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Abstract

Studying the progression of the proliferative and differentiative patterns of neural stem cells at the individual

cell level is crucial to the understanding of cortex development and how the disruption of such patterns can

lead to malformations and neurodevelopmental diseases. However, our understanding of the precise lineage

progression programme at single-cell resolution is still incomplete due to the technical variations in lineage-

tracing approaches. One of the key challenges involves developing a robust theoretical framework in which we

can integrate experimental observations and introduce correction factors to obtain a reliable and

representative description of the temporal modulation of proliferation and differentiation. In order to obtain

more conclusive insights, we carry out virtual clonal analysis using mathematical modelling and compare our

results against experimental data. Using a dataset obtained with Mosaic Analysis with Double Markers, we

illustrate how the theoretical description can be exploited to interpret and reconcile the disparity between

virtual and experimental results.

Key words: birth-death stochastic process; branching processes; clonal analysis; cortical neurogenesis; Mosaic

Analysis with Double Markers.

Introduction

The mammalian cerebral cortex is the outer layer of neural

tissue in the telencephalon. It is composed of a large variety

of cell types (Lodato & Arlotta, 2015; Markram et al. 2015;

Mancinelli & Lodato, 2018; Tasic et al. 2018) and shows con-

siderable areal variation depending on the circuit elements

required to perform specific computational functions

(Goulas et al. 2018). The location and quantity of cortical

neurons are determined during embryonic development

and are crucial to the emergence of cognitive functions in

the adult brain. Understanding cortical development is key

to shedding light on both the fundamental mechanisms

that give rise to correct brain formation and evolution,

and the abnormalities that cause malformations (Clowry

et al. 2010; Geschwind & Rakic, 2013; Silbereis et al. 2016;

Lein et al. 2017). The successful development of the cortex

requires a controlled sequence of cell division events

which, starting from an initial pool of neuroepithelial stem

cells, results in a diverse pool of specialised neurons (Pfeif-

fer et al. 2016; Nowakowski et al. 2017). The developmen-

tal programme leading to the formation of the cerebral

cortex is the result of a complex regulation of cellular pro-

cesses in space and time, involving a variety of progenitor

cell types (Fig. 1).

Observing the unfolding of the developmental pro-

gramme at the level of an individual progenitor cell gives

us a fundamental understanding of the processes involved

in progenitor cell division strategies. The recent develop-

ment of new cell-labelling techniques allows us to charac-

terise clonal lineages, addressing the need to obtain

temporally resolved data. But the clonal analysis techniques

currently available have limited ability to extensively track

clonal lineages (Garcia-Moreno et al. 2014), often resulting

in contradictory conclusions (Guo et al. 2013; Gil-Sanz et al.

2015). A variety of labelling techniques have been devel-

oped, such as retroviral vectors (Mayer et al. 2015) and

Mosaic Analysis with Double Markers (MADM; Ma et al.
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2018), but neither of them alone can capture the full spec-

trum of division types and lineages. There are limitations in

the resolution of the data, and difficulties in their interpre-

tation, preventing reliable and testable predictions. The

main caveat is that the majority of the currently available

lineage-tracing methods rely on retrospective interpreta-

tion. In other words, a stem cell and its lineage is marked at

a given developmental time and analysed at the end time

point (i.e. after development is complete). Thus, the tempo-

ral information is restricted to the start and end points of

analysis, and the processes in between are not evident.

Moreover, the magnitude of naturally occurring progenitor

and neuronal cell death, and its role in the developmental

programme, are still the subject of debate (McConnell et al.

2009). The only methodology that allows the creation of

entire lineage trees is live imaging in situ during neural pro-

genitor proliferation. However, accessibility to the develop-

ing brain is limited to a relatively short period of

observation, and even with live imaging over extended

periods the lineage trees obtained are not complete (Noctor

et al. 2004; Wang et al. 2011; Betizeau et al. 2013). To trust

our understanding of the cell-based division strategies dur-

ing neurogenesis, we need a theoretical framework that

can reliably model, test and interpret the results of clonal

analysis studies.

