
Group-wise Automatic Music Transcription
MPhil Thesis

William White

Spetember 2018

i

DECLARATION

This work has not been submitted in substance for any other degree or award at this or any other univer-
sity or place of learning, nor is being submitted concurrently in candidature for any degree or other award.

Signed:

Date:

STATEMENT 1

This thesis is being submitted in partial fulfillment of the requirements for the degree of MPhil.

Signed:

Date:

STATEMENT 2

This thesis is the result of my own independent work/investigation, except where otherwise stated, and
the thesis has not been edited by a third party beyond what is permitted by Cardiff University’s Policy
on the Use of Third Party Editors by Research Degree Students. Other sources are acknowledged by
explicit references. The views expressed are my own.

Signed:

Date:

STATEMENT 3

I hereby give consent for my thesis, if accepted, to be available online in the University’s Open Access
repository and for inter-library loan, and for the title and summary to be made available to outside
organisations.

Signed:

Date:

STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS

I hereby give consent for my thesis, if accepted, to be available online in the University’s Open Access
repository and for inter-library loans after expiry of a bar on access previously approved by the Academic
Standards & Quality Committee.

Signed:

Date:

ii

Abstract

Background: Music transcription is the conversion of musical audio into notation
such that a musician can recreate the piece. Automatic music transcription (AMT)
is the automation of this process. Current AMT algorithms produce a less musically
meaningful transcription than human transcribers. However, AMT performs better at
predicting notes present in a short time frame. Group-wise Automatic Music Transcrip-
tion, (GWAMT) is when several renditions of a piece are used to give a single transcription.

Aims: The main aim was to perform investigations into GWAMT.
Secondary aims included: Comparing methods for GWAMT on the frame level; Consid-
ering the impact of GWAMT on the broader field of AMT.

Method(s)/Procedures: GWAMT transcription is split into three stages: transcrip-
tion, alignment and combination. Transcription is performed by splitting the piece into
frames, and using a classifier to identify the notes present. Convolutional Neural Networks
(CNNs) are used with a novel training methodology and architecture.
Different renditions of the same piece have corresponding notes occurring at different
times. In order to match corresponding frames, methods for the alignment of multiple
renditions are used. Several methods were compared, pairwise alignment, progressive
alignment and a new method, iterative alignment. The effect of when the aligned features
are combined (early/late), and how (majority vote, linear opinion pool, logarithmic
opinion pool, max, median), is investigated.

Results: The developed method for frame-level transcription achieves state-of-the-art
transcription accuracy on the MAPS database with an F1-score of 76.67%. Experiments
on GWAMT show that the F1-score can be improved by between 0.005 to 0.01 using the
majority vote and logarithmic pool combination methods.

Conclusions/Implications: These experiments show that group-wise frame-level tran-
scription can improve the transcription when there are different tempos, noise levels,
dynamic ranges and reverbs between the clips. They also demonstrate a future application
of GWAMT to individual pieces with repeated segments.

iii

Dedication

I’d like to thank all three of my supervisors (David Marshall, Kirill Siderov and
Andrew Jones) for their guidance during my year at Cardiff, and for their support
during the year afterwards. I have been grateful for every bit of criticism, positive
and negative. I’d particularly like to thank Kirill who organised the hackathon
where I first developed an interest in music transcription, without his initial support
I would not have pursued this MPhil.

My partner Ellis has really helped me through the two years. I’d like to thank her
and am glad to have to have the chance to return the favour.

Finally, I’d like to thank my running club, MDC. Running has been a welcome
distraction. Tuesday night runs have let me blow off steam running up and down
hills in the welsh valleys. Giving me some great friends and a fantastic hobby.

v

Contents

Abstract iii

Dedication v

Contents vi

1 Introduction 1
1.1 Theory . 1
1.2 Terminology . 3
1.3 Pitch Perception, Harmonics and the Human Hearing System . . . 4

Pitch Perception . 4
Manual Music Transcription . 6
Human Auditory System . 7

1.4 Representation of Audio . 8
1.5 Scope of this thesis . 11

Contributions . 13

2 Literature Review 15
2.1 Introduction . 15
2.2 Language Models and Note Tracking 19
2.3 Other AMT sub-tasks . 22

Onset detection . 23
Instrument Identification . 24
Rhythm Transcription . 24

2.4 Challenges For Transcription . 25
2.5 Summary . 26

3 Deep Learning for Automatic Music Transcription 29
3.1 Introduction . 29
3.2 Theory . 31

Neural Networks . 31

vi

Group-wise Automatic Music Transcription

Convolutional Neural Networks . 36
Basic Building Blocks . 37

Convolutional Layers 37
ReLU . 39
Pooling . 40
Batch Normalization 40
Loss Layers . 41
Other Layers . 41

3.3 Deep Learning for AMT . 42
Architectures . 42
Evaluation and Dataset . 44
Training . 47
Parameter Optimization . 50
Output Quantisation . 55

3.4 Critical analysis . 57
3.5 Summary . 60

4 Multiple Audio Alignment 61
4.1 Dynamic Time Warping . 63

Multi-scale Dynamic Time Warping 68
4.2 Multiple Audio Alignment . 69

Pairwise Alignment . 69
Progressive Alignment . 71
Iterative Alignment . 73
Evaluation . 76

5 Group-wise Automatic Music Transcription (GWAMT) 83
5.1 Theory . 85
5.2 Late Feature Combination . 86

Method . 86
Results . 89

5.3 Early Feature Averaging . 89
Method . 89
Results . 90

5.4 Late Feature Averaging: Larger experiment 91
5.5 Summary . 95

6 Conclusion 97
6.1 Future Work . 101

Bibliography 103

CONTENTS vii

Chapter 1

Introduction

This introduction is meant to identify some of the fundamental considerations of any
music transcription system, such as the feature representation and its justification
in relation to the human hearing system. It provides some of the background
knowledge that will help in the understanding of this thesis, and introduces some
concepts that will be discussed later. Not all of the background knowledge needed
to understand this thesis is covered, as much of this will be covered in the related
chapters. The hypothesis of this thesis is presented followed by the scope, which
outlines the content of each chapter along with the contributions of the thesis as a
whole.

1.1 Theory

The verb “to transcribe” is defined by the Oxford English Dictionary as follows:
“To make a copy of (something) in writing” [1], so by extension, music transcription
is to copy and represent played music in writing so that it might be recreated
at a later date. Traditionally music is written as a score which is a symbolic
representation where the pitch, duration and loudness of each note are shown
sequentially, see Fig. 1.1. In this type of representation the height of the markings
on the score indicates the pitch of the note [2], and the progression from left to
right indicates the order of playing. The relative duration of each of the notes is
determined by its note head and the note tails [2]. Other markings include the
dynamics (loudness) which is shown by the letters and symbol below the notes and
hairpins, and the accidentals which are the “]” and “[” symbols, the accidentals
shift the pitch up or down by a semi-tone [2].

Other methods for representing music exist. These are usually specific to a
single instrument, such as guitar tablature, which instead of indicating the pitch of
the note to play, shows the position to place the fingers on the guitar so as to play

1

Group-wise Automatic Music Transcription

Figure 1.1: Left: An example of a score based representation of musical audio.
Right: a piano-roll representation of the score on the left. The yellow horizontal
regions are valued as 1 and indicate a note being present, and the blue regions as 0
and the absence of a note. The vertical axis represent the MIDI note number and
the horizontal axis the frame (small period of time) number.

the intended note or chord. What both of these methods have in common is that
it is easy for the musician to create, but more importantly, it allows the musician
to understand how to play the piece.

Some of the instructions provided in a score are open to interpretation by the
musician, e.g. the dynamics, global and local tempo. This means that if two
musicians were to play from the same score, they are likely to sound quite different.
Therefore, both score and tablature notation are better defined as a performance
instruction rather than a representation. A less abstract representation for musical
audio is the piano-roll notation, see Fig. 1.1, which is a two dimensional, time-pitch,
representation that indicates which notes are present at any point during the piece,
this removes the temporal ambiguity that the high level, score based representations
have. The name piano-roll comes from the pianola, which is a piano that when
loaded with a “piano-roll” (a roll of paper perforated with holes that indicate when
to play the notes) will play the piece of music on its own. This representation is
equivalent to the modern MIDI (Musical Instrument Digital Interface), which can
be given to a virtual instrument as instructions.

Automatic Music transcription (AMT) is the extraction of such a representation
from audio via signal processing and/or machine learning methods. For this
thesis, the piano-roll notation will be used, following [3]. The reasoning for this is
that piano-roll to score conversion is a complex subject area in its own right [4]
with difficulties like the arrangement of staves on the score and the extraction of
accidentals, dynamics and key signature.

The most apparent application of automatic music transcription is to be able to

2 CHAPTER 1. INTRODUCTION

Group-wise Automatic Music Transcription

write down instantaneously composed music (improvisation) which is common in
genres such as Jazz, Flamenco and Funk. AMT would also be a valuable training
tool, providing the musician with the ability to analyze his/her performance in
hindsight to spot mistakes and make note of areas needing work, similarly for
conductors, being able to know when a musician might be out of tune, or have
played incorrectly is a valuable skill that would be aided by AMT. There will be
cases where no score at all is available, in which case AMT can be used directly
to other interactive tools include: Music analysis, analysis of improvisations by
shortest grammar and other such approaches [5]; Real-time accompaniment of a
singer or soloist [6]; Music search and retrieval, the ability to identify a song given
a short extract; Music synchronization, synchronizing lighting or special effects to
music.

1.2 Terminology

Before continuing on to the field of pitch perception and automatic music tran-
scription some terms will be defined that allow a better description of musical
attributes.

The Pitch of a musical sound describes where it lies on a perceptual scale that
is determined by how we hear and process sound: A rudimentary definition is
how ‘high’ or ‘low’ the tone is. If a target sound can be reliably matched to a
sine wave at a set frequency by a group of human listeners then it is said to have
pitch [7]. The pitch of that note would then be the frequency of the sine-wave. The
fundamental frequency of an acoustic signal, or just the fundamental (F0), is the
lowest of the prominent frequencies present, if ambiguous, then the frequency of
the corresponding pitch is its fundamental. This form of pitch is termed absolute
pitch because it has a corresponding fundamental at a fixed frequency. Relative
pitch is similar but is defined by the difference between two pitches. Humans are
generally better at transcribing relative pitch to absolute pitch, however people
with perfect pitch are able to distinguish the absolute pitch of a heard sound.

The term Rhythm encapsulates the temporal aspects of music, played and
perceived. In written score, rhythm can be broken down into the beat and the
rhythmic structure of the notes. The beat marks out fixed intervals through the
piece. In a score the beat dictates how fast or slow the musician should play the
marked notes. Several beats combine to create a bar. These are represented on the
score as the region between consecutive vertical horizontal lines, see Fig. 1.1. In a
sequence of notes, the rhythmic structure is the length of time each note is played
for, and the relative durations between each note. These times and durations are
relative and so are dependent on the locations of the beats. The onset and offset
refer to the perceptual start and end of notes, which is quite different to the start

CHAPTER 1. INTRODUCTION 3

Group-wise Automatic Music Transcription

of the note on a score, as for some instruments it can take several milli-seconds for
the sound to be created, and then for the sound to be perceived.

The loudness of a musical signal is a perceived quantity and an ongoing investi-
gation in the field of psycho-acoustics [8]. It is often described as a characteristic
of sound ranging from very soft to very loud. Dealing with a perceptual scale is
inconvenient for music processing and so usually a logarithmic (deciBel) scale is
used. Dynamics are how musicians represent the loudness, and hence timbre, of a
note on a score. Note that the perceived duration of a note is generally the same
as the measured duration. This is not true for some instruments like the piano.
The note can be marked on the score to last longer or shorter than the decay of
the piano strings.

The tempo of a piece, or an extract of, is a continuous scalar quantity that
measures the speed of progression through a piece of music. Although often
measured in BPM (beats per minute), scores sometimes only give a loose description
of the tempo e.g. Andante (walking pace). Typical values range between 60-120,
subject to local variation depending on the artist’s interpretation of a piece.

Timbre is the perceptual characteristic by which we distinguish sounds of equal
pitch, duration and loudness [9]. It is how we would separate the sounds of two
instruments playing the same note, and is often referred to as the sound’s “colour”,
perhaps due to the emotion that timbre adds, for example, a simple synthesizer
that produces sinusoids at each note’s fundamental frequency playing Mozart might
sound less “colourful” than a piano playing the same piece. The timbre of a sound is
a spectral energy distribution and can change over time, usually in a more complex
fashion than that of the loudness or the pitch.

1.3 Pitch Perception, Harmonics and the Human Hear-
ing System

1.3.0 Pitch Perception

Pitch is fundamental to communication; in infant humans pitch and timbre distinc-
tion is learned from a much earlier age than spoken language [10]. Communication
through pitch is also found in other primates, and thought to be important in the
evolution and development of language [11]. In speech, inflections in conjunction
with body language are used to communicate additional information such as emo-
tion or intent that otherwise might not be communicated. The use is even more
apparent in tonal languages such as Mandarin or Chinese, where both inflections
and the absolute pitch (not relative pitch) are used to change the meaning of the
words. For communication in music, pitch is used in sequences to create melodies

4 CHAPTER 1. INTRODUCTION

Group-wise Automatic Music Transcription

Figure 1.2: The frequency content for a single piano note shows that the harmonics
occur at multiples of the fundamental frequency which in this case is the lowest
frequency peak

and in combination with notes of different pitches to create harmony, it is the
collaboration between harmony and melody that creates music.

Pitch is a subjective quality corresponding to the periodicity of an acoustic
waveform [12]. A single musical note with a well defined pitch can be broken down
into constituent harmonics and overtones. The harmonics are integer multiples of
the note’s fundamental frequency f0

fn = nf0. 1.1

Overtones are resonant frequencies that are present at any other frequencies. Any
single resonant frequency in the note can be called a partial. An example of
harmonics can be seen in Fig. 1.2. The f0 was defined as the lowest of the frequency
components of a pitched sound, this is only partly correct. Generally this is the
case, however, if the f0 is removed from the signal or masked in some way, then
the perceived pitch of the signal remains unchanged [13].

Throughout this thesis, the notes on the piano are referred to numerically using
the numbers from 1 to 88. The corresponding frequency fof the n-th note on a
piano is

f(n) ≈ 2
n−49
12 × 440 Hz, 1.2

This means that notes equally spaced along the piano will have logarithmically
spaced frequencies. We perceive pitch differences in a similar way to how notes are

CHAPTER 1. INTRODUCTION 5

Group-wise Automatic Music Transcription

Figure 1.3: The Mel-scale is calculated by measuring the pitch resolution of human
subjects.

mapped on the piano, logarithmically. As such it makes sense to construct a scale
that is better modeled with how we perceive pitch. The Mel-scale is exactly that,
a perceptual, subjectively determined frequency scale. This Mel-scale can be seen
plotted relative to linear axis in Fig. 1.3.

1.3.0 Manual Music Transcription

Before considering the problem of automatic music transcription, it is important
to first understand the method by which professional musicians transcribe, but
also learn to transcribe, music. This may provide some understanding that can be
applied to the task of Automatic Music Transcription.

Professional musicians (classically trained) generally begin their education
at an early age, learning to read and write music initially, in conjunction with
learning to play their instrument. It is likely that it is much later, at the start
of their professional development, for example at a conservatoire, that they will
begin formal training in the practice of transcription, otherwise known as music
dictation to musicians. Typically the musician will be given examples of notes or
harmonies, such as individual intervals, rhythms or melodies, and then be asked to
transcribe the result. The musician will be given simple isolated cases first, then
after mastering these, progress onto higher polyphony, more complex examples. In
total it’s hypothesized that it takes roughly 10000 hours to become a professional
musician [14].

The next stage of understanding how musicians transcribe music is to consider

6 CHAPTER 1. INTRODUCTION

Group-wise Automatic Music Transcription

the process by which a final result is achieved. How is the problem split into stages
to best apply their knowledge and training? Taken as the problem of determining
the notes that are playing at any one time, Klapuri et al. [15] presented professional
musicians with chords containing between two to five notes and asked them to
list the intervals. The percentage of chords guessed correctly by the best in the
sample set was still below 50% for high polyphony. One result to draw from this
is that it is difficult to ascertain a reliable transcription when a sample is taken
out of context, from which the musician can draw upon global information to aid
his transcription. This conclusion that utilising temporal and global information
aids musicians in transcription is confirmed by Hainsworth [16], who performed a
survey of 19 professional musicians asking them each about the process that they
use. What was found is that there is a process that was fairly universal: they
iterate over the piece of music to be transcribed, first noting the global structure,
then transcribing dominant themes using repeated sections to aid the transcription
of other sections, and continuing to transcribe finer details, using the knowledge
from previous iterations to aid the next. This is a direct application for group
transcription, it could be used to improve the transcription of a repeated section
or melody within a piece, as each repeated phrase gives more information about
the notes present. Detecting repeated sections like chords or melodies is a simpler
problem than transcription and shows how group-wise transcription is applicable
not just to a situation where multiple renditions of a piece are available, but to an
individual piece with repeated elements.

Other finer details of music dictation are pitch spelling and score arrangement.
Pitch spelling is the selection of accidentals so that the score is not cluttered, whilst
score arrangement is how the notes are arranged on the score in piano music for
example, this determines which notes are contained on the bass (left-hand) stave
and which are contained on the higher (right-hand) stave. Professional musicians
can use their musical experience to perform these tasks easily, however, they are
much more difficult to perform automatically [4, 17].

1.3.0 Human Auditory System

Before considering how to represent audio suitable for AMT, it is useful to under-
stand how it is transmitted to the brain via the ear, as it could provide hints as to
why some humans are better at music transcription. For instance, some savants
have an incredible ability to recognize concurrent pitches [18]. When sound enters
the human ear it passes through the three stages of the human auditory system
before being converted into an electric signal that is transmitted to the brain via
the auditory nerve. The outer ear first gathers and funnels sound into the ear canal.
As the ear canal is sensitive to direction it acts to “filter” the incoming sounds so as
to encode some spatial information, this helps the owner of the ear to determine the

CHAPTER 1. INTRODUCTION 7

Group-wise Automatic Music Transcription

location of the incoming sound. In the second stage of the ear, the sound waves are
converted into mechanical vibrations via the eardrum, the mechanical vibrations
are transmitted through three bones called the ossicles into to the final stage, the
inner ear. The vibrations are passed on to the basilar membrane which extends
through the two water filled sacks of the cochlea. The basilar membrane has a
varying stiffness along its length which causes the wavelength of each frequency
component of the incoming signal to decrease, and amplitude to increase, until it
peaks at a position determined by its frequency. The result of this is that each
position in the cochlea is stimulated by a different frequency. The stimulating
frequency is converted into an electrical impulse via the stereocilia, which are
small hair cells covering the inside of the cochlea, there are roughly 15,000 in total.
Understanding the inner-workings of the human hearing system is important in
the field of AMT as the state of the art is still way below that of a human expert,
by modelling how the human ear represents audio for processing by the brain it
could aid the development of biology inspired audio representations as in [19].

1.4 Representation of Audio

When musicians are transcribing music they are presented with the raw audio,
however the human ear has a way of pre-processing this audio via the ear so that
the brain is presented with a higher-level representation. This leads us onto the
next section, where some of the different methods for representing audio, their
applications to this thesis and their advantages for music informatics as a whole
are explored.

When audio is recorded, the physical sound vibrations are recorded as one
dimensional time-series data. This is a poor representation for music as it is difficult
to discern any information such as the pitch content or instrumentation of the
piece. Much better, two dimensional representations of audio can be derived using
frequency analysis, as we will see.

Any representation of audio that is appropriate to describe audio before it
reaches the cochela is termed “low-level”, whilst any representation suitable for
describing audio in a cognitively straightforward way is termed “high-level” (score,
pianoroll). At some point in between these representations there exists a collection
of audio representations defined as mid-level, Ellis et al. [20] define the ideal
characteristics of what are termed mid-level audio representations: they should
be of high enough detail to discern the independent contributing sources; they
should be invertible (the audio should be reconstructable). This is important as
you want the mid-level representation to contain the same quantity of information
as the low-level representation; they should be physiologically plausible, although
much about what happens to audio after it has been passed into the auditory

8 CHAPTER 1. INTRODUCTION

Group-wise Automatic Music Transcription

Figure 1.4: An example of the absolute magnitude of the complex Short Time
Fourier Transform (STFT) for a single note. Consecutively higher harmonics
decrease in magnitude.

nerve is still unknown, it is important to consider physiology when developing
any representations. Thus, studying the workings of the human hearing system is
important for AMT.

Often when calculating a mid-level audio representation, a ”windowing” function
is applied. This means that a one dimensional function of appropriate length
(usually short - 10 ms) is multiplied by the audio time-series at regularly spaced
intervals. Example By far the most used mid-level audio representation is the
short-time Fourier transform (STFT) [21] which applies a windowing function to
successive audio frames, before applying the fast Fourier transform (FFT) and
transforming the windowed segment into the frequency domain. The result is a
two dimensional complex time-frequency representation as seen in Fig. 1.4.

Whilst the STFT is an effective way to represent audio, the frequency scale is
linear, and although it can be logarithmically binned, it would lead to a loss in
information and resolution, no longer satisfying the requirement of reversibility
required from any mid-level audio representation. As the pitches of consecutive
notes on the western music scale are logarithmically spaced in pitch, it will mean
that the distance between corresponding harmonics for different notes will be
different, for example the distance between the first and second harmonic for an E
will be less than the distance between the first and second harmonic for an E#. This
is an undesirable quality for any pitch detection tasks as the majority of algorithms
are based on pattern recognition and so an intermediary step, such as applying
logarithmic frequency bands would be needed. Mel-scale spectrograms do exactly

CHAPTER 1. INTRODUCTION 9

Group-wise Automatic Music Transcription

Figure 1.5: The CQT (Left) and STFT (Right) of a series of notes separated by
equal intervals. These plots were created by stitching together individual note audio
samples and performing the respective transforms. This highlights the translational
properties of the CQT, the relative positions of the harmonic peaks from the
fundamental are the same for each note. That is, you could translate the first note
vertically up the frequency axis until all of the note’s partials overlapped with the
second note. In the fft this is not the case due to a linearly spaced frequency bins.

this, they apply the mel-scale that was mentioned earlier [22] to high resolution
spectrograms. Triangular windowing functions are applied at frequencies specified
by the Mel scale to give a spectrogram with logarithmically spaced frequency bins,
see Fig. 1.3. However, by binning the Fourier transform the ability to reconstruct
the original signal is removed, no longer satisfying the requirements in [20] for an
ideal mid-level feature representation. Following this logic that both a logarithmic
frequency scale, and invertibility are needed in a mid-level feature representation
suitable for music informatics, the constant-Q transform (CQT) was developed
in [23].

Similarly to the STFT, the CQT is a complex time-frequency representation,
however, the method for obtaining the transform is quite different. The filter-bank
used in the obtaining of a CQT is modelled off the human hearing system [24], as
opposed to the linearly spaced frequency bins of the Fourier transform. The CQT
also has geometrically spaced frequency bins, meaning that a region containing a
played note can be translated up the frequency axis with the result being a linear
change in pitch, see Section 1.4. For more details concerning the CQT and its
variants, see [23].

On the subject of musically meaningful audio representations, a group of high
level features called “chroma-features” were introduced by Mueller et al. [25].
Chroma-features are calculated by binning the signals STFT into 12 bins, with each
bin corresponding to the total pitch content of the notes A-G. These features have

10 CHAPTER 1. INTRODUCTION

Group-wise Automatic Music Transcription

the advantage of being very compact, and more suitable for any applications that
have a heavy computational overhead such as methods for audio alignment [26, 27],
or for audio matching of music by searching through databases [28]. Another
advantage of these features is that they are highly robust to changes in timbre,
dynamics, articulations and tempo differences. The lack of these variations means
that the features correlate to the underlying harmonic content, such as the melody
or the progressing harmony. This makes Chroma-features suitable for tasks such
as chord recognition [29] and music classification [30].

1.5 Scope of this thesis

This section summarizes the contribution of this work and why its important for
music transcription as a whole. It outlines the structure of this thesis, where results
are contained and summarizes the main points of each chapter and section.

Stated below is the Group-Wise Automatic Music Transcription (GWAMT)
hypothesis that is tested in this thesis. How the hypothesis is tested is covered
briefly in this scope and in more depth in Chapter 5.

Hypothesis Multiple renditions of the same piece of music improves the automatic
transcription performance beyond that of the average individual piece

This thesis develops a pipeline for performing Group-Wise Automatic Transcrip-
tion (GWAMT), which tests the hypothesis stated above. The chapters are focused
on elements of this pipeline. After performing a literature review in Chapter 2,
Chapter 3 introduces a method for frame-level transcription, Chapter 4 discusses
methods for the aligning of musical audio, and Chapter 5 details the experiments
carried out to test the group-wise transcription hypothesis using the described
pipeline. Chapter 6 contains the conclusions of the work, and discusses areas where
future work could be carried out.

The literature review summarizes the research in the field of AMT in a chrono-
logical style. This is directly relevant to the third chapter which develops an AMT
system as it shows what previous authors have found successful, and also relevant
to the chapter on group-wise AMT as it shows that AMT is not yet performing well
enough for widespread use, a performance that could be improved by GWAMT.
The difficulties related to the field are discussed, and how these affect the research
carried out here. In general this chapter provides the context for this research,
which supports the methodology and justifies some of the recommended future
work.

The third chapter focuses on frame level transcription, how deep learning and
convolutional neural networks are used to classify a frame of musical audio from a

CHAPTER 1. INTRODUCTION 11

Group-wise Automatic Music Transcription

piano to determine the notes present. The mechanics of classification using CNNs
are detailed, and results compared against the public MAPS database [31], achiev-
ing state of the art F1-measure of 76.67%, higher than the previous best[32] at
70.60%. The architecture and training methodology, where the network is trained
on synthetic random data, are novel. It also shows that the entanglement problem
described [33] can be avoided by training the network on randomly distributed data,
however by doing so the network becomes less capable at recognizing chords, this
trade-off between generalization and over-fitting is called bias-variance decomposi-
tion. A main limitation of this chapter is that its focus is frame-level transcription,
which is suitable for this definition of transcription and testing the hypothesis,
however lacks the ability to take into account high level musical phenomena (trills,
note dynamics etc.), and also the ability to consider a larger context such as the
note level transcription system in [34].

