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Non-rigid registration of deformed 3D shapes is a challenging and fundamental task in 
geometric processing, which aims to non-rigidly deform a source shape into alignment 
with a target shape. Current state-of-the-art methods assume deformations to be near-
isometric. This assumption does not reflect real-world conditions, for example in large-
scale deformation, where moderate anisotropic deformations (e.g., stretches) are common. 
In this paper we propose two significant changes to a typical registration pipeline 
to address such challenging deformations. First, we introduce a method to estimate 
anisotropic non-isometric deformations and incorporate this into an iterative non-rigid 
registration pipeline. Second, we compute additional correspondences in non-isometrically 
deforming regions using reliable correspondences as landmarks and prune inconsistent 
correspondences. We compare the performance of our proposed algorithm to several state-
of-the-art methods using existing benchmarks. Experimental results show that our method 
outperforms existing methods.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Surface registration is a fundamental problem in the domains of computer graphics and vision, in which the aim is to 
find a transformation that best aligns two input surfaces. Surface registration algorithms underline computational solutions 
to many prevailing problems, such as 3D acquisition/reconstruction, statistical shape analysis and shape retrieval. With 
the increasing ubiquity of 3D scanners and application of 3D scanning in real-world scenarios, the importance of accurate 
registration algorithms is continuing to rise.

In many real-life scenarios, surfaces are often non-rigidly deformed. Non-rigid surface registration is therefore required 
to find the non-rigid transformation between them. Extending from the well-known Iterative Closest Point (ICP) approach 
for rigid registration Besl and McKay (1992); Chen and Medioni (1992), Non-rigid ICP (N-ICP) methods Bouaziz and Pauly 
(2013) achieve registration for non-rigid surfaces by alternating between two steps. In the first step, a set of correspondences 
is computed using a closest point criterion, and then the second step identifies a non-rigid transformation that minimises 
an error metric. Generally, the associated cost function decreases after each iteration, converging monotonically to a local 
minimum. Because of the simple way correspondences are generated, N-ICP is fast enough to be used in some real-time 
applications; though alone, it is incapable of coping with large-scale deformations. N-ICP methods thus typically require an 
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initial set of correspondences generated through alternative means, such as automatic/manual markers (e.g., Amberg et al. 
(2007)), so as to achieve good registration results.

In the N-ICP framework, dense correspondences are obtained using the closest point criterion. However, it is only ef-
fective when two surfaces are reasonably close. Additional (sparse) correspondences are often needed to cope with shapes 
with large deformations. Since shapes to be registered may only have partial overlaps (e.g., due to occlusion when two 
views are captured), correspondences are most often generated by feature matching local shape descriptors of source and 
target shapes.

This requirement exhibits two challenges: First, it can lead to false matches between areas that appear the same locally, 
but belong to different regions (e.g., any local regions on a cylindrical surface). This could be accounted for by ensuring the 
correspondences are consistent. Second, in cases where the surface has been warped, they may not match (unless the shape 
signatures are insensitive to the particular warp, which is not generally possible). Typically, there is little contingency built 
into these N-ICP methods, with most relying on such areas being sufficiently insignificant so as to not affect the final result.

Most recent correspondence methods (e.g., Huang et al. (2008); Tam et al. (2014)) used in non-rigid registration account 
for a certain degree of near-isometric deformation by employing a geodesic-based consistency measure. However, for sur-
faces with large deformations, non-isometric deformations commonly exist (typically in joint areas of articulation, or on 
deforming parts), making the global isometry assumption less useful. In the literature, most surface registration methods do 
not directly address non-isometric deformation. They simply penalise any deformation that is non-isometric. To cope with 
large deformations, we propose a new consistency measure that takes into account anisotropic non-isometric deformation 
explicitly.

Some previous work addresses a related problem of establishing correspondences between shapes which involve po-
tentially large deformations Kim et al. (2011); Litany et al. (2017b). However, fundamental differences exist. Non-rigid 
registration aims to identify non-rigid deformation (usually in the form of a set of local deformations) to deform the source 
mesh to align with the target, whereas correspondence methods only identify point-to-point correspondences between sur-
faces. On the one hand, in order to directly derive deformation with the latter approach, complete or dense per-vertex 
correspondences would be needed. The computation of such dense correspondences can be slow. When two surfaces are 
only partially overlapping, such complete correspondences may not be defined. On the other hand, these methods may have 
significant restrictions on topology (complete genus-zero models) Kim et al. (2011) or may generate globally inconsistent 
correspondences due to the lack of a global constraint Litany et al. (2017b). Compared to these methods, non-rigid regis-
tration can often be driven by a sparse set of reliable correspondences which is easier and more efficient to obtain. It also 
does not require any strong topology assumptions.

Due to the typical sparsity of the correspondences used, non-rigid registration usually requires some regularisation to 
ensure that the surface deforms appropriately during the N-ICP iterations. Notable methods define the local regularisation 
neighbourhood to be 1-ring (i.e., vertices connected to the vertex of interest by an edge) Bouaziz and Pauly (2013) using 
an as-rigid-as-possible (ARAP) formulation Sorkine and Alexa (2007). This however is insufficient for cases with large defor-
mations, as shown in our experiments. Following Chen et al. (2017), which uses r-ring ARAP energy for deformation with 
controllable stiffness, we incorporate ARAP-based regularisation over larger neighbourhoods, allowing large deformation to 
be handled effectively in the N-ICP framework.

