
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/121128/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Tao, Jiong, Deng, Bailin and Zhang, Juyong 2019. A fast numerical solver for local barycentric coordinates.
Computer Aided Geometric Design 70 , pp. 46-58. 10.1016/j.cagd.2019.04.006

Publishers page: https://doi.org/10.1016/j.cagd.2019.04.006

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

A Fast Numerical Solver for Local Barycentric Coordinates

Jiong Taoa, Bailin Dengb, Juyong Zhanga,∗

aSchool of Mathematical Sciences,University of Science and Technology of China
bSchool of Computer Science and Informatics, Cardiff University

Abstract

The local barycentric coordinates (LBC), proposed in Zhang et al. (2014), demonstrate good locality and can
be used for local control on function value interpolation and shape deformation. However, it has no closed-
form expression and must be computed by solving an optimization problem, which can be time-consuming
especially for high-resolution models. In this paper, we propose a new technique to compute LBC efficiently.
The new solver is developed based on two key insights. First, we prove that the non-negativity constraints
in the original LBC formulation is not necessary, and can be removed without affecting the solution of the
optimization problem. Furthermore, the removal of this constraint allows us to reformulate the computation
of LBC as a convex constrained optimization for its gradients, followed by a fast integration to recover the
coordinate values. The reformulated gradient optimization problem can be solved using ADMM, where each
step is trivially parallelizable and does not involve global linear system solving, making it much more scalable
and efficient than the original LBC solver. Numerical experiments verify the effectiveness of our technique
on a large variety of models.

Keywords: Barycentric Coordinates, Locality, Local Extrema, Integrability, Parallel

1. Introduction

Generalized barycentric coordinates (GBC) Hormann and Sukumar (2017) provide an intuitive and simple
way to interpolate values prescribed at the vertices (often referred to as control points) of a polytope. Given
a polytope, there are often multiple ways to define its associated GBC. In the past, various GBC schemes
have been developed for different tasks in computer graphics as well as other disciplines, such as mesh
parameterization Floater (1997, 2003), shape deformation Ju et al. (2005); Lipman et al. (2007); Ju et al.
(2008); Weber et al. (2009), image composition and warping Hormann and Floater (2006); Farbman et al.
(2009), interior distance measurement Rustamov et al. (2009), and finite element method Wachspress (1975);
Sukumar and Malsch (2006). Most of the GBCs developed so far are global in the sense that each point
within the domain is influenced by many control points. This can lead to some undesirable consequence in
practice, including lack of local control for shape deformation, and excessive storage for the coordinates on
densely discretized domains. To address these issues, some recent studies have developed GBC schemes with
local support for the coordinate functions Landreneau and Schaefer (2010); Zhang et al. (2014); Anisimov
et al. (2017). In particular, the Local Barycentric Coordinates (LBC) proposed in Zhang et al. (2014) are
computed by minimizing the total variation of the coordinate functions to induce their locality, subject to a
set of constraints that ensure desired properties such as partition of unity, reproduction, and non-negativity.

Although the optimization problem for LBC is convex and thus its global minimum can be effectively
computed, its numerical solving can be time-consuming especially for models with dense discretization. The
main issue is that each iteration of the ADMM solver proposed by Zhang et al. (2014) needs to solve a set of

∗Corresponding author
Email addresses: taojiong@mail.ustc.edu.cn (Jiong Tao), DengB3@cardiff.ac.uk (Bailin Deng), juyong@ustc.edu.cn

(Juyong Zhang)

Preprint submitted to CAGD; Special Issue of GMP 2019 March 26, 2019

global linear systems whose size grows with the discretization density of the domain; as the discretization
gets denser, the computational cost is dominated by the linear system solving, which becomes a bottleneck
of the solver and makes it inefficient in particular for large models.

In this paper, we address the issue identified above, and propose a more scalable and efficient numerical
solver for LBC. This is achieved via the following contributions:

• First, we show that the non-negativity constraint in the original LBC formulation is not necessary,
in the sense that a formulation without this constraint will result in the same solution. This already
allows us to solve the LBC problem without enforcing non-negativity, which improves the convergence
speed on popular convex optimization solvers such as MOSEK MOSEK ApS (2017).

• With the removal of the non-negativity constraints, we further reformulate the computation of LBC as
an optimization of the gradients of the coordinate functions, subject to a set of linear equality constraints
that enforce integrability conditions as well as standard properties of generalized barycentric coordinates.
From the optimized gradients, the actual values of LBC can be recovered easily using a parallel breadth-
first integration starting from the boundary. The gradient optimization is a convex problem and can
be effectively solved using the alternating direction method of multipliers (ADMM) Boyd et al. (2011),
where each step is trivially parallelizable. Unlike the original LBC solver, the gradient-based ADMM
solver requires no global linear system solving, making it much more scalable and efficient.

We test our new approach on a variety of 2D and 3D models. Experimental results verify the effectiveness of
our approach, and its superior efficiency compared with the original LBC solver.

2. Related Work

2.1. Generalized Barycentric Coordinates

Generalized barycentric coordinates, which have been an active research topic since the pioneering work
by Möbius (1827), have wide applications in geometric modeling and processing. As they are in general not
uniquely defined on a polytope, numerous generalized barycentric coordinates schemes have been proposed in
the past to achieve different properties and for different applications. A complete review of different schemes
and their properties is beyond the scope of this paper, and the reader is referred to recent publications from
Floater (2015) and Hormann and Sukumar (2017) for such surveys. In the following, we will focus on the
most relevant works.