For the fourth chapter the performance of 3 methods for multiple audio alignment
are compared, this is the process of achieving a frame-to-frame correspondence
between each piece. Two methods are taken from the literature: progressive
alignment [35] and pairwise alignment [36] and one new method outlined in this
thesis called iterative alignment. This new method achieves an alignment by
iteratively aligning the pieces to an evolving average template. This method shares
a principle with progressive alignment in that there is a template that contains the
combined information for the mapping between each of the pieces. This method
does not perform as well as pairwise alignment for a small number of pieces, however
if developed further it could prove useful for aligning a large number of pieces more
accurately than pairwise alignment and more quickly than progressive alignment.
The method used for the group-wise transcription experiments is pairwise alignment
as the implementation of progressive alignment did not achieve a high enough
standard. A minor novelty here is the use of windows for comparing sequence
elements, as this yielded a better result than otherwise for pairwise alignment.
For comparing the alignment methods the average note onset deviation is used
as in [27]. The two main limitations of this chapter are the failure to compare
progressive alignment to the other methods, and that synthetic datasets are used
for testing, meaning the results cannot be compared to any in the literature.

The final chapter before the conclusion is on group-wise automatic music
transcription and details the experiments testing the overall hypothesis. Using the
methods described and experimented with in the first two chapters two strategies
are described for achieving a group-wise transcription, early and late feature
combination. Features are combined either before or after the transcription. In
general late feature combination performed better, two methods for averaging the
features are recommended as they beat the transcription score without the group-
wise method by 1%. These two methods are the majority vote and Logarithmic

12 CHAPTER 1. INTRODUCTION

Group-wise Automatic Music Transcription

pool. The logarithmic pool method was shown to perform well when a larger
number of pieces were available, whilst the majority vote method performed better
with less pieces available. The experiments support the group-wise hypothesis
however as they are carried out on synthetic data, further research using real data
is needed. The chapter also highlights how group-wise music transcription has
a place not just in piano transcription but for the field of music transcription in
general.

The concluding chapter summarizes the key points of the preceding chapters,
highlights areas for future work and reflects on the research methodology.

The conclusion explains that the work performed could have been more focused
on performing experiments on GWAMT from the start, as opposed to first working
on transcription. Whilst the work will show some success for transcription, there
is enough active research in this area and as such increased novelty could have
been found in GWAMT. Rather than aligning multiple pieces to test GWAMT, it
is suggested that the hypothesis could have been tested by identifying repeated
sections within a piece, akin to human transcription. Areas of future work are then
discussed, a clear extension of the following work would be to extend beyond the
piano to other instruments, however, studying the cases where GWAMT is and is
not successful on the frame level could provide more detail about why GWAMT is
possible, and how it should be applied in practice.

1.5.0 Contributions

This contributions section draws attention to the novel aspects of this work,
highlighting the sections which the reader should turn to for more information.

• The investigation into the GWAMT hypothesis (see Section 1.5) and subse-
quent experimentation is novel and forms the main contribution of this work.
It was found that GWAMT can improve the transcription accuracy in some
cases, see Chapter 5.

• A novel machine learning architecture and training methodology is developed
that achieves state of the art performance on the MAPS [31] database. The
architecture achieved an F1-measure of 76.67%, surpassing the previous best
by Kelz et. al [32] at 70.60%. See Chapter 3 for further details.

• A new method for the alignment of multiple musical renditions was developed,
with performance comparable to pairwise alignment. If developed further
it could prove useful for aligning a large number of pieces more accurately
than pairwise alignment and more quickly than progressive alignment. See
Section 4.2 for details.

CHAPTER 1. INTRODUCTION 13

Group-wise Automatic Music Transcription

• A minor novelty was the use of multiple spectrogram frames in the cost metric
for Dynamic Time Warping (DTW) as this was found to be more reliable in
practice. See Section 4.2 for further details.

14 CHAPTER 1. INTRODUCTION

Chapter 2

Literature Review

2.1 Introduction

Research into automatic music transcription was first published by Moorer in
1977 [37] with his work on the transcription of simple duets. In the same year
the Computer Music Journal was started. Since then, the problem has been well
studied and has separated into several sub-tasks:

Multiple-F0 Detection This is one of the predominant tasks in AMT and has
received the largest attention of the sub tasks. It is detection of all of the
notes present in a selected window, with no limit on polyphony.

Note onset and offset detection This is the localization of the positions of the
onsets and offsets of each note, called note tracking; it is usually tackled
separately.

Loudness estimation As in the section on pitch perception, how “loud” a note
is heard is a perceptual quantity and in itself difficult to quantify directly
from audio.

Instrument recognition Given an unlabeled sample of music, an instrument
recognition algorithm attempts to identify how many, or more specifically,
which instruments are present.

Rhythm transcription and beat tracking The challenge here is to extract the
rhythm from a musical sample and present it in an interpretable way, such
as a score. Beat tracking just aims to gauge the beat locations, and is more
relevant to the unpitched transcription of percussion.

We can categorize the overall problem of AMT into different, context specific
problems, relevant to genres of music, and different musical applications. We call

15

Group-wise Automatic Music Transcription

the transcription of a single melody, without accompaniment monophonic transcrip-
tion, and the transcription of multiple concurrent notes polyphonic transcription.
Monophonic transcription is widely considered a solved task [38], where as the prob-
lem of polyphonic transcription is still very much open. Polyphonic transcription
can also be split into pitched and unpitched transcription. Pitched transcription
is the estimation of pitch tracks or notes from musical audio signals [39], and
unpitched is the transcription of drums or other unpitched instruments. Only
the problem of pitched transcription will be discussed, but for more information
regarding unpitched transcription a good summary is presented here [40].

After Moorer’s pioneering work in the 70’s, Chafe was the first to attempt piano
transcription by utilizing prior knowledge of the instrument [41]. He used the
knowledge that pianos typically produce significant energy at the first or second
partial. In his work, Chafe ranks pitch hypotheses, then removes the hypotheses
that do not fit the piano model. This top down approach of identifying all of the
possible pitches, then culling the false positives is seen later in the literature and
achieved good results at the MIREX competition from 2008 to 2011, see Table 2.1.
One of the reasons that this method worked well is due to its application of global
and local information to make an informed frame-level prediction, akin to how
humans transcribe music.

Work on the transcription of duets was continued by Maher, who first proposed
a method for the source separation of two instruments [42]. He highlights the
applications to other domains, such as removal of noise, or the separation of multiple
speakers. He later built on his original work by attempting to transcribe the sources
separated by his method [43]. Most of these early attempts suffered from the same
problem of a low polyphony and pitch range.

The MIREX competition is held every year where entrants compete in a variety
of computer music tasks to achieve the highest score on a database designed to be
challenging for that sub-task. Table 2.1 contains the results from the Multiple-F0
task at the MIREX annual competition for the past 10 years. Submissions are
evaluated on a range of different instruments and genres. Prior to the first entry
using deep learning in 2014 the results for the past 5 years had failed to improve
significantly and in most cases fell. A possible reason for this could be due to the
limitations of hand-designed features for a model fitting for the entire task of AMT.

In the 90’s there were many different approaches to improve the polyphony
of AMT systems, with a large potion of these methods termed “statistical meth-
ods” [44]. The number of methods developed are quite substantial so only a few will
be highlighted. Hawley [45] attempted polyphonic transcription by identifying the
prominent pitch and subtracting it at the estimated velocity (scalar variable of the
speed at which the piano key is struck, is related to loudness). Kashino et al. [46]
designed a system based on perceptual sound source separation; this is different

16 CHAPTER 2. LITERATURE REVIEW

Group-wise Automatic Music Transcription

to sound source separation which only separates sources based on their location.
Perceptual sound source separation attempts to simulate the human perceptual
system. For instance, if a loudspeaker was playing a piece of orchestral music, a
human would hear multiple instrument sources, although technically it would be
from a single source, the loudspeaker. After separating out the perceptual sources
Kashino then transcribes them individually. For cases with high polyphony he first
finds the lowest of the notes present, then models its spectral shape to find the
best candidates for the rest of the signal.

In the late 90’s, the development in the field of artificial intellignece (AI) was
gaining momentum once again, with events such as the defeat of the chess world
champion Garry Kasparov, by IBM’s AI, Deep Blue. AI was also applied for the
problem of AMT. Martin et al. [47] and Godsmark et al. [48] used a blackboard
AI system to combine a top-down, knowledge based approach, with a bottom up,
data driven approach. A “blackboard” system takes its name from the idea that
multiple professors can solve a problem on a black board by all contributing their
knowledge and altering others’ input, for computers and AMT this means different
sources of information regarding the possible transcription are all tied together and
considered using the AI. A log-lag correlogram is used to extract onset information
and pitch information that form hypotheses on the “blackboard”.

Up until this point in time, most approaches to AMT had been knowledge based,
where information such as the instrument, the polyphony and our fundamental
physical understanding of audio, were used to build models suitable for specific
cases of music transcription. Another way to approach the problem is learning
based methods, some of which were unfeasible before the 90’s due to limited
computing power and data. In these learning methods, data examples are used
to train machine learning algorithms. The algorithm then tries to predict the
transcription of a piece of music not used for training.

In the 2000’s, the focus shifted onto sparse coding based methods, such as
Independent Component Analysis (ICA) and Non-Negative Matrix Factorisation
(NMF). Sparse coding methods can be defined as follows: “a sparse code is one
which represents information in terms of a small number of descriptors out of
a whole set” [49]. This principle was first applied to music by Abdallah et al.
who extended the popular method of Independent Component Analysis (ICA) to
decomposing spectrograms into note constituents. Virtanen [50] tried a method
similar to Maher [43], after first separating out the contributing musical sources, he
approximates the spectrums of the sources by assuming that their shape is constant
over time. He then attempts to transcribe the tracks by minimizing the signal
reconstruction error from its constituent parts.

Non-Negative-Matrix-Factorisation is a widely used method for transcription.
It was born out of ICA and can be thought of a sparse coding with non-negativity

CHAPTER 2. LITERATURE REVIEW 17

Group-wise Automatic Music Transcription

constraints [51]. Sometimes known as spectrogram factorisation, NMF attempts to
use provided spectral data to learn a series of pitch bases corresponding to notes
played by the instruments present in the training data. It was used initially by
Brown [51] for AMT in an unsupervised approach, but was limited to instruments
that exhibit a static harmonic profile (unlike piano as it is partially percussive
and higher partials decay much faster than lower ones). NMF was improved by
Abdallah et al. [52], by modelling the spectrogram of a piano as a Gaussian process,
with noise that is multiplicative and non-Gaussian. This allowed NMF to be trained
on entire recordings, as opposed to individual notes as in [51].

NMF is based on the assumption that the bases learned will correspond to
pitch spectra. However, this is not always the case when training on polyphonic
music. Constrained NMF is a variant of NMF where the bases are constrained in a
smaller region of entire frequency range, making the likelihood of NMF learning
meaningful pitch spectra higher. This means that the bases can only contain just a
few adjacent harmonic or in-harmonic partials. This was first proposed by Vincent
et al. [53] where they use these constraints on NMF applied to piano transcription.
Vincent et al. later extend their work [54] by allowing for in-harmonic constraints
and adaptive tuning.

A more recent, novel application of NMF to AMT was developed by Kirchoff et
al. [55]. In their work they allow prior information about the location and pitch of
some of the notes to be used to iteratively improve the bases approximation that
NMF performs. Cheng et al. [56] proposed a model for piano transcription based
on NMF, which models the attack and decay of the piano spectra to improve the
learned bases. It is a promising work as it shows state of the art note level results,
without incorporating a musical language model.

A whole separate class of Learning-based AMT approaches are defined here
as being classification based approaches. Where classification techniques such
as support vector machines (SVMs), artificial neural networks (ANNs) and con-
volutional neural networks (CNNs) are used to classify each frame, assigning a
probability to each note for its likelihood of being present. This class of methods
has received the most attention lately with all the entries to the 2017 MIREX
frame-level transcription competition being classification based.

Poliner and Ellis [57] were the first to use support vector machines (SVMs) to
try and classify piano notes. In their approach no prior knowledge was used. They
trained 88 individual SVMs for piano transcription with each corresponding to a
different note. Nam et al. [58] also used SVMs, a deep belief network was used to
learn a representation suitable for piano transcription. Nam et al. also introduced
a method for jointly training all 88 SVMs, which they concluded was better and
faster than single note training. Multiple note training is used from this point
on-wards for classification based algorithms.

18 CHAPTER 2. LITERATURE REVIEW

Group-wise Automatic Music Transcription

The MAPS database is a collection of piano recordings played from correspond-
ing ground-truths and was created by Emiya et al. [31]. It has since been the
benchmark for any proposed piano transcription methods and will be used for the
purpose of training and testing in this thesis. The database comprises of a total of
7 pianos and 10000 piano recordings. Two of the pianos are real pianos where as
the rest are virtual. The samples include a mixture of chords and complete pieces
with corresponding MIDI files. The configurations used for splitting the data into
train-test splits can be found [59], and will be covered in the next chapter.

Deep neural networks are powerful classifiers that can learn to generalize well,
and have seen success in many areas including computer vision and other Music
Information Retrieval tasks. The specifics of deep learning will be covered in the
next chapter. Neural Networks were applied to the problem of AMT by Sigtia et
al. [34], who trained a deep network to classify frames of piano music. They train
and evaluate their network on the MAPS piano database. They improve on their
work by using CNNs which are a group of classification models similar to deep
networks well suited to music transcription due to their ability to identify repeating
patterns in noisy data. The specifics of training CNNs for music transcription, and
some of the challenges that arise will be covered in the next chapter.

The best frame level piano transcription system to the author’s knowledge is
detailed in [32] where Kelz et al. experiment with simple CNN based frameworks
for piano transcription, with excellent results. They specifically experiment with
the best frequency based audio representations for deep learning. They conclude
that the STFT with logarithmically spaced frequency bins and logarithmically
scaled magnitudes is the best input representation for CNNs. They were surprised
with the CQT failing to perform as well as it has in the past (Although they have
not experimented with a CQT with logarithmically scaled magnitudes. This seems
to be an unfair comparison of the STFT to the CQT.).

On the topic of piano transcription there is one final model that is worth men-
tioning. The model developed by Cheng et al. [56] uses NMF and an attack/decay
model for transcribing piano music at the note-level. This constitutes the state of
the art for note-level piano transcription.

2.2 Language Models and Note Tracking

Frame transcription suffers from a large flaw that is inherent to the problem: the
limitation of not being able to consider information outside the frame of interest.
As discussed in Section 1.3 on how humans transcribe music, humans are quite
poor at frame-level transcription, and instead use multiple passes to accumulate
enough global and local information to make an accurate note predication. In this
section some attempts to utilize temporal information for AMT will be highlighted.

CHAPTER 2. LITERATURE REVIEW 19

Group-wise Automatic Music Transcription

Year Accuracy Transcription Method L/K

2007 0.605 Identifying and removing the prominent pitch using a com-
putational model of the human auditory system [60]

K

2008 0.665 Generate and iteratively select note candidates by minimiz-
ing the reconstruction error [61].

K

2009 0.688 Generate and iterativly select note candidates by minimizing
the reconstruction error [62].

K

2010 0.692 Generate and iterativly select note candidates by minimizing
the reconstruction error [63].

K

2011 0.683 Generate and iterativly select note candidates by minimizing
the reconstruction error [64].

K

2012 0.642 Pair-wise analysis of spectral peaks to generate pitch hy-
potheses with tracking of high tone note objects [65],

2013 0.662 Probabilistic latent component analysis for learning instru-
ment spectral models [66]

L and K

2014 0.723 Deep learning and perceptual features [67]. L

2015 0.654 probabilistic latent component analysis for learning instru-
ment spectral models [68].

L and K

2016 0.537 Combination of an auditory model, adaptive oscillator net-
works and neural networks [69] (note that the Convolutional
Neural Network model for this year from the corresponding
paper [32] had bugs and didn’t perform).

L

2017 0.720 Convolutional Neural Network trained on log-spaced fre-
quency data generated from a filter bank, and augmented
by pitch shifting [70]

L

Table 2.1: The results from the MIREX competition for frame level transcription
from 2007. The column on the right is the method of approach, L (Learning) or K
(Knowledge)

20 CHAPTER 2. LITERATURE REVIEW

Group-wise Automatic Music Transcription

A direct comparison can be made between the problem of automatic speech
recognition and automatic music transcription, though speech transcription has
recieved far more research attention than AMT due to larger commercial applica-
tions. Both speech and music are generative: they are made up of much smaller
constituent parts that can be drawn from the same dictionary. For speech these
would be phonemes that collectively make words and in music this dictionary would
be notes that form melodies, chords and rhythm. The main difference between the
two is that speech is mainly monophonic and music is polyphonic, however speech
signals generally change much more quickly as the phonemes vary in pitch and
time. In contrast, because notes usually vary in only pitch it makes them hard
to identify when containing overlapping harmonics. Generally speech generation
follows a set of rules. This set of rules can be modelled by a language model that
provides the acoustic frame-level model with a set of prior probabilities based
on the previous words and phonemes. These language models are vital for the
success in speech recognition as the acoustic model often does not have enough
information in a single frame to separate differences between possible outputs [71].
The same principle can be applied to music transcription, a language model that
provides prior probabilities to each frame level note hypothesis can be used to
improve the performance of the AMT system. There has been less research into
musical language models than into frame level transcription. This is potentially
because it is believed that language models should not be necessary for frame level
transcription. Another reason for this could be the difficulty in modelling such a
large output space for polyphonic music, whereas in speech recognition there are
a relatively small number of words to consider. To give an example, the English
language has about 170000 words and a vocabulary of 3000 words covers about
95% of all occurrences [72]. whereas on the piano with a polyphony of 6 there are
24× 23× ...× 19 = 96909120 combinations for 6 notes in a 2 octave range.

A common fairly simple way to process the outputs of a frame-level model is to
use hidden Markov models (HMMs). These were first employed by Box et al. [73]
who use a 3-state HMM combined with a silence model and an auditory based
acoustic model. Badeau et al. [74] instead use a 4-state HMM where an additional
state is dedicated to silence. HMMs were applied to the task of piano transcription
and evaluated on the MAPS database by Cheng et al. [75], who used a 4-state
HMM with the states corresponding to the attack, decay, release and sustain of
the note. It is interesting to note that all of the models have assumed that an
underlying HMM has states that correspond to the production of the notes, and do
not model the musical language. So whilst this method may serve to improve the
results of a frame level model, it cannot be considered a musical language model.

Recurrent neural networks (RNNs) are powerful models for sequential data,
Kaparthy et al. [76] demonstrated their prowess at language modelling by train-

CHAPTER 2. LITERATURE REVIEW 21

Group-wise Automatic Music Transcription

ing an RNN on the works of Shakespeare, with the goal being to generate new
Shakespearean text. This showed surprisingly good results. RNNs suffered from a
problem caused by not knowing the length of the sequence being evaluated, however
this was eliminated by Graves et al. [77] who first managed to train RNNs in an
end-to-end fashion. Graves et al. then applied RNNs to speech recognition [78]
where they achieved state of the art results.

RNNs have also shown success when applied to AMT. Bock et al. [79] used
bi-directional RNNs to transcribe piano music by identifying both the onsets and
the notes simultaneously, hence providing some context. Transcribing music in this
way also makes it more practical for musicians and the number of false positives
and negatives when evaluated at the note level is much lower.

It is difficult to use RNNs as a language model because of the high computational
requirement in computing all of the prior probabilities for combinations of notes. To
get around this issue, Boulanger-Lewandowski et al. [80] improve upon frame-level
transcription by combining RNNs with restricted Boltzmann machines (RBNs),
which have proved to be able to represent complicated distributions at one time
step, with parameters that depend on the previous time step [80]. They conclude
that the best method for using RNNs as a language model is a variant called RNN-
NADE which stands for Neural Auto-regressive Distribution Estimators, which is
a variant of RBNs specialized to representing high dimensional variables [81].

Language models being used to improve the transcription accuracy is demon-
strated again by Sigtia et al. [82], who use an RNN-NADE to provide Dirichlet
priors for a PLCA frame-level acoustic model. They observe an improvement of
3%, similar to the improvement seen in [80]. In later work by Sigtia et al. [34] they
improve upon the Hybrid model by combining the results of the two models using
a hashed beam search. Further to this, they then train the hybrid model in an
end-to-end fashion and publish their results in a very well written paper [59], their
configurations for evaluation on the MAPS database of piano music are now used
as the benchmark for piano transcription.

2.3 Other AMT sub-tasks

Aside from pitch detection, there are other tasks that are important for AMT. Of
these, onset detection and instrument recognition are done almost sub-consciously
when manually transcribed, however, these tasks are a challenge to automate
when the music contains multiple voices, or contains instruments without any clear
attack or decay. These tasks are often used in conjunction with pitch detection
algorithms, and the information they provide goes towards a more musically
meaningful transcription where mistakes are less of an issue. These tasks are worth

22 CHAPTER 2. LITERATURE REVIEW

Group-wise Automatic Music Transcription

studying due to their close relationship to pitch detection, although investigating
their relationship to group-wise transcription is beyond the scope of this thesis.

2.3.0 Onset detection

Onset detection is defined as the automatic detection of the start of note events,
characterized by a sharp change in intensity, timbre or pitch of a sound [83].
For instruments like the piano, an increase in intensity at any pitch indicates
the start of a new note, whereas for woodwind and stringed instruments, it is
possible to change pitch with negligible intensity rise (known as legato). One of
the main challenges that onset detection systems face is differentiating onsets from
modulations caused by overlapping tones. This is more common in cases where
more than one instrument is present, and so whilst success in onset detection in
limited cases has seen success, a general purpose onset detector is still an open and
challenging problem. As onsets occur over a number of audio oscillations, they can
not be detected by differentiating the audio time-series. For example, the oscillation
of the sound wave must pass through peaks and troughs at which point the time
differential will be equal to 0, even during a period of intensity. This means that to
detect onsets we must first transform the data into a representation that captures
changes in intensity, the STFT for instance. From here an onset detection function
or model can be applied that aims to extract the onset likelihood. The position of
the onsets can then be determined by identifying and thresholding the peaks to
obtain the position of the onsets.

Early onset detection functions split the STFT into bands tailored to onset
detection. Klapuri et al. [83] used an auditory model to collect the STFT into
bands before combining the results using intensity coding. Duxbury et al. [84] use
a hybrid approach with two different detection functions tailored to the upper and
lower frequency bands. Bello et al. [85] give a good review and tutorial of onset
detection algorithms before 2005.

More recently, CNNs have proved effective in onset detection [86]. Schluter et
al. trains a CNN on 10000 annotated onsets from a variety of instruments, and
achieved an overall F1-score of 0.885% which constitutes the state of the art in the
field. Their method uses multiple time resolutions of a mel-scaled STFT as the
input to the network, and the network attempts to only predict the onset when
centred in the frame.

For the instrument specific case of the piano, onset detection is considered
solved, with methods such as NMF being able to detect onsets with an accuracy
of 98.6% [87]. The reason for this is that the onsets are well defined and follow a
clear timbre profile caused by the striking of the strings in the piano.

CHAPTER 2. LITERATURE REVIEW 23

Group-wise Automatic Music Transcription

2.3.0 Instrument Identification

Instrument recognition, or musical instrument identification (MII), is typically
done by matching instrument specific timbre templates to various acoustic features.
This is a trivial task for isolated instruments, however is a challenging task in the
case of polyphonic music. Several methods aim to use sound-source separation
to separate out the contributions from each instrument first [88]. Other attempts
include Kashino [89], who used adaptive template matching based on matched
filtering for sound source identification, which is a more general field than MII.
Kashino notes that it is difficult for humans to identify the instrument in a short
window and a language model is needed to improve performance. As such, Kashino
uses a Bayesian language model in combination with a frame-level model with
a large increase in classification accuracy (60.8% to 88.5%). This confirms the
conclusion made in the last section on language models, that a language model is
needed for a fully functioning music transcription system.

K-nn classifiers have been used for instrument identification, by Fujinaga et
al. [90] for real-time timbre recognition, and Eronen et al. [91] for instrument
identification with cepstral coefficients and temporal features. Kitahara et al. [92]
identifies the three main problems facing MII, and tackles them individually: feature
variations caused by sound mixtures, the pitch dependency of timbres and the use
of musical context.

As with the other fields of Music transcription, CNNs have had success in MII,
see [93, 94]. These architectures will be looked at in more detail in Chapter 3.

2.3.0 Rhythm Transcription

Rhythm can be represented simply as the positions of the note onsets and offsets.
However, this representation lacks the abstraction needed to be interpreted. It does
not encode information such as the tempo or score arrangement that are necessary
for rhythm [95]. Beat tracking is the extraction of the tempo and beat locations.
The beat can be extracted directly from audio as in [96] where multiple agents are
used for different beat hypotheses, which when combined give the beat locations.
Scheirer [97] uses a small number of band-pass filters in conjunction with a bank of
parallel comb filters to extract the beat from polyphonic music. His results show
that the system performs as well as humans at guessing the time of the next beat.
For a complete history of rhythm transcription pre-2005 see Gouyon et. al [98]. A
variant of musically constrained NMF is used to to detect note onsets and offsets
by Ochiai et. al [99].

24 CHAPTER 2. LITERATURE REVIEW

Group-wise Automatic Music Transcription

2.4 Challenges For Transcription

In this section some of the challenges facing AMT will be highlighted, specifically
challenges facing AMT from a data driven perspective. How these problems can
be tackled will be suggested, and attempts to do just that will be mentioned.