In the following we will present a theoretical framework,

based on a stochastic birth–death process, which can be cali-

brated with data obtained from clonal analysis experiments,

and consequently used to interpret the dynamics of cell

division and cell cycle exit events in the developing cortex.

The exact rate and proportions of naturally occurring pro-

genitor and post-mitotic neuronal death are not known.

Some studies suggest low, others, large-scale cell death dur-

ing cortical neurogenesis (McConnell et al. 2009). Here we

model cell death without a priori assumptions on its

magnitude. The only restriction we include involving the

birth and death rates is that they cannot be the same.

Indeed, we find that the greater the difference between

these values, the easier it becomes to predict their val-

ues. Although this restriction is simply for mathematical

convenience, it does not cause a loss of generality from

the biological point of view, as (as discussed in the follow-

ing) the parameter region in which these rates are close to

each other is not biologically realistic. One of the key results

of the model, parameterised on our dataset, is that a small

rate of ongoing cell death is expected throughout the neu-

rogenic process.

We will use a dataset obtained through MADM (Hip-

penmeyer et al. 2010). MADM is a technique specifically

developed for mouse models, allowing incorporation of

two distinct labels (red and green) in the two subclones

resulting from the first round of division of the injected

progenitor cell. To broaden the scope of this framework,

we aim to reconstruct any individual clonal lineage, con-

sidering each MADM subclone of this dataset individu-

ally. In doing so, we will develop a method that can be

applied to datasets obtained with any equivalent label-

ling technique. Hence, unless we are specifically refer-

ring to the MADM dataset (consisting of pairs of

subclones), in the following we will refer generically to

any group of labelled cells as a clone.

Virtual clonal analysis assays will replicate the tracking

methods of the MADM technique over realisations of the

stochastic birth–death process. From many repetitions of

the in silico clonal analysis (with known parameters, chosen

arbitrarily), we can test that the theoretical model accu-

rately captures clonal distributions. The theoretical descrip-

tion can then be used to gain an insight into the clonal

Fig. 1 General pattern of development of the cerebral cortex in mammals. (a) The temporal expansion of progenitors populating the proliferative

zones (VZ, ventricular zone; SVZ, subventricular zone), and the production and positioning of neurons in the cortical plate. The horizontal axis is a

proxy for time. A simplistic categorisation of progenitor cells is based on their position in the proliferative zones. (b) Clonal lineages determine the

neuronal and non-neuronal composition of the cell population, crucial for the correct quantitative and temporal production of cortical neurons.
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distributions experimentally obtained, guiding the biologi-

cal study towards a conclusive characterisation of the pro-

cesses occurring during cortical neurogenesis.

Materials and methods

The MADM dataset

MADM is a unique lineage-tracing tool. In a MADM event two fluo-

rescent markers are reconstituted in a dividing stem cell and trans-

mitted to the two daughter cells. The markers are stable and are

transmitted along the entire subclone (Hippenmeyer et al. 2010;

Ma et al. 2018). Because the MADM labelling can be induced at any

given time, this experimental paradigm provides exact information

on birth dates of clones and their division patterns. For this study

we focused on interval sampling and compiled a set of MADM

clones across different time points during cortical development.

Hence, the dataset consists of the sizes of the green and red sub-

clones, quantified at analysis time, tA, following the initial injection

at t0 (Data S1; Fig. S1). The dataset includes a sparse combination of

16 experimental setups, defined by different injection and analysis

times, over the neurogenic window E10–E17 (Fig. 2).

For each experimental setup, a varied number of replicates is pro-

duced. The approach used is the same as described in previous pub-

lications by the experimental group (Gao et al. 2014; Beattie et al.

2017), and an illustrative outcome is pictured in Fig. 3.

We aim to reconstruct each individual subclone, i.e. given a

subclone of size N, for injection time t0 and analysis time tA, we

aim to describe the cell division and cell death events that lead

to the outcome N. We adopt a binary tree representation,

where the N labelled cells correspond to the tree leaves, and the

first cell to incorporate the (green or red) label corresponds to

the tree root.