In terms of their computational approaches, generalized barycentric coordinates schemes proposed so
far fall into two categories. For the first one, the coordinates for a given point are directly computed from
the positions of the point itself as well as the control points, using a closed-form expression. Examples
include the mean value coordinates and variants Floater (2003); Ju et al. (2005); Floater et al. (2005);
Hormann and Floater (2006); Li et al. (2013), Green coordinates Lipman et al. (2008), moving least squares
coordinates Manson and Schaefer (2010), and Poisson coordinates Li and Hu (2013), to name a few. These
coordinates are straightforward and efficient to compute, and with guarantees of local properties such as
smoothness, but often lack control of global properties such as non-negativity.

The other type of generalized barycentric coordinates has not closed-form expressions, and needs to
be computed using numerical routines. Although this is computational more expensive, it also enables
more direct control of desirable global properties of the coordinate functions. For example, the harmonic
coordinates by Joshi et al. (2007) are computed by solving the Laplacian equation, such that the coordinates
become harmonic functions which are globally smooth and non-negative. The maximum entropy coordinates,
proposed by Hormann and Sukumar (2008), are formulated based on the maximum entropy principle and
guaranteed to be positive inside any planar polygon; they are computed by solving a convex optimization
problem with Newton’s method. The bounded biharmonic weights proposed by Jacobson et al. (2011),
although not generalized barycentric coordinates, also achieve non-negative and smooth weight functions
via convex constrained optimization, and allow for shape-aware control using cages and skeletons. Weber
et al. (2012) propose the biharmonic coordinates as the solution to the biharmonic Dirichlet problem, which

2

generalize the harmonic coordinates and enable interpolation of boundary derivative data. Zhang et al.
(2014) derive the local barycentric coordinates by minimizing their total variation subject to constraints of
barycentric properties and non-negativity. For many generalized barycentric coordinates without closed-form
expressions, their computation often relies on picewise approximation over a discretized domain. Anisimov
et al. (2016) show that subdivision schemes can be applied to refine a coarse approximation of such generalized
barycentric coordinates, while retaining key properties such as smoothness and non-negativity.

Many of the generalized barycentric coordinates proposed so far have global support, with non-zero values
over the whole domain. For shape deformation using such coordinates as control weights, their global support
could result in the lack of local control as well as large memory footprint for storing the weights, both of
which are undesirable. To this end, generalized barycentric coordinates schemes with local support are sought
after in recent years. Landreneau and Schaefer (2010) present a method that reduces the number of control
points influencing a vertex to a user-specified number while achieving resemblance to the original deformation,
by solving a Poisson minimization problem. Jacobson et al. (2011) also observe localized control using the
bounded biharmonic weights. In Zhang et al. (2014), the locality of coordinate functions are induced via
the minimization of total variation which penalized the total length of level sets. The subdivision schemes
proposed by Anisimov et al. (2016) can be applied to refine a coarse result from Zhang et al. (2014) while
maintaining the locality. Recently, Anisimov et al. (2017) also presented a new closed-form construction of
generalized barycentric coordinates that are non-negative, smooth, and locally supported.

2.2. Gradient Domain Geometry Processing

One of the main contributions of this paper is to move the computation of local barycentric coordinates
from the function domain to the gradient domain, before recovering the function values from the optimized
gradients. Indeed, the idea of gradient domain processing coupled with function domain recovery has been
applied to different tasks in geometry processing. A notable example is mesh editing and deformation, where
local mesh details are first modified in the gradient domain, followed by a global recovery of the updated
mesh shape Yu et al. (2004); Xu et al. (2007). Another example is Poission surface reconstruction from
oriented points Kazhdan et al. (2006); Kazhdan and Hoppe (2013), which first derive the gradient of the
model’s indicator function from the points, and then reconstruct the surface from the gradient by solving
a Poisson problem. In addition, to compute geodesic distance on discrete surface, Crane et al. (2013) first
compute its gradient with heat diffusion, then recover the geodesic distance using a Possion system.

2.3. Improving Scalability of Numerical Solvers

As advancement in sensing technologies and computer hardware enable the capture and creation of larger
and larger 3D models, there is a growing demand for new techniques that can overcome the scalability
limitations of existing geometry processing algorithms. For example, Wang (2015) proposes a Cheyshev
semi-iterative method to accelerate the convergence of projective and position-based dynamics solvers for
physics simulation, and to avoid expensive linear system solving in each iteration. Rabinovich et al. (2017)
present a scalable approach for the optimization of flip-preventing energies for mesh parameterization, by
iteratively minimizing a simple proxy energy instead of the original distortion energy. Tao et al. (2018)
propose a scalable heat method for computer geodesic distance, by reformulating the original heat method
from Crane et al. (2013) as an optimization problem for the distance gradient. The reformulation of LBC
in this paper is similar to the gradient-based approach taken by Tao et al. (2018), but with a non-smooth
target function and a different set of constraints to enforce their defining properties.

3. Background

Before presenting our new approach, we first review in this section the original formulation of local
barycentric coordinates (LBC) in Zhang et al. (2014). For a set of control points c1, . . . , cn in R2 or R3

which are the vertices of a closed control cage, we compute for each ci a function wi : Ω 7→ R defined on
the domain Ω bounded by the cage, such that [w1(x), . . . , wn(x)] are generalized barycentric coordinates of
x ∈ Ω with respect to the control points and satisfy the following properties:

3

1. Reproduction:
∑n
i=1 wi(x)ci = x, ∀x ∈ Ω;

2. Partition of unity :
∑n
i=1 wi(x) = 1;

3. Non-negativity : wi(x) ≥ 0 ∀i;

4. Lagrange property : wi(cj) =

{
0, if i 6= j
1, otherwise

;

5. Linearity : Functions {wi} are linear on cage edges and faces;

6. Smoothness: Functions {wi} vary smoothly on Ω;

7. Locality : A control point only influences its nearby regions, and a point x ∈ Ω is influenced by a small
number of control points, i.e., the vector [w1(x), . . . , wn(x)] is sparse.