Overlapping harmonics are the single largest issue for music transcription, and
are what makes the problem non-trivial. Fourier series tell us that for two notes
separated by an octave, the higher of the two will share all of its harmonic peaks
with the lower note. This means there is no clear way to transcribe the notes
separately. To accurately transcribe both notes, the transcription system must
disentangle the individual contributing harmonic content.

Current transcription methods rely on frequency representations such as the
STFT or the CQT with a number of bins that are spaced either linearly (STFT),
logarithmically (CQT) or quasi-logarithmically (mel-scaled STFT or CQT). This is
good for a global representation of any audio sample, however for a musical chord,
the majority of bins in the representation will be empty, and the areas where the
information is contained, will be low resolution. This leads to spilling across bins
and inexact locations of harmonics, which without increasing the dimensionality
of the STFT, is difficult to avoid. This is a difficult problem to solve as hand-
crafted features are limited by design, and learned features can sometimes be
uninterpretable. This is especially true when dealing with neural networks, a
hand-designed feature representation, or an auditory modelled representation might
not be the optimum way to represent data for deep learning. If the best way
to represent audio for neural networks could itself be learned, such as Bengio et
al. [100] propose, then this might alleviate this problem.

In the case of neural network based automatic transcription systems there
is a core problem, termed the “entanglement” problem. This is when a model
“abuses its power” for learning by remembering the harmonic power distributions
of combinations of notes, instead of generalizing to unseen combinations. Kelz
et al. [33] experiment with the issue, they remove certain individual notes, and
combinations from the training data, and observe the results on those notes in the
test set. What they confirm is that instead of learning a method for disentangling
the input spectrum into notes that contribute different spectra, the network has
just remembered combinations it has seen previously, and is unable to generalize to
unseen data. What they suggest to alleviate this problem is the design of a custom
loss function, one that can force the network to disentangle note combinations
explicitly.

Generally all of the neural network based methods take in a spectrogram and
no other prior knowledge. If they could be modified to take local contextual
information such as the chord that is being played, or global information such as

CHAPTER 2. LITERATURE REVIEW 25

Group-wise Automatic Music Transcription

the key-signature and time-signature of the piece, then the network could perhaps
learn prior probabilities of its own, without the need for a separate language model
(although Sigtia et al. [34] train a language model and frame model end-to-end, its
not the same as a single model).

Kahino et al. [46] use both the phase and the magnitude in order to separate
out notes with overlapping harmonics, stressing that “the relative phase of each
frequency component should be taken into account”. Considering the importance
of phase in separating out overlapping harmonics, it is surprising that most ap-
proaches today, such as NMF and using deep learning and CNNs, discard the
phase information. It is also unsurprising that the entanglement problem exists,
given that the most important entangled information, the phase, has not been
represented in a way that deep networks can understand. Perhaps this has been
considered and attempted previously with no positive results, however there is a
strong argument for the inclusion of phase is any frame-level model.

2.5 Summary

This chapter has attempted to provide a summary of past and present literature in
the field of AMT, which provides the context required to investigate GWAMT in
Chapter 5.

It was seen that the task of AMT can be separated into a number of sub-tasks
including pitch-detection, onset detection and rhythm detection. The problem
of AMT was split into context specific problems, which in the case of this thesis
is polyphonic piano transcription. A similarity was then drawn between speech
recognition and polyphonic music transcription where phonemes can be strung
together to make sentences as notes can for melodies. Speech recognition can also
be split into context-specific problems dependent on language and dialect. However,
the success in the field of speech recognition has not translated across to AMT, due
partially to a lack of interest and also differences in the spectral characteristics.

A clear distinction was drawn between bottom up, data-driven approaches
to AMT, and top-down, knowledge driven approaches to AMT. Data-driven ap-
proaches, specifically learning based approaches to the problem of AMT have seen
more success recently due to the advent of SVMs and deep learning. This thesis
follows this trend and uses deep learning for the task of multiple F0-detection.
Although it was shown recently that neural network based learning methods do
not generalize well to unseen note combinations, they are still incredibly powerful
classifiers and are suited to the problem. How this class of methods can be made to
generalize better is partially covered in this thesis, with pre-training on generated
data used to initialize the weights. This question is likely to be covered soon in

26 CHAPTER 2. LITERATURE REVIEW

Group-wise Automatic Music Transcription

the field, as now the vast majority of methods competing at the 2017 MIREX
competition are deep learning based methods.

Two key approaches to AMT, frame-level and note-level, were discussed, conclud-
ing that often note level systems produce more musically meaningful transcriptions,
but perform worse on the frame level than dedicated frame-level models. In this
thesis only frame-level transcription and group-wise transcription are considered.
However, there is scope for work in this area, or for the post processing of frame-
level transcriptions from multiple pieces using methods like HMM smoothing, as
each piece provides another observation of the hidden state (note played). The
MAPS database introduced in this chapter will be used for training and evaluating
the AMT model developed in Chapter 3, so that the results can be compared to
those in the literature.

CHAPTER 2. LITERATURE REVIEW 27

Chapter 3

Deep Learning for Automatic Mu-
sic Transcription

3.1 Introduction

The history of deep learning begins with the development of one of the first machine
learning models, the perceptrons. They were developed in 1959 [101], inspired by
the neuron connections in the brain, with the idea that a single “neuron” can have
multiple inputs and produce only a single output. The parameters of the neuron
were learned from data examples via a simple iterative procedure. The problem
with the perceptron however, is that it can only learn to discriminate between
linearly separated data. This means that in practice they are not particularly
useful.

30 years later this issue was addressed with Artificial Neural Networks (ANNs)
[102], which also follow the analogy with the human brain. The human brain
consists of many neurons connected to each other and not a single unit. Following
this, Rumelhart et al. [102] connected the output of multiple neurons to several
other neurons, with each set of neurons termed a “layer”. A series of linear
transformations cannot resemble a non-linear function, so to add non-linearity an
“activation” function was applied to the output of each neuron. A sigmoid function
was used which also scaled the output between minus one and one. ANNs were
limited in their usefulness at this time due to the “vanishing gradient” problem.
This problem occurred when the networks were increased in their size beyond a
few layers and is caused partially by the activation function used at the time, the
hyperbolic tangent. Now, the ReLU activation function is used, which will be
covered in greater depth later in this chapter. These ANNs are in essence the same
as what are used today for deep learning.

Popularity for ANNs declined after Support Vector Machines (SVMs) became

29

Group-wise Automatic Music Transcription

usable for a wide range of machine learning tasks, such as the recognition of
hand-written digits [103]. It was not until 1998 that neural networks were once
again being considered with the continued development of CNNs by LeCun et
al. [104]. They were designed to be scale/rotation invariant, suited perfectly for
vision computing tasks. They demonstrated their CNN’s performance on the
recognition of hand-written digits, beating all other machine learning models of
the time, including SVMs. The dataset used was called the MNIST database, and
is still used today to benchmark new architectures.

In 2002 Restricted Boltzman Machines (RBMs) [105], which are a form of 2 layer
network, became feasible to train [106]. From these RBMs, deep auto-encoders
emerged [107], which are stacked RBMS that are trained in a greedy layer-wise
manner to recreate their own input. This is done by training each layer individually
to recreate the input, then fixing the weights on these layers and increasing the
depth. It is termed ”greedy” as the model is not trained end-to-end. This means
they can learn to reduce the dimensionality of input data by finding a higher level
feature representations in the intermediary layers. These were applied to machine
learning tasks with unsupervised pre-training [108], where after learning a higher
level feature representation the network is altered and then “fine-tuned” to classify
the input samples.

It was after 2010, when the training of much deeper ANNs was proved possible,
that the deep learning “boom” happened. Cirean et al. [109], showed that a deep
network could be trained to recognize digits on the MINST database, achieving
state of the art performance by using a GPU to speed up training time. The
reason why it was not possible before was mainly due to the limited processing
power and availability of large structured databases, as the methods of training,
back-propagation of errors and gradient descent, are the same as was originally
proposed in 1986 [102].

Since then the field has exploded in many directions, with applications in
a variety of fields: reinforcement learning, where the world Go champion was
beaten by a program, partly trained using deep learning [110]; computer vision, the
automatic colourization of black and white images [111]; drug discovery, a DNN
names Atomnet was able to predict candidate molecules for treating the Ebola virus,
with one of candidates as the lead molecule awaiting animal trials; bioinformatics,
a deep neural auto-encoder was used to predict gene ontology annotations [112]
etc. The dominant field that deep learning has excelled in is of course computer
vision, as we will see in the section on CNNs. As well as classfication tasks, deep
networks are able to generate plausible unseen data with a large enough training
set. These types of networks are called generative adversarial networks, and have
recieved attention recently, see [113] for examples.

30 CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

Group-wise Automatic Music Transcription

Figure 3.1: Left: A single neuron unit with parameters W and b. The lines
connecting the inputs to the neurons are can represent the weights. Right: A
two-layer ANN that transforms an array of inputs x into an array of outputs y.
An example for a neuron’s outputs zli and activations ali is given above the top
neuron in each layer.

3.2 Theory

In this section the mathematical theory underpinning deep learning and CNNs
will be covered, including their training and how they are constructed. Common
architectures for music related tasks will also be investigated, followed by detailing
the architecture used to test the group-wise transcription hypothesis. How the
network’s performance is measured is described and compared it to other AMT
networks.

3.2.0 Neural Networks

The raw building blocks of ANNs and CNNs are neurons. For a vector input x,
they take each element xi, multiply it by a fixed weight Wi and add a bias b. The
weights and bias are learned during the training process, and are different for each
neuron. The process that a single neuron applies to its input can be given as

f(x) =
n∑
i=1

Wixi + b, 3.1

where f(x) is the neuron’s output and n is the number of inputs to the neuron.
This can be seen graphically in Fig. 3.1

If several of these neurons are connected in parallel, so that the inputs go to
several neurons, then this is called a layer. If the output of one layer is fed into
another layer then this constitutes a basic ANN, this can be seen in Fig. 3.1. For a

CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

31

Group-wise Automatic Music Transcription

multi-layer ANN, the pre-activation output of the ith neuron in layer l is zli, and
the post activation output is given by ali. The outputs of an ANN are yi. The
weights and biases for the neurons in each layer are given as W l

i,j and bli. Now that
the inputs, outputs and weights across the network can be represented, layer-wise
operations can be performed on the layers input as

zl = W lal−1 + b. 3.2

As mentioned in the introduction, ANNs cannot capture non-linear relationships
without taking the output of each neuron and passing it through an activation
function. So the function for our layer now becomes

al = σ(zl), 3.3

where σ is the activation function.

When training an ANN, such as a one layer network, similar to the one in
Fig. 3.1, the goal is to determine a set of parameters b and W from a set of
N input-output data pairs {x1, y1, x2, y2...xN , yN} = {X, Y } that minimize a loss

function such as the mean squared error 1
N

Σi

∥∥yi − σ(xiW + b)
∥∥2. Given enough

data, and a network with a sufficient number of parameters, the network should
be able to approximate to unseen data. The loss function itself is l which when
evaluated over the data, can be expressed as

LW ,b(X,Y) =
1

N
Σi[l(fW ,b(xi), yi)]. 3.4

Previously the mean-squared-error loss function was given as an example,
however for regression a more common loss function to be used is the Euclidean
loss

LW ,b(X,Y) =
1

2N
ΣN
i=1‖yi − ŷi‖ , 3.5

which is generalized to an arbitary model with predicted outputs {ŷ1, ŷ2, ...ŷN}
from inputs {x1, y1, x2, y2...xN , yN} = X.

Often a loss function alone will overfit to the training data. Overfitting means
that the model will simply memorize the input data and not generalize towards the
inference function mapping any input to any output f : X → Y , in other words,
the loss over the training data X,Y increases but the loss on the validation data
Xval, Yval decreases or remains unchanged. The validation data is kept separate
from the training data to observe the performance of the network as it learns. One
method to counter over-fitting by the loss-function is to add L2 regularization,
otherwise known as weight decay. This is done by adding an additional term to
the loss function dependent on the weights

32 CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

Group-wise Automatic Music Transcription

LW ,b(X,Y) =
1

N
Σi[l(fW ,b(xi), yi)] +

λ

2n
Σi,j,lW

2
i,j,l. 3.6

The effect of this is to force the network to prefer small weights when learning,
as large weights would increase the cost function. This helps to reduce over-fitting
because the weights are limited to being small, so the effect of the gradient on the
relative size of the weights is always meaningful, it reduces the search space and
stops the cost function getting trapped in local minima. From this point the loss
function refers to the calculation of error between the input-output samples, and
the cost function refers to the regularized loss function.

Having a loss function that tells us how the network has performed over a
particular subset of samples is useful for evaluation, however knowing this alone
cannot improve the network. The original proposal for ANNs in 1986 [102] proposed
that these networks were trained via the backpropagation of error. The basic idea
is that the gradient of the cost function can be found with respect to the each
weight ∂L

∂W l
i,j

, therefore obtaining the direction and relative magnitude to alter the

weights so as to improve the result of the cost function on the training data, and
hopefully the network’s performance on the validation data.

Before going into more detail about the back-propagation algorithm, how the
weights are updated is explained, so as to understand why the gradient is needed.
Gradient descent is the method by which neural networks are optimized, by following
the gradient of the weights “downhill” we hope to reach a global minimum of the
cost function. The variant of gradient descent most commonly used is Stochastic
Gradient Descent (SGD), the difference being that gradient descent finds the
gradient over all of the training examples before updating the weights, where as
SGD finds the gradient over a single example and iterates over the entire training
set. The reason SGD is preferred is twofold, firstly it is more convenient to process
a single example at a time due to the computational requirements of storing the
data for processing, and secondly it adds random noise into the training process,
which tends to help the network reach a minimum quicker than otherwise. A single
iteration of gradient descent to update the weights and biases is given by

W l
i,j = W l

i,j − η
∂LW ,b(xi, yi)

∂W l
i,j

, 3.7

bli,j = bli,j − η
∂LW ,b(xi, yi)

∂bli,j
, 3.8

where η is the learning rate which is a global network parameter that changes the
rate at which the network learns. Set this too high and the network will fail to
reach a decent minimum, too low and the network will take a long time to train.

CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

33

Group-wise Automatic Music Transcription

The gradients in Eq. 3.7 are given with respect to a single example {xi, yi}, and
are unknown, requiring back-propagation to be found.

A measure for how much each neuron is responsible for errors in the the output
is needed to calculate the gradients of the weights and biases. This measure is
called the error term and is given as δli for each neuron i in layer l. For the output
neurons this is simple enough to define in relation to the difference between the
predicted output and the target output

δnl
i =

∂

∂znl
i

L(xi, yi), 3.9

where the derivative of the loss function with respect to each output unit is
calculated.

For propagating the error back further, there will be multiple neurons connected
to one neuron on the previous layer. To combine the error from each of those
connected neurons a weighted average is calculated as

δli = (

pl+1∑
j=1

W l
j,iδ

l+1
j)f ′(zli), 3.10

where the function f ′(zli) is the derivative of the activation function applied to the
outputs of the neurons in layer l. Eq. 3.10 takes the error from the layer l + 1 and
propagates it back to the layer l using the weights to calculate the new error, this
process is repeated after the error for the output units is calculated using Eq. 3.9
until the error terms have been calculated for neuron in each layer. Next the partial
derivatives needed for calculating the updates to the weights and biases can be
calculated using

∂LW ,b(xi, yi)

∂W l
i,j

= alj(x)δl+1
i , 3.11

∂LW ,b(xi, yi)

∂bli,j
= δl+1

i . 3.12

The weights and biases for the network can now be updated using Eq. 3.7
thereby reducing the value of our cost function on that example. The process
of updating the parameters using a single input-output example constitutes one
iteration of SGD. All of the training data examples would be iterated over, updating
the weights in each case hoping that the network will learn a more meaningful
representation each time so it can improve its performance on the unseen test data.

If the parameter space is represented as a smooth two dimensional surface, that
has peaks and troughs, like a landscape with hills and valleys, then it becomes easier

34 CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

Group-wise Automatic Music Transcription

to understand what the optimization procedure is doing in its attempt to reach the
global minimum. In the case of SGD, the algorithm is approximating the gradient
around its parameters using the current training example, then following this
gradient “downhill”, asymptotically approaching a local minimum or saddle point.
This means that the algorithm is prone to getting trapped in one of the infinite
local-minima that all networks with greater than two layers suffer from. There have
been several attempts to rectify this problem by altering the method by which the
weights are updated. The most common of these is SGD with momentum [114],
where an additional term is included in the update rule that is a fraction of the
previous update. The result in the path followed by the optimization is similar to
a ball rolling down our parameter space. This allows the optimization to escape
local minima, assuming that there is enough momentum to escape.

There are many other variants of SGD, each of which has advantages in particular
applications, for information on gradient optimization algorithms see the article by
Ruder [115]. The variant that has shown success recently is ADAM (ADAptive
Moment estimation) [116] and is used throughout this thesis. ADAM stores an
exponentially decaying average of the previous gradients and squared gradients

mt = β1mt−1 + (1− β1)
∂LW ,b(xi, yi)

∂θ
, 3.13

vt = β2vt−1 + (1− β2)

(
∂LW ,b(xi, yi)

∂θ

)2

, 3.14

where θt are the parameters W and b for the entire network at a timestep t, mt and
vt are the first and second moments which correspond to the mean and the variance
respectively, β1 and β2 are decay factors for each moment, and are recommended
to be kept at 0.9 and 0.999 [116]. ADAM uses these to weight the learning rate for
each update. This allows each neuron to have a different learning rate, one that is
customized to its previous history. When initialised, mt and vt are zeros and are
biased towards zeros in the early stages of trianing, to counteract these, ADAM
calculates the bias-corrected first and second moments:

m̂t =
mt

1− βt1
3.15

v̂t =
vt

1− βt2
3.16

These can then be used to update the parameters of the network using the
ADAM update rule

θt+1 = θt −
η√
v̂t + ε

m̂t. 3.17

CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

35

Group-wise Automatic Music Transcription

3.2.0 Convolutional Neural Networks

Convolutions neural networks, or CNNs, are a form of constrained artificial neural
network. The neurons in a layer are constrained to seeing a smaller part of the input
at any one time. The weights are shared across the inputs by common filters being
applied via convolution. This constraint causes deep networks to progressively
build up more complex representations of the input as layers are staked together.
CNNs are well suited to computer vision related tasks due to their ability to detect
patterns, and being translational and rotational invariant, akin to human vision.
Partly biologically inspired, CNNs behave similarly to how we believe the human
visual cortex processes inputs, simple cells detect edges, which in turn pass this
information onto complex cells that are only locally connected [117]. This process
is similar to how a CNN processes the input image. Convolutional layers detect
simple patterns in each layer that are compounded into more complex patterns in
each successive layer.

They were originally introduced by LeCun et al. [118] for handwritten digit
recognition, who used a shallow network capable of being trained by backpropaga-
tion at the time. His later work in the same field [104] proposes a deeper network
with 7 layers of tunable parameters to recognise handwritten numbers in 32 by 32
pixel images.

The explosion in the use of CNNs was aided by the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) [119], which is a competition where teams
compete to achieve the best classification accuracy using a set of training and test
data provided by image-net. The competition started in 2010 however it was not
until 2012 that the first CNN entry was seen with AlexNet [120]. This pioneering
work demonstrated that very deep convolutional networks could be trained for the
first time and with astonishing accuracy, their top-5 error at the image-net 2012
competition was 15.4%, compared to the next best entry at 26.2%.

Some other successes since then include GoogLeNet [121], which won the
ILSVRC in 2014 with their 22 layer network. Their network contained multiple
parallel layers, and showed that it was possible to have several convolutional layers
in parallel instead of sequential with its inception module. This paved the way
for many much deeper architectures, and proved that deeper was indeed better
however due to its complexity and depth, it was not as practical as some other
networks. Another entry to the competition that year was VGG-net [122], which
was smaller than GoogLeNet with both less layers and smaller filters, and much
simpler with no complex inception module. This made it practical and transferable
to other areas, therefore it received far more attention than the winner GoogleNet.

One more piece of work in computer vision is described as it has influenced
the design of the network architecture developed in this thesis. He et al. [123]
developed the architecture called res-net. The novelty of this work was in the use

36 CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

Group-wise Automatic Music Transcription

of “residual” connections between layers, which allow the layers to retain part of
their input. This allowed much deeper networks than had been seen before. They
successfully trained a 1000 layer network using these connections and won 1st place
at the ILSVRC 2015 classification competition.

As we saw in Chapter 2 deep learning and more specifically CNNs, have seen suc-
cess in most areas of music transcription, including instrument recognition [93, 94],
frame-level polyphonic music transcription [32] and onset detection [86]. Success
has also been achieved in other areas of music informatics such as genre recogni-
tion [124] and mood classification [125]. For more information on deep learning in
music informatics consult [126].

CNNs are particularly suited to the field of music informatics for the same
reason they are to vision computing: their ability to recognize patterns globally;
being invariant to translation, scaling and rotation. What we define as genres have
different power distributions in their frequency representation, what we hear as
different instruments too have clear timbre profiles. Patterns are seen in all aspects
of music, both locally in the structure of notes and harmony, and globally in the
structure of melody and its progression.

The following sections contain how CNNs are designed and built, and the
constituent building blocks that are necessary for a CNN. The back-propagation
algorithm tailored to CNNs is not covered, however the principle is the same as
above, to find the error term for each neuron (which are called filters for CNNs as
we will see) then to calculate the weight updates for that neuron.

Basic Building Blocks

Two terms are defined, forward pass and backward pass. A forward pass through a
network is the calculation of each of the layers’ activations in order to calculate the
output. The backward pass is the back-propagation of error through the network
in order to calculate the derivative and the weight updates for each neuron.

Convolutional Layers

Convolutional layers are based on the convolution operation outlined in Fig. 3.2.
The neurons in CNNs are three dimensional, and consist of stacked two dimensional
“filters” containing the learned weights and biases. The input and output of
convolutional layers are generally 3 dimensional, with two spatial dimensions and
one for channels. For each channel, the spatial dimensions contain the result of
the convolution operation performed by a single filter. The filters have a much
smaller receptive field than in ANNs, however by stacking convolutional layers the
receptive field of the original input is increased.

CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

37

Group-wise Automatic Music Transcription

Each output channel can be thought of as an activation map for one filter, with
the magnitude at the points in the spatial dimension being a measure of how much
the input correlates with that filter. This is one reason why CNNs are excellent at
classification.

Figure 3.2: The convolution operation is applied to the array on the left with the
3× 3 filter in the centre. In this case the padding is shown in blue, and an example
of the results of one of the multiplications is shown in yellow. To retain the same
dimensionality, generally odd-sized filters are used in conjunction with padding of
the input with zeros, as seen in this example.

As an example, consider the case where the input for the convolutional layer
is an N × N image x. This is analogous to the first layer in a CNN, or when
considering a single channel from a previous layer. For an m×m filter w where
m is odd, the input is padded with (m− 1)/2 zeros in each dimension, resulting
in its size being (N + (m− 1)/2)× (N + (m− 1)/2). For each output neuron the
convolution operation with the input and the filter is expressed as

zlij =
m−1∑
a=0

m−1∑
b=0

wabx(i+a),(j+b). 3.18

Convolutional layers have a number of parameters that are determined either
manually or experimentally and can often be quite different depending on the
application of the network and the position of the layer in the network. These
parameters are:

• The size of the filters, these are usually small for image recognition, but larger
for music applications

• The number of filters in the layer, the more filters the higher the number of
parameters in the network

• The padding, usually the padding is determined by the size of the filter as in
the example in Fig. 3.2, in some cases using no or little padding can be used
to reduce the size of the input in conjunction with pooling layers

38 CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

Group-wise Automatic Music Transcription

• The stride, the stride is the “shift” that the filter moves between adjacent
convolution operations, with a stride of one, the dimensions of the input are
preserved, however the stride can be increased to reduce the size of the input

ReLU

As with ANNs, after convolutional layers an activation function is applied. Previ-
ously the sigmoid function was used, however recently the Rectified Linear Unit
(ReLU) activation function has been used to speed up the training process, as it
helps to avoid the vanishing gradient problem [127].

The ReLU function can be expressed simply as

f(x) =

{
x for x > 0

0 for x ≤ 0
3.19

and can be seen in Fig. 3.3.

Figure 3.3: The ReLU function is displayed above.

An issue that ReLU units can encounter is the “dying ReLU” problem. When
this happens, the majority of the inputs to the unit are negative, meaning there is
an insufficient propagation of the input, and no gradient to allow the network to
recover. A variant of ReLU exists that counters this problem called “leaky ReLU”.
This variant only changes what happens to negative inputs, instead of forcing all
negative inputs to 0, the gradient is drastically reduced. The reformulated ReLU
function is now

f(x) =

{
x for x > 0
x
a

for x ≤ 0
, 3.20

CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

39

Group-wise Automatic Music Transcription

where a is the factor by which the gradient is reduced below zero. This was
originally suggested to be set to a high number, however recently has been shown
to be more effective at a lower value such as 5.5. [128].

Pooling

The outputs of CNNs are generally much smaller than the number of inputs, for
example a spectrogram could have a size of 400 × 50 with the output being 88
note classes. This reduction in the size of the input happens in the pooling layers.
The pooling layers take the maximum or average value within a sliding window.
To reduce the size, the pooling layers use striding. Striding is when the pooling
window is only applied to evenly spaced points in each dimension. Using a value
for the stride larger than 1, the size will always be reduced. This is illustrated
using a similar example as Fig. 3.2 in Fig. 3.4.

Figure 3.4: The max-pool operation is displayed above, with 2× 2 pooling applied
to a 4× 4 input. The colours on correspond to the different pooling regions.

The parameters that can be set for pooling layers include the pooling size, the
stride and the type (either max or average pooling). For this thesis max-pooling
is used, this makes sense as it is the regions of maximal activation (peaks in the
spectral domain) that contain more information about the presence of notes in the
signal.