Note that because of the nature of the assay with short sampling

windows, we cannot infer birth time of an individual cell. Hence,

without information about its location and cell cycle progression, a

fluorescent cell present at time tA could be a progenitor captured

during ongoing cell cycling, or a post-mitotic neuron produced at

t < tA, having permanently exited the cell cycle. Therefore, we are

going to consider a one-species branching process, without a dis-

tinction between cell types.

By using the experimental paradigm above, we cannot determin-

istically reconstruct a lineage tree. Even assuming that generations

are equally spaced in time, and disregarding cell death, the combi-

natorial range of binary trees that match a clonal size of N is intract-

able, especially for larger subclones in the dataset (e.g. N = 180). It

can be shown that this range includes all trees of depth l, with

d1þ log2Ne� l�N. Note that the issue is exacerbated in the case of

experiments of longer duration (affecting the values that l can real-

istically take). Figure S2 illustrates the combinatorial explosion,

showing examples of possible binary trees for small l, and corre-

sponding outcomes N.

Not only are the assumptions that consecutive generations

appear at fixed frequency and that no cells die along the way

highly unrealistic but, also, by attempting to deterministically

reconstruct lineage trees, we are disregarding the evolving and

stochastic nature of the developmental programme followed by

individual progenitor cells at different stages of the neurogenic

window (Noctor et al. 2004; Taverna et al. 2014). In fact, previous

MADM-based lineage-tracing experiments indicate that while the

overall dynamics of the total population unfolds in a predictable

manner, the behaviour of the individual progenitors appears to be

stochastic (Gao et al. 2014). In the following we are going to pre-

sent a stochastic mathematical description of clonal lineages, which

does not rely on the assumption of fixed cell cycling time, and

allows for cell death.

Fig. 2 Experimental setups of the Mosaic Analysis with Double Mark-

ers (MADM) dataset include intervals defined by injection and analysis

time, t0 and tA, respectively, over the mouse neurogenic window E10–

E17. The MADM labelling is induced at t0 and the sizes of subclones

are quantified at tA. For a representation of the entire dataset, see

Fig. S1.

Fig. 3 A single Mosaic Analysis with Double Markers (MADM) clone

in vivo in the developing cortex with tamoxifen-mediated induction at

E10 and analysis at E16. A G2-X event (see Hippenmeyer et al. 2010

for an illustration of the MADM principle) results in two columns of

green and red labelled cells. Neurons migrate along the processes of

radial glia progenitor cells from the ventricular zone (VZ), through the

intermediate zone (IZ), toward their final position in the developing

cortical plate (CP). Figure reused from Hippenmeyer et al. (2010) with

permission.

© 2019 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
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The continuous time birth–death branching process

Using the tree representation of clones allows us to repurpose work

used in phylogeny (Nee et al. 1994) to reconstruct lineage trees as

the outcome of random branching processes (cell division, or spe-

cies differentiation) and trimming processes (cell death, or species

extinction). We define a time coordinate t starting at the root of

the tree (injection time, t0) and ending at the present time (analysis

time, tA); hence, t0 ≤ t ≤ tA. The tree is characterised by a birth rate,

k, and a death rate, l. For a set t0, we define N as a random vari-

able, representing the number of branches extant at time tA. Its

probability density function is:

PðN ¼ nÞ ¼ 1� Pðt0 ;tAÞ; n ¼ 0

Pðt0 ;tAÞ 1� uðt0 ;tAÞ
� �

un�1
ðt0 ;tAÞ; n[ 0

�
; ð1Þ

where Pðt0 ;tAÞ is the probability that a tree starting at time t0 has not

gone extinct at time tA, and uðt0 ;tAÞ is the probability of speciation.

These two quantities are defined in terms of the birth and death

rates of the branching process:

Pðt0 ;taÞ ¼
k� l

k� le�ðk�lÞðtA�t0Þ ;uðt0 ;tAÞ ¼
1� e�ðk�lÞðtA�t0Þ

1� l
k e

�ðk�lÞðtA�t0Þ : ð2Þ

Hence, for non-extinct clones, N follows a geometric distribution.