Zhang et al. (2014) propose to compute LBC by minimizing the sum of their total variation, subject to the
constraints of reproduction, partition of unity, non-negative, linearity, and Lagrange property:

min
w1,...,wn

n∑
i=1

∫
Ω

φi‖∇wi‖

s.t.
n∑
i=1

wi(x)ci = x,
n∑
i=1

wi(x) = 1, wi ≥ 0, ∀x ∈ Ω,

wi(cj) = δij ∀i, j,
wi is linear on cage edges and faces ∀i, (1)

where ‖∇wi‖ is the gradient norm function of wi, and φi : Ω 7→ [0, 1] is a weight function determined by the
distance to ci. This is a convex constrained optimization problem. It is solved by first discretizing the domain
Ω into triangles (in 2D) or tetrahedrons (in 3D), and representing the coordinates {wi} as piecewise linear
functions determined by their values at the vertices of the triangles/tetrahedrons. The coordinate values
at vertices lying on cage boundary are already determined based on the Lagrange and linearity properties,
while the values at the m interior vertices are computed by solving a discretized and reformulated version of
the optimization problem (1):

min
W,Z,Y

∑
s∈C

n∑
i=1

φsiAs‖zsi‖+ σ(W)

s.t. Z = G(YM + H) + E, W = YM + H, (2)

where C denotes the set of cells in the discretized domain; As is the area (or volume) of the cell s, φsi is
the value of weight function φi at s; Y is an auxiliary variable that parameterizes the feasible set for the
linear equality constraints for derive from the reproduction and partition-of-unity properties, with M being
encoding the null space of the linear system matrix and H being a special solution; Z ∈ RD|C|×n is an
auxiliary variable containing values zsi ∈ RD that represent the gradients of {wi} at each cell s, and matrices
G and E encode the affine mappings that derive the gradients on the cells from the function values at the
interior vertices; the matrix W ∈ Rm×n is an auxiliary variable that stores the coordinate values at interior
vertices, and σ(W) is an indicator function for the non-negativity constraint:

σ(W) =

{
0 if W ≥ 0,
+∞ otherwise.

The optimization problem (2) is solved using the alternating direction method of multipliers (ADMM) Boyd
et al. (2011), by searching for a stationary point of its augmented Lagrangian function. This is done by
alternating between the following steps until convergence:

4

1. Update W and Z, by fixing Y and the dual variables and minimizing the augmented Lagrangian with
respect to W and Z.

2. Update Y, by fixing W,Z and the dual variables and minimizing the augmented Lagrangian with
respect to Y.

3. Update the dual variables.

Detailed derivation of each step can be found in Zhang et al. (2014). The update of W and Z is separable
with close-form solutions, thus can be efficiently evaluated in parallel. The update of dual variables amounts
to evaluating the violation of linear side constraints in (2), which is also efficient. The update of Y requires
solving an m × m sparse linear system with n right-hand-side vectors, and is the main contributor to
the computational cost of the whole solver. Although the efficiency of Y-update can be improved by
pre-factorization of the linear system matrix and parallel solving for different righ-hand-sides, it can still face
scalability issues for densely discretized models. This is due to the fast growth of computational time and
memory consumption for the prefactorization step with respect to the model size. Another factor that affects
the solver performance is the presence of non-negativity constraint, which requires the introduction of an
auxiliary variable W in the ADMM solver. This leads to a large number of variables and slower convergence
to the solution.

4. Our Approach

In this section, we present our new approach that addresses the scalability issue of the original LBC
solver and improves the efficiency of LBC computation. We first show that the non-negativity constraint
in the original LBC optimization problem (1) can be removed without affecting its solution. Based on this
observation, we then propose a new gradient-optimization approach that computes LBC without the need
for global linear system solving.

4.1. Removing the Non-Negativity Constraint

It is observed in Zhang et al. (2014) that LBC are free of local minimum. Using extensive experiments,
we observe that the solution functions to the optimization problem (1) without the non-negativity constraint
are free of local minimum as well:

Conjecture 1. Let functions {w∗i : Ω 7→ R} be the solution to the optimization problem (1) without the
non-negativity constraint. Then for each function w∗i there is no local minimum point in the interior of Ω.

Although we do not have a rigorous proof for this conjecture, we provide in Appendix A an intuition of
why it holds. With this property, we can then show that the non-negativity constraint is not necessary:

Theorem 1. Let functions {w∗i } be the solution to the optimization problem (1) without the non-negativity
constraint. Then they are also the solution to the original optimization problem (1).

Proof. See Appendix B.

Model Time (With Non-Negativity Constraint) Time (Without) Squared Distance

Woody (#V:10802) 254.00s 106.67s 1.723× 10−10

Cactus (#V:10846) 199.90s 94.58s 4.083× 10−10

Gecko (#V:10787) 274.91s 167.35s 1.186× 10−10

Table 1: Computation time for solving the LBC problem using the MOSEK library with and without non-negativity constraint,
and the average squared distance between these two results. #V denotes the number of vertices in the triangulation of the cage.

5

GeckoCactus Woody

1

0

Figure 1: Models for comparing the LBC results with and without the non-negativity constraint. The color coding shows the
solution function for one of the control points. Within each pair, the left one is the result with the constraint, and the right one
is the result without the constraint.

Theorem 1 shows that we can omit the non-negativity constraint when computing LBC. To numerically
verify this, we solve the LBC optimization problem with and without the non-negativity constraints using the
MOSEK library MOSEK ApS (2017) — a popular convex optimization solver that produces high-accuracy
solutions — and compare their results. Following the notations in Section 3, we discretize the domain
bounded by the cage and convert the optimization problem (1) into

min
w1,...,wn

∑
s∈C

n∑
i=1

φsiAs‖Gswi + esi‖,

s.t. P =
n∑
i=1

ciw
T
i ,

n∑
i=1

wi = 1, (3)

wi ≥ 0 ∀i, (4)

where P ∈ RD×m are the interior vertex positions, wi ∈ Rm collects the values of wi at the interior vertices,
1 ∈ Rm is a vector with all components equal to 1, and Gswi + esi is the affine expression of the gradient of
wi in cell s. We solve this problem on three models with and without the constraint (4) (see Fig. 1), and
compare the two solutions {w∗i } and {w?

i } using their average squared distance(
n∑
i=1

‖w∗i −w?
i ‖2
)
/(m · n). (5)

Tab. 1 shows the computational time for the two approaches and the average squared distance between their
results. We can see that the removal of non-negativity constraints reduces almost half of the computational
time, while the differences between the results is negligible.

