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Abstract 1 

Over the past century, the dendrochronology technique of crossdating has been widely used to 2 

generate a global network of tree-ring chronologies that serves as a leading indicator of 3 

environmental variability and change. Only recently, however, has this same approach been 4 

applied to growth increments in calcified structures of bivalves, fish, and corals in the world’s 5 

oceans. As in trees, these crossdated marine chronologies are well replicated, annually 6 

resolved and absolutely dated, providing uninterrupted multi-decadal to millennial histories of 7 

ocean paleoclimatic and paleoecological processes. Moreover, they span an extensive 8 

geographic range, multiple trophic levels, habitats, and functional types, and can be readily 9 

integrated with observational physical or biological records. Increment width is the most 10 

commonly measured parameter and reflects growth or productivity, though isotopic and 11 

elemental composition capture complementary aspects of environmental variability. As such, 12 

crossdated marine chronologies constitute powerful observational templates to establish 13 

climate-biology relationships, test hypotheses of ecosystem functioning, conduct multi-proxy 14 

reconstructions, provide constraints for numerical climate models, and evaluate the precise 15 

timing and nature of ocean-atmosphere interactions. These ‘present-past-future’ perspectives 16 

provide new insights into the mechanisms and feedbacks between the atmosphere and marine 17 

systems while providing indicators relevant to ecosystem-based approaches of fisheries 18 

management. 19 

 20 

Keywords 21 

Sclerochronology, crossdating, proxy, paleoceanography, dendrochronology, climate change 22 

 23 

Background 24 

In terrestrial systems, tree-ring data are well replicated from multiple individuals, absolutely 25 

dated, and thus constitute the ‘gold standard’ of high-resolution environmental archives. This 26 
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level of accuracy is possible through crossdating, a technique that assumes some aspect of the 27 

environment influences growth, varies over time, and thereby induces a synchronous growth 28 

pattern among samples of a given population and location. Starting at the increment formed 29 

during the known year of collection, the synchronous pattern is cross-matched among samples 30 

backward through time. If an increment has been missed or falsely identified, the pattern will be 31 

offset by a year relative to that in other samples, beginning where the error occurred. Errors are 32 

then confirmed and corrected by visually re-examining the sample [1] (Figure 1). The absence 33 

of dating errors ensures high-frequency variability is not smeared, attenuated, or blurred, which 34 

allows for seamless integration among chronologies, instrumental climate histories, and other 35 

observational physical or biological records [2] (Figure 1). Given the wide application of this 36 

approach in forests around the globe, over 4,500 tree chronologies are now publicly available 37 

through the International Tree-Ring Data Bank (ITRDB; [3]), a rich and diverse resource that 38 

has facilitated a number of highly influential, broad-scale reconstructions of climate and 39 

disturbance [4-6].  40 

Over the past decade an increasing number of studies have demonstrated that the same 41 

powerful crossdating approach can be applied to marine organisms (Figure 2). A wide variety of 42 

species spanning tropical to polar latitudes are long-lived, form annual growth increments, and 43 

are represented in extensive archival collections in fisheries laboratories and museums around 44 

the world [7]. Archaeological and sub-fossil specimens are available to further extend records 45 

back in time [8-10]. Resulting crossdated sclerochronologies continuously span multiple 46 

decades to centuries, are comparable in quality to tree-ring datasets, and capture signals 47 

representing a range of depths, habitats, trophic levels, and functional types [8, 11]. These time 48 

series are of high value in marine systems where instrumental records > 50 yrs or observational 49 

biological records > 20 yrs in length are uncommon [12, 13]. As such, this approach is unlocking 50 

a new, vast, global array of data streams in the marine realm to reveal relationships between 51 
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biological processes and climate, hind-cast past environmental variability, calibrate climate 52 

models, and identify key target variables for forecasting into the future. 53 

 54 

Present 55 

In many marine systems, the fundamental environmental drivers of productivity or functioning 56 

remain poorly understood. This is largely due to the scarcity of multidecadal biological time 57 