For more details on the derivation of Eqs 1 and 2, see Nee et al.

(1994). Note that in the case of our MADM dataset, t0 is some time

later than the injection time, and corresponds to the time of

appearance of the first cell inheriting one of the two labels (red or

green). This adjustment will be discussed later.

Results

Simulated clonal lineages and virtual clonal analysis

In order to assess the validity of the theoretical representa-

tion introduced, we will create an in silico dataset based on

known values of k and l, and test its distribution against

the theory (Eq. 1). We will then simulate the results of a clo-

nal analysis technique on a portion of the dataset, aiming

to recover the known values of k and l.

We implement a Gillespie algorithm (Gillespie, 1977,

2007) for two reaction events:

A�!k Aþ A; A�!l ; ðP1Þ

where A represents a cell (tree branch) that can undergo

a mitotic event or die. Figure S3 shows a few realisations

of the stochastic process with k = 1 day�1 and l = 0.1

day�1 over a 6-day window of time. It can be

Fig. 4 Virtual clonal analysis. Checking theory (solid line) against simulated data (coloured patches) with known parameters k = 1 day�1 and

l = 0.1 day�1. For ease of visualisation, the distributions of simulated data are plotted as midpoints of bins centred around each clonal size n.

Insets show a magnification on the smaller range of clonal sizes n, including the case n = 0 of extinct clones. Vertical axis is probability density.

© 2019 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
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appreciated that the further we move from the injection

time, the wider the range of values across realisations.

Figure 4 shows the clonal sizes attained over 2000 reali-

sations of the stochastic process. Quantifications are

obtained for five analysis times, and mimic the clonal

analysis carried out experimentally. The distribution of

clonal sizes at different analysis times matches the theo-

retical distribution derived in Eq. 1.

Having confirmed the validity of the theoretical formu-

lation, we use it to recover the known parameter values k

and l from a virtual dataset of 10 experiments extracted

from the set of 2000 realisations. We implement a

least squares search looking for a single point in the (k, l)

ε [0, 1] 9 [0, 1] space that minimises the distance between

Eq. 1 and the data collected across analysis times. Doing

so, we correctly recover the parameter values k and l for

a virtual clonal analysis of sample size as low as 10 repli-

cates (Fig. 5). In order to exclude the possibility that the

correct guess is a result of a lucky choice of parameter val-

ues, we studied the accuracy of the least squares search

algorithm in the entire parameter space (Fig. S4). We

found that the least squares search only leads to incorrect

predictions in the region of the (k, l) space corresponding

to biologically unrealistic values. Indeed, it is sensible, both

mathematically and biologically, to expect cell birth rates

to be larger than cell death rates. A stochastic birth–death

process with k < l would result in clones that, on average,

tend to extinction according to the solution N(t)

/ e(�l + k)t. Furthermore, it is worthwhile noting that for

k = l the geometrical distribution (Eq. 1) is not meaning-

ful. From a purely biological point of view, although some

amount of ongoing cell death is known to trim the popu-

lation throughout neurogenesis, it would be highly ineffi-

cient to sustain proliferation, with cell death killing most

of the cells that are born. Current estimates of develop-

mental cell death range between 4 and 10% depending

on the experimental setup and the model system (McCon-

nell et al. 2009; Gao et al. 2014). In order to test the valid-

ity of the estimation method, we studied convergence of

the least squares search for increasingly larger sample size

S. Figure S5 shows that the estimation error of the

distribution function (Eq. 1) goes to zero across the

parameter space as sample size increases. Figure S6 shows

an example of the estimation results for S = 100. Note

that for large values of l it is more likely that the virtual

clonal analysis finds only extinct clones. In this case, the

clonal distributions are single-valued, centred around 0

(see histograms in Fig. S6), and the problem is underspeci-

fied as two parameters must be recovered from one data

point. This further supports the choice to restrict the

search to the k > l region when applying the estimation

routine to real datasets, where extinct-clones-only results

are extremely rare.