For practical computation of LBC, the ADMM solver proposed by Zhang et al. (2014) is often more
desirable as it converges faster to a solution with practical accuracy. By removing the non-negativity
constraint, we introduce in the next subsection a new gradient-based ADMM solver for computing LBC,
which outperforms the original ADMM solver from Zhang et al. (2014) and overcomes its scalability limitation.

4.2. Gradient-Based Formulation

Although the removal of non-negativity constraint simplifies the LBC optimization problem, it does not
address directly the scalability issue faced by the ADMM solver from Zhang et al. (2014), which is due to
global linear system solving in each iteration. In the following, we introduce a new gradient-based formulation
for computing LBC, which avoids solving global linear systems and is trivially parallelizable. Our key insight
is that although the original LBC formulation optimizes the coordinate function values, it is equivalent to a
constrained optimization of their gradients if we remove the non-negativity constraint.

6

Specifically, within the original formulation (1), the target function is already formulated using the
gradients. For the constraints of the reconstruction and partition-of-unity properties

n∑
i=1

wi(x)ci = x,
n∑
i=1

wi(x) = 1, ∀x ∈ Ω,

we can take the gradient on both sides of each equation, and derive their equivalent gradient conditions

n∑
i=1

ci (∇wi(x))
T

= I,
n∑
i=1

∇wi(x) = 0, ∀x ∈ Ω. (6)

where I is an identity matrix. Moreover, the constraints of the Lagrange and linearity properties imply
pre-determined and piecewise-constant projected gradients onto the boundary edges (in 2D) and boundary
faces (in 3D) of the control cage. Thus they can be formulated as linear equality constraints for the gradient
functions along the cage boundary. Finally, an arbitrary vector function defined on a given domain is in
general not the gradient of a scalar function; to ensure that the optimization results are valid gradient
functions, we must enforce an integrability condition on each variable function. Combining all the gradient
conditions above, we derive a convex constrained optimization problem for the gradient functions of LBC.

To solve this gradient optimization problem, we follow a similar procedure as Zhang et al. (2014): we
represent the LBC as piecewise linear functions on a disretized domain, and introduce auxiliary variables
to rewrite the problem in a form that can be solved using ADMM. In the following, we first present the
approach for 2D problems, and then discuss its extension to 3D.

4.2.1. 2D Formulation

For a piecewise linear coordinate function, its gradient is piecewise constant. Therefore, we introduce
for each discretization triangle s a gradient variable gis. The target function of our gradient optimization
problem, as well as the reconstruction and partition-of-unity conditions (6), can be directly translated using
these variables. For the boundary conditions, we first use the Lagrange and linearity properties to compute
the directional derivative hib of each coordinate function wi at each boundary edge b. Then the projected
gradient condition along edge b can be written as

b · gib = hib, ∀i,

where b is the unit edge vector of b, and gib is the gradient variable at the triangle incident with b. Finally,
for the triangle-wise gradients to be integrable, the gradients gie1 ,g

i
e2 on two adjacent triangles must have a

common projection onto the edge e shared by the triangles, i.e.,

e · gie1 = e · gie2 ,

where e is the unit vector for edge e. In this way, we formulate a convex optimization problem for the
gradient variables:

min
{gi

s}

∑
s∈C

n∑
i=1

φsiAs‖gis‖, (7)

s.t.
n∑
i=1

gis = 0,
n∑
i=1

ci(g
i
s)
T = I, ∀ s ∈ C, (8)

b · gib = hib, i = 1, . . . , n, ∀ b ∈ B, (9)

e · (gie1 − gie2) = 0, i = 1, . . . , n, ∀ e ∈ Eint (10)

where B and Eint denote the set of boundary edges and the set of interior edges, respectively.
To solve this problem with ADMM, we introduce auxiliary variables to rewrite it with a separable target

function and linear equality constraints. To facilitate presentation, we denote all gradient variables with a

7

matrix G ∈ R2mf×n, where mf is the number of faces. Additionally, we introduce the following auxiliary
variables: matrix Z ∈ R2mf×n for computing the total variation; matrix X ∈ R2mb×n for enforcing the
boundary conditions (9), where mb is the number boundary edges; matrix Y ∈ R4me×n, which contains two
gradient vectors for each internal edge for enforcing the integrability conditions (10), with me being the
number of internal edges. Then we rewrite the problem as

min
G,Z,X,Y

∑
s∈C

n∑
i=1

φsiAs‖zis‖+ σ1(G) + σ2(X) + σ3(Y),

s.t. Z = G, X = GSX , Y = GSY .

where σ1, σ2, σ3 are indicator functions for the reconstruction and partition-of-unity conditions (8), the
boundary conditions (9), and the integrability conditions (10), respectively. SX and SY are sparse selection
matrices that choose the gradient variables that are subject to the boundary conditions and the integrability
conditions, respectively. ADMM solves this problem by searching for a stationary point of its augmented
Lagrangian function, which is defined as

L(G,Z,X,Y,λZ ,λX ,λY) =
∑
s∈C

n∑
i=1

φsiAs‖zis‖+ σ1(G) + σ2(X) + σ3(Y) + λZ � (Z−G) + λX � (X−GSX)

+ λY � (Y −GSY) +
µ

2
(‖Z−G‖2 + ‖X−GSX‖2 + ‖Y −GSY ‖2),

where λZ ∈ R2mf×n, λX ∈ R2mb×n, λY ∈ R4me×n are dual variables, � denotes coefficient-wise multiplica-
tion, and µ > 0 is a penalty parameter. To search for a stationary point, we iteratively run the following
three steps.

