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Supplementary Figures

Figure S1: Subclonal distributions for all experimental windows in the MADM
dataset. Bars show mean, errorbars show standard error of mean. Full dataset in
EmbryonicEmx1CreERControlClones(HippenmeyerLab)-2018.xlsx
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Figure S2: Full set of binary trees of depths l = 2, 3, 4 and corresponding clonal size N. A fixed cell
cycling time TC is assumed, as well as no cell death.
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Figure S3: 100 realisations of the Gillespie algorithm for the stochastic one species birth-death process
(P1) with λ = 1 day−1 and µ = 0.1 day−1. The vertical axis shows the size of the clone at time t. The
deterministic solution is shown in black.
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Figure S4: Testing the “recovery ability” of the least squares search algorithm. The recovery of known
birth and death parameters is attempted for several points in the (λ, µ) space. A circle indicates the
ground truth, and the diamond it links to indicates the recovered value

(
λ̄, µ̄

)
. Only missed guesses

are shown. The search algorithm is able to recover the ground truth in the region of biological interest
(large birth rate λ, small death rate µ). The dashed black line indicates the λ = µ space where the
model is not meaningful.
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Figure S5: Testing the convergence of the estimate method for increased sample size S. The recovery
of known birth and death parameters is attempted for several points in the (λ, µ) space, using an
increasingly large dataset (S clones) extracted from the set of 2000 realisations of virtual clonal analysis.
For each point (λ, µ) the error (plotted on the vertical axis) is calculated as the distance between the
probability distribution functions evaluated at the ground truth point (λ, µ) and at the estimated point(
λ̄, µ̄

)
, across analysis times, according to:

error =

√∑
tA

∑
n

(
P(N = n)|(λ,µ) − P(N = n)|(λ̄,µ̄)

)2

, (S1)

where P(N = n) is defined in Eq. (1) of the main text.
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(a) t0 = E10 + 8 hrs. (b) t0 = E11 + 9 hrs.

(c) t0 = E12 + 10 hrs. (d) t0 = E13 + 11 hrs.

(e) t0 = E14 + 16 hrs.

Figure S7: Comparing parameterised stochastic birth-death process (orange histograms) with the
MADM dataset (blue histograms). The in silico data consist of 1000 realisations. The solid line is the
theoretical distribution parameterised on the guessed values (λ, µ) for each injection time.
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Figure S8: Equivalence of stochastic processes P1 and P2. One species process (P1) and two species
process (P2) are identical when λ1 = λ, and λ2 = 0. Histograms show distributions of A cells, and
B + C cells, respectively.
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