Application to the MADM dataset

Having tested the validity of the theoretical representa-

tion and its use in the parameterisation of the stochastic

process for a virtual clonal analysis dataset, we now apply

the framework to the MADM dataset previously

described. The application of the developed framework

to any experimental dataset requires a careful preprocess-

ing of the data, based on considerations from the use of

the in silico data. Hence, in the dataset used here we

will:

• exclude experimental setups with too small a sample

size: [E11–E12] (six replicates), [E14–E15] (eight repli-

cates), [E14–E17] (four replicates);

• consider each subclone individually, avoiding assump-

tions on the interdependence of pairs of subclones,

and with the added benefit of doubling the sample

size;

• group experimental setups by injection times, so that

they can be interpreted as observations over different

lengths of time of the same stochastic process starting

with one cell. Hence, we will obtain an estimate for

parameters k and l for each injection time;

• restrict the search to (k, l) 2 [0.5, 1] 9 [0, 0.5] to avoid

the possibility that the search algorithm identifies val-

ues in a biologically non-realistic region of the param-

eter space. This is particularly necessary for noisy or

sparse datasets (compare, for example, the E13–E15

Fig. 5 Recovering known values of k and l from 10 experiments of virtual clonal analysis with analysis times 1 day apart. The parameter values

estimated are: (�k, �l) = (1, 0.1) day�1, coinciding with the values used to create the in silico clones. The solid line is the theoretical distribution

parameterised on the estimated values. Vertical axis is probability density.

© 2019 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

Mathematical insight into clonal analysis, N. Picco et al.690



experiments, resembling the target distribution, with

the E11–E16 experiments, where the fitting algo-

rithm is more likely to fail). A discretisation step of

0.01 is used for both dimensions of the parameter

space;

• adjust t0 with an estimate of the time taken for the

first mitosis to occur. Indeed, the reported injection

time in the MADM dataset does not correspond

with the appearance of the first cell of the clonal

lineage. Therefore, the root of the tree representing

the subclone is one of the daughter cells of the

injected progenitor. The estimated time to first

mitosis is taken from the literature (Takahashi et al.

1996).

a b

c d

e f

Fig. 6 Parameterisation of the stochastic birth–death process using the Mosaic Analysis with Double Markers (MADM) dataset. Values of k and l

are guessed for each injection time. (a–e) The solid line is the theoretical distribution parameterised on these values. Histograms show the distribu-

tion of the experimental data. The error is quantified as the Euclidean distance between the two, i.e. kyðk;lÞ � ydatak2, where y is the probability

density function described by Eq. 1. (f) Temporal evolution of model parameters and predicted average cell cycle length [calculated as: TC = log(2)/

k]. The dashed portion of lines indicates predictions that do not match the existing literature and need validation via experimental quantification.

© 2019 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
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The results of the parameterisation are shown in Fig. 6. A

temporal evolution of the birth and death rates over differ-

ent ages is shown in Fig. 6f. The corresponding cell cycle

length, TC, is obtained from the birth rate, and is to be

interpreted as the average intermitotic time over the entire

process. Note that the predicted values for early ages (E10–

E12) fall into the expected range, below 18 h, in agreement

with the existing literature (Takahashi et al. 1996). Predic-

tions for later ages overestimate the values in the literature.

However, given difficulties in obtaining consistent measures

experimentally, at this stage it is not possible to draw con-

clusions on the validity of such predictions. As discussed

later, the discrepancy could be attributed either to the qual-

ity and quantity of the data or to the model being inappro-

priate in capturing regimes at later ages of the neurogenic

process.

In order to test the predicted parameterised model,

we run the stochastic birth–death process with the pre-

dicted values of k and l, and compare the distribution

obtained over 1000 simulations against the MADM data-

set. A representative pool of experimental setups is

shown in Fig. 7 (full set in Fig. S7). In the E10–E13 win-

dow (Fig. 7a), the stochastic process fails to capture the

distribution exhibited by the MADM experiments.