1. Update X,Y,Z while fixing G and the dual variables The X-, Y-, and Z-updates are separable
and can be done in parallel:

• The X-subproblem takes the following form:

min
X

σ2(X) +
µ

2

∥∥∥∥X−GSX +
λX
µ

∥∥∥∥2

,

which requires projecting GSX −λX/µ onto the closet gradient vectors that satisfy the boundary
conditions. It has a closed-form solution that is further separable between different boundary
edges:

xib = pib − b(b · pib − hib),

where {xib} are the components of X corresponding to the boundary edge b, and {pib} are the
corresponding components from matrix GSX − λX/µ.

• The Y-subproblem takes the following form:

min
Y

σ3(Y) +
µ

2

∥∥∥∥Y −GSY +
λY
µ

∥∥∥∥2

,

which requires projecting GSY − λY /µ onto the closest vectors that satisfy the integrability
condition. It also has a closed-form solution that is separable between different internal edges:

yie1 = qie1 + die, yie2 = qie2 − die,

where {yie1 ,y
i
e2} are the components of Y corresponding to the internal edge e, {qie1 ,q

i
e2} are the

corresponding components from GSY − λY /µ, and die = 1
2eeT (qie2 − qie1).

8

• The Z-subproblem takes the following form:

min
Z

∑
s∈C

n∑
i=1

φsiAs‖zis‖+
µ

2

∥∥∥∥Z−G +
λZ
µ

∥∥∥∥2

,

with a separable closed-form solution

zis =

{
0, if ‖ais‖ ≤

φs
iAs

µ ,

(1− φs
iAs

µ‖ai
s‖

)ais, otherwise,

where {zis} are the components of Z corresponding to the triangle s, and {ais} are the corresponding
component from G− λZ/µ.

2. Update G while fixing X,Y,Z and the dual variables This reduces to independent subproblems
for each triangle:

min
gs

σs1(gs) + ‖gs − rs‖2, (11)

where gs ∈ R2×n stacks the n gradient variables from G that correspond to triangle s, σs1(gs) is the
indicator function for the conditions (8), and

rs =
1

M

zs +
λsZ
µ

+
∑

t∈X (s)

(xt +
λtX
µ

) +
∑

u∈Y(s)

(yu +
λuY
µ

)

 ,

where zs, {xt | t ∈ X (s)}, {yu | u ∈ Y(s)}, {λtX | t ∈ X (s)}, and {λuY | u ∈ Y(s)} denote the 2 × n
blocks from matrices Z, X, Y, λX , and λY that correspond to rs, and M = 1 + |X (s)|+ |Y(s)|. In
other words, rs is the average of all candidate values for gs derived from the auxiliary and dual variables.
Solving problem (11) means projecting rs onto the subspace that satisfies the linear constraints (8),
with a closed-form solution

gs = g̃ + (rs − g̃) KT

where g̃ is the least-norm solution to equations (8), and matrix K represents the projection operator
onto the null space of the system matrix for (8). Note that g̃ and K only need to be precomputed once
and then reused for all triangles.

3. Update dual variables This is done by adding µ(X−GSX), µ(Y−GSY), and µ(Z−G) to matrices
λX , λY , and λZ , respectively.

As the optimization problem is convex, the above iterative algorithm is guaranteed to converge to a global
optimum Boyd et al. (2011). We check the convergence of the algorithm using the primal residual rp and
dual residual rd:

rp =

X−GSX
Y −GSY

Z−G

 , rd = µ

δGSX
δGSY
δG

 ,
where δG is the difference of G between two consecutive iterations. We terminate the algorithm if the norms
of rp and rd are smaller than thresholds εp and εd respectively, or if the number of iterations exceeds a
user-specified threshold Imax.

9

Remark. For both the original LBC solver described in Section 3 and our new solver, there is a step that
combines the auxiliary variables to update the main primal variable: the Y-update of the original LBC solver,
and the G-update of our new solver. This is where the difference between their scalability and efficiency
comes from. In this step, the original LBC solver needs to solve multiple m×m global linear systems where
m is the number of internal vertices; the size of the linear system grows with the discretization density,
causing bottleneck for large models. In comparison, our solver only needs to perform projection onto the null
space of the small local linear system (8), whose size does not depend on the discretization density. Therefore,
our method remains efficient for large models and is more scalable than the original LBC solver. The original
LBC solver has to solve global linear systems, because its optimization variables contain both the coordinate
values and their gradients; as a result, when updating the coordinate values using the auxiliary gradient
variables, it must solve global linear systems to implicitly integrate the gradient variables. In comparison,
our formulation only involves gradient variables, which avoids frequent switching from the gradient domain
to the coordinate function domain and eliminates the need for global linear system solving.

4.2.2. Recovery of Coordinate Values

After the optimization of gradients, they still need to be integrated to derive the actual values of LBC.
As the LBC values at boundary dicretization vertices are already pre-determined from the Lagrange and
linearity properties, we can integrate the gradients starting from the boundary, to recover the LBC values
at all interior vertices. Specifically, we perform breadth-first search from the boundary to separate the all
vertices into multiple levels, with the first level containing all vertices on the boundary. Then we propagate
the LBC values from the boundary vertices level by level. Note that for each interior vertex vk, there exists
an adjacent vertex v′k from the previous level. Thus the LBC values are propagated from v′k to vk via

wi(vk) = wi(v
′
k) + givk · (vk − v′k), i = 1, . . . , n,

where vk,v
′
k ∈ R2 are the positions of vk and v′k respectively, and givk is the optimized gradient from a face

incident with both vk and v′k. Within each level, the value updates are independent between different vertices
and can be done in parallel. Overall, the computational time for recovering coordinate values is comparable
with one iteration of the ADMM solver.