Technical contribution In this paper, we propose a novel non-rigid registration technique capable of registering large-scale 
and non-isometric deformations. Addressing large-scale and non-isometric deformation is a fundamental challenge of ex-
isting non-rigid registration techniques. To the best of our knowledge, this challenge has not been addressed before. More 
specifically, our main technical contributions are:

• A novel method to estimate anisotropic deformations on a discrete mesh by using the principal scaling factor.
• A correspondence generation and correspondence pruning method based on local geodesics that copes with anisotropic 

deformations; this makes use of our anisotropic deformation estimate.
• We introduce the r-ring ARAP formulation for regularisation in non-rigid registration, which effectively handles chal-

lenging large deformations where existing registration methods fail.

We further perform both qualitative and quantitative evaluation using public benchmark datasets. Our results show that 
our method outperforms the state-of-the-art methods in non-rigid registration.

2. Related work

Surface registration Over the past decades, many improvements of the original ICP techniques Besl and McKay (1992); 
Chen and Medioni (1992) were proposed. The underlying mechanism is similar and consists of identifying correspondences 
using closest point criterion, and an iterative alignment to handle both rigidly Rusinkiewicz and Levoy (2001) and some 
non-rigidly deformed surfaces Tam et al. (2013). Pottmann et al. (2004) uses a local quadratic approximation that provides 
fast convergence. While these methods are highly efficient, the closest point criterion used to generate correspondences in 
N-ICP methods is often inappropriate for registering surfaces undergoing large-scale deformations.
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Non-rigid registration methods were initially developed to register range scans where the scanning devices used had 
been incorrectly calibrated Li et al. (2009). Brown and Rusinkiewicz (2004) proposes an efficient N-ICP based on thin plate 
spline deformation. Amberg et al. (2007) describes a semi-automatic template-based approach that uses a sparse set of 
hand-picked correspondences on the target surface to initialise registration. Huang et al. (2008) presents a technique capable 
of registering large-scale deformations. Near-rigidly deforming regions of a shape are segmented into clusters, which are 
then deformed and registered. The method thus assumes a mostly piecewise-rigid deformation from the source to the 
target shape. To obtain reliable correspondences, they adapt the spectral matching technique Leordeanu and Hebert (2005), 
which computes a globally consistent set of correspondences by assuming a near-isometric deformation.

Feature descriptors Local feature descriptors may be used to establish correspondences between keypoints with similar local 
geometry. Over the years, many robust feature descriptors have been proposed Johnson and Hebert (1999); Frome et al. 
(2004); Rusu et al. (2008, 2009); Tombari et al. (2010). They have been extensively evaluated in Guo et al. (2016). Among 
those, the Signature of Histograms of Orientations (SHOT) Tombari et al. (2010) is a highly popular descriptor, because 
of its computational efficiency and state-of-the-art performance. More recently Zeng et al. (2017) proposed a volumetric 
feature descriptor using a Convolutional Neural Network (CNN) architecture. Other descriptors based on CNNs have also been 
proposed Wei et al. (2016); Monti et al. (2017). However, these techniques may still generate inconsistent correspondences 
and usually require a large amount of data for training. Since identifying the optimal feature descriptor for non-rigid surfaces 
is not the main focus of this work, we simply use SHOT signatures Tombari et al. (2010) to establish initial correspondences 
due to its robust performance.

Shape correspondences A variety of methods have been proposed for establishing correspondences between shapes Kim 
et al. (2011); Pokrass et al. (2013); Kovnatsky et al. (2013); Litany et al. (2017b). These methods however focus on producing 
(dense) correspondences rather than non-rigid registration. Therefore, they can be slow with dense meshes. They may also 
assume the shapes are (nearly) complete Kim et al. (2011); Pokrass et al. (2013); Kovnatsky et al. (2013) or may produce 
incorrect correspondences due to the lack of global constraints Litany et al. (2017b).

For non-rigid registration, it is usually sufficient to have a sparse set of correspondences. Leordeanu and Hebert (2005)
first uses spectral matching to acquire a consistent set of correspondences between images. Huang et al. (2008) adapts the 
idea to address large-scale, but piecewise-rigid deformations. They further use an assumption of global isometry to obtain 
correspondences. However, the computation of geodesic distances is slow, and using an isometry measure based on global 
geodesic distances may not adequately model real-life deformation well. Due to these drawbacks, Tam et al. (2014) proposes 
to use a more flexible local isometry global consistency model, along with a more efficient diffusion framework to select 
reliable correspondences. All these methods assume (near-)isometric deformation. However, these techniques still cannot 
model real-life deformation well. Here, to the best of our knowledge, we are the first to explicitly model anisotropic non-
isometric deformation in a pruning and registration technique, allowing reliable correspondences and non-rigid alignment 
to be obtained even under large-scale deformation.