Specifically, a large portion of the tail of the theoretical

distribution cannot be observed in the experimental

counterpart. A corresponding overestimation of the

density for smaller clonal sizes (0 ≤ n ≤ 20) follows. In

the E13–E15 window (Fig. 7b), the discrepancy is more

evenly distributed in the density of small clonal sizes

(0 ≤ n ≤ 5). However, similarly to the previous case, a

considerable portion of the tail of the distribution is

missing in the MADM data. Finally, in the E14–E16 win-

dow (Fig. 7c), the correspondence between data and

theory is considerably more satisfactory.

Understanding the discrepancy between virtual and

real clonal analysis outcome

Across all experimental setups the match between the theo-

retical and experimental distributions varies in a range from

misrepresentation of a consistent portion of the larger clo-

nal sizes, to an almost perfect match (see full set of results

in Fig. S7). In order to obtain predictive insight into the

experimental data, it is crucial that we interpret correctly

the discrepancy found. The understanding of such a discrep-

ancy can only be found in either the quality and quantity of

the experimental data or the failure of the theoretical

model to represent the processes occurring during the pro-

duction of such lineages. In the first perspective the solution

is straightforward: more experimental data must be col-

lected. A larger sample size will likely reveal more rare

occurrences of very large clones, ‘filling’ the tail of the theo-

retical distribution. However, the acquisition of a large

dataset is costly and time consuming, and current ethical

guidelines discourage the unjustified increase in the num-

ber of replicates in any one experimental setup.

We therefore focus on the second perspective, i.e. to

theoretically understand the reason for the mismatch, so

as to offer possible correction criteria for the interpreta-

tion of the experimental data. This interpretation is based

on the assumption that the dataset is representative of

the stochastic variability of the neurogenic process. In

other words, we assume that the acquisition of more

data would not change the support (that is, the range of

bin sizes) of the experimental distribution, but only

smooth its profile. Under this assumption the tail of the

distribution can only be attributed to the overestimation

of the proliferative potential of the initial progenitor cell.

As previously mentioned, the model does not distinguish

between states of differentiation of cells. Indeed, a

Fig. 7 Comparing parameterised stochastic birth–death process (orange histograms) with the Mosaic Analysis with Double Markers (MADM)

dataset (blue histograms). The in silico data consist of 1000 realisations. The solid line is the theoretical distribution parameterised on the

guessed values (k, l) for each injection time. Representative examples of (a) E10–E13, (b) E13–E15 and (c) E14–E16. Vertical axis is probability

density.

© 2019 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
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one-species stochastic process was chosen as the best

descriptor of an experimental setup unable to discrimi-

nate between progenitors and neurons. An intrinsic

problem of this theoretical representation is that it can-

not capture the correct proportion of cells exiting the cell

cycle in the neurogenic window. As a result, the model

parameterisation overestimates the number of cells that

re-enter the cell cycle, hence allowing for larger clones to

be produced in the in silico lineages. This can be tested

by introducing a simple extension to the stochastic pro-

cess, which considers two types of cells: B, a cycling cell;

and C, a post-mitotic cell that has exited the cell cycle.

Three reaction events and corresponding rates are then

defined as follows:

B�!k1 Bþ B; B�!k2 Bþ C; B�!l ;: ðP2Þ

The first reaction corresponds to symmetric self-renewal,

the second to asymmetric division, the third to cell death.

We maintain that the experimental setup is unable to dis-

criminate between cell types; hence, virtual clonal analysis

can only quantify the clonal size (B + C). In the particular

case k1 = k, k2 = 0, this process is identical to Eq. P1

(Fig. S8). For k1 + k2 = k, this process is equivalent (hence

comparable) to the previous one, as the frequencies of birth

and death are the same. Figure 8 shows that the distribu-

tion obtained by Eq. P2 displays a mismatch around the tail

of the distribution qualitatively consistent with the one

observed in the MADM data (Fig. 7).

An interesting extension of this work will be to identify

and quantify the tails. This metric would serve as an indica-

tion of the discrepancy between two distributions, eventu-

ally allowing the experimentalist to relate a given mismatch

between in silico and experimental data to the prevalence

of different division modes. This extension is out of the

scope of this paper and will be discussed in future

publications.