4.2.3. Extension to 3D

To extend our solver to 3D models, we first discretize the domain into tetrahedrons and introduce a
gradient variable gis ∈ R3 for each tetrahedron s. The target function (7) and the linear constraints (8) can
be directly extended to 3D. Regarding the boundary condition, for each boundary face b the projection of
gradient gib from its incident tetrahedron must coincide with the pre-determined gradient hib derived from
Lagrange and linearity properties. Therefore, condition (9) is replaced by

nb × (gib − hib) = 0, i = 1, . . . , n, ∀ b ∈ B,

where B denotes the set of boundary faces of the cage, and nb is the unit normal of face b. For the integrability
condition, it is necessary that the gradients gif1 ,g

i
f2

on two tetrahedrons sharing a face f must project to the
same vector on f . Thus condition (10) is replaced by

nf × (gif1 − gif2) = 0, i = 1, . . . , n, ∀ f ∈ Fint,

where Fint is the set of interior faces, and nf is the unit normal of face f . Similar to the 2D case, this
problem can be solved efficiently using ADMM, with closed-form solution for each step and without global
linear system solving.

5. Experimental Results

In this section, we provide a series of examples to demonstrate the properties of the effectiveness of
efficiency of our new solver, and comparison with the original LBC solver from Zhang et al. (2014).

10

Logo (2D)

2K 8K 32K

2K 8K 32K

Horse (3D)

1

0

Figure 2: Color coding of the LBC function for one control point, computed using our new solver. For the 3D model, the color
coding is shown on a planar slice through the interior of the cage, with the slicing plane shown in yellow. The numbers shown
refer to the number of vertices in the respective tetrahedronization/triangulation. For the same model in different discretization
resolution, our solver converges to results with similar accuracy.

Logo (2D) Horse (3D)

Figure 3: The plots of computational time (in blue) and memory consumption (in red) for our solver on the models in Fig. 2.
Both exhibit approximately linear growth with respect to the model resolution.

Implementation. Our solver is implemented in C++, using the EIGEN library Guennebaud et al.
(2010) for linear algebra routines. 2D domains are triangulated using the TRIANGLE package Shewchuk
(1996), and 3D domains are tetrahedronized using TETGEN Si (2015). All subproblems of our solver are
solved in parallel using OpenMP. For all the test models, the residual convergence thresholds are set as
εp = Np × 10−7 and εd = Nd × 10−6, where Np and Nd are the numbers of components in the residual
matrices rp and rd, respectively. The penalty parameter is set to µ = 100 for 2D models and µ = 10000 for
3D models. To compare with the original LBC solver, we use its implementation provided by the authors 1,
and run it with OpenMP parallelization enabled. All experiments are run on a desktop PC with a quad-core
Intel Core i5-4590 processor at 3.3 GHz and 16GB ram.

5.1. Space and Time Complexity

In Figs. 2 and 3, we show the scaling of our solver by running the algorithm on two models, each with
increasing density of discretization. Fig. 2 shows the color coding of the resulting coordinate functions, where

1https://github.com/bldeng/LBC

11

Horse Armadillo

1

0

Figure 4: Color coding the LBC function for one control point (shown in red), computed using our new solver on two 3D models.
For each model, three parallel planes are used to slice through the model to visualise the function values on the intersection.
The tetrahedronization resolution, computational time and accuracy for each model are shown in Tab. 2.

we can see solver converges to similar accuracy across different resolutions. Fig. 3 plots the computational
time and memory consumption for the examples in Fig. 2. We observe approximately linear growth of time
and memory with respect to the model resolution.

5.2. Comparison with LBC

In this subsection, we compare our new solver with the original LBC solver on a set of 2D and 3D models.
To compare the accuracy between the solvers, we use MOSEK to compute a high-accuracy solution and use
it as the ground truth. The solution from other solvers are compared to the ground truth, using their average
squared distance defined in Equation (5) as the error measure.

Tab. 2 summarises the computational time and accuracy between the two solvers on different models.
In all cases, our solver significantly decreases the computational time than the original LBC solver while
achieving better accuracy. Fig. 4 visualises the result functions computed using our method on the two 3D
models.

Model #Vertices n LBC (error) LBC (time) FLBC (error) FLBC (time)

Logo 26823 6 3.18× 10−4 4.94 5.72× 10−5 2.78

Woody 10802 26 2.43× 10−4 19.30 2.30× 10−4 12.43

Cactus 10846 27 5.87× 10−4 22.60 2.2× 10−4 16.98

Gecko 10787 34 8.90× 10−4 25.06 3.81× 10−4 16.53

Horse 5845 50 1.66× 10−5 39.35 1.21× 10−5 21.87

Armadillo 6644 110 5.2× 10−5 134.65 4.16× 10−5 120.85

Table 2: Comparison of computational time (in seconds) and accuracy between the original LBC solver and our new solver
(FLBC). #Vertices denotes the number of vertices in the triangulation or tetrahedronization of the cage. The ground truth is
computed using MOSEK.

12

Gecko (2D)
#Vertices: 10787
#Control Points: 34

Horse (3D)
#Vertices: 5845
#Control Points: 50

Figure 5: Comparison of solution accuracy with respect to computational time during the iterations of our new solver (FLBC)
and the original LBC solver, on two large models. The ground truth is computed using MOSEK.

Logo (2D)
#Vertices: 1.07M
#Control Points: 6

Horse (3D)
#Vertices: 506K
#Control Points: 50

Figure 6: Comparison of solution accuracy with respect to computational time during iterations of our new solver (FLBC) and
the original LBC solver, on two large models. The ground truth is computed by running the LBC solver until full convergence.