Batch Normalization

For much deeper networks that have many more parameters, not only are the
data volume requirements and training time much higher, but they are prone to
over-fitting, meaning they can learn to remember the training data, providing a
shortcut to minimizing the cost function. Batch normalization [129] is a method
for adding regularization and also helps to reduce the training time. The inputs

40 CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

Group-wise Automatic Music Transcription

to each layer are normalized across each batch, which consists of several training
examples, therefore making the distribution of the inputs to each layer constant.
This has shown to be highly effective when skip connections are used to learn
residual mappings [123]. The batch normalization function is given as

(BN)γ,β(xi) = γx̂i + β 3.21

Where x̂i is the normalized ith input to the layer, and γ and β are learned
scale and shift parameters. The learned parameters allow the layer to become more
effective during training. Batch normalization is usually applied after activation

Loss Layers

In Neural networks and indeed CNNs, the loss layer is a Layer after the final output
of the network that computes the value of the cost function on the forward pass
through the network, and on the backward pass calculates the derivatives of the
cost function with respect to the input, for each output neuron.

In the previous example, the Euclidean loss was used as a loss function for the
network. However when this is used with the sigmoid non-linearity it leads to a
very slow training when the values of the outputs are close to one, this is simply
because the gradient of the sigmoid activation function plateaus towards one. An
alternative to the Euclidean loss function is the cross-entropy loss function

L(X,Y) = − 1

n

∑
x

∑
j

(yj ln aLj + (1− yj) ln(1− aLj)) 3.22

which is the loss summed across all training examples and all output neurons.
Even when the sigmoid function is not used as an activation function, the

sigmoid function can be applied to the outputs and the cross-entropy used. This,
it turns out, is still a better alternative to the Euclidean loss function. For more
information about the cross-entropy loss function including its derivation and how
the gradient is calculated for use in backpropagation, consult [130].

Other Layers

An alternative to batch normalization for regularization is “Dropout”. Dropout
adds noise into the training of deep networks by randomly setting some of the
inputs to a layer to 0. The number of neurons which are “turned off” is determined
by a manually assigned parameter.

In most convolutional architectures it is common to reduce the size of the input
throughout the convolutional and pooling layers, and to maintain dimensionality
increase the number of filters. When the propagated input has become sufficiently

CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

41

Group-wise Automatic Music Transcription

Layer-Type Filter/Pooling Size

Convolution 3× 3
Pooling 3× 3
Convolution 3× 3
Pooling 3× 3
...

...
Fully Connected 256-1000
Loss Layer Global

Table 3.1: Skeleton architecture for models in [93, 33]

small to reduce the number of parameters required, “fully-connected” layers are
used to connect all of the filter neurons to every neuron in a layer identical to one
seen in an ANN. This connects parts of the input that may not have been due to a
small receptive field. Fully connected layers also convert the feature representation
learned by the network into a abstract representation, helping the model separate
categories with only subtle differences.

3.3 Deep Learning for AMT

3.3.0 Architectures

When considering an architecture to use for frame level transcription, other archi-
tectures that had seen success in AMT tasks, as well as other music informatics
tasks were studied. In general most of the architectures followed the same skeletal
structure as illustrated in table 3.3 [93, 33], with features like small 3× 3 filters
and increasing numbers of filters similar to architectures in the field of vision com-
puting, such as VGG net [122]. Whilst it makes sense to exploit the success seen in
other research areas, and guarantees that the architecture should work reasonably
well, it assumes that the properties of spectrograms displaying different notes are
similar to what might be seen in a computer vision classification task. A better
approach to the problem is to consider the differences between the tasks being
attempted in AMT and those in computer vision, then from this understanding,
adapt architectures that have shown success elsewhere. This is what is attempted
in developing the architecture in this thesis.

There are three notable architectures used specifically for piano transcription
in the literature. The first was introduced by Kelz et al. [32], where he used
convolutional and pooling layers to reduce the size of the input, whilst increasing
the numbers of filters to maintain the dimensionality until the fully connected
layers. Another model designed by Kelz et al. [33], is named AUNet. This is a much

42 CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

Group-wise Automatic Music Transcription

deeper network based on a network used for medical image segmentation. The
advantages of this architecture are that information can skip across layers of the
network, a feature that is employed here in a different fashion. In his network he
concatenates feature maps from earlier layers to the current feature map, which he
claims is beneficial for smoothing in the time dimension. The final architecture to
be mentioned is one available commercially called AnthemScore [131], it is difficult
to compare this architecture directly to any other methods as it has not been
evaluated on any public databases yet, however some points on the architecture
are given in an accompanying blog [131]. The prominent features are the use of
“skip” connections over every other layer, as introduced in Resnet [123], and the
use of separate time and frequency convolutions. One final feature to note is that
no fully connected layers are used. These features are shared by the architecture
used here, but implemented differently, they are as follows

Skip Connections Skip connections are a method of propagating the represen-
tation at one layer in the network xl to another layer xl+n. They were first
proposed in [123], but have since been researched widely. How a single
convolutional “block” uses these connections is illustrated in Fig. 3.5.

Time and Frequency Convolutions In the majority of deep learning applica-
tions two dimensional filters are used as the input dimensions are highly
correlated. For music transcription this is not necessarily the case. For the
piano, each note is produced by a separate mechanism, therefore the pitch
and time dimensions are much less correlated. Other instruments sometimes
exhibit chirps during their onset or offset and so this architecture might not
be as effective.

Therefore convolutions are performed in the time domain in separate layers to
frequency convolutions, also the size of the convolutions in the time domain
is limited, it was found that large filters here lead to a higher training error
than otherwise.

No Fully Connected layers If the goal of deeper convolutional layers is to de-
velop an increasingly higher feature level representation then fully connected
layers are not needed for piano transcription. Excluding onsets, given a piano
transcription, a spectrogram could be constructed that strongly resembles the
original. This is not the case in computer vision when classifying into abstract
categories, i.e. cats do not all look the same, but all middle C notes happen
with partials at similiar frequencies. This is demonstrated in this thesis with
the architecture’s performance in the results section of this Chapter.

CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

43

Group-wise Automatic Music Transcription

Figure 3.5: A block is a section of a ANN or CNN that consists of several layers.
The block in this figure is repeated a total of 10 times in the network architecture,
repeated 5 times consecutively at two points. The label “BN” indicates a batch
normalization layer, and the label “ReLU” indicated a ReLU activation being
applied. The input feeds the channel on he left, and is added to the output
of the left channel after the second BN layer. This figure highlights how skip
connections are used in the network. Where the lines connect the input is added to
the transformed input to give the output of the block. The frequency convolutional
layers are indicated by “Freq. Conv.” Skip 2 connections are used as in [123].

The full architecture is listed in Section 3.3 and visually represented in Fig. 3.6.
The network is trained using multiple note training, similar to [58], and will be
detailed in this section along with how the multiple hyper-parameters are optimized.

3.3.0 Evaluation and Dataset

The output from any frame-level model is an array of note probabilities for the input
frame. After thresholding, which will be covered later, the result is a binary array
indicating the notes detected within that frame. For evaluating the performance of
the network on a given selection of frames with corresponding ground-truth labels,
following [132], the metrics used are:

Precision The precision is a measure of how precise the system is, i.e. what

44 CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

Group-wise Automatic Music Transcription

Figure 3.6: The above figure illustrates the stacked filter maps for each layer of the
network, and the process of obtaining the final output. The labels at the top of the
figure indicate the type of layer convolutional (Conv) or pooling (Pool), see Figure
Section 3.3 for more detail on the architecture. For the vertical convolutions there
are many stacked layers, connected with skip connections which are omitted in this
diagram for simplicity, see Fig. 3.5 for how the frequency convolutional layers are
built.

percentage of the predicted notes are correct, ignoring false negatives

Precision =
ΣT
t=1TP (t)

ΣT
t=1(TP (t) + FP (t))

. 3.23

Recall The recall is a measure of the scope of the system i.e. what percentage of
the ground truth notes were predicted, ignoring false positives

Recall =
ΣT
t=1TP (t)

ΣT
t=1(TP (t) + FN(t))

. 3.24

F1-measure The F1-measure is a combined measure of the precision and recall

F-measure =
2× precision× recall

precision + recall
, 3.25

and is generally used to compare frame-level models, however at the MIREX
competition it is the accuracy (below) that is used.

Accuracy The accuracy is an overall measure of the performance, taking into
account the false positives and false negatives

Accuracy =
ΣT
t=1TP (t)

ΣT
t=1(TP (t) + FP (t) + FN(t))

. 3.26

CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

45

Group-wise Automatic Music Transcription

Layer Parameters Input Size

Time convolution 1× 5 convolution, 10 filters, pad [1, 2] 352× 55× 1× 1
ReLU - 352× 55× 10× 1
Batch normalization - 352× 55× 10× 1
Convolutional block, repeated 5× see below 352× 55× 10× 1
Pooling 2× 5 max-pooling 352× 55× 10× 1
Time convolution 1× 5 convolution, 10 filters, pad [1, 2] 176× 11× 10× 1
ReLU - 176× 11× 10× 1
Batch normalization - 176× 11× 10× 1
Convolutional block, repeated 5× see below 176× 11× 10× 1
Pooling 2× 11 max-pooling 176× 11× 10× 1
Convolution 1× 1, 1 filter 88× 1× 10× 1

Convolutional block

Skip start - -
Frequency convolution 13× 1 convolution, 10 filters -
ReLU 0.3 leak -
Batch normalization - -
Frequency convolution 13× 1 convolution, 10 filters, pad [7, 1] -
ReLU 0.3 leak -
Batch normalization - -
Skip end - -

Table 3.2: The network architecture, and the parameters used throughout is shown
in this figure. The bottom half of the table defines a convolutional block (see
Figure Fig. 3.5) that is repeated a total of 10 times throughout the network. The
start and end of the block are bookended by skip layers, which indicate where the
input to the block is connected to the output of the block, in the skip end layer the
representation at the last skip start layer is added to the current representation.
The column on the right gives the size of the input into that layer (and the size of
the output from the previous layer)

The number of true positives TP , false negatives FN and false positives FP ,
are given as functions of the frame number t out of the total number of frames T .
Therefore their sums are the total number over the entire piece being evaluated.

All of the above metrics are used to give a score between 0 and 1 for a given
transcription, with 1 being a perfect transcription. Whilst the accuracy and F1-
measure perform a similar job of measuring the effect of false positives and negatives,
the F1-measure prefers there to be a similar number of both, and penalizes a system
that gives more false positives than false negatives, whereas the accuracy does not
discriminate between false positives and false negatives.

The evaluation method follows the configuration set-up by Sigtia et al. [34].
They detail two evaluation strategies for automatic piano transcription systems.

46 CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

Group-wise Automatic Music Transcription

In both cases they use the MAPS data base. In the first they split the entire
database into 4 train/test splits, this means that the test data will contain pianos
that have been used to train the systems, they propose this method for specifically
training language models. They devise the second evaluation strategy to be more
realistic, and to evaluate frame-level models. For training they use the 210 tracks
from synthesized pianos, and for evaluation they use the remaining 60 tracks
obtained from Yamaha Disklavier piano recordings. They call this second method
of evaluation “Configuration 2”. It is this method of evaluation that will be used
throughout this thesis.

Of the 210 pieces from synthesized pianos, 30 are used for validation and the
remainder used for training. Frames for classification by the network are sampled
from the spectrograms with a size of 100 ms (55 time-steps) and a hop size of 66
ms (36 time-steps), which corresponds to a 74% overlap. The corresponding labels
are obtained in a similar fashion from the provided MIDI files, selecting the notes
played in the MIDI track at the corresponding times to each frame. Across the
entire test set the total number of false positives, true positives and false negatives
are used to calculate the precision, recall, accuracy and F1-measure using Eq. 3.23
to Eq. 3.26.

3.3.0 Training

Typically deep networks are trained on large amounts of data, data that is usually
too large to store on the RAM memory in its entirety and as such has to be loaded
in for each training batch. One method that can be used to speed up the training
time is by using dynamic training. The idea is that if a smaller subset of data can
be stored on the RAM that can be sufficiently augmented so that it can cover a
much larger volume of the input space, then the network can fabricate its own data
from the smaller subset. This training strategy has several advantages: increased
training speed, by removing the need to continuously transfer data to and from the
RAM the bottleneck is removed and allows much faster training; unlimited data, if
the data subset can be sufficiently and effectively augmented then this overcomes
the issue of having little available data; more adaptable, if the training algorithm is
sophisticated then the function used to fabricate data can adjust the distribution
of data examples generated based on how the network is performing, e.g. if the
network is struggling to detect the note G6 then the network could be altered so
the probability of G6 occurring in each training example is marginally higher. A
reason why dynamic training is well suited to music related problems is because
music in fundamentally generative in nature; if the generation can be mimicked
then so can the recorded data.

However, although dynamic training has its advantages is also suffers from
several problems. Due to the limited size of the data subset, over-fitting is highly

CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

47

Group-wise Automatic Music Transcription

Parameter Value

Bins per octave 48
Minimum Frequency 31 Hz
Maximum Frequency 19 kHz
Gamma 4

Table 3.3: Parameters for the CQT transform used to transform the training
examples.

likely in some cases. In music classification this is less of a problem as the harmonics
are overlapping, however a problem that was found during training is the over-fitting
to artifacts in the upper range of the training data. Another issue is the inability to
mimic the variation in data found in true example cases. This would be a problem
in the case of vision computing or a task where the main difficulty is capturing the
variation in the input. This was not found to be much of an issue here.

The note dataset consists of recordings of a single piano, with each note played
at various dynamics. Each clip is 2 seconds long and converted to mono after
being recorded in stereo at a frame-rate of 44100 Hz. The CQT is applied to
each clip individually using the parameters shown in Table 3.3. This results in a
complex valued array of 445 frequency bins by 1098 time bins, with each time bin
corresponding to 1.8 ms of audio. Due to the nature of the CQT there is spilling
across frequency bins that causes each to affect the majority of the spectrum,
such that each frequency bin has some information about its surrounding context.
More information on the CQT and its properties can be found here [23]. The
CQT is used because of its note translation properties as discussed in Chapter 1.
The higher frequency bins above bin 352 (4927 Hz) are discarded. This means
that there are no second harmonics for the final octave on the piano, however for
the highest notes on the piano it is the fundamental that has the highest power
content. The motivation for doing this is twofold. Firstly there are non-harmonic
artifacts above this frequency that allow the network to over-fit to the training
data, and secondly a cutoff at this frequency means that the range of frequencies
almost matches the range of the fundamental frequencies in the output notes,
therefore little compression of the frequency axis is needed throughout the network.
Specifically 352 bins were used because this is exactly 4 times the number of output
note classes, allowing two pooling layers to map the input frequency range onto
the output note frequency range.

To generate training samples, the network randomizes the number of notes
to be generated, n, up to a maximum of 6 then chooses n random integers from
between 8 and 88 which correspond to notes on the piano, not allowing duplicates.
For each note, the volume is randomized above the lowest 4 volume samples. From

48 CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

Group-wise Automatic Music Transcription

Algorithm 1 The method for generating training samples is outlined. The function
RandInt generates a random integer between the two arguments inclusively. The
function PianoLibrary returns the CQT of a 2 second note sample from the pre-
computed piano library, the argument specifies the MIDI number of the note to
be returned. The function RandomRange returns a random range of 55 CQT
time-steps from the input spectrogram. The output of the algorithm, sample, is
a real-valued array that is then used to train the frame-level transcription model
developed in this thesis.

1: n← RandInt(1, 6)
2: sample← Initialise empty array to hold the output sample
3: i← 0
4: while i <= n do
5: note← RandInt(8, 88)
6: noteRecording ← PianoLibrary(note)
7: sample← sample+ RandomRange(noteRecording)
8: i← i+ 1

9: sample← abs(sample)
10: sample← log(sample/std(sample))
11: sample← sample−mean(sample)

the corresponding CQT clip a 55 frame segment (74 ms) is sampled. The random
samples for each note are summed to simulate a clip of a person playing several
notes of a chord sequentially. The absolute value of the segment is taken, discarding
phase information due to the inability of unaltered deep networks to interpret
complex valued inputs. The segment is then divided by the standard deviation of
all its values. The reason for doing this is make the input to the network more
consistent as it does not have the opportunity to capture the variance in real data.
Next a logarithm is applied to allow much quieter harmonics to be more easily
detected as can be seen in Fig. 3.7. Finally the mean of the sample is subtracted,
this appears to improve the training speed without affecting performance. One
reason for this is potentially due to the randomly initialized weights which are able
to be both positive and negative. This procedure for generating samples is outlined
in Algorithm 1. The described procedure specifies how to generate the input to the
network, the output label for the data is represented by a binary array of length
88, with each value representing the presence of a note in the generated sample.

The network is initialized using random weights sampled from the following
distribution recommended in [133] for when using ReLU activations

1

2
nlV ar[W

l] = 1, 3.27

CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

49

Group-wise Automatic Music Transcription

Figure 3.7: The above figure shows a single generated training example, before the
logarithm is applied (right) and after (left). Higher harmonics of lower notes are
more pronounced after the log has been applied.

where nl is the number of input connections to the layer. The biases are set to 0.
The network is then trained with the ADAM optimizer described earlier in this
chapter. The hyper-parameters are selected based on the parameter optimization
experiments in the following section, with some reasoning why these parameters
worked especially well. The network is trained until there is no or negligible
improvement in the objective function.

In order to maximize the advantages of dynamic training whilst reducing the
limitation of variation in the training data, after the parameters are optimized the
network is trained further on real data from the MAPS database. This is similar
to a method called pretext training in the field of image recognition [134, 134,
135]. Whilst the main aim of pretext training is usually to learn an unsupervised
representation, pretext training is used here to reduce training time and reach a
region of parameter space that will give a lower overall error than otherwise.

The MAPS data is split into train-validation-test splits as in the previous section
and used to continue training the same network that was trained dynamically.

3.3.0 Parameter Optimization

Part of the difficulty in training deep networks lies in hyper-parameter optimization,
with parameters often optimized via trial and improvement. In this section several
hyper-parameter optimization experiments are performed, with the results used to
determine the network parameters. The parameters optimized are:

Filter size The size of the filter used to perform frequency convolutions.

Number of filters per layer A low amount of filters will improve generalization
but limit the model capacity.

50 CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

Group-wise Automatic Music Transcription

Parameter Value

Time filter size 5
Frequency filter size 13
Number of stacked convolutional layers 10
Batch-size 60
Number of filters 10
Frame size 55
Number of epochs 3000

Table 3.4: The network parameters used for training..

Number of layers Increasing the model depth generally always increases the
performance of the network up until a point, so long as there is enough data
to train it. In the case of skip connections, a model with 1000 layers was
trained to demonstrate that it is possible to train much larger networks [123],
however, the 1000 layer network decreased in performance when compared to
their 50 layer network.

Batch-size The batch-size should not effect the final result of the training, however
using smaller batches adds some noise that can help the network reach a
minimum more quickly.

Frame size A smaller frame means less temporal information but potentially a
more precise transcription.

For each of the following parameter experiments the parameter in question is varied
and all other parameters kept as in Table 3.4. The learning rate for all experiments
is kept fixed at 0.01, this value is chosen from experience and is also recommended
to be kept constant by the creators of the ADAM optimizer, Kingma et al. [116].
The value for the L2 regularization term (weight decay) is also not varied and kept
at 0.0005.

The size of the frequency filters used in the convolutional blocks is varied. It
was expected to have a large effect on the networks performance as it affects the
receptive field size. This is confirmed by the results of the experiment in Fig. 3.8.
The performance of the network increases with an increased filter size until it
plateaus at a filter size of 13. For improved training speed and reduced parameters
filters with a size of 13 are selected as the optimum parameter to use.

There are two parts of the network which consist of stacked frequency convolution
blocks as in Fig. 3.5. The number of these stacked blocks is determined by sweeping
across a limited range and recording the network’s performance. The results of this
experiment are shown in Fig. 3.9. Ten layers are selected as the final parameter, as
part of the reason that more layers are effective is due to an increased receptive

CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

51

Group-wise Automatic Music Transcription

Figure 3.8: The filter-size of the frequency convolutions is determined by measuring
the F1-measure on the validation set for a range of filter sizes. A filter size of 13 is
used as the parameter for the network as it gives the best result on the validation
set, and an additional increase would needlessly increase the number of parameters.

field size. As the receptive field will be increased by using larger frequency filters,
a smaller amount of layers will be just as effective.

A parameter that was expected to have a clear effect on the network’s perfor-
mance is the frame size (the number of CQT time-steps taken as the network’s
input), as you would expect that with a smaller frame size the network would have
less information to come to a conclusion about the note in its centre. As with the
other parameters the frame size was varied with the size of the time convolutions
adjusted accordingly, keeping the other parameters constant, see Fig. 3.10. What
was observed is that the frame size has a little effect on the performance of the
network, this was thought to be due to the small receptive field in the time domain
and so the size of the filters in the time convolutional layers was increased drastically
up to 20 for the first layer and 15 for the second. However this led to an increased
training time and a higher training and validation error.

It was found that the optimum frame size was 55 frames, see Fig. 3.10. When
varying the batch-size, see Fig. 3.11, the result that gave the lowest value on
the training set did not perform as well as expected on a second run of the
same experiment. Therefore the batch-size is selected to be 60 as this value has
consistently given better results in other undocumented attempts. The batch-size
changes the number of training examples used to update the weights in each case,
a lower value will increase the amount of noise, but perhaps make it impossible to
train. It also changes the size of the epoch, which affects how the Adam optimizer

52 CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

Group-wise Automatic Music Transcription

Figure 3.9: The total number of convolutional blocks (see Figure Fig. 3.5) used in
the network is varied and the network retrained each time. The F1 score is quoted
on the y axis. There is usually a trade off between training time and depth. In
this case 10 blocks are selected for use in the final architecture.

Figure 3.10: The frame size is varied and the network trained fully in each case.
The best result with a size of 55 is selected.

calculates the consequent updates, this could have been controlled separately by
adjusting the size of the epoch to make the total number of samples per epoch
constant however performing these experiments is time consuming and this was
deemed less important.

As a final experiment the number of filters was varied, see Fig. 3.12, the largest

CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

53

Group-wise Automatic Music Transcription

Figure 3.11: The batch-size is varied between 20 and 100.

Figure 3.12: The number of filters used in each of the convolutional layers was
varied between 5 and 25.

effect this had was on the training time, a large amount of filters drastically slowed
down training, to the point where the experiment with 30 filters was cancelled as
it took over 2 weeks. The number of filters seemed to have very little effect on the
training and validation accuracy compared to the other parameters, for speed of
training on MAPS data, 10 filters were used.

Due to the randomness of initialization, it is difficult to judge the parameters
of the network in a single pass through the parameters, therefore some human

54 CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

Group-wise Automatic Music Transcription

Parameter Value

Frequency filter size 13
Time filter size 5
Number of stacked convolutional layers 10
Batch-size 60
Number of filters 10
Frame size 41
Number of epochs 3000
Learning rate 0.001
β1 0.9
β2 0.999

Table 3.5: The parameters kept constant in the parameter experiments.

judgment was used when selecting the final parameters for the network. Judgment
was used to alter some parameters that were predicted to perform well by these
experiments, but did not perform well in the final parameter selection. The
parameters used for both the dynamic pre-training and then training on the train
set of the MAPS database are show in Table 3.5. If training this network from
scratch, then the parameters would be optimized by training the network with many
different sets of randomized parameters between reasonable values determined as
in the above experiments. The parameters with the best resulting score would then
be selected. This is reported to be a more effective way to optimize the parameters
for deep networks [136].

3.3.0 Output Quantisation

For thresholding, the goal is to set the network’s outputs above a given threshold to
1 and all other outputs to 0. It might be the case that the overall transcription score
can be improved by simply setting this level. Specifically, setting different thresholds
for each note is investigated. One reason this could improve the transcription score
is because of the frequency cutoff above 4927 Hz, the higher notes might have a
smaller activation than the lower notes due to the higher harmonic partials not
being present. This experiment is also useful to inspect the relationship between
precision and recall, as in some cases having a higher precision or recall may be
preferable. The threshold for each note is varied between 0.1 and 0.9, and the
threshold with the highest accuracy is chosen. The values for accuracy against
threshold can be seen in Fig. 3.13, examples are chosen to highlight the range in
optimal thresholds.

The improvement seen using this method was up to 3.5% on the frame level
for previous generations of the network, dependent on the parameters, the results
from the final network can be seen in the next section. The network has a small

CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

55

Group-wise Automatic Music Transcription

Figure 3.13: The threshold varied for each note and evaluated on the MAPS
training data. The optimal threshold that is found is different for each note, this
could be because differences in the timbre of the piano. The note numbers given in
the legend are MIDI numbers.

number of filters compared to other networks of a similar size. A smaller number
of parameters usually leads to better generalization at the cost of losing the ability
to deal with variation in the input. This method for quantising the outputs of the
network works well because each note has a slightly different timbre profile that
the network cannot learn due to the low number of filters and no fully connected
layers, so by thresholding the output, each note can be considered individually.

To inspect the relationship between precision and recall, they are plotted for
middle C on the piano in Fig. 3.14. Whilst this carries no bearing on experiments
in this thesis, it is useful for context, understanding the trade off between higher
precision and recall, for instance if a musically meaningful pruning method or some
physical constants could be applied at the frame level then a much higher recall
would be preferred. Likewise if the outputs from this method were to be combined

56 CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

Group-wise Automatic Music Transcription

Figure 3.14: The precision, recall, F1-measure, and accuracy are plotted for middle
C whilst the threshold is varied. Depending on the application, the precision and
recall could be selected by altering the threshold.

with that of another frame-level method, then a higher precision might be preferred.

3.4 Critical analysis

A CNN is trained for the task of frame-level piano transcription by first training
the network on synthetic chord examples, then training this network on the MAPS
database. The results that follow are calculated using the evaluation set-up termed
“configuration 2”, described in [59]. The epoch with the best score on the validation
portion of the MAPS database is selected for training on real data. The complete
training graph and explanation can be seen in Fig. 3.15. During pre-training the
validation data is taken from the MAPS database; synthetic data that contains
onsets, offsets and is musically meaningful. The validation data used for training

CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

57

Group-wise Automatic Music Transcription

Figure 3.15: The complete training graph for both the pre-training stage and then
the training on the MAPS database, these two stages are separated by a dotted
line.

on the MAPS database is the portion of the MAPS database that is created from
real pianos in the folders “ENSTDkCl” and “ENSTDkAm”. The reason that the
test data is shown here is because there was no selecting of parameters in the final
run of the network and therefore the test data is shown as it better represents the
network’s performance whilst training. After training on real data the network
achieves state of the art results on this database, outperforming the previous best
F1-measure at 0.7060 [32] to 0.7667.