series [12, 13]. However, crossdated marine sclerochronologies serve as growth proxies with 58 

the accuracy and temporal extension required to quantify long-term variability and establish 59 

robust statistical relationships with observational environmental indices. For example, 60 

productivity in the California Current along the west coast of North America has long been 61 

assumed to be largely driven by spring and summer conditions when coastal upwelling is 62 

strongest and most sustained. However, rockfish (Sebastes spp.) chronologies derived from 63 

otolith increment widths strongly relate to wintertime upwelling, the amplitude of which varies 64 

greatly from year to year [14]. This wintertime volatility is likely imprinted on biology via some 65 

preconditioning the system for high productivity during the upcoming warm season or its effects 66 

on growing-season length. Moreover, fish increment-width sclerochronologies have been 67 

integrated with other observational biological time series such as seabird reproductive success 68 

and plankton community composition to demonstrate climate-induced covariance across taxa 69 

and trophic levels, which underscores the importance of winter climate in biology [15, 16]. 70 

Crossdated sclerochronologies and tree-ring chronologies have also been used to document 71 

that broad-scale atmospheric phenomena can simultaneously influence factors limiting growth 72 

on land, such as precipitation, as well as factors limiting growth at sea, such as coastal 73 

upwelling, to induce covariance between marine and terrestrial ecosystem productivity [11, 17].  74 

Patterns of synchrony reveal the extent and magnitude to which environmental variability 75 

influences biological processes and afford some degree of predictive power, especially when 76 

associated climate drivers can be determined. Indeed, crossdating quantifies the extent to which 77 
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growth anomalies covary within and among populations, and provides exactly dated and well-78 

replicated biological time series with which to identify this synchrony [9, 18, 19] (Figure 2). 79 

Human impacts may also be assessed, such as quantifying reduced resilience of corals in 80 

heavily populated areas of the Mesoamerican Reef to bleaching events [20]. Such information is 81 

highly relevant to coral reef and fisheries management and aiding the desired transition from 82 

single stock assessment to ecosystem-based approaches. Crossdated marine chronologies 83 

could inform multiple aspects of Integrated Ecosystem Assessment by quantifying multidecadal 84 

ranges of variability, long-term changes in biological reference points, climate drivers, and 85 

ecosystem indicators [21]. Integrating the growing networks of crossdated sclerochronlogies 86 

with existing biological observational records has the potential to provide baseline information 87 

on biological synchrony and the interactions between climate and human influence.  88 

 89 

Past 90 

In the marine realm, sediment cores are the most commonly used archives to provide long-term 91 

perspectives on environmental variability prior to the instrumental record. These archives often 92 

span multiple millennia, have been broadly sampled across the ocean floor, and in some 93 

environments may be sub-decadally resolved. Moreover, they capture a diversity of micro-94 

organisms and geochemical proxies to assess long-term environmental variability and biological 95 

response [13, 22-24]. Although crossdated marine sclerochronologies very rarely span multiple 96 

centuries and are generally limited to the continental shelves (Figure 2), they are annually 97 

resolved, absolutely dated, and can be readily calibrated against instrumental records to hind-98 

cast pre-industrial baselines, rates of change, and the frequency of extreme events [8, 25, 26]. 99 

Relatively long crossdated sclerochronologies allow for the examination of the role that natural 100 

external forcing (e.g. total solar irradiance and volcanic aerosols) and internal climate 101 

mechanisms and feedbacks (e.g. ocean-atmosphere interactions, ocean circulation and ice 102 

related albedo feedbacks) play in driving past marine variability [27]. For example, a millennial-103 
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length oxygen stable isotope series from a crossdated bivalve shell growth chronology 104 

demonstrated that oceanic changes near Iceland generally preceded those in the atmosphere 105 

prior to the industrial period (CE 1000 – 1800); however this relationship reversed after CE 1800 106 

likely reflecting anthropogenic influence on the climate [28]. 107 

For some species and locations, increment width is strongly related to a single climate 108 

variable. Along the western North America coastline, seventy percent of the variance in Pacific 109 