Fig. 5 further compares between the two solvers by plotting the relation between their solution accuracy
and computational time on the Gecko and Horse models. On both models, our solver improves the accuracy
faster than the original LBC solver.

Finally, Fig. 6 plots the solution accuracy with respect to computational time for our solver and the
original LBC solver on two models with high-resolution triangulation/tetrahedronization. As MOSEK runs
out of memory on these models, we run the original LBC solver until full convergence and takes the result as
ground truth. Our solver is more efficient than the original LBC solver when both achieve the same accuracy.

6. Discussion and Conclusion

In this paper, we propose a new algorithm for computing local barycentric coordinates. By formulating it
as a gradient optimization problem, our new ADMM solver avoids expensive global linear system solving, with
improved scalability and efficiency than the original LBC solver. Experimental results verify the effectiveness
of our new approach.

Given that there are other generalized barycentric coordinates schemes that rely on numerical optimization,
a natural direction for further research is to extend our approach to other optimization-based barycentric
coordinates. The main challenge here is to deal with constraints that cannot be directly formulated using
gradients, such as bound constraints for the coordinates. One potential way to do so is to relate internal
coordinate values with boundary values via line integral of gradients, thereby transforming the bound
constraints for coordinates as an integral constraints for their gradients. Further investigation will be done in
a future work.

Although our reformulation comes with improved scalability, its asymptotic convergence rate is still the
same as other ADMM solvers. Recently, there are research efforts to accelerate the convergence of such

13

first-order solvers Wang (2015); Peng et al. (2018). These techniques are complementary to our gradient-based
approach, and as a future work they can be integrated to further improve the efficiency of LBC computation.

Finally, our technique is built upon the observation described in Conjecture 1. Proving the conjecture in
a rigorous way will be an interesting future work.

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 61672481), and Youth
Innovation Promotion Association CAS (No. 2018495).

Appendix A. Intuition for Conjecture 1

Suppose one of the functions w∗k has a local minimum point q in the interior of Ω. Then we can always
find a convex domain Γ ⊂ Ω that contains point q in its interior, such that the value of w∗k along its boundary
∂Γ is strictly larger than w∗k(q). Since we assume that the functions {w∗i } solve the optimization problem (1)
without the non-negativity constraint, they must satisfy all other constraints of problem (1). We can then

construct another set of functions {w†i } with the following properties:

• w†i and w∗i has the same value on Ω \ Γ and ∂Γ.

• The value of w†i in the interior of Γ is computed by interpolating the w∗i along ∂Γ using a transfinite

barycentric kernel bi(x, y) (x ∈ Γ, y ∈ ∂Γ), so that bi(x, y) ≥ 0, and w†i (x) =
∫ β
α
bi(x, r(t))w

∗
i (r(t))dt

where r : [α, β] 7→ ∂Γ is a parameterization of ∂Γ Belyaev (2006); Kosinka and Bartoň (2016).

Then by construction, {w†i } also satisfy all constraints of problem (1) other than non-negativity. Intuitively,

by finding appropriate kernels {bi}, we can ensure that each w†i blends the values of w∗i along ∂Γ and with

less variation than w∗i on Γ, so that {w†i } produce a smaller target function for problem (1) than {w∗i }. We
then arrive at a contradiction that {w∗i } cannot be the solution to (1) without non-negativity constraint.

Appendix B. Proof for Theorem 1

First, we prove by contradiction that the solution functions {w∗i } without the non-negativity constraint
are indeed non-negative over the whole domain Ω. Suppose there exists a function w∗i that is not non-negative
over Ω. Due to the Lagrange and linearity properties, w∗i must be non-negative along the boundary of
Ω. Then there must exists a local minimum point p for w∗i where w∗i (p) < 0, which violates Theorem 1.
Therefore, each function w∗i must be non-negative over the whole domain.

Suppose the solution functions {w∗i } without non-negativity constraints are not the solution to the original
problem (1). Then because each w∗i is non-negative, the actual solution {w∗i } to (1) must produce a lower
target function value than {w∗i } while satisfying all the constraints. This will violate the assumption that
{w∗i } are the solution without the non-negativity constraint. Thus {w∗i } must also be a solution to the
original optimization problem (1).

References

Anisimov, D., Deng, C., Hormann, K., 2016. Subdividing barycentric coordinates. Computer Aided Geometric Design 43,
172–185.

Anisimov, D., Panozzo, D., Hormann, K., 2017. Blended barycentric coordinates. Computer Aided Geometric Design 52,
205–216.

Belyaev, A., 2006. On transfinite barycentric coordinates, in: Proceedings of the Fourth Eurographics Symposium on Geometry
Processing, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland. pp. 89–99.

Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., 2011. Distributed optimization and statistical learning via the alternating
direction method of multipliers. Foundations and Trends in Machine Learning 3, 1–122.

14

Crane, K., Weischedel, C., Wardetzky, M., 2013. Geodesics in heat: A new approach to computing distance based on heat flow.
ACM Trans. Graph. 32, 152:1–152:11.

Farbman, Z., Hoffer, G., Lipman, Y., Cohen-Or, D., Lischinski, D., 2009. Coordinates for instant image cloning. ACM Trans.
Graph. 28, 67:1–67:9.

Floater, M.S., 1997. Parametrization and smooth approximation of surface triangulations. Computer aided geometric design 14,
231–250.