This method of training has worked particularly well, as it is thought to allow
the network to reach a point in parameter space that is closer to a particularly good
local minimum. Evidence of this is shown by experimenting with the entanglement
problem in [33]. The authors find that instead of learning to detect individual notes,
the network is instead learning to detect chords and note combinations. By first
training the note on random notes initially, this forces the network to be unbiased
towards chords and build a more general representation.

The network was trained using the CQT with the magnitude logarithimically
scaled, this is in contrast to [32] where Kelz et al. use a logarithmically scaled FFT
(both magnitude and scale) as the input to their network. He concludes this input
representation is better than the CQT, however, does not experiment with scaling

58 CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

Group-wise Automatic Music Transcription

Model Prec Rec F1

CNN - After Training 0.8048 0.7335 0.7667
CNN - After Thresholding 0.8379 0.6729 0.7462

CNN[32] 0.7450 0.6710 0.7060
Allconv[32] 0.7653 0.6346 0.6938
DNN[32] 0.7551 0.5730 0.6515
RNN[34] - - 0.5767

Table 3.6: The results for the developed frame-level piano transcription system
on the MAPS database. The results are compared to other networks trained on
the same database. This generation of network performed worse when each note’s
threshold is optimized on a hold out set, a part of the MAPS data set kept separate
from the training and validation sets.

of the CQT magnitude. Input representations have not been investigated here so
no conclusions on which is better can be made. It would be surprising if the FFT
outperformed the CQT in this setting as you would expect the CNN to perform
particularly well with distances between adjacent harmonics that are translatable
along the frequency axis (CQT).

Whilst training this network the number of parameters was kept small, this is
partly due to the depth of the network, as a larger number of parameters would
lead to a greatly increased training time, and also because the generalization is
better with fewer parameters. This is also a limiting factor, as deeper and larger
networks are always better, assuming that you have an infinite amount of data
for training. If the amount of training data could be drastically increased then so
could the size of the network.

As the network has no fully connected layers, the ability of the network to easily
scale the outputs is partially reduced due to there being no processing past the
last convolutional layer, this may be why thresholding helped in this instance.

It was observed that the performance of the network trained on generated data
was identical on chords as it was on random notes. This is particularly interesting
as you would expect the network to find it more difficult to separate out notes that
share harmonics than otherwise. Another observation was that the final network
performed worse on generated random notes than it did on generated chords, which
is to be expected as it was only shown musically meaningful training data during
the second stage of the training process.

The next step in building an effective system for piano transcription, would
be to combine the output of this frame-level model with the output of a language
model as in [82]. This note-level model could then be used to experiment with

CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

59

Group-wise Automatic Music Transcription

note-level group-wise music transcription. However this is beyond the scope of this
thesis.

3.5 Summary

This chapter has presented the approach taken in this thesis to the task of AMT.
A CNN architecture was designed to work well with the properties of the CQT.
The model accepts a short time frame from the CQT of the audio, and outputs the
predicted notes. The architecture was trained dynamically initially and then further
trained and evaluated on the MAPS piano database, which is the benchmark used
for piano transcription. The results show that the new architecture developed here
outperformed previous state of the art, in the realistic case where pianos contained
in the training data were not contained within the test data. Currently the model
is limited to the piano, as this is a good test casefor the transcription hypothesis.
However, the model could be extended to work with multiple instruments by
increasing the number of filters and the training data. Although this is not
guaranteed to work as the strength on this model partially comes from its ability
to generalize using a small number of filters. The dynamic training approach used
here could be built upon, as currently it is only used as a pre-training stage before
training on real data. If the variation in the samples generated during the dynamic
training were improved, by modelling the acoustics of multiple pianos for instance,
this should surely improve the model’s ability to generalize to unseen data, and
reduce the need to train on real data. Such an approach could provide a way to
train a much larger model on multiple instruments, without the need for arduous
data collection.

60 CHAPTER 3. DEEP LEARNING FOR AUTOMATIC MUSIC
TRANSCRIPTION

Chapter 4

Multiple Audio Alignment

In order to test the GWAMT hypothesis with frame-wise transcription transcription,
in order to consider information across several pieces of music, the frames passed
to the transcription algorithm must contain the same part of the piece in each
rendition. That is, every frame in one piece of music must have a corresponding
frame in every other piece. This is a problem, as when musicians play/interpret a
piece of music they will likely play every section at differing speeds, loudness and
articulations compared to other musicians, resulting in note events occurring at
different locations in each piece. How to achieve a mapping between several musical
audio samples is the problem of multiple-audio alignment. Throughout this chapter
several methods in the literature for multiple audio alignment are compared, plus
a new variant called iterative multiple audio alignment is proposed. This new
method achieves an average alignment, as opposed to pairwise which achieves
only an alignment to one recording, and is faster than progressive alignment for
a large number of pieces. Whilst this has no direct relevance to the group-wise
transcription hypothesis, it could prove useful for large scale alignment of musical
samples for transcription and other analysis, such as from online resources like
Youtube.

For group-wise transcription, there are two options for aligning features, either
by using the locations of onsets in music to align the piece at the note level, which
for piano at least are easily detectable [87], or by aligning each piece of music at
the frame level. Since we have opted for frame-wise transcription over note-wise
transcription it seems logical to go for the second option, and align features at the
frame level. Another avenue of research could concern alignment and transcription
at the note level. However, this would be less transferable to instruments other
than the piano as their note onsets are harder to detect. Although theoretically,
the onset detection could be improved if there are multiple renditions of the same
piece available, this is beyond the scope of this thesis.

61

Group-wise Automatic Music Transcription

In the field of computer music, there are many applications for the alignment
of music. The chief of these is automatic score following, which is the real-time
alignment of a musical score to played audio. An example of such a musical tool
was created by Artz et al. [137], a program was developed that will track your
position in a piece for classical music, by constant re-evaluation. This solved an
age old problem for musicians called page turning, which is the issue of having to
stop playing your instrument to go from one page of sheet music to another.

In the age of big-data, interacting with large musical collections to find the piece,
or group of pieces that you want can be difficult when you know little about the
music you are looking for, or have only a fragment of audio. Recent work on audio
alignment and audio matching has made navigating through these large collections
more practical for the end-user [138, 139], with programs like “Shazam” [140]
offering to search and find music based on a given musical fragment. The direct
matching of exact fragments is one task, but searching for the original piece of
music given a cover song is more difficult [141].

For score-following, several methods have given good results including hidden
markov models (HMM) [142], conditional random fields [143] and dynamic time
warping (DTW) [144]. HMM are generally preferred for aligning to a score, since
the score gives the information about the order of the hidden states, assuming that
they correspond to regions during a note event.

Early methods for music synchronization came about in the 80’s [145], which
were simplistic methods based on using DTW to match the played notes to the
notes on the score (MIDI). Since then the advent of increased computing power
means that other approaches have become feasible, mid-level audio features have
been used in conjunction with peak-picking in [146], as well as the use of high-level
chroma features in [144]. More recently chroma features have been combined with
onset information to create more robust Decaying Locally-adaptive Normalized
Chroma Onset (DLNCO) features [147], which greatly improve the quality of
alignment. Chroma features have also demonstrated effectiveness in alignment with
MIDI [148].

For comparative studies between performance styles [149], or expressiveness [150],
achieving a precise and accurate alignment is necessary, this can occasionally not be
achieved by simply aligning two recordings in a pair-wise fashion using traditional
methods. A more robust alignment can be achieved using multiple audio alignment,
if multiple renditions of the same piece of music are available, then each rendition
provides another example of how the piece can be realized, therefore increasing the
likelihood that a successful alignment path will be found. This helps to overcome
some of the difficulties suffered by pair-wise alignment including the recording
quality, location, and the playing style variation between musicians.

To achieve an alignment path between multiple pieces of music, it is possible to

62 CHAPTER 4. MULTIPLE AUDIO ALIGNMENT

Group-wise Automatic Music Transcription

extend the work on alignment of two pieces. For DTW this has been attempted
in domains such as gesture recognition [151] first. However, in practice, this is
unfeasible, as the computational requirements scale by a factor of Nk where N is
the number of frames and k the number of pieces to be aligned. It is possible to
reduce the search space for application to multiple audio alignment as achieved by
Wang et al. [35], but even then the number of pieces must be kept small. In order
to use DTW and reduce the computational requirement, the alignment between
all the recordings and one reference recording can be used to calculate a global
alignment [36], this method is called pair-wise alignment. Although pair-wise
alignment achieves a good alignment, it fails to compute the correct alignment in
some cases and does not aim to use each alignment to improve future alignments,
making it unpractical for a large k as the chance of a piece not being aligned
successfully increases linearly. Wang et al. [27] develop two methods of alignment
based on the principle that a consensus must be built upon and improved with
each piece. The first method for alignment is called progressive alignment, this
methos uses DTW to align each piece to a template that grows as more pieces are
added. Progressive alignment achieves state of the art alignment accuracy, and
also improves upon cases that fail to align using traditional methods. Progressive
alignment will be described more thoroughly later in this chapter. Later Wang et
al. [27] applies the same logic to a HMM based alignment method and compares the
two, although as of today progressive alignment is still the best available method
for multiple musical audio alignment.

4.1 Dynamic Time Warping

Originally developed in the 70’s for comparing speech patterns in speech recognition,
dynamic time warping (DTW) is a method for finding the optimal alignment
between two time series. Given series U = u1, u2...um and V = v1, v2...vn, DTW
finds the minimum cost path p = p1, p2...pl where each point pk is an ordered
pair (ik, jk) indicating that element ujk and vjk occur at the same time. The path
is drawn through a two dimensional array with each dimension representing the
sequences U and V , from the corner where p1 = (1, 1) to pl = (m,n). A distance
matrix is calculated between the two sequences where element D(i, j) in the matrix
is the result of calculating a similarity measure between ui and vi. The similarity
measure or distance function d(ui, vj) is small when elements are similar and large
when elements are different, an example of this distance measure can be seen in
Fig. 4.2. The choice of function for calculating the distance between elements is
task dependent. Common functions include the Euclidean distance and the cosine
distance. After a full distance matrix is available, a cost matrix is calculated, where
each element C(i, j) is the sum of the elements from D up to D(i, j) that give the

CHAPTER 4. MULTIPLE AUDIO ALIGNMENT 63

Group-wise Automatic Music Transcription

Figure 4.1: This shows steps that different DTW algorithms can take when they
move from two aligned sequence elements to another two aligned elements. The
dimensions represent the relative position of the potential matched sequence ele-
ments Left: An example of the path constraints used for traditional DTW, the
possible steps are from (-1,0), (-1,-1) or (0,-1) to (0,0) Right: The path constraints
for constrained DTW, all of the steps here must move in the direction of both
sequences.

lowest cost path,

C(i, j) =
l∑

k=1

d(ik, jk), 4.1

where l is the length of the minimum cost path up to that point. The path mono-
tonically increases and is continuous, with subsequent path elements constrained
by the step sizes. Typically the step size is limited to within one sequence element,
however, by altering the step size [152] the path can be forced to have more desirable
properties, such as being not allowing multiple elements in one sequence to align to
one in the other. This comes at the cost of having some elements that do not have
directly corresponding elements in the other sequence. The step size is the “jump”
that the path can take, see Fig. 4.1, which shows the typical step-size and how it
can be altered. The search space can also be reduced with classic methods such as
the Sakoe and Chiba band [153], which constrains the path to lie within a distance
from the diagonal. The cost matrix is determined from the distance matrix using
dynamic programming, by recursively calculating

64 CHAPTER 4. MULTIPLE AUDIO ALIGNMENT

Group-wise Automatic Music Transcription

Figure 4.2: The distance matrix between two sequences, where blue indicates a
small distance and yellow a large distance. The optimum path through the distance
matrix is shown in red. The sequences used to create this figure are sampled from
two renditions of the same piece of music.

C(i, j) = D(i, j) + min


w1C(i, j − 1)

w2C(i− 1, j)

w3C(i− 1, j − 1)

4.2

for all elements (i, j)ε(m,n), where w1, w2, w3 are the relative weights for each
direction.

The cost matrix is initialized by setting C(i, 1) =
∑m

i=1D(i, 1) and C(1, j) =∑n
j=1D(1, j). To obtain the lowest cost path it is then simply a matter of tracing

the cost backwards from the last element C(m,n), by using the recursion

pk−1 = min


C(pk,1 − 1, pk,2) set pk−1 = (pk,1 − 1, pk,2)

C(pk,1, pk,2 − 1) set pk−1 = (pk,1, pk,2 − 1)

C(pk,1 − 1, pk,2 − 1) set pk−1 = (pk,1, pk,2 − 1)

4.3

An example of a calculated cost matrix can be seen in Fig. 4.3. Later in
Section 4.2.3, the step size is altered for part of the iterative alignment method,
the recursion used in this case for calculating the cost matrix and then the path is

CHAPTER 4. MULTIPLE AUDIO ALIGNMENT 65

Group-wise Automatic Music Transcription

Figure 4.3: A cost matrix found using Eq. 4.4 after calculating the distance matrix,
blue indicates a low cost path, and yellow a high cost path. The optimum path is
shown in red, found using Eq. 4.5.

C(i, j) = min



C(i− 1, j − 1) +D(i, j)

C(i− 2, j − 1) +D(i− 1, j) +D(i, j)

C(i− 1, j − 2) +D(i, j − 1) +D(i, j)

C(i− 3, j − 1) +D(i− 2, j) +D(i− 1, j) +D(i, j)

C(i− 1, j − 3) +D(i, j − 1) +D(i, j − 2) +D(i, j)

4.4

pk−1 = min



C(ik − 1, jk − 1) set pk−1 = (ik − 1, jk − 1)

C(ik − 2, jk − 1) set pk−1 = [(ik − 1, jk), (ik − 2, jk − 1)]

C(ik − 3, jk − 1) set pk−1 = [(ik − 1, jk), (ik − 2, jk), (ik − 3, jk − 1)]

C(ik − 1, jk − 2) set pk−1 = [(ik, jk − 1), (ik − 1, jk − 2)]

C(ik − 1, jk − 3) set pk−1 = [(ik, jk − 1), (ik, jk − 3), (ik − 1, jk − 3)]

4.5
Sakoe et al. [153] showed that weighting the diagonals paths with the same cost

as the horizontal and vertical paths leads the final path to prefer the diagonals,
as such they propose a weight for the diagonal direction of w = 2. However, each
of the path directions can be weighted differently to achieve a path that prefers
certain directions. The directional weights are set to w1 = 1.5, w2 = 1.5, w3 = 2

66 CHAPTER 4. MULTIPLE AUDIO ALIGNMENT

Group-wise Automatic Music Transcription

Figure 4.4: An example of the CENS features used for alignment. This is the
CENS representation for a chromatic scale spanning two octaves. The vertical axis
is circular, and if the captured fundamental frequency moves up from the final bin,
it appears in the lowest bin.

as a weight of 2 in the diagonal is too strong, a diagonal path is preferable if it is
available.

For aligning audio using DTW, CENS features are used following [26, 27, 147].
CENS features are a variant of chroma features which were mentioned in the
introduction, they have 12 features per time step with each feature corresponding
to the total harmonic content of each of the 12 notes on the western music scale.
Short-time statistics are also used in producing the CENS features, in order to
mitigate the effect of noise and instantaneous harmonic anomalies such as onsets. An
example of this feature representation can be seen in Fig. 4.4. The two advantages
of using this representation are that firstly it is small, which is necessary if DTW is
to be computationally efficient, and also that they are robust to timbre changes and
dynamic variation. The CENS features are calculated using the toolbox provided
in [154]. For computing the distances between the CENS features the cosine
distance is used as in [26, 27], which is given as

d(A,B) = 1−
∑12

i=1AiBi√∑12
i=1A

2
i

√∑12
i=1B

2
i

4.6

where A and B are the 12 dimensional feature vectors being compared. An example
of what the distance matrix might look like between two pieces can be seen in
Fig. 4.4. It was found that this distance metric is more effective when taken over a

CHAPTER 4. MULTIPLE AUDIO ALIGNMENT 67

Group-wise Automatic Music Transcription

short time window, perhaps as it improves the continuity of the final path, as it is
less likely to deviate down shortcuts that provide a slight cost reduction due to
random chance. This adapted distance is given as

d(A,B) = 1−
∑w

j=−w
∑12

i=1Ai,jBi,j√∑w
j=−w

∑12
i=1A

2
i,j

√∑w
j=−w

∑12
i=1B

2
i,j

4.7

where w is the width of the window and j is the time index.
The final traced out path provides a mapping from each element of U to each

element of V , and can be used as a lookup table to see where a location in one
audio file corresponds to the other. This bi-directional mapping can be used to
warp either sequence to the same length as the other, where each frame in both
pieces are the corresponding aligned frames. The process of stretching the original
sequences will be explored more later in this chapter.

4.1.0 Multi-scale Dynamic Time Warping

Dynamic time warping will always find the optimum alignment between two
sequences for a given distance function. However, it is computationally expensive
for long sequences, for two sequences of length N , the total number of calculations
required is proportional to N ×N . As mentioned previously, this can be reduced
by using path constraints such as the Sakoe Chiba band [153]. However, applying
a hard constraint comes with the risk of the path not being accurate if the ground
truth path falls outside of the confined region. For example, in the case of aligning
musical sequences some pieces are highly open to interpretation, and as such would
not necessarily fall within the Sakoe Chiba band. More efficient adaptations of DTW
exist that keep the computational cost small, whilst still achieving an excellent
alignment, the best example of this is multi-scale DTW (MSDTW), developed
originally in [155]. The idea behind this is to downsample the original sequences to
a much coarser resolution, where calculating the entire cost matrix is feasible, then
once a path has been found it can be iteratively projected onto a finer resolution
of the sequences, see Fig. 4.5. By using this method, only distance cells within
a certain distance of the projected path need calculating. For aligning musical
sequences this works well due to their temporal continuity [156], when a piece is
downsampled, the remaining features are still representative of the original piece.

For any piece to be aligned, the CENS features are calculated with a time
resolution of 20 ms. The features are down-sampled using decimation rather than
average as averaging may cause temporal ambiguity. The down-sampling factors
are 50,25 and 5, which results in resolutions of 1s, 500 ms and 100 ms respectively.
These down-sampling steps are called stage 1, 2 and 3 respectively. The final stage,
Stage 4, uses the maximum resolution CENS features at 20 ms. In order to ensure

68 CHAPTER 4. MULTIPLE AUDIO ALIGNMENT

Group-wise Automatic Music Transcription

Stage
Number of Elementary

Operations for MSDTW
Number of Elementary
Operations for DTW

1 67334 -
2 32226 -
3 209421 -
4 1184324 168335000

Total 1493305 168335000

Table 4.1: An example of the number of elementary operations required for finding
the optimal alignment between two musical performances. MSDTW gives a speed
up of ≈ 100×.

that there is not a dimension mismatch when projecting the path to a higher
resolution, the end of the features are padded with zeros before down-sampling,
until the length is divisible by 50. To demonstrate the increase in speed from
traditional DTW the number of calculations at each stage in the MSDTW process
are tabulated in Table 4.1, comparing the total number of calculations needed
to achieve an alignment in each case. When projecting the path onto higher
resolutions, the number of distance elements calculated are determined by the
width of the path for each projection. Widths of 15, 30 and 30 for stages 2, 3 and
4 are used, following the recommendation by Salvador et al.[155], see Fig. 4.5.

4.2 Multiple Audio Alignment

This section describes the alignment method used to test the group-wise transcrip-
tion hypothesis, pairwise alignment. Another method for multiple audio alignment,
progressive alignment, will be detailed and one final method of alignment, iter-
ative alignment proposed. Throughout all of the methods, CENS features are
used as the feature representation for alignment. The path weights are set to
w1 = 1.5, w2 = 1.5, w3 = 2.

4.2.0 Pairwise Alignment

The principle of pairwise alignment is that if two pieces can be aligned, then all the
pieces can be aligned to one piece. This method was first implemented by Dixon et
al. [36], where a downloadable toolbox was created that will align several pieces
of music to one track. A slightly different variant of MSDTW which is based on
online-DTW was used. In pair-wise alignment, one track is chosen randomly for
the reference track, then all pieces are aligned to that track using MSDTW. The

CHAPTER 4. MULTIPLE AUDIO ALIGNMENT 69

Group-wise Automatic Music Transcription

Figure 4.5: The 4 stages in MSDTW for CENS features, clockwise from the top
left the resolutions are: 1 s, 50 ms, 100 ms, 20 ms. The path that is projected onto
the next stage is shown in red. The width of the band is so small in the final stage
that the cells where the distance has been calculated are not visble. CENS features
from two renditions of the same piece of music were used to generate these plots.
The x-axis represents sequence elements.

features used can be either CENS features or DLNCO features which are similar to
CENS but use onset information. DeBruyn et al. [157] found that a combination
of the two features was found to work best. However, for simplicity only CENS
are used here. For an outline of this method, see the pseudo-code provided in
Algorithm 2.

This is a good method and is surprisingly effective. However, it suffers from
several systematic errors. If the piece chosen to be the reference track is drastically
different to the remaining recordings then the alignment might suffer, it also cannot
use information contained in other recordings that might aid the group alignment.
One variant of this method might include calculating the pairwise alignments
between all of the recordings, then by using a tailored cost function the piece best
suited to being the reference piece can be chosen.

When using this method, the cosine distance with a window size of 5 frames is
used as the distance function. Instead of comparing individual sequence elements

70 CHAPTER 4. MULTIPLE AUDIO ALIGNMENT

Group-wise Automatic Music Transcription

with elements in the other sequence, several sequence elements are compared at
each DTW step. The cosine distance function was used to compare each window
of elements. Using a time window to improve the alignment quality is novel for
pairwise alignment, and although not experimented with in this thesis in great
depth, it was found practically to improve the alignment quality and robustness.

Algorithm 2 The pairwise alignment method is described. The Rand function
returns a random track from the input list of tracks. The CENS function computes
and returns the CENS features for the input track. The MSDTW function
computes an alignment path between the two input CENS features using the
MSDTW method. The append function appends the second argument to the list
provided in the first argument. The whole algorithm returns a list of alignment
paths between one track and a randomly selected reference track.

1: procedure Pairwise Alignment
2: n← Number of tracks
3: tracks← List of the tracks to be aligned
4: ref ← Rand(tracks)
5: to align← tracks− ref
6: ref cens← CENS(ref)
7: paths← An empty list
8: i← 1
9: while i < n do

10: track ← to align[i]
11: track cens← CENS(track)
12: path←MSDTW(ref cens, track cens)
13: paths← append(paths, path)
14: i← i+ 1

15: return paths

4.2.0 Progressive Alignment

At the fundamental level, multiple audio alignment can be considered analogous to
multiple sequence alignment, which is a well-studied field in bio-informatics. Wang
et al. [27] make this comparison, and apply some of the methods for alignment to
musical performances. Specifically they compare two classes of method, progressive
alignment and probabilistic profile methods. They conclude that progressive
alignment is both faster and more effective at alignment that any other methods.
As its name suggests, instead of aligning all of the pieces simultaneously, each piece
is aligned individually. A template is built up, which contains all of the sequences
that have been aligned up to that point. However the sequences are stretched, so

CHAPTER 4. MULTIPLE AUDIO ALIGNMENT 71

Group-wise Automatic Music Transcription

that they each contain the same number of elements, with each element having a
corresponding element in the other sequence.

The method for progressive alignment is now explained, for more detail consult
its origin [27]. To aid the explanation, see the pseudo-code of the method given
in Algorithm 3. To start with, assume that there are K renditions to be aligned,
with k indicating any piece up to K. Each of the renditions are feature sequences
denoted as Xk = (xk1, ..., x

k
N) where each sequence element exists in a suitable

feature space xkn ∈ F . The template structure that grows as pieces are added is
denoted as Z and initially is set as X1. Afterwards the other sequences are aligned
to Z, updating Z in each case. At any point in this iteration the sequence being
aligned to Z is Xk, and the sequence Z = (z1, ..., zM) where M is the length of the
template. Each element of Z contains the aligned feature vectors for one timestep
from pieces already added to the template. As in the section on DTW, when
warping one sequence to map linearly onto another, elements that are mapped to
multiple positions in the other piece are usually repeated. However, when pieces
are stretched to be added to the template this would insert temporal ambiguity
and as such repeated elements are skipped and replaced with a gap symbol G.

When calculating an alignment path p between the next piece to be added
Xk and Z, a modified version of MSDTW is used to calculate a distance matrix
between Xk and every piece in Z. When a gap symbol is encountered in calculating
the distance matrices, that distance element is replaced with a constant termed the
gap penalty C. The result of calculating these distances is k − 1 matrices Dr, one
for each piece in Z. To combine the distance elements between Xk and each piece
in Z, Wang et al. [27] attempted several strategies but found the most effective to
be a simple average:

D(m,n) =
1

k − 1

k−1∑
r=1

Dr(m,n). 4.8

Once a distance matrix has been determined, the cost matrix can be calculated
by using the recursion in Eq. 4.4, and then the alignment path p using the second
recursion in Eq. 4.5. It is the alignment path that is used to stretch both Xk and
Z, so that each sequence element become aligned. The corresponding sequence
elements are then combined and becomes a part of a single element zl in Z. Both
sequences are stretched so that they are the same length, gap symbols are inserted
where any element is aligned to multiple locations in the other sequence. Specifically
the gap symbols are inserted at all the locations, except where the cost between
the repeated element and the corresponding element in the other sequence is lowest.
Now this will be defined more formally. Firstly, the following functions E1 and E2

72 CHAPTER 4. MULTIPLE AUDIO ALIGNMENT

Group-wise Automatic Music Transcription

can be used to calculate the positions of the lowest cost elements:

E1(m) := argmin
{ñ|(m,ñ)εp}

C(m, ñ), 4.9

E2(n) := argmin
{m̃|(m̃,n)εp}

C(m̃, n), 4.10

Then the stretching of each new element z̃l is given as

z̃l =


(z1ml

, ..., zk−1ml
, xknl

), if (ml, nl) = E1(ml) = E2(nl)

(z1ml
, ..., zk−1ml

, G), if (ml, nl) 6= E2(nl)

(G, ..., G, xknl
), if (ml, nl) 6= E1(ml)

4.11

This method of inserting gap symbols where repeated elements occur was found to
improve the alignment quality, as it removes any ambiguity about the location of a
particular element. This means there will always be a one to one mapping from
the original features to the stretched features. The best value for the gap penalty
was determined experimentally in [27] to be 3.6.

