifacts often happen in humaapplications.

motion captured by Kinecte.g, highlighted points in the  Our method also has some limitations to be overcome in
gure, where the Kinect device suddenly loses the locatidiuture work: 1) It is not very effective for the cases with loss or
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Fig. 10. Comparison results for our Kinect sequence (top) and anotH&f]
Kinect sequence [15] (bottom). (a) captured color image, (b) captured Kinect

skeleton, (c) recovered skeleton by [16], (d) recovered skeleton by [17], and
(e) recovered skeleton by our method. [11]

(12]

(13]
(14]
(15]

[16]

(17]

(18]

[19]
Comparison results of trajectories of the root joint of a Kinect

by

[21]
damage of multiple continuous frames, and the computational
complexity rapidly increases with the increase of matrix sizg\z]
2) Besides the isometry property, we also note that more
structure information can be considereelg, the relative
position of the skeleton joints. However, this would make th[é?’]
model more dif cult to optimized.

Fig. 11.
sequence: (a) motion captured by Kinect, (b) recovered trajectory by [16],
recovered trajectory by [17] and (d) recovered trajectory by our method.
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