Discussion

We chose a one-species stochastic birth–death process in an

attempt to mathematically model the neurogenic processes

of cell differentiation in the cerebral cortex.

In terms of modelling scale, we developed the theory

around the experimental design, focussing on single-cell-

level dynamics. Population-level models are well suited to

capture large-scale variations between cortices in different

species (Picco et al. 2018), or to quantify differences

between mutant and wild-type cortices (Hsu et al. 2015).

Fig. 8 Example of two processes with a mismatch in the outcome found between virtual and real clonal analysis outputs. One-species process

(P1) with k = 1 day�1, l = 0.1 day�1; and two-species process (P2) with k1 = 0.3 day�1, k2 = 0.7 day�1, l = 0.1 day�1. Histograms show distribu-

tions of A cells and B + C cells, respectively. Vertical axis is probability density.

© 2019 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
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These models allow us to capture the variety of cell cycle

exit dynamics, but are inappropriate to describe clonal lin-

eage experiments focussed on individual cell dynamics that

are stochastic by nature.

Additionally, because the clonal analysis techniques

currently available have limited ability to infer the com-

position of a subclone in terms of progenitor and neu-

ronal cell types, a more refined model would include too

many free parameters that cannot be resolved with the

resolution of the data currently available. A drawback of

considering a one-species branching process is that we

cannot accurately identify modes of cell division result-

ing in a given clonal size. However, we circumvented this

by aggregating data obtained from varied experimental

setups. Specifically, if the experimental window is too

short we cannot capture the amplification potential of

progenitors (e.g. given more time the tagged cell could

be a progenitor that would have gone on to self-amplify

further). Too long an experimental window, however,

increases the uncertainty of a given outcome to be asso-

ciated with a pair of k, l values. In fact, there are a range

of events that could have led to the same outcome (see

argument on combinatorial explosion as the tree length

increases). By fitting the model at once to all data

obtained from experiments with the same injection time

and varied analysis times, we integrated the temporal

information gathered by experimental setups that

observe overlapping time windows. The parameterisa-

tion will therefore implicitly pick up on the post-mitotic

composition at a given age, which justifies clonal distri-

butions at later ages.

The resolution of the data currently available is a cru-

cial limiting factor, and the field is now increasing its

efforts in this direction, in order to address key ques-

tions related to the heterogeneity of the cerebral corti-

cal progenitor population. This heterogeneity can be

only appreciated if a large population is followed, or

specifically selected for, using genetic tools (Llorca et al.

2018) or following transcriptomic differences of progen-

itor populations (Pollen et al. 2014). Some radial glial

progenitors that can be selected with Fezf2 and Sox9

generate most groups of excitatory neurons in an inside-

out temporal sequence (Guo et al. 2013; Kaplan et al.

2017). Selecting progenitors with Cux2 or Emx2 promot-

ers revealed lineage-restricted progenitors that mostly

contribute to upper cortical layers with callosal projec-

tions (Franco et al. 2012; Garcia-Moreno & Molnar, 2015;

Gil-Sanz et al. 2015). These progenitors lack neurogenic

potential during early neocortical development. After

self-renewing and transit-amplifying mitoses, these

radial glial progenitors exclusively give rise to callosal

upper-layer neurons and glia.

In the future the method we propose could be used with

datasets equivalent to the one used here, or expanded to

newly available and better resolved ones. Some careful

considerations along the line of the ones discussed for the

MADM technique are, however, necessary. This framework

should not be applied to data where there is an indication

that the dynamics could fall around the region of k � l.

Indeed, if frequencies of birth and death are comparable,

then the theory would not be able to attribute a specific

regime to the dynamics observed. Additionally, it is crucial

that each new dataset is carefully curated before it is fed to

the fitting algorithm. If a clonal distribution does not quali-

tatively resemble the target geometric distribution, then

one should ask the question why and understand what can

cause the shift of the dataset to a given distribution shape.