4.2.0 Iterative Alignment

There were difficulties in implementing the method for progressive alignment
described above, mainly, the features used were a combination of DLNCO features
and CENS features. The CENS features were calculated using a freely available
toolbox, however, no such resource is available for DLNCO features, and so due to
time limitations these were not implemented. At this time another method for the
group alignment of audio was developed, called iterative alignment. This method
is similar in principle to the method used by Sidorov et al. [5] for aligning three
dimensional textured meshes of a set of faces. The meshes are first averaged which
gives a blurred combination of all the meshes. Then the mapping to the mean are
warped to reduce a defined cost function. This method treats the problem as an
optimization problem. This is different to the approach here. When applying this
to audio, 0.2 s CENS features for each piece are initially averaged in an attempt to
give a combined feature representation, then the pieces are iteratively aligned to
the combined average, stretched according to the alignment path, and averaged
to create the combined features for use in the next iteration. However, what was
observed is that after stretching each piece and averaging, the features from each
individual piece were still distinct. This would allow each piece to align to a single
prominent piece in the combined CENS features. This is a problem as the aim of
group-wise alignment is to align feature sequences from all of the pieces collectively,
using all the information available. To remedy this the CENS features are blurred
in the time domain before alignment in each iteration. This blurring helps to

CHAPTER 4. MULTIPLE AUDIO ALIGNMENT 73

Group-wise Automatic Music Transcription

Algorithm 3 Below is an outline of how the progressive alignment method aligns
multiple pieces. The function CENS computes the CENS features for the input
sequences and returns them in an indexed list. The MSDTW function uses a
modified version of MSDTW to calculate the distance matrix between two sequences.
The function append returns a list containing the second argument appended to
the list in the first argument. The average function computes an average over the
input list of matrices, as in Eq. 4.8. The cost function computes the cost matrix
for the input distance matrix, see Eq. 4.4. The traceback function computes the
lowest cost path through the input cost matrix, and hence the alignment path
between the respective sequences, see Eq. 4.5. The stretch function stretches the
input sequence based on the alignment path provided, inserting gap symbols when
required, see Eq. 4.12. The output is a list of all of the aligned sequences.

1: procedure Progressive Alignment
2: tracks← Pieces to be aligned
3: n← Number of pieces
4: X ← CENS(tracks)
5: Z ← X1

6: i← 2
7: while i ≤ n do
8: j ← 1
9: l← Current length of Z

10: distances← Empty List
11: while j ≤ l do
12: distanceMatix←MSDTW(Zj, X i)
13: distances← append(distances, distanceMatrix)
14: j ← j + 1

15: averageDist← average(distances)
16: costMatrix← cost(averageDist)
17: path← traceback(costMatrix)
18: Zstretch ← stretch(Z, path)
19: Xstretch ← stretch(X i, path
20: Zstretch ← append(Zstretch, Xstretch)
21: Z ← Zstretch
22: i← i+ 1

23: return Z

74 CHAPTER 4. MULTIPLE AUDIO ALIGNMENT

Group-wise Automatic Music Transcription

remove the individuality of each piece in the combined feature representation. Even
then, in some cases, this caused the alignment to prefer to align to an individual
recording and not find a combined average. So as a final step to aid this, a coarse
alignment is computed by constraining the DTW path as in Fig. 4.1. This stops
the DTW path from taking horizontal and vertical paths through the cost matrix,
and ensures continuity. This was successful in producing a group alignment as
shown in Fig. 4.10.

An outline of the iterative alignment method is now given in more detail, for
a higher level approach see the pseudo-code provided in Algorithm 4. Assume
that there are N pieces requiring alignment Xk, each of length Sk. Initially the
pieces are mapped linearly onto the longest piece, this mapping is defined as
y = Sk

Smax
x, by sampling from this mapping at integer position and rounding, a

discrete frame by frame correspondence is achieved, called an alignment path
p = ((m1, n1), ..., (mL, nL). Each piece is now stretched to the length of the longest
piece, using the alignment paths

Xk = (xn1, xn2, ...xnl), 4.12

and then combined by averaging to give Z1 the result after the first iteration. For
the first three iterations, constrained DTW is used.

Z1 =
1

N

N∑
k=1

Xk. 4.13

The combined feature representation Z l is then padded with zeros prior to convolu-
tion to maintain its dimensionality. The convolution is with a Hann window which
blurs the features in the time direction

ZI = ZI ∗ hann(nI). 4.14

The size of the Hann window nI is determined by the current iteration I as in
Table 4.2. A blurry average of all the pieces to be aligned is now obtained, and the
iterative procedure can begin. Each piece is aligned to ZI using MSDTW with a
constrained path for the first 3 iterations, and without a constrained path afterwards.
This gives an alignment path for each piece pk, which is used to stretch the original
CENS features for each piece as in Eq. 4.12, which are averaged as in Eq. 4.13 to give
ZI for the next iteration. This process is repeated 25 times with the blur reduced
on each iteration. The blur sizes listed in Table 4.2 were determined based on what
worked, and could be further optimised by being determined experimentally. The
size of the blur could even be determined dynamically depending on the CENS
variation of the pieces being aligned. In any case there is much room for further
optimization of this method, including in the final stretching of pieces, if the

CHAPTER 4. MULTIPLE AUDIO ALIGNMENT 75

Group-wise Automatic Music Transcription

Iteration, I 1 2 3 4 5 6 7 8 9 10

Width 4000 3000 2300 1900 1700 1500 1300 1100 1000 900

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

800 700 600 500 400 350 300 250 200 100 50 30 10 2 0

Table 4.2: The size of the Hann window used for blurring on each iteration of the
iterative alignment method.

position of the optimum match between elements was factored into the process in
a similar way to the use of gap penalties in progressive alignment, then this could
improve the accuracy.

An issue with this method in its current state is that the paths of all the pieces
to the mean will sometimes all travel horizontally, giving no information about
the group-alignment, and making the alignment more difficult on future iterations.
The problem is caused by the high number of iterations allowing minor errors,
where frames in one piece are matched to multiple frames in the other piece, to
stretch. Without tackling the root of the problem in the methodology, the paths
are pruned after the method is complete by removing repeated sections in the path.
Other attempts to solve this problem included varying parameters such as the
step-direction weights, and the number of iterations that constrained DTW was
used for, however, these had little effect. Should this problem be solved then it
should improve the accuracy of this method.

A large number of iterations are used to ensure accuracy, however, for a much
larger N far few iterations would be needed. An advantage of this method is that
the accuracy can be increased by increasing the size of the template that all the
pieces are aligned to initially, the effect of this would be an increased path resolution.
The gap penalty used for the progressive method could also be incorporated into
this method.

Initially the features were averaged as chroma features, prior to the short time
statistics being calculated for the CENS features. However, this worsened the
alignment, but perhaps made it more robust. This could potentially be used during
the coarse alignment stage, but the sharpness of each of the piece’s features is
needed in the later stages to give a high accuracy.

4.2.0 Evaluation

When deciding on how to evaluate and compare the three alignment methods,
methods for both qualitatively and quantitatively comparing and checking the
alignments are useful. The reason why qualitative evaluation is useful is twofold,

76 CHAPTER 4. MULTIPLE AUDIO ALIGNMENT

Group-wise Automatic Music Transcription

Algorithm 4 This outlines the procedure for performing an iterative alignment of
multiple pieces. The CENS function computes the CENS features for each piece.
The longestStretch function stretches each of the input CENS features to be the
length of the longest one, see Eq. 4.12. The function HannBlur applies the Hann
windowing function to the input CENS features, see Eq. 4.14. The first argument
is the CENS feature to apply the blurring to and the second argument is the
iteration number which determines the window size, see Table 4.2. The MSDTW
function aligns the two input sequences and returns the alignment path. The
stretch function stretches the sequence provided in the first argument according
to the alignment path in the second argument. The output of the stretch function
is always the same length as the longest sequence that was used when calculating
the alignment path.

1: procedure Iterative Alignment
2: n← Number of pieces
3: tracks← Pieces of be aligned
4: X ← CENS(tracks)
5: Xstretch ← longestStretch(X)
6: i← 1
7: while i ≤ 25 do
8: Z ← average(Xstretch)
9: Zblurred ← HannBlur(Z, i)

10: k ← 1
11: while k ≤ n do
12: path←MSDTW(Zblurred, X

k)
13: Xk

stretch ← stretch(Xk, path)
14: k ← k + 1

15: i← i+ 1

16: return Xstretch

in the case of when accurate onset information is not available for quantitative
analysis, qualitative analysis can confirm that an alignment has been found, it is
also useful for identifying features of the alignment method that may be undesirable,
for example the bunching of note events in the finalized alignment. A phase vocoder
was used for qualitative analysis, where alignment paths between the recordings
are used to stretch the raw audio. The stretched raw audio from each of the pieces
is summed to produce a chorus effect. The alignment can then be manually verified
by listening to the chorus.

As highlighted previously, accurate onset information is difficult to obtain in
many cases. There are projects such as the mazurka project [158] where onsets have
been manually labelled in renditions of Chopin mazurkas played by famous pianists.

CHAPTER 4. MULTIPLE AUDIO ALIGNMENT 77

Group-wise Automatic Music Transcription

They give explicit information about where to obtain the correct recordings. Ideally
these pieces and onset information would be used as this would allow a direct
comparison to result in the literature [27], however, obtaining the recordings is time
consuming and expensive, and so a different approach for quantitative evaluation
was used. Working the problem backwards, if onset information for a specific piece
of music is known, renditions could be generated that try to mimic the playing
style variations of professional pianists. This is what was done, from a MIDI file
of the piece to be used for alignment a synthesizer in MATLAB is used to create
“renditions” of that piece. The global and local tempo and dynamic range are varied
and the dynamics, relative onset positions and durations, reverb, noise are slightly
randomized, the minute chance to play a completely incorrect note is also added.

Figure 4.6: Example tempo graphs that show how the tempo varies over the
generated renditions.

The renditions are generated from an initial MIDI file containing the onset time,
duration, velocity and pitch. The following features of the MIDI track are adjusted
for each rendition to be generated:

78 CHAPTER 4. MULTIPLE AUDIO ALIGNMENT

Group-wise Automatic Music Transcription

Piece Length The relative piece length is randomized by sampling from a normal
deviation with a mean of 1 and a standard deviation of 0.15, leading to a
range of between 0.775 — 1.225.

Local Tempo The change to the local tempo of the piece is modelled using
a random walk that is updated at each time step. The random walk for
the entire piece is fitted by a polynomial function, and centered around 1
so the average tempo is still the same. Some examples of these random
tempos can be seen in Fig. 4.6. This method of adjusting the local tempo
has not attempted to take into account how the tempo might vary between
performers, only that any relative tempo change from the MIDI file is likely
to be continuous, and not impulsive. This might not necessarily be true, but
provides enough variation to test the alignment methods in this chapter.

Onset Deviation Differences in local tempo changes the time between the onsets,
however, does not add more random effects that are not tempo dependent.
Two examples of this are notes in a chord not occurring exactly simultaneously
or rests that are extended at a cost to the length of the proceeding note.
These are simulated by adding an additional value to the note onset sampled
from a normal distribution centered around zero, with the standard deviation
determined from a uniform distribution between 0 and 0.007. The reason the
standard deviation is varied is to try and account for different styles, as some
pianists might add more variation than others and/or be at a different skill
level.

Dynamic range The dynamic range is related to the expressiveness of the piece,
and as such is randomly varied for each rendition. The relative dynamic
range is varied uniformly between 0.4 and 1.4.

Impulse volume changes The volume of each note has a 5% chance to be shifted
up or down by one volume level (the volume level corresponds to the number
of piano samples for that particular note). This additional randomness
is applied to correspond with the pianist occasionally deviating from the
dynamic contours of the piece. It also makes it more difficult for the DTW
based methods to find an alignment as the value of the distance metric
between the features of the same note played at a different volume will be
larger. Therefore an instantaneous change in the volume might make the
DTW determined path deviate around the impulses.

Incorrect notes It is unlikely that a professional pianist will make an error,
however by adding randomly incorrect notes, it will make the testing procedure
more robust. Randomly incorrect notes are played 0.1% of the time (Roughly
one or two notes per piece).

CHAPTER 4. MULTIPLE AUDIO ALIGNMENT 79

Group-wise Automatic Music Transcription

Figure 4.7: Two examples of the generated renditions, they have similar topogra-
phies, however, are different enough to test the alignment methods.

The above procedure used to generate renditions from a MIDI track has been
developed based on what seems reasonable. Ideally the procedure could be more
methodically determined by analyzing the statistics of MIDI files from real record-
ings and pianists. However, the primary goal of producing these renditions was to
add enough variation to ensure the testing procedure was robust, for which the
above method sufficed.

After the renditions have been aligned by the method in question, the onsets are
warped according to the alignment paths. For each onset, the pairwise differences
in onset time are calculated for all of the renditions. Averaging across all of the
pieces and onsets gives an overall score called the average note onset deviation.
This method of evaluation provides a good way to explicitly compare alignment
methods, however, it means that no comparison to a baseline in the literature can
be calculated. For a comparison of the CENS features from two of these generated
renditions, see Fig. 4.7.

To compare the effectiveness of each alignment method 10 “renditions” are
generated using the method described above, and then their average note onset
deviation for each alignment method are compared for an increasing number of
pieces. A graph showing the change in alignment accuracy with an increasing
number of pieces for each of the methods can be seen in Fig. 4.8. Generally,
iterative alignment is slightly worse than pairwise and progressive alignment gets
progressively worse as the number of pieces being aligned increases, this is likely
due to the implementation and not the method itself. Histogram plots to show the
frequency of errors can be seen in Fig. 4.9. The method for pair-wise alignment
was better in all but one case where iterative alignment worked better. Why
progressive alignment did not work as well as expected is unclear, there are perhaps
some subtleties in its implementation that were missed, or perhaps by using
randomly generated renditions the problem has been made harder than by using

80 CHAPTER 4. MULTIPLE AUDIO ALIGNMENT

Group-wise Automatic Music Transcription

Figure 4.8: Change in alignment accuracy for the different methods with an
increasing number of pieces.

Figure 4.9: Histogram plots to show the onset deviation error frequency between
each of the recordings for the pairwise (right) and iterative (left) alignment methods.

CHAPTER 4. MULTIPLE AUDIO ALIGNMENT 81

Group-wise Automatic Music Transcription

Figure 4.10: The onset locations for each of the generated renditions are shown
before and after alignment. The thick yellow path in both figures shows the final
alignment path. The figure on the right is pairwise alignment, and the figure on
the left is iterative alignment.

real recordings. This might lead to excessive gap symbols being inserted if the
variation in the length or the local tempo of the pieces is too large, although this is
unlikely to be the case, as the difference between the shortest recording at 4:17 and
the longest at 5:39 is only just over a minute. The reason why iterative alignment
did not work as well as pairwise alignment is likely because the pieces are not being
directly aligned to one another, they are being aligned to an average, which leads
to slightly less exact locations of features and hence a higher error. However, by
doing this it could make the alignment more robust to errors that can occur in
pairwise alignment with a large number of pieces, although more experimentation
would be required to confirm this. Given that progressive alignment is not working
to a high enough standard, and that iterative alignment did not perform as well as
pairwise alignment for a small number of pieces, pairwise alignment is used for the
experiments in the next chapter on group-wise music transcription.

The onsets of pieces both before and after alignment are plotted for the pairwise
and iterative methods in Fig. 4.10. For the pairwise method it is clear to see that
it has aligned to a single reference track, and in the case of iterative alignment it
appears to have found an “average” alignment path through the original onsets
that is more representative of the collection of pieces.

82 CHAPTER 4. MULTIPLE AUDIO ALIGNMENT

Chapter 5

Group-wise Automatic Music Tran-
scription (GWAMT)

The work in the preceding chapters has focused on developing methods that can
be used to test the GWAMT hypothesis. Chapter 3 on frame-wise transcription
outlines the system for performing automatic transcription which is a CNN that
takes a segment of the CQT as input, and outputs the likelihood of a note being
present in the frame. This system was trained on a combination of synthetic,
generated data and real data taken from the MAPS database. As the network has a
low number of parameters, it is unable to learn note specific filters, so note specific
thresholds were learned on the MAPS database. This however did not perform
as well on the final generation of the network as it did previously. In Chapter 2,
several methods for the group alignment of audio using DTW are outlined and
compared using synthetic recordings in order to select the best method for testing
the hypothesis: pairwise alignment. This was selected as iterative alignment did not
perform as well overall and progressive alignment was unable to be implemented to
a high enough standard.

In this chapter, the group-wise transcription hypothesis will be tested, that
multiple renditions of the same piece of music can improve the transcription
accuracy. Since this is quite a broad hypothesis, a select number of small, simple
tests are performed in one area that provide evidence in favour of the hypothesis.
Group-wise automatic music transcription on the frame level is looked at, if multiple
corresponding frames from renditions of the same piece of music can be used to
improve the average frame level score for the entire piece. Approaches to combine
the frame level output of each piece are considered and compared, determining
which methods work the best. What is not considered is how to select the best
piece for transcription. This as it turns out might be more useful for group-wise
AMT as, quite often, a single piece out of the group will give a significantly higher

83

Group-wise Automatic Music Transcription

transcription score overall. So ideally, if a piece has characteristics that work
especially well with the method of transcription being used, then this piece should
be selected. This has not been considered due to the difficulty in knowing if one
frame or piece will be more accurate than any other. The outliers could be removed,
however this would likely only hinder the approach as it is could be the outlier
that would give more accurate results, for instance a rendition that has remarkably
low noise. In the case of selecting the best frames, this could extenuate any errors
caused by a slight misalignment. It is also a preferable characteristic of any method
to try and use all of the sources of information available, therefore improving with
the number of pieces available. To my best knowledge, group-wise transcription
has not be attempted previously and as such the methods and experiments that
follow are a part of this work’s novelty. Additionally, areas of potential research
are identified and outlined where it was not possible to carry out research due to
time constraints.

The instant application of GWAMT is for giving a transcription when multiple
renditions are available. This, however, is not often the case in the transcription of
a single piece or melody. What is more frequent in individual pieces is that small
sections of the piece are repeated. These small sections can be:

Phrases, melodies and trills These are a string of notes that are usually re-
peated straight away in the piece

Musical sections Such as a chorus or a much longer repeated section in a piece

Fugues/Themes A fugue in classical music where usually each instrument will
play a similar if not identical melody sequentially

Chords Chords of the same harmonic distribution could be identified across the
piece

We saw in Chapter 1, that the way humans transcribe music is to use multiple
passes to first transcribe the structure of the piece, then dominant themes and
then finally minor details [16]. From this we can infer that they use multiple
examples of the same melody, phrase etc. to ensure that they have the correct
transcription. This is a more practical application, where group-wise transcription
could have an application for the wider field of music transcription, not limited
to piano transcription. The same musical phrases can occur at any time in the
piece, and a transposed version of the phrase can also occur at multiple pitch
realizations. This could decrease the amount of mutual information that two
examples of a melody give, therefore improving the group-wise transcription result.
Several methods exist for detecting repeated phrases and sections, such as cross-
correlation of timbre features [159] and non-negative matrix factorization of chroma

84 CHAPTER 5. GROUP-WISE AUTOMATIC MUSIC TRANSCRIPTION
(GWAMT)

Group-wise Automatic Music Transcription

features [159]. Such methods could be combined with this research to improve
the frame level transcription of a piece of music, prior to language models being
applied.

Some theory associated with achieving a consensus from multiple sources of
information will be introduced, before detailing the experiments carried out to test
the hypothesis. The method found that works best is a late combination of features,
where the network prediction of corresponding frames in each piece are combined.
Experimenting with the method for combination shows that a logarithmic opinion
poll was the best performing but the majority vote the most reliable. This improves
upon the average individual transcription score of a group of pieces, where the
same piano is used to generate each recording.

5.1 Theory

A comparison could be drawn between GWAMT, where different realizations of
the same ground-truth are shown to a classifier, which in this case is a CNN, to
the problem of combining multiple classifiers, where the same example is shown to
several classifiers, and the output of each combined. In this case, if the classifiers
are correlated, so that they have the same architecture and are trained on the same
data, then the average error of the classifiers will be equal to the error of result of
combining the classifiers [160, 161] . However this is not quite true for GWAMT
as it is the data that adds variation and not the different initial configurations of
multiple classifiers.

Directly relevant to this thesis is the field of consensus theory, which given the
individual “opinions” of a group of “experts” aims to find the best decision or
concensus for the problem being solved. In our case the “opinions” are the frame
level outputs, and the “experts” are the separate renditions/realizations. This is
know as the “expert problem” where the decision maker is separate to the group of
experts contributing the information. One of these methods is a linear opinion poll
or a weighted average C(p1, ..., pn), where each source is weighted corresponding to
its reliability,

C(p1, ..., pn)(X) =
n∑
i=1

αipi(X) 5.1

where pi are the probabilities of each of the note classes, X is the data, or frames in
question from each of the sources, and αi are the source weights. The weights can
either all be set to the same value 1/n or they can be set separately for each source
based on an estimate of the source’s reliability by the decision maker. Another

CHAPTER 5. GROUP-WISE AUTOMATIC MUSIC TRANSCRIPTION
(GWAMT)

85

Group-wise Automatic Music Transcription

method for forming a consensus is the logarithmic opinion poll

C(p1, ..., pn) =

∏n
i=1 p

αi∫ ∏n
i=1 p

αi
i dµ

5.2

where the denominator is an integral with respect to a reference measure µ. In
this case, we will assume that the denominator is fixed, in which case it takes the
form of a threshold applied to the numerator. The advantage of this method is that
if the transcription of each piece predicted the correct collection of notes but with
a probability of 0.4, because there is consensus at a lower probability threshold,
the logarithmic pool method would give the correct prediction. In other methods
such as the majority vote, the prediction from one piece would not be considered a
vote unless the probability of that note being present was above 0.5. This helps to
filter out unwanted noise in reaching a consensus. Note that in this method, zero
probabilities act as vetoes.

5.2 Late Feature Combination

5.2.0 Method

Late feature combination means that the features obtained from each separate piece,
i.e. CQT, network output, are combined after the transcription process. The reason
why this method should improve the transcription accuracy is as follows. Assuming
a limitless number of renditions of a particular piece and an accurate alignment
mapping each piece to a mean, the resulting error from combining the classifier
output from each piece can be attributed to the classifier and not to noise, unusual
harmonic signatures from the piano or variations in interpretation between pianists.
A limitless number of pieces is not available, however it is expected that the error
attributed to sources other than the classifier should decrease as the number of
pieces increase. This would be expected as the amount of total information about
the “hidden” piece (hidden behind noise, rendition style) increases. The total new
information added to the collection from each new piece will decrease as the number
of pieces increases due to there being more mutual information between the new
piece and the existing collection.

Assuming each piece has been accurately aligned prior to transcription, the
alignment path between the piece and the reference piece are used to sample from
the CQT so each frame has a corresponding frame in every other piece. This
process is explained more formally, if there is an alignment path p = (pi, pj) =
((i1, ..., ik), (j,..., jk)) between each piece and a reference track, that maps the
positions in the piece, i, to the positions in the reference track, j, then the positions
in pi that correspond to unique positions in the reference piece unique(pj) are the

86 CHAPTER 5. GROUP-WISE AUTOMATIC MUSIC TRANSCRIPTION
(GWAMT)

Group-wise Automatic Music Transcription

Algorithm 5 An outline of the late feature combination method for performing
GWAMT. The pairwise function computes a group alignment between one ran-
domly selected reference track and the rest of the pieces. It returns the index of the
reference track, ref and an array of alignment paths, p. The scalePaths function
selects path elements relative to the reference track, and scales the paths to be of
the same magnitude as the length of the CQT for each piece. The selectFrames
function selects a range of frames from the first argument centered on the index
passed in the second argument. The transcribe function evaluates the input frames
using the developed transcription algorithm. The average function combines the
transcriptions from each of the renditions and gives the group transcription.

1: procedure Late Feature Combination
2: tracks← The renditions to be transcribed
3: N ← The number of renditions
4: XCQT ← CQT(tracks)
5: XCENS ← CENS(tracks)
6: p, ref ← pairwise(XCENS)
7: lengthref ← The length of the reference track used for alignment Xref

8: p← scalePaths(p,XCQT)
9: i← 1

10: framePreds← An empty array to hold predictions
11: while i ≤ lengthref do
12: k ← 1
13: while k < N do
14: frames← selectFrames(Xk

CQT , p
k
i)

15: framePredski ← transcribe(frames)
16: k ← k + 1

17: i← i+ 1

18: output← average(framePreds)

positions from which to sample the CQT in each piece. The magnitude of the
alignment path must be scaled to the number of frames in the CQT. After this
the frames should be combined with a suitable method. For an overview of the
late feature combination method for GWAMT, see the pseudo-code provided in
Algorithm 5. Several averaging methods are tested:

Linear opinion poll This is a simple average as the weights are chosen to be
equal. Weighting the pieces based on their estimated signal-to-noise ratio
was attempted but found to be worse than equal weighting where you assume
no knowledge about the pieces reliability. See Eq. 5.1.