Floater, M.S., 2003. Mean value coordinates. Computer aided geometric design 20, 19–27.
Floater, M.S., 2015. Generalized barycentric coordinates and applications. Acta Numerica 24, 161–214.
Floater, M.S., Kós, G., Reimers, M., 2005. Mean value coordinates in 3d. Computer Aided Geometric Design 22, 623–631.
Guennebaud, G., Jacob, B., et al., 2010. Eigen v3. http://eigen.tuxfamily.org.
Hormann, K., Floater, M.S., 2006. Mean value coordinates for arbitrary planar polygons. ACM Trans. Graph. 25, 1424–1441.
Hormann, K., Sukumar, N., 2008. Maximum entropy coordinates for arbitrary polytopes. Comput. Graph. Forum 27, 1513–1520.
Hormann, K., Sukumar, N. (Eds.), 2017. Generalized Barycentric Coordinates in Computer Graphics and Computational

Mechanics. CRC Press.
Jacobson, A., Baran, I., Popović, J., Sorkine, O., 2011. Bounded biharmonic weights for real-time deformation. ACM Trans.

Graph. 30, 78:1–78:8.
Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T., 2007. Harmonic coordinates for character articulation. ACM Trans.

Graph. 26.
Ju, T., Schaefer, S., Warren, J., 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 561–566.
Ju, T., Zhou, Q.Y., van de Panne, M., Cohen-Or, D., Neumann, U., 2008. Reusable skinning templates using cage-based

deformations. ACM Trans. Graph. 27, 122:1–122:10.
Kazhdan, M., Bolitho, M., Hoppe, H., 2006. Poisson surface reconstruction, in: Proceedings of the Fourth Eurographics

Symposium on Geometry Processing, Eurographics Association. pp. 61–70.
Kazhdan, M., Hoppe, H., 2013. Screened poisson surface reconstruction. ACM Trans. Graph. 32, 29:1–29:13.
Kosinka, J., Bartoň, M., 2016. Convergence of barycentric coordinates to barycentric kernels. Computer Aided Geometric

Design 43, 200–210.
Landreneau, E., Schaefer, S., 2010. Poisson-based weight reduction of animated meshes. Computer Graphics Forum 29,

1945–1954.
Li, X.Y., Hu, S.M., 2013. Poisson coordinates. IEEE Transactions on Visualization and Computer Graphics 19, 344–352.
Li, X.Y., Ju, T., Hu, S.M., 2013. Cubic mean value coordinates. ACM Trans. Graph. 32, 126:1–126:10.
Lipman, Y., Kopf, J., Cohen-Or, D., Levin, D., 2007. GPU-assisted positive mean value coordinates for mesh deformations, in:

Proceedings of the Fifth Eurographics Symposium on Geometry Processing, Eurographics Association. pp. 117–123.
Lipman, Y., Levin, D., Cohen-Or, D., 2008. Green coordinates. ACM Trans. Graph. 27, 78:1–78:10.
Manson, J., Schaefer, S., 2010. Moving least squares coordinates. Computer Graphics Forum 29, 1517–1524.
Möbius, A.F., 1827. Der barycentrische Calcul: ein neues Hülfsmittel zur analytischen Behandlung der Geometrie. Barth.
MOSEK ApS, 2017. The MOSEK optimization software. URL: http://www.mosek.com/.
Peng, Y., Deng, B., Zhang, J., Geng, F., Qin, W., Liu, L., 2018. Anderson acceleration for geometry optimization and physics

simulation. ACM Trans. Graph. 37, 42:1–42:14.
Rabinovich, M., Poranne, R., Panozzo, D., Sorkine-Hornung, O., 2017. Scalable locally injective mappings. ACM Trans. Graph.

36.
Rustamov, R.M., Lipman, Y., Funkhouser, T., 2009. Interior distance using barycentric coordinates. Computer Graphics Forum

28, 1279–1288.
Shewchuk, J.R., 1996. Triangle: Engineering a 2d quality mesh generator and delaunay triangulator, in: Lin, M.C., Manocha, D.

(Eds.), Applied Computational Geometry Towards Geometric Engineering, Springer Berlin Heidelberg, Berlin, Heidelberg. pp.
203–222.

Si, H., 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41, 11:1–11:36.
Sukumar, N., Malsch, E.A., 2006. Recent advances in the construction of polygonal finite element interpolants. Archives of

Computational Methods in Engineering 13, 129–163.
Tao, J., Zhang, J., Deng, B., Fang, Z., Peng, Y., He, Y., 2018. Parallel and scalable heat methods for geodesic distance

computation. arXiv e-prints arXiv:1812.06060.
Wachspress, E.L., 1975. A Rational Finite Element Basis. Elsevier.
Wang, H., 2015. A chebyshev semi-iterative approach for accelerating projective and position-based dynamics. ACM Trans.

Graph. 34, 246:1–246:9.
Weber, O., Ben-Chen, M., Gotsman, C., 2009. Complex barycentric coordinates with applications to planar shape deformation.

Computer Graphics Forum 28, 587–597.
Weber, O., Poranne, R., Gotsman, C., 2012. Biharmonic coordinates. Comput. Graph. Forum .
Xu, W., Zhou, K., Yu, Y., Tan, Q., Peng, Q., Guo, B., 2007. Gradient domain editing of deforming mesh sequences. ACM

Trans. Graph. 26.
Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y., 2004. Mesh editing with poisson-based gradient field

manipulation. ACM Trans. Graph. 23, 644–651.
Zhang, J., Deng, B., Liu, Z., Patanè, G., Bouaziz, S., Hormann, K., Liu, L., 2014. Local barycentric coordinates. ACM Trans.

Graph. 33, 188:1–188:12.

15

http://www.mosek.com/
http://arxiv.org/abs/1812.06060

	Introduction
	Related Work
	Generalized Barycentric Coordinates
	Gradient Domain Geometry Processing
	Improving Scalability of Numerical Solvers

	Background
	Our Approach
	Removing the Non-Negativity Constraint
	Gradient-Based Formulation
	2D Formulation
	Recovery of Coordinate Values
	Extension to 3D

	Experimental Results
	Space and Time Complexity
	Comparison with LBC

	Discussion and Conclusion
	Intuition for Conjecture 1
	Proof for Theorem 1