geoduck (Panopea generosa) chronologies can be explained by regional sea surface 110 

temperature variability [29, 30]. In other cases, even when there is a high degree of increment-111 

width synchrony among individuals from a given species and site, the environmental drivers of 112 

growth rate are complex and less obvious [31-36]. However, other measurement parameters 113 

such as isotope signatures, trace and minor elements, or microstructures that are embedded in 114 

the precisely dated material [9, 25, 28, 37, 38] may better reflect climate variability, can often be 115 

mechanistically linked to aspects of the environment, and used to robustly reconstruct past 116 

environments. For example, regionally crossdated bivalve series demonstrate highly 117 

synchronous Ba/Ca ratios in shell aragonite potentially related to productivity dynamics [39]. 118 

Stable carbon (13C) isotope values [40] from exactly dated increments provide constraints on 119 

carbon cycling and the so-called Suess effect [41, 42] through space and time. Moreover, 120 

radiocarbon measurements from exactly dated increments can be used to assess changes in 121 

circulation and provide tight constraints for the marine reservoir effect [10, 25, 37]. One of the 122 

factors that hinders more accurate 14C dating in marine sediment cores is the paucity of 123 

information about how the marine reservoir age varied back through time. For the late 124 

Holocene, crossdated marine sclerochronologies improve this by eliminating dating uncertainty 125 

[10, 37].  126 

A useful property of sclerochronologies is that they directly target marine environmental 127 

variability, including fine-scale processes or those at depth that are not linked to the atmosphere 128 

and are thus undetectable by land-based archives [9, 10, 19, 42-44]. Where tree-ring 129 
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chronologies do capture coupled ocean-atmosphere climate phenomena such as the Pacific 130 

Decadal Oscillation, El Niño -Southern Oscillation, or Atlantic Multidecadal Oscillation, 131 

crossdated marine archives offer complementary perspectives of habitat and life history that 132 

provide a more robust estimate of past climate than any single archive could provide individually 133 

[29, 45-47]. Finally, crossdated marine sclerochronologies identify key climate drivers of marine 134 

ecosystem functioning, which may be associated with atmospheric processes that influence tree 135 

growth. This information provides novel targets for tree-ring based reconstructions. For 136 

example, rockfish otolith chronologies in the California Current are influenced by winter 137 

upwelling, which is driven by anomalies in atmospheric pressure that also drive drought on land. 138 

Thus, moisture-sensitive blue oak (Quercus douglasii) tree-ring chronologies can be used to 139 

reconstruct a 600-year history of this key indicator of biological functioning and productivity in 140 

the California Current marine ecosystem [11]. 141 

 142 

Future 143 

The fundamental knowledge provided by crossdated sclerochronologies on the present and 144 

past, as described above, are foundational to accurately predict the future of both the climate 145 

system and the marine ecosystems. One such approach is to use these records to compare 146 

with, calibrate, test, benchmark, or assimilate into General Circulation Models (GCM) [48]. 147 

Sclerochronological records can also be used to assess longer-term bias, quantify the amplitude 148 

and spatial patterns of uncertainties in GCM runs compared to instrumental data products, and 149 

to evaluate climate field reconstruction methods [49]. The quantification and characterization of 150 

these uncertainties coupled with the general improvement in our understanding of the forcing 151 

mechanisms that drive the coupled ocean-atmosphere climate system will ultimately facilitate 152 

the continued improvement of the individual GCMs, enhancing the ability of the numerical 153 

models to provide robust simulations of likely future climate change. Numerical models can also 154 

be used to identify and guide selection of sites where new chronologies likely have maximum 155 
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paleoclimatic significance [49, 50]. Finally, crossdated marine chronologies can constrain 156 

quasi/multi-decadal climate variability over the past few centuries to millennia [9]. Such 157 

information can test and improve the skill of numerical climate models, which poorly capture 158 

variability in these spectral domains. Once crossdated sclerochronologies have been 159 

constructed [2], novel proxies, such as nitrogen [51] and boron isotopes [52], or emerging 160 

geochemical proxies, promise to provide essential constraints on marine ecosystems, ocean 161 