Logarithmic opinion poll This is the product of all the frame-level transcrip-

CHAPTER 5. GROUP-WISE AUTOMATIC MUSIC TRANSCRIPTION
(GWAMT)

87

Group-wise Automatic Music Transcription

tions, as shown in Eq. 5.2. The denominator of this equation, or threshold,
is investigated. The results from the investigation are shown later in this
chapter.

Majority Vote Here a majority vote is carried out on the quantised transcriptions.
For each piece, if a note was predicted present in one frame, that is equivalent
to a “vote” for that note. Across all the pieces if there is a majority that
consider a note present then the note is predicted by the majority vote method.
All votes count equally, and no pieces get more than one vote. Although if
knowledge about the reliability of the pieces was known in advance then this
could be changed.

Max The maximum network output for each note is taken in each frame. This
method does not remove any of the positive note predictions (true and false)
from any of the pieces. This could be unfeasible for a large number of pieces
where the number of false positives would drastically increase.

Median The median value of the network outputs is taken in each frame.

For evaluating the described method, synthetic data is used as with the eval-
uation in the previous chapter. This is due to the difficulty of obtaining labeled
ground-truth data. Initially a single MIDI track is used to generate 10 renditions
by the method outlined in Chapter 4. These 10 renditions are used to compare
the proposed methods for group transcription. The pieces are aligned using the
pair-wise alignment method to give an alignment path between one of the pieces
and all the others. For each of the generated renditions a base-line is calculated
to compare the late combination method against. The pieces are transcribed
individually and their corresponding F1 scores on the frame level calculated, these
scores are calculated by using the ground-truth piano-rolls provided by augmenting
the MIDI track in the same way as the renditions were generated. For evaluating
the produced group transcription the ground-truth piano-roll is warped for each of
the pieces according to the alignment path calculated using pair-wise alignment
and a new F1 score is calculated. This gives N scores before and after group-wise
transcription that can be directly compared. The scores before alignment will be
called BA (before alignment), and afterwards PA (post alignment). The condition
for testing the hypothesis is that if the best and the average PA score are greater
than the average BA score then GWAMT can be said to have been successful in
improving the transcription. If only the best PA score is greater than the average
BA score then it is still likely to have improved the transcription. However, due to
slight inaccuracies in the alignment, the warped ground-truths used for evaluation
are different for each piece, therefore it makes sense to compare the BA and PA
scores on a piece by piece basis.

88 CHAPTER 5. GROUP-WISE AUTOMATIC MUSIC TRANSCRIPTION
(GWAMT)

Group-wise Automatic Music Transcription

5.2.0 Results

The results for the preliminary experiment for each of the combination methods
are shown in a combined table in Table 5.1. The only methods to improve upon
the BA average score are the max and logarithmic opinion poll methods. However
these methods have some shortcomings. For the max method, if one piece is
particularly noisy then this could ruin the groupwise transcription. Although
having a single prediction containing all the TPs from each piece is always good for
the transcription, this would be accompanied by having all the FPs. This makes
this method unsuitable for a large N. The reason why the max method worked
particularly well is because generally the noise and number of false positives is
quite low, and therefore the gain should outweigh the additional number of false
positives added to the combined transcription. This does not show to be the case
in the following larger experiment.

From these preliminary experiments, the majority vote method is the best
candidate for taking into the next experiment. Although the max and Logarithmic
methods performed better in this preliminary experiment, they have shortcomings.
The logarithmic method relies of having to know the correct threshold, and the
Max method will not scale to large numbers of pieces as it will generally select
the frame with the most noise. The results show that this method, majority vote,
warrants further experimentation, and as such a larger experiment is designed and
performed in Section 5.4.

5.3 Early Feature Averaging

5.3.0 Method

This second attempted method for GWAMT is called early feature averaging as
the point when data from each of the sources are combined, happens earlier than
in the previous method. In this method, the points at which frames are selected is
the same as with the previous method, however before passing the frames to the
CNN for classification, they are averaged across all of the sources, so that a single,
average frame is presented to the CNN. The reasoning for this if it was tested
on real data, would be that the harmonic power distribution could become more
uniform, as harmonic distributions that are particularly different to the pianos used
for training could lead to poor results. A widening of the frequency peaks should
also happen if the test data contained multiple pianos, although it is unclear if this
would help or hinder the result of the classification. Another motivation is that the
effect of noise in the CQT would be reduced. However as the methods for testing
are only across a single piano, this was not expected to give any major advantage.
This method could potentially reduce the effect of any misalignment between the

CHAPTER 5. GROUP-WISE AUTOMATIC MUSIC TRANSCRIPTION
(GWAMT)

89

Group-wise Automatic Music Transcription

Piece ITS Linear
opinion
poll

Log.
opinion
poll

Maj.
Vote

Max Median

1 0.684 0.660 0.702 0.671 0.684 0.664
2 0.684 0.676 0.722 0.693 0.711 0.684
3 0.668 0.670 0.717 0.687 0.713 0.678
4 0.712 0.676 0.722 0.691 0.705 0.683
5 0.676 0.675 0.718 0.687 0.696 0.680
6 0.717 0.680 0.723 0.692 0.698 0.684
7 0.697 0.678 0.719 0.688 0.690 0.681
8 0.673 0.671 0.717 0.686 0.703 0.677
9 0.679 0.633 0.680 0.649 0.689 0.640
10 0.647 0.625 0.692 0.647 0.711 0.635

Best 0.717 0.680 0.723 0.693 0.713 0.684
Average 0.684 0.665 0.711 0.679 0.700 0.671

Table 5.1: Several different methods for combining results from 10 renditions of
Clare de lune are tested. ITS is “Individual Transcription Score”. The quoted
results are the F1-measure of the piece in question. Taking the maximum activation
for each frame and each note gives the best combined transcription score. However
all of the above methods except for the median improve upon the average individual
transcription result.

pieces, as with a large number of pieces that are partially misaligned, the resulting
average would give a steady increase and decrease in the power of the onset and
offset.

Two averaging techniques are used to test this method, a straightforward
average of all of the frames, and selecting the frame with the maximum total power
content. The max method might cause the output to contain an excessive number
of false positives.

5.3.0 Results

This GWAMT method is evaluated in the same fashion as the late feature averaging
method, with a single MIDI track being used to generate 10 renditions.

The results can be seen in Table 5.2. This method fails to improve either the
best or average transcription score. This could be because the network is trained on
data with well defined onset, offset and band widths, so when the spectrograms are
averaged it removes clarity and adds ambiguity. Perhaps there is an improvement

90 CHAPTER 5. GROUP-WISE AUTOMATIC MUSIC TRANSCRIPTION
(GWAMT)

Group-wise Automatic Music Transcription

Piece ITS Early feature
averaging

Maximum
frame
activation

1 0.684 0.659 0.631
2 0.684 0.682 0.647
3 0.668 0.679 0.648
4 0.712 0.678 0.644
5 0.676 0.676 0.646
6 0.717 0.679 0.645
7 0.697 0.675 0.641
8 0.673 0.673 0.642
9 0.679 0.642 0.620
10 0.647 0.640 0.618

Best 0.717 0.682 0.648
Average 0.684 0.668 0.638

Table 5.2: Results for the early feature averaging method. The rows are the F1
scores using the warped ground-truth for that piece, and the method from the
corresponding column. ITS stands for Individual Transcription score

but its effect is masked due to the reduction in F1 score caused by this blurring,
however further experimentation is required to test this. however, if this was the
case then the CQT signal could be cleaned up prior to being fed into the classifier.
Taking the maximally activated frame across all the pieces using the Early feature
averaging method was attempted and experimented with, however this worsened
the results drastically. This could have happened for a number of reasons, by taking
the maximum it could have more frequently selected the frame that had the worse
alignment, and therefore was closer to an onset than the other frames, it also could
have selected the most noisy frame, or have selected the frame with the most power
in the lower harmonics, reducing the effectiveness of classifying high notes.

Given that this initial experiment shows that the method performs poorly in all
cases, it is discarded from this point on-wards in favour of the late feature averaging
method.

5.4 Late Feature Averaging: Larger experiment

For the larger experiment 15 MIDI tracks are used, some taken from the MAPS
database and others from various online resources. All of which are classical piano

CHAPTER 5. GROUP-WISE AUTOMATIC MUSIC TRANSCRIPTION
(GWAMT)

91

Group-wise Automatic Music Transcription

pieces. The method used is as described in Section 5.2, with some differences, the
results are averaged across all of the MIDI tracks, and 20 renditions are generated
as opposed to the 10 that were generated in the preliminary experiment.

The goal of this experiment is to confirm the results of the preliminary late
feature averaging experiment, and also to test how the improvement changes with
an increasing number of pieces. The number of pieces was varied between 2 and 20,
with the improvement from the mean and best BA score recorded for each method.
These results can be seen in Fig. 5.1.

The results show that given a number of candidate transcriptions, the average
frame level accuracy can be improved by either the majority vote, median or
logarithmic opinion poll method. However at this point the result from the
logarithmic opinion poll is unreliable as it is based on being able to determine the
best threshold on a piece by piece basis. This is unreasonable, and is experimented
with further later on. A natural expectation is that the transcription would improve
with the number of pieces available as you then have more examples to discern a
transcription from. This however was not seen so much, the improvement quickly
plateaus after 5 or so pieces. This is not particularly desirable, as then the problem
of choosing which pieces to use for the group transcription arises. It is likely that
the point at which it plateaus is due to the added noise and ambiguity outweighing
the additional gain. However where this happens I expect would vary depending
on the piece and recording situation, as this experiment is too limited to make
another conclusion.

The results from this experiment are quite different to the preliminary ex-
periment which showed the max method performing well. The max method has
performed much poorer this time, which was expected. For the majority vote
method, it performs better when presented with an even number of samples. It
is not obvious why this would be the case, as it would be expected that an odd
number of samples makes a majority more likely. Whilst the improvement does
not change much past 7 pieces, the error reduces greatly, making the method more
robust. This can be seen in Fig. 5.1 by the narrowing of the error bars as the
number of pieces increases.

As mentioned, the results from the logarithmic poll method are dependent on
being able to identify the optimum threshold. In reality this is not practical, as
you would have to already have part of the piece transcribed for each rendition.
However, it was useful to see that the method can be used to give an improvement.
To investigate this method further the threshold for the method (the denominator
in Eq. 5.2) was changed globally for all of the pieces and renditions used in the
previous experiment. This is more of a feasible approach as the method can be set
without any further calculation. The global threshold is also varied, the results
from this experiment are shown in Fig. 5.2.

92 CHAPTER 5. GROUP-WISE AUTOMATIC MUSIC TRANSCRIPTION
(GWAMT)

Group-wise Automatic Music Transcription

Figure 5.1: The differences between the BA scores and the PA scores are shown when
comparing against the best overall transcription (top), and the mean transcription
score (bottom) for an increasing number of pieces. A positive difference indicates
that the method has been successful in improving the score from either the best or
mean BA score. The bottom figure shows all methods apart from the Max method
giving some improvement over the average score.

CHAPTER 5. GROUP-WISE AUTOMATIC MUSIC TRANSCRIPTION
(GWAMT)

93

Group-wise Automatic Music Transcription

Figure 5.2: The threshold for the logarithmic opinion poll method is varied and
applied to all of the pieces and renditions from the larger experiment. The error is
the standard deviation across all of the pieces.

Figure 5.3: The improvement using the optimum global threshold for the logarithmic
opinion poll is shown for an increasing number of pieces. The improvement increases
with the number of pieces, plateauing at about a 1% improvement.

94 CHAPTER 5. GROUP-WISE AUTOMATIC MUSIC TRANSCRIPTION
(GWAMT)

Group-wise Automatic Music Transcription

What was found is that naturally the logarithmic opinion poll performs much
worse now that the threshold is set globally. However, it does still improve upon the
mean when more than 5 pieces are available. This method also improves with the
number of pieces available, see Fig. 5.3, which is different from all of the methods
tested previously. Another advantage of this method is that the range of thresholds
that still give an improvement is quite large, and as such even if the threshold was
chosen poorly the method would still perform reasonably well. This experiment
suggests that the logarithmic opinion poll is the best method when more than 5
pieces are available, however to confirm this the same experiment would have to be
performed with real data to confirm that this is not just due to how the experiment
was carried out.

5.5 Summary

This chapter has investigated and experimented with, methods for performing
GWAMT. It combined the AMT method described in chapter 3, with the pairwise
alignment method described in chapter 4. Late feature averaging, where the
classifier output was combined was tested initially, with a preliminary experiment
showing that the max and logarithmic opinion poll averages improved upon the
individual baseline. A larger experiment was performed using the same setup
however with 10 different MIDI tracks, and 20 pieces generated for each. This
experiment confirmed that the late feature averaging method improved upon the
baseline results, however, the max method performed worse than the preliminary
experiment, and the other methods performed better. This might be due to the
particular MIDI track chosen for the preliminary experiment.

The logarithmic opinion poll was chosen for further investigation, and it was
shown that a global threshold can be used to give an improvement that scales with
the number of pieces available. This method and the majority vote, improved the
transcription score up to 1%. Whilst this improvement is minor, it capitalizes on
differences between each rendition, which the usual AMT approach would not be
able to. As such it complements AMT, and could potentially give an improvement
regardless of the AMT method, although this is not tested. This improvement
is also in the case where the same piano is used to generate each of the pieces.
In the more realistic situation where each piece was from a different piano, the
improvement is likely to increase, as the amount of mutual information between
pieces will be lower.

A GWAMT method where the CQT spectrograms are average prior to tran-
scription, called early feature averaging, was experimented with using a single MIDI
track. However, this method performed poorly and was discarded in favour of late
feature averaging.

CHAPTER 5. GROUP-WISE AUTOMATIC MUSIC TRANSCRIPTION
(GWAMT)

95

Group-wise Automatic Music Transcription

Ideally real data would be used for testing and this is a major limitation to this
work, however, the experiments in this chapter have demonstrated that group-wise
transcription can be used to improve the transcription score.

96 CHAPTER 5. GROUP-WISE AUTOMATIC MUSIC TRANSCRIPTION
(GWAMT)

Chapter 6

Conclusion

The Chapters in this thesis have been stages towards understanding and developing
a method for group-wise transcription. The first two Chapters set out the context
for this research, the applications for AMT, the research that has been done to
that end, and how group-wise transcription could aid AMT. In the third Chapter
a method for frame-level piano transcription was developed and tested against the
MAPS database, achieving state of the art results. The fourth Chapter investigated
different methods for the group alignment of audio, introducing one method for
group alignment, and the use of time windows for distance comparison to make
the alignment more robust. The final Chapter then tied together the methods
from Chapters 3 and 4, to test the group-transcription hypothesis, showing that
group-transcription is possible and warrants further investigation. This structure
has allowed the research to be performed sequentially, with the transcription
system being fully developed, then methods for audio alignment, then finally group-
transcription. However if structured in a more dynamic way, focused wholly around
testing the main hypothesis, it would have given more control of the research
direction as promising avenues would have been discovered earlier on in the project.
This is not necessarily a bad outcome, as the additional time spent on frame-level
transcription has produced good results, but if repeated the project would have
been more focused on group-wise transcription.

In Chapter 1 the way that human experts transcribe music was discussed as
they still perform music transcription better than AMT, concluding that human
experts transcribe music in an iterative way, accumulating additional information
on each successive pass. Annotating global information such as the key signature
and musical structure first and finer details last. It was also seen that humans are
apparently bad at discerning the notes present when only given a short sample
(40ms) of music, this is the one area that computer algorithms perform well, and
therefore should be exploited. This is the other way around for musical language

97

Group-wise Automatic Music Transcription

models, they are generally worse than human transcription performance. This
leads on to a large problem with AMT algorithms, normally when they make errors
they are not musically plausible, however when humans make a transcription error,
they are usually musically plausible, and as such affect the resulting transcription
very little when it comes to performance. This is because humans can draw upon a
wealth of experience playing and transcribing music, whereas most transcription
algorithms rely on having learned good representations during training. This
provides a good argument for group-wise transcription, which has the goal of
using multiple renditions of the same piece or melody to improve the transcription
performance. As when humans aim to transcribe a piece of music, they will
use repeated melodies and rhythms within the same piece of music to aid each
transcription, ensuring consistency and making the transcription more musically
plausible.

Chapter 2 conducts a literature review into music transcription, identifying that
generally music transcription systems have been made up of separate frame-level
and note-level musical language models. A comparison is also drawn between music
transcription and speech recognition, where language models are relied upon to
provide priori probabilities. Whilst this is not possible for music transcription due to
to the large output space, several other attempts have been made at incorporating
musical language models that have shown good success. This literature review
identified that frame-level transcription was the best route to testing the group-wise
transcription hypothesis, as often the language models are complex and would be
too time consuming given the length of the project. However, the potential of
using note-level transcription for group-wise transcription is discussed later in this
conclusion.

A frame-level transcription system was developed in Chapter 3. The model
used CNNs to classify frames of musical audio from a piano. The input to the
model is a two dimensional slice of the CQT centered around the frame being
classified. A CNN in conjunction with the CQT was chosen due to the pattern
recognition prowess of the CNN and the note-translational properties of the CNN.
The architecture used for the CNN was based around architectures that had worked
well in the field of image recognition [123], and altered for the problem of music
transcription based on the differences between the problems. The key features
of the architecture were the use of skip connections, separate time and frequency
convolutions and the lack of fully connected layers. The training methodology
used was novel, dynamic training on synthetic randomly generated chords was
used so that the network learns to generalize far better than only training on
musically meaningful data. This was found as the network performed just as
well on musically meaningful synthetic data as it did otherwise. Then after this
training had completed the network was trained on the MAPS database in the same

98 CHAPTER 6. CONCLUSION

Group-wise Automatic Music Transcription

configuration as used for testing in the literature [32, 34] with the resulting network
outperforming the previous state of the art in frame-level piano transcription. This
shows that generated data can be used to improve the training of CNNs for AMT.
This principle could be extended to a much larger network that can transcribe
instruments other than the piano however in this case the filters would have to be
adapted. This would be to allow for instruments that have timbres that have a
more complex time-frequency relationship, such as woodwind instruments. A useful
analysis would be to investigate the learned representations of the network. Kelz
et al. [33] performed experiments on how well neural network based transcription
systems generalize to unseen data, showing that instead of learning to recognize
and separate out overlapping note content, then network learns to recognize note
combinations, but if the inner-workings of the network could be analyzed further
to ascertain what each filter is contributing to the overall transcription then this
would help in the design of larger scale networks. De-convolution, where the filter
activations can be visualized, or occlusion (masking parts of the input spectrogram)
to see how important parts of the spectrogram to the final transcription, could be
used in a potential analysis.

Chapter 4 on audio alignment was needed due to the variation in note event
location between renditions performed by different musicians. As separate pieces
cannot be used to form a consensus (group-wise transcription) if there is no
knowledge about when in the pieces that corresponding notes occur. A distinction
between two types of group-wise transcription was drawn, frame-level group-wise
transcription, where information is combined at each individual frame, and note-
level group-wise transcription, where the notes are identified and all frames in
each note across all renditions are used to form a consensus. If the transcription
was being performed on the note level, then only the onset and offset locations
in each piece would need to be known, and as such an onset and offset detector
could be used (which are well defined for the piano), with the transcription being
performed not on the frame level but on the note level, perhaps as done by Cheng
et al. [56]. However as it was frame-level transcription that was investigated
in this thesis, a frame-frame correspondence was needed between each pair of
pieces. To achieve this correspondence, methods for multiple audio alignment
were investigated. Three methods were compared, pairwise alignment, progressive
alignment and a new method, iterative alignment. To compare the three alignment
methods, multiple renditions were created from a single MIDI track by emulating
playing style variations, this was the easiest way to get ground-truth information
for testing given the time constraints, however with more time, beat information
for performances of Chopins mazurkas, provided by the mazurka project [158],
would have been used. These renditions were aligned using each method and the
average note onset deviation compared. Pair-wise alignment performed the best

CHAPTER 6. CONCLUSION 99

Group-wise Automatic Music Transcription

out of the three methods, however, some difficulties with progressive alignment
were encountered due to the time constraints. The combined feature representation
as used by Wang et al. [27] (DLNCO + CENS), could not be used so just CENS
features were used. this led to the method not performing as well as reported.
The iterative alignment method was only experimented with briefly, however the
method showed promising results, performing almost as well as pair-wise alignment.
Should the method be developed and optimized further then it could provide a
robust method for the multiple audio alignment. Specifically it could provide a
method that has a linearly scaling computational cost, as opposed to progressive
alignment. This means that it is feasible to align vast numbers of musical pieces,
which could make the performance analysis of renditions taken from online resources
like Youtube possible.

Chapter 5 used methods developed in the previous two chapters to test the group-
wise transcription hypothesis. As in the chapter on audio alignment, multiple
synthetic renditions were generated from MIDI tracks, providing ground-truth
information. Early feature averaging and late feature averaging were compared in
an initial experiment using only a single MIDI track and 10 renditions. From this
initial experiment it was clear that late feature averaging improved the transcription
and early feature averaging did not. A larger experiment using 15 MIDI tracks
was then performed, they were used to generate 20 renditions each, all of the
renditions for each piece were aligned using pairwise alignment providing a frame-
level correspondence between each rendition. Several methods for combining the
aligned and transcribed frames were investigated. From this investigation two
methods are worth mentioning, the majority vote method and the logarithmic pool
method. The majority vote method improved the score from before alignment
(BA score) when any number of renditions is available, however a lower number
was generally preferred. What was unexpected is that increasing the number
of renditions used in the combination did not always improve the results of the
transcription, and in fact it appeared to drop after 6. Using this method the
improvement from the BA average F1-score was around 0.005 or 0.5%. The
second method that worked well was the logarithmic pool method, this method
however only improved the transcription score for when there are more than 6
pieces available for alignment. However the improvement from the BA baseline
did improve with the number of pieces, with an improvement of 0.01 or 1% when
al 20 renditions where used. However after all of these experiments no method
could improve upon the BA best score, which is the upper outlier of the renditions.
This indicated that certain performance characteristics, including the tempo, noise
level and reverb could determine the baseline transcription. If the outlier could
be determined then this would be more valuable for group-wise transcription than
trying to combine information from every piece, as a single noisy piece could ruin

100 CHAPTER 6. CONCLUSION

Group-wise Automatic Music Transcription

or affect the group-wise transcription score.

6.1 Future Work

Testing the hypothesis on synthetic data generated from the same piano will have
made the problem harder as there is less variation between pieces. It has also
made the problem more constrained, and hence conclusions about the results of
the experiments easier. The improvement seen using the BA average method is
likely due to this small variation caused by noise and differences caused during the
generation and alignment. As the problem is harder and positive results were seen,
further improvement should be seen in future work. However, as the improvement
was minor and no statistical analysis has been performed on the results, there is
not enough evidence to support the hypothesis.

To test the hypothesis of group-wise transcription, only experiments on the
frame level and on piano music were performed. The positive results here means
that in the future, further research could investigate more general scenarios with
multiple different instruments, and also with note-level transcription. This would
be done by training a network that has many more filters on data that contains
multiple instruments. An additional piece of further work is using phase in neural
network based transcription systems. This was noticed when performing the
literature review, that very few methods had tried to incorporate phase, with the
method here being no different. Since the literature review was performed, this
exact problem has been solved by Trabelsi et al. [162], who achieve state of the
art frame level transcription results using a deep complex network. Using both
the complex network outlined and by adapting the architecture detailed here, the
results for frame level piano transcription could be improved.

Given more time the mazurka project would provide a better way to evaluate
the method for group-wise transcription introduced and also test the hypothesis.
The evaluation could have been improved by using more MIDI tracks and also by
using multiple pianos to generate the recordings. This would increase the variation
between the individual renditions and make the evaluation more robust.

CHAPTER 6. CONCLUSION 101

Bibliography

[1] Oxford University. Oxford English dictionary. www.oed.com/oed2/00256125,
2017. Accessed: 2017-09-30.

[2] M Benward, B. Saker. Music in Theory and Practice. McGraw-Hill, 2003.

[3] A.T. Cemgil. Bayesian music transcription. PhD thesis, Radboud University,
2004.

[4] Emilios Cambouropoulos. From MIDI to Traditional Musical Notation.
Working Notes of the AAAI Workshop on Artificial Intelligence and Music:
Towards Formal Models for Composition, Performance and Analysis, pages
19–23, 2000.

[5] Kirill Sidorov, Andrew Jones, and David Marshall. Music Analysis as a
Smallest Grammar Problem. International Society of Music Information
Retrieval Conference (ISMIR), pages 301 – 306, 2014.

[6] Robert. Rowe. Machine musicianship. MIT, 2004.

[7] S S Stevens. Psychophysics: Introduction to its perceptual, neural, and social
prospects, volume 329. Transaction Books, 1975.

[8] Michael Epstein and Jeremy Marozeau. Loudness and intensity coding. In
Oxford Handbook of Auditory Science Hearing. Oxford University, 2012.

[9] Anne Caclin, Stephen McAdams, Bennett K Smith, and Suzanne Winsberg.
Acoustic correlates of timbre space dimensions: A confirmatory study using
synthetic tones. The Journal of the Acoustical Society of America, 118(1):471–
482, 2005.

[10] Nobuo Masataka. Music, evolution and language. Developmental Science,
10:35–39, 2007.

[11] E.H. Haimoff. Convergence in the duetting of monogamous old world primates.
Journal of Human Evolution, 15:51–59, 1986.

103

Group-wise Automatic Music Transcription

[12] Andrew J Oxenham. Pitch Perception. Journal of Neuroscience, 32(39):13335–
13338, 2012.

[13] J F Schouten. The residue and the mechanism of hearing. In Koninklijke
Nederlandsche Akademie von Wetenschappen, volume 43, pages 991–999,
1940.

[14] John C. M Brust. This Is Your Brain on Music: The Science of a Human
Obsession. Neurology Today, 8:41, 2008.

[15] Anssi Klapuri, Tuomas Virtanen, and Jan Markus Holm. Robust Multipitch
Estimation for the Analysis and Manipulation of Polyphonic Musical Signals.
In Conference on Digital Audio Effects, pages 233–236, 2000.