We showed an example of such an approach by considering

the modified process (Eq. P2), which resembles the same

mismatch with respect to Eq. P1 found in some experimen-

tal setups of the MADM dataset.

Finally, predicted rates of birth and death at late ages

(Fig. 6) need further experimental investigation. Both corti-

cal progenitors (McConnell et al. 2009) and post-mitotic

neurons are removed during early cortical development

through cell death, but the exact proportions are still sub-

ject to debate. The lack of quantification of cell cycle length

is also a crucial setback in the field of cortical neurogenesis.

As we pointed out in a previous study (Picco & Woolley,

2018), this leaves many open questions due to the impossi-

bility of validating theoretical predictions.

Conclusion

We proposed a theoretical representation of the cell divi-

sion and cell death processes operating during the neuro-

genic window in cerebral cortex development. While the

overall neurogenesis process is a coordinated one with a

clear temporal instructive component, there are a number

of stochastic elements that need to be considered. These

elements may act differentially at distinct stages, i.e. during

symmetric expansive divisions vs. asymmetric neurogenic vs.

intermediate progenitor-mediated division, but in their

entity lead to sequential neurogenesis. We found that key

limitations to our understanding of the developmental pro-

gramme are the lack of characterisation of cell cycle dynam-

ics, and the lack of identification of cell types in lineages.

Characterising the temporal and stochastic modulation of

cell cycle dynamics is crucial to the understanding of correct

and abnormal development, and recently led to the refine-

ment of experimental techniques for clonal analysis. Study-

ing the mismatch between theoretical and experimental

distributions, we have touched upon a crucial question in

the field and showed how the integration of mathematical

and experimental models can address such open questions.

Radial glia progenitors might be very heterogeneous. Some

can have considerable lineage restrictions, while others con-

tribute to most cortical layers. The idea that some progeni-

tors only contribute to upper layers at later stages of

neurogenesis is still highly debated, although there is some
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evidence for this notion (Franco et al. 2012; Garcia-Moreno

& Molnar, 2015; Gil-Sanz et al. 2015; Llorca et al. 2018). At

the moment, the theory is limited by the resolution and

type of experimental data available. The high degree of

stochasticity found in cortical progenitor behaviour at E12

(Llorca et al. 2018) results in a wide range of lineages, and

reveals the importance of characterising the temporal evo-

lution of dynamics in the entire neurogenic window. The

model proposed here, parameterised on a dataset obtained

on several experimental windows, integrates the temporal

information to justify clonal distributions at different ages.

With this study we introduced a theoretical model that can

produce experimentally testable predictions and suggest a

key biological direction. We propose that future investiga-

tions be theoretically guided, to avoid potentially unneces-

sary increase of sample sizes in the experimental design,

while using the modelling insight to interpret the results of

clonal analysis studies.
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Additional Supporting Information may be found in the online

version of this article:

Fig. S1 Subclonal distributions for all experimental windows in

the MADM dataset.

Fig. S2 Full set of binary trees of depths l = 2, 3, 4 and corre-

sponding clonal size N.

Fig. S3 100 realisations of the Gillespie algorithm for the

stochastic one-species birth–death process (P1) with k = 1 day�1

and l = 0.1 day�1.

Fig. S4 Testing the ‘recovery ability’ of the least squares search

algorithm.

Fig. S5 Testing the convergence of the estimate method for

increased sample size S.

Fig. S6 Recovering known values of k and l from S = 100 experi-

ments of virtual clonal analysis with analysis times 1 day apart

(tA = {1, 2, . . ., 6} days).

Fig. S7 Comparing parameterised stochastic birth–death process

(orange histograms) with the MADM dataset (blue histograms).

Fig. S8 Equivalence of stochastic processes P1 and P2. One-spe-

cies process (P1) and two-species process (P2) are identical when

k1 = k and k2 = 0.

Data S1 Dataset obtained through Mosaic Analysis with Double

Markers, reporting sizes of subclones for 16 experimental win-

dows (Fig. 2). Full details of the experimental setup in Hippen-

meyer et al. 2010.
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