acidification, and climate. The recent metagenomic discovery that bivalve shell carbonate 162 

contains environmental DNA [53] heralds the possibility of using crossdated shell series to 163 

reconstruct marine biodiversity across major anthropogenic transitions, enabling reconstructions 164 

of marine ecosystem baselines and rates of biodiversity loss. Ultimately, the long-term histories 165 

of climate variability, its coupling with the atmosphere, and impacts on biology will be critical for 166 

understanding future climate change and ecosystem impacts. 167 

 168 

Conclusions 169 

For many long-lived fish and bivalve species, adequate replicates for crossdatable chronologies 170 

can be obtained through archival collections, especially if they are commercially important 171 

species [7]. For some species such as tropical corals, the expense of sampling can be high, but 172 

where replication is available, crossdating can yield annually-resolved, environmentally-173 

sensitive chronologies [20, 25, 54-56]. Crossdating may also be possible with increments (or 174 

layers) in coralline algae, deep sea corals, sclerosponges, speleothems, ice cores, varved 175 

sediment cores, and perhaps in sub-annual (daily or tidal) increments [57-59]. If increment 176 

widths are not visually evident or lack adequate interannual variability, crossdating could be 177 

attempted using chemical or morphological properties such as trace and minor element 178 

concentrations, isotope signatures, shell microstructures, or even the brightness of the internal 179 

banding structure [39, 43, 55]. Crossdating may not be feasible for short-lived species (< 15 yr 180 

lifespan) given that time series are insufficiently long to confidently match patterns among 181 
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individuals, even for sample sets with known collection dates. However, environmentally-182 

sensitive, annually-resolved chronologies appear to be possible [60, 61]. This likely reflects the 183 

fact that dating errors are not as impactful in short-lived species as long-lived species for which 184 

frameshifts can have effects that extend over decades or centuries. Yet, in the absence of 185 

crossdating there will remain some unknown error rate and loss of high-frequency signals, the 186 

incidence of which is likely to increase with length of the measurement time series [2].  187 

The main thrust of a growing body of literature shows that crossdating is possible and 188 

practical for numerous species and environments in the world’s oceans. Indeed, crossdating is 189 

the technique that truly defines the dendrochronological approach that has been so successful 190 

in terrestrial systems. Given that high- and low-frequency signals are retained, these time series 191 

can be readily integrated with one another or instrumental records, and further combined with 192 

other archives such as sediment cores to evaluate shared patterns in low-frequency time 193 

domains [13, 22, 24, 62]. Thus, crossdating and internal replication can be broadly applied to 194 

evaluate linkages across ocean basins, ocean-atmosphere connections, and covariance among 195 

marine, terrestrial, and freshwater ecosystems. The application and continued development of 196 

this technique is now beginning to revolutionize our understanding of biological and climatic 197 

processes in marine systems and their interactions with the atmosphere across a range of 198 

temporal and spatial scales. 199 

 200 

Figure Legends 201 

Figure 1. Crossdating for absolute dating control. A) Synchronous growth among three 202 

Pacific geoduck samples from Dungeness Spit, Washington, USA. Each decade is labeled with 203 

a dot; 2000 with three dots; 1950 with two dots B) Measurements of thirty Dungeness Spit 204 

samples after age-related growth declines have been removed. Also shown is their mean (the 205 

chronology), C) The Dungeness Spit chronology plus two other geoduck chronologies from 206 

southern British Columbia, Canada. Superimposed is mean annual sea surface temperature 207 
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anomaly for the British Columbia coast. Agreement within and among chronologies and 208 

instrumental records corroborate absolute dating. 209 

 210 

Figure 2. Crossdated marine chronologies. Locations of crossdated tree-ring chronologies 211 

available through the International Tree-Ring Databank. Locations of published marine 212 

sclerochronologies for which there was replication (generally n> 5) and at least some mention of 213 

visual cross-matching of patterns among samples. Note: Chronology metadata are provided in 214 

Supplementary Table 1. 215 

 216 

 217 

  218 
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