[16] Stephen Hainsworth. Techniques for the automated analysis of musical audio.
PhD thesis, University of Cambridge, UK, 2003.

[17] Emilios Cambouropoulos. Automatic pitch spelling: From numbers to sharps
and flats. In VIII Brazilian Symposium on Computer Music (SBC&M), pages
2001–2012, 2001.

[18] Pring Linda. Savant talent. Developmental Medicine & Child Neurology,
47(7):500–503, 2005.

[19] Ramin Pichevar, Hossein Najaf-Zadeh, Louis Thibault, and Hassan Lahdili.
Auditory-inspired sparse representation of audio signals. Speech Communica-
tion, 53(5):643 – 657, 2011.

[20] Daniel Patrick Whittlesey Ellis and David Felix Rosenthal. Mid-level repre-
sentations for computational auditory scene analysis. Computational auditory
scene analysis, pages 257 – 272, 1995.

[21] Jont B. Allen. Short-term spectral analysis, and modification by discrete
fourier transform. IEEE Transactions on Acoustics Speech and Signal Pro-
cessing, pages 235–238, 1977.

[22] S. S. Stevens, J. Volkmann, and E. B. Newman. A Scale for the Measurement
of the Psychological Magnitude Pitch. The Journal of the Acoustical Society
of America, 8(3):185–190, 1937.

[23] Judith C. Brown. Calculation of a constant Q spectral transform. The
Journal of the Acoustical Society of America, 89(1):425–434, 1991.

[24] John Paul Stautner. Analysis and synthesis of music using the auditory
transform. PhD thesis, Massachusetts Institute of Technology, 1983.

104 BIBLIOGRAPHY

Group-wise Automatic Music Transcription

[25] Meinard Müller, Sebastian Ewert, and Sebastian Kreuzer. Making chroma
features more robust to timbre changes. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 1877–1880, 2009.

[26] M. Mueller, Frank Kurth, and Michael Clausen. Audio matching via chroma-
based statistical features. In International Society of Music Information
Retrieval Conference (ISMIR), pages 288–295, 2005.

[27] Siying Wang, Sebastian Ewert, and Simon Dixon. Robust and efficient joint
alignment of multiple musical performances. IEEE/ACM Transactions on
Audio Speech and Language Processing, 24(11):2132–2145, 2016.

[28] Frank Kurth and Meinard Müler. Efficient index-based audio matching. IEEE
Transactions on Audio, Speech and Language Processing, 16(2):382–395, 2008.

[29] T. Fujishima. Realtime chord recognition of musical sound: A system using
common lisp music. In International Computer Music Conference, pages
464–467, 1999.

[30] Daniel P W Ellis. Classifying Music Audio with Timbral and Chroma Features.
In International Society of Music Information Retrieval Conference (ISMIR),
volume 199, pages 339–340, 2007.

[31] Valentin Emiya, Roland Badeau, and Bertrand David. Multipitch Estimation
of Piano Sounds Using a New Probabilistic Spectral Smoothness Principle. In
European Signal Processing Conference (EUSIPCO), pages 1643–1654. IEEE,
Aug 2010.

[32] Rainer Kelz, Matthias Dorfer, Filip Korzeniowski, Sebastian Böck, Andreas
Arzt, and Gerhard Widmer. On the potential of simple framewise approaches
to piano transcription. CoRR, abs/1612.05153, 2016.

[33] Rainer Kelz and Gerhard Widmer. An experimental analysis of the entangle-
ment problem in neural-network-based music transcription systems. CoRR,
abs/1702.00025, 2017.

[34] Siddharth Sigtia, Emmanouil Benetos, Nicolas Boulanger-Lewandowski, Till-
man Weyde, Artur d’Avila Garcez, and Simon Dixon. A Hybrid Recurrent
Neural Network for Music Transcription. IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 2061–2065, 2015.

[35] Siying Wang, Sebastian Ewert, and Simon Dixon. Compensating for asyn-
chronies between musical voices in score-performance alignment. In ICASSP,
IEEE International Conference on Acoustics, Speech and Signal Processing,
pages 589–593. IEEE, 2015.

BIBLIOGRAPHY 105

Group-wise Automatic Music Transcription

[36] Simon Dixon and Gerhard Widmer. MATCH: A Music Alignment Tool Chest.
In International Symposium on Music Information Retrieval (ISMIR), pages
492–497, 2005.

[37] J. A. Moorer. On the transcription of musical sound by computer. Computer
Music Journal, 1(4):32–38, 1977.

[38] Alain de Cheveigné and Hideki Kawahara. YIN, a fundamental frequency
estimator for speech and music. The Journal of the Acoustical Society of
America, 111(4):1917–1930, 2002.

[39] M Ryynänen. Automatic Transcription of Pitch Content in Music and
Selected Applications. PhD thesis, Tampere University of Technology, 2008.

[40] Emmanouil Benetos, Sebastian Ewert, and Tillman Weyde. Automatic
transcription of pitched and unpitched sounds from polyphonic music. In
IEEE International Conference on Acoustics, Speech and Signal Processing -
Proceedings (ICASSP), pages 3107–3111, 2014.

[41] Chris Chafe and David Jaffe. Source separation and note identification in
polyphonic music. In IEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP), volume 11, pages 1289–1292, 1986.

[42] Robert C. Maher. Evaluation of a method for separating digitized duet
signals. Journal of the Audio Engineering Society, 38(12):956–979, 1990.

[43] Robert C Maher and James W Beauchamp. Fundamental frequency estima-
tion of musical signals using a two-way mismatch procedure. Journal of the
Acoustic Society of America, 95:2254–2263, 1994.

[44] Anssi Klapuri. Introduction to music transcription. Signal Processing Methods
for Music Transcription, pages 1–28, 2006.

[45] Michael Jerome Hawley. Structure out of Sound. PhD thesis, Massachusetts
Institute of Technology, 1994.

[46] Kunio Kashino and Hidehiko Tanaka. A Sound Source Separation System
with the Ability of Automatic Tone Modelling. In International Computer
Music Conference, volume 1993, pages 249–257, 1993.

[47] Keith D Martin. A Blackboard System for Automatic Transcription of Simple
Polyphonic Music. M.I.T Media Laboratory Perceptual Computing Section
Technical Report No. 385, 385:1–13, 1996.

106 BIBLIOGRAPHY

Group-wise Automatic Music Transcription

[48] Darryl Godsmark and Guy J Brown. Blackboard architecture for compu-
tational auditory scene analysis. Speech Communication, 27(3):351–366,
1999.

[49] Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive
field properties by learning a sparse code for natural images. Nature, 381:607–
609, 1996.

[50] T. Virtanen. Sound source separation using sparse coding with temporal
continuity objective. In H. C. Kong and B. T. G. Tan, editors, International
Computer Music Conference (ICMC)., pages 231–234, 2003.

[51] Judith C Brown. Non-Negative Matrix Factorization for Polyphonic Music
Transcription. In IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics, number 3, pages 177–180, 2003.

[52] Samer A Abdallah and Mark D Plumbley. Polyphonic music transcription
by non-negative sparse coding of power spectra. In International Society for
Music Information Retrieval Conference (ISMIR), volume 510, pages 10–14,
2004.

[53] Emmanuel Vincent, Nancy Berting, and Roland Badeau. Two nonnegative
matrix factorization methods for polyphonic pitch transcription. 2007 Music
Information Retrieval Evaluation eXchange (MIREX), 2007.

[54] Emmanuel Vincent, Nancy Benin, and Roland Badeau. Harmonic and inhar-
monic Nonnegative Matrix Factorization for polyphonic pitch transcription.
In IEEE International Conference on Acoustics, Speech and Signal Processing
- Proceedings (ICASSP), pages 109–112. IEEE, 2008.

[55] Holger Kirchhoff, Simon Dixon, and Anssi Klapuri. Multi-Template Shift-
Variant Non-Negative Matrix Deconvolution for Semi-Automatic Music Tran-
scription. pages 415–420, 2012.

[56] Tian Cheng, Matthias Mauch, Emmanouil Benetos, and Simon Dixon. an
Attack / Decay Model for Piano Transcription. International Society for
Music Information Retrieval Conference (ISMIR), pages 584–590, 2016.

[57] Graham E Poliner and Daniel P W Ellis. Improving generalization for
classification-based polyphonic piano transcription. In IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics, pages 86–89, 2007.

[58] Juhan Nam, Jiquan Ngiam, Honglak Lee, and Malcolm Slaney. A
Classification-Based Polyphonic Piano Transcription Approach Using Learned

BIBLIOGRAPHY 107

Group-wise Automatic Music Transcription

Feature Representations. In International Society of Music Information Re-
trieval Conference (ISMIR), pages 175–180, 2011.

[59] Siddharth Sigtia, Emmanouil Benetos, and Simon Dixon. An End-to-End
Neural Network for Polyphonic Music Transcription. IEEE Transactions on
Audio, Speech, and Language Processing, 24(5):1–13, 2016.

[60] Klapuri Anssi. A Perceptually Motivated Multiple-F0 Estimation Method. In
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics,
pages 291–294, 2005.

[61] Chunghsin Yeh, Axel Roebel, and Wei-Chen Chang. Mutiple-F0 Estimation
for MIREX 2008, 2008.

[62] Chunghsin Yeh, Axel Roebel, and Wei-Chen Chang. Mutiple-F0 Estimation
for MIREX 2009, 2009.

[63] Chunghsin Yeh and Axel Roebel. Multiple-F0 Estimation for MIREX 2010.
MIREX, 2010.

[64] Chunghsin Yeh and Axel Roebel. Multiple F0-estimation for MIREX 2011.
MIREX, 2011.

[65] Karin Dressler. Multiple fundamental frequency extraction for MIREX 2012.
MIREX, 2012.

[66] Emmanouil Benetos and Tillman Weyde. Multiple F0-estimation and note
tracking for MIREX 2013 using a sound-state based spectrogram factorisation
model. MIREX, 2013.

[67] Anders Elowsson and Anders Friberg. Polyphonic Transcription with Deep
Layered Learning for MIREX 2014. MIREX, 2014.

[68] Emmanouil Benetos and Tillman Weyde. Multiple-F0 estimation and note
tracking for MIREX 2015 using a sound state-based spectrogram factorization
model. MIREX, 2015.

[69] Matija Marolt. Multiple fundamental frequency estimation & tracking sub-
mission for mirex 2016. MIREX, 2016.

[70] J Thickstun. Frequency Domain Convolutions for Multiple F0 Estimation.
MIREX, 2017.

[71] Lawrence R. Rabiner and B. H. (Biing-Hwang) Juang. Fundamentals of
speech recognition. PTR Prentice Hall, 1993.

108 BIBLIOGRAPHY

Group-wise Automatic Music Transcription

[72] Lingholic. How many words do I need to know? The 95/5 rule in language
learning, part 2/2. https://www.lingholic.com/how-many-words-do-i-need-to-
know-the-955-rule-in-language-learning-part-2/, 2013. Accessed: 2018-05-15.

[73] P O Box and Fi Tampere. Polyphonic Music Transcription using Note Event
Modelling. In IEEE Workshop on Applications of Signal Processing to Audio
and Acoustics, pages 319–322, 2005.

[74] Roland Badeau, Bertrand David, and Valentin Emiya. Automatic transcrip-
tion of piano music based on HMM tracking of jointly-estimated pitches. In
European Signal Processing Conference, pages 1–5, 2008.

[75] Tian Cheng, Simon Dixon, and Matthias Mauch. Improving piano note
tracking by HMM smoothing. In European Signal Processing Conference
(EUSIPCO), pages 2009–2013. IEEE, 2015.

[76] Andrej Karpathy. The Unreasonable Effectiveness of Recurrent Neural
Networks, 2015.

[77] Alex Graves. Sequence transduction with recurrent neural networks. CoRR,
abs/1211.3711, 2012.

[78] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recogni-
tion with deep recurrent neural networks. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), volume 38, pages
6645–6649, 2013.

[79] Sebastian Bock and Markus Schedl. Polyphonic Piano Note Transription with
Recurrent Neural Networks. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 121–124, 2012.

[80] Nicolas Boulanger-Lewandowski, Pascal Vincent, and Yoshua Bengio. Model-
ing Temporal Dependencies in High-Dimensional Sequences: Application to
Polyphonic Music Generation and Transcription. In International Conference
on Machine Learning (ICML), pages 1159–1166, 2012.

[81] Hugo Larochelle and Iain Murray. The Neural Autoregressive Distribution
Estimator. In International Conference on Machine Learning, volume 15,
pages 29–37, 2011.

[82] Siddharth Sigtia, Emmanouil Benetos, Srikanth Cherla, Tillman Weyde,
Artur S. d’Avila Garcez, and Simon Dixon. An rnn-based music language
model for improving automatic music transcription. In International Society
for Music Information Retrieval Conference (ISMIR), pages 53 – 58, 2014.

BIBLIOGRAPHY 109

Group-wise Automatic Music Transcription

[83] A. Klapuri. Sound onset detection by applying psychoacoustic knowledge. In
IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 3089–3092 vol.6. IEEE, 1999.

[84] Chris Duxbury, Mark Sandler, and Mike Davies. A hybrid approach to
musical note onset detection. In Digital Audio Effects Workshop, pages 33–38,
2002.

[85] Juan Pablo Bello, Laurent Daudet, Samer Abdallah, Chris Duxbury, Mike
Davies, and Mark B Sandler. A tutorial on onset detection in music signals.
IEEE Transactions on Speech and Audio Processing, 13(5):1035–1046, 2005.

[86] Jan Schlüter and Sebastian Böck. Musical onset detection with Convolutional
Neural Networks. In International Workshop on Machine Learning and Music
(MML), 2013.

[87] Giovanni Costantini, Massimiliano Todisco, and Giovanni Saggio. A new
method for musical onset detection in polyphonic piano music. In Inter-
national Conference on Computers - Proceedings, volume 1, pages 545–548,
2010.

[88] Perfecto Herrera-Boyer, Anssi Klapuri, and Manuel Davy. Automatic Classi-
fication of Pitched Musical Instrument Sounds. Springer US, 2006.

[89] Sound source identification system for ensemble music based on template
adaptation and music stream extraction. Speech Communication, 27(3):337–
349, 1999.

[90] Realtime recognition of orchestral instruments. In International Computer
Music Conference (ICMC), pages 141–143, 2000.

[91] A. Eronen and A. Klapuri. Musical instrument recognition using cepstral
coefficients and temporal features. In IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), volume 2, pages 753–756.
IEEE.

[92] Tetsuro Kitahara, Masataka Goto, Kazunori Komatani, Tetsuya Ogata, and
Hiroshi G Okuno. Instrument Identification in Polyphonic Music: Feature
Weighting with Mixed Sounds, Pitch-Dependent Timbre Modeling, and Use
of Musical Context. In International Music Information Retrieval Conference
(ISMIR), pages 558–563, 2005.

110 BIBLIOGRAPHY

Group-wise Automatic Music Transcription

[93] Yoonchang Han, Jaehun Kim, and Kyogu Lee. Deep Convolutional Neu-
ral Networks for Predominant Instrument Recognition in Polyphonic Mu-
sic. IEEE/ACM Transactions on Audio Speech and Language Processing,
25(1):208–221, 2017.

[94] Vincent Lostanlen and Carmine-Emanuele Cella. Deep convolutional networks
on the pitch spiral for music instrument recognition. In International Society
of Music Information Retrieval (ISMIR), 2016.

[95] H Honing. From Time to Time: The Representation of Timing and Tempo.
Computer Music Journal, 25(3):50–61, 2001.

[96] Masataka Goto and Yoichi Muraoka. Beat tracking based on multiple-
agent architecture-a real-time beat tracking system for audio signals. In
International Conference on Multiagent Systems (ICMS), pages 103–110,
1996.

[97] Eric D. Scheirer. Tempo and beat analysis of acoustic music. The Journal of
the Acoustical Society of America, 103:588–601, 1998.

[98] Gouyon Fabien and Simon Dixon. A Review of Automatic Rhythm Descrip-
tion Systems. Computer Music Journal, 29(1):34–54, 2005.

[99] K. Ochiai, H. Kameoka, and S. Sagayama. Explicit beat structure modeling
for non-negative matrix factorization-based multipitch analysis. In 2012
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 133–136, 2012.

[100] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation Learn-
ing: A Review and New Perspectives. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 35(8):1798–1828, 2013.

[101] F. Rosenblatt. The perceptron–a perceiving and recognizing automaton.
Cornell Report, 1:85–460, 1957.

[102] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323(6088):533–536, 1986.

[103] Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. Machine
Learning, 20:273–297, 1995.

[104] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. In Proceedings of the IEEE, volume 86,
pages 2278–2324, 1998.

BIBLIOGRAPHY 111

Group-wise Automatic Music Transcription

[105] Yoav Freund and David Haussler. Unsupervised learning of distributions on
binary vectors using two layer networks. In Advances in Neural Information
Processing Systems 4, pages 912–919. Morgan-Kaufmann, 1992.

[106] Geoffrey E. Hinton. Training Products of Experts by Minimizing Contrastive
Divergence. Neural Computation, 14(8):1771–1800, 2002.

[107] G. E. Hinton and R R Salakhutdinov. Reducing the Dimensionality of Data
with Neural Networks. Science, 313(5786):504–507, 2006.

[108] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy
Layer-Wise Training of Deep Networks. Advances in Neural Information
Processing Systems, 19(1):153, 2007.

[109] Dan Claudiu Cirean, Ueli Meier, Luca Maria Gambardella, and Urgen Schmid-
huber. Deep Big Simple Neural Nets Excel on Hand-written Digit Recognition.
Neural Computation, 22, 2010.

[110] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, and Ioannis et al. Antonoglou.
Mastering the game of Go with deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

[111] Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful image colorization.
CoRR, abs/1603.08511, 2016.

[112] Davide Chicco, Peter Sadowski, and Pierre Baldi. Deep autoencoder neural
networks for gene ontology annotation predictions. In Proceedings of the
5th ACM Conference on Bioinformatics, Computational Biology, and Health
Informatics - BCB ’14, pages 533–540, 2014.

[113] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural
networks. CoRR, abs/1312.6199, 2013.

[114] Ning Qian. On the momentum term in gradient descent learning algorithms.
Neural Networks, 12(1):145 – 151, 1999.

[115] Sebastian Ruder. An overview of gradient descent optimization algorithms.
CoRR, abs/1609.04747, 2016.

[116] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. CoRR, abs/1412.6980, 2014.

112 BIBLIOGRAPHY

Group-wise Automatic Music Transcription

[117] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. The Journal of Physiology,
160(1):106–154, 1962.

[118] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel. Backpropagation Applied to Handwritten Zip Code
Recognition. Neural Computation, 1(4):541–551, 1989.

[119] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255, 2009.

[120] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classi-
fication with deep convolutional neural networks. In Advances in Neural
Information Processing Systems 25, pages 1097–1105. Curran Associates, Inc.,
2012.

[121] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1–9, 2015.

[122] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. In International Conference on Learning
Representations (ICLR), pages 1–14, 2015.

[123] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. CoRR, abs/1512.03385, 2015.

[124] Keunwoo Choi, George Fazekas, Mark B. Sandler, and Kyunghyun Cho.
Convolutional recurrent neural networks for music classification. CoRR,
abs/1609.04243, 2016.

[125] Thomas Lidy and Alexander Schindler. Parallel convolutional neural networks
for music genre and mood classification. MIREX 2016, 2016.

[126] Eric J Humphrey. An exploration of deep learning in content-based music
informatics. PhD thesis, New York University, 2015.

[127] Vinod Nair and Geoffrey E Hinton. Rectified Linear Units Improve Restricted
Boltzmann Machines. Number 3, pages 807–814, 2010.

[128] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical Evaluation
of Rectified Activations in Convolutional Network. CoRR, abs/1505.00853,
2015.

BIBLIOGRAPHY 113

Group-wise Automatic Music Transcription

[129] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. CoRR,
abs/1502.03167, 2015.

[130] Michael A. Nielsen. Neural Networks and Deep Learning. Determination
Press, 2015.

[131] Anthemscore. https://www.lunaverus.com/cnn. Accessed: 2017-06-26.

[132] Mert Bay, Andreas F. Ehmann, and J. Stephen Downie. Evaluation of
multiple-f0 estimation and tracking systems. In Proceedings of the 10th
International Society for Music Information Retrieval Conference (ISMIR),
pages 315–320, 2009.

[133] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification.
CoRR, abs/1502.01852, 2015.

[134] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual represen-
tations by solving jigsaw puzzles. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), pages 69–84, 2016.

[135] Pulkit Agrawal, João Carreira, and Jitendra Malik. Learning to see by
moving. CoRR, abs/1505.01596, 2015.

[136] James Bergstra and Yoshua Bengio. Random Search for Hyper-Parameter
Optimization. Journal of Machine Learning Research, 13:281–305, 2012.

[137] Andreas Arzt, Sebastian Böck, Sebastian Flossmann, and Harald Frostel.
The Complete Classical Music Companion V0. 9. In Proceedings of the AES
International Conference on Semantic Audio, number 1, pages 133–137, 2014.

[138] Meinard Müller, Verena Konz, Michael Clausen, Sebastian Ewert, and Chris-
tia Fremerey. A Multimodal Way of Experiencing and Exploring Music.
Interdisciplinary Science Reviews, 35(2):138–153, 2010.

[139] M.A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney.
Content-Based Music Information Retrieval: Current Directions and Future
Challenges. volume 96, pages 668–696, 2008.

[140] Shazam. https://www.shazam.com/gb. Accessed: 2018-07-01.

[141] Emilia Gómez, Perfecto Herrera, and Xavier Serra. Chroma binary similarity
and local alignment applied to cover song identification. IEEE Transactions
on Audio, Speech and Language Processing, 16(6):1138–1151, 2008.

114 BIBLIOGRAPHY

Group-wise Automatic Music Transcription

[142] Nicola Orio and François Déchelle. Score Following Using Spectral Analysis
and Hidden Markov Models. In International Computer Music Conference,
pages 1–1, La Havane, Cuba, 2001.

[143] C. Joder, S. Essid, and G. Richard. A conditional random field framework for
robust and scalable audio-to-score matching. IEEE Transactions on Audio,
Speech and Language., 19(8):2385–2397, 2011.

[144] Ning Hu, R.B. Dannenberg, and George Tzanetakis. Polyphonic audio
matching and alignment for music retrieval. Signal Processing, pages 185–188,
2003.

[145] Roger B Dannenberg. An On-Line Algorithm for Real-Time Accompaniment.
In International Computer Music Conference, pages 193–198, 1984.

[146] Nicola Orio and Diemo Schwarz. Alignment of monophonic and polyphonic
music to a score. In International Computer Music Conference, pages 155–158,
2001.

[147] S. Ewert, M. Muller, and P. Grosche. High resolution audio synchronization
using chroma onset features. In IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 1869–1872, 2009.

[148] Roger B Dannenberg and Ning Hu. Polyphonic Audio Matching for Score
Following and Intelligent Audio Editors. In International Computer Music
Association, pages 27–33, 2003.

[149] Gerhard Widmer, Simon Dixon, Werner Goebl, Elias Pampalk, and Asmir
Tobudic. In search of the horowitz factor. AI Mag., 24(3):111–130, September
2003.

[150] C.C.S. Liem and Alan Hanjalic. Expressive timing from cross-performance
and audio-based alignment patterns: An extended case study. In International
Society for Music Information Retrieval Conference (ISMIR), pages 519–524,
2011.

[151] Gineke A. ten Holt, Marcel J. T. Reinders, and Emile A. Hendriks. Multi-
dimensional dynamic time warping for gesture recognition. In 13th annual
conference of the Advanced School for Computing and Imaging, volume 119,
2007.

[152] Dynamic Time Warping. In Information Retrieval for Music and Motion,
pages 69–84. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

BIBLIOGRAPHY 115

Group-wise Automatic Music Transcription

[153] Hiroaki Sakoe and Seibi Chiba. Dynamic Programming Algorithm Optimiza-
tion for Spoken Word Recognition. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 26(1):43–49, 1978.

[154] Meinard Müller and Sebastian Ewert. Chroma Toolbox: Matlab Imple-
mentations for Extracting Variants of Chroma-Based Audio Features. In
International Society for Music Information Retrieval Conference (ISMIR),
pages 215–220, 2011.

[155] Stan Salvador and Philip Chan. Toward accurate dynamic time warping in
linear time and space. Intelligent Data Analytics, 11(5):561–580, 2007.

[156] Meinard Müller, Henning Mattes, and Frank Kurth. An efficient multi-
scale approach to audio synchronization. In International Society for Music
Information Retrieval Conference (ISMIR), pages 192–197, 2006.

[157] Leen De Bruyn, Marc Leman, Dirk Moelants, Michiel Demey, Sølvi. Ystad,
Richard. Kronland-Martinet, Kristoffer. Jensen, and Leen De Bruyn. Com-
puter Music Modeling and Retrieval. Genesis of Meaning in Sound and Music.
in Sound and Music, 5493:93–106, 2009.

[158] The Mazurka Project. http://www.mazurka.org.uk/. Accessed: 2017-07-10.

[159] Jean-julien Aucouturier and Mark Sandler. Finding repeating patterns in
acoustic musical signals. In Virtual, Synthetic, and Entertainment Audio,
pages 412–421. Sony, 2002.

[160] Kagan Tumer and Joydeep Ghosh. Error Correlation and Error Reduction
in Ensemble Classifiers. Connection Science, 8(3-4):385–404, 1996.

[161] Josef Kittler, Mohamad Hatef, Robert P. W. Duin, and Jiri Matas. On
combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell., 20(3):226–
239, March 1998.

[162] Chiheb Trabelsi, Olexa Bilaniuk, Dmitriy Serdyuk, Sandeep Subramanian,
João Felipe Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio, and
Christopher J. Pal. Deep complex networks. CoRR, abs/1705.09792, 2017.

116 BIBLIOGRAPHY