Data-driven non-rigid registration Similar to many other geometry processing problems, non-rigid registration also benefits 
from a data-driven approach where additional constraints can be enforced by the availability of a collection of relevant 
shapes. Hirshberg et al. (2012) develops a co-registration technique for multiple shapes. Methods have also been developed 
for registration of human faces Bouaziz et al. (2013) and human bodies Loper et al. (2015) by exploiting pre-built (linear) 
shape models. For more general cases Gao et al. (2016) proposes a new data-driven deformation representation and exploits 
given examples to constrain plausible deformations in non-rigid registration. Although these methods produce competitive 
results, they rely on a sufficiently large collection of shapes to train the underlying model. Furthermore, reliable collections 
of shapes may not be easily available in many practical situations.

Shape deformation Typically, non-rigid registration methods minimise an objective function, comprising of a data and a 
regularisation term. The regularisation term restricts arbitrary deformations, and ensures a natural deformation. Sorkine 
(2006) first proposes a Laplacian deformation framework for meshes. Sorkine and Alexa (2007) builds upon the concept, 
and proposes a simplified approach for mesh editing. The method computes the optimal local rotations and translations for 
each vertex’s one-ring neighbourhood. Kilian et al. (2007) ensures near-isometric shape deformation by preserving geodesics 
between surface points. Sauvage et al. (2008) proposes a deformation framework for B-spline surfaces that incorporates a 
volume constraint. Popa et al. (2006) proposes a deformation model capable of handling anisotropic materials through the 
use of local co-ordinate frames. Achenbach et al. (2015) successfully applies an anisotropic regularisation energy with edge 
Laplacians to a template face model, to improve alignment for anisotropic facial regions such as wrinkles. Such anisotropic 
regularisation is only used in the later refinement stage and therefore the method is not designed for large-scale anisotropic 
deformations, which we address in this paper. Chen et al. (2017) proposes a simple formulation that extends Sorkine and 
Alexa (2007), enlarging the neighbourhood size (to r-ring neighbours) to change the local rigidity of deformations. In this 
work, we introduce the r-ring ARAP energy to the N-ICP framework and demonstrate its effectiveness in handling large-scale 
deformations. This approach may seem counter-intuitive, as it penalises anisotropic deformation. However when it comes 
to challenging large-scale deformations where reliable correspondences may not be readily available, such regularisation is 
necessary to ensure the deformation is not arbitrary and does not overfit to noise.
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Non-rigid registration Non-rigid registration aims to align surfaces undergoing non-rigid deformation. Much research has 
been conducted due to its general applicability Tam et al. (2013). However, most research makes strong assumptions re-
garding the type of deformation, e.g., piecewise-rigid Huang et al. (2008) and isometric Yang et al. (2015); Li et al. (2018). 
Although these assumptions are reasonable when the deformations are small or near-isometric, it is still a challenge to 
register surfaces with large-scale non-isometric deformation, in which case anisotropic deformation is common. To our 
knowledge, this problem has not been addressed in the existing non-rigid registration research.

Functional maps The functional map framework, first proposed by Ovsjanikov et al. (2012), represents correspondences be-
tween two functional spaces as a linear map. However, this approach can only work on topologically consistent, isometric 
shapes. Rodolà et al. (2017) considers the problem of part-to-whole shape matching, observing that a sub-matrix of the 
Laplacian of a whole shape may correspond closely with the eigenvectors of the Laplacian of a part of a similar shape. 
The method alternately optimises for the part on the whole shape and the functional correspondences. This allows near-
isometric, partial shapes to be matched. Litany et al. (2017b) further enhances Rodolà et al. (2017), to enable it to be solved 
solely in the spectral domain, supporting non-isometries and partial shapes. Huang et al. (2014) proposes functional map 
networks that prove robust for matching between heterogeneous shape collections that may be partial and non-isometric. 
Kovnatsky et al. (2015) obtains functional correspondences by incorporating a geometric structure prior. This method is 
capable of handling missing parts, non-isometries, and geometric and topological noise. Vestner et al. (2017) adopt heat 
kernels rather than geodesic distances to improve robustness to topological noise and non-isometric deformation. Recently, 
Litany et al. (2017a) proposed an intrinsic deep learning-based functional map framework. Since Laplacian eigenfunctions 
are known to be sensitive to topological changes, the use of dense and invariant feature descriptors in the data term is 
necessary. Typically, descriptors such as SHOT (Rodolà et al. (2017); Litany et al. (2017a,b)), HKS (heat kernel signatures), 
WKS (wave kernel signatures) or a combination of the three are incorporated (Kovnatsky et al. (2015); Vestner et al. (2017)). 
These techniques are able to produce correspondences, but not local deformations to align non-rigidly deformed surfaces, 
and therefore do not solve the same problem as ours.

3. Methodology

Our N-ICP algorithm (Algorithm 1) consists of four key components: modelling of anisotropic non-isometric deformation 
(Section 3.1), correspondence computation (Section 3.2), correspondence pruning (Section 3.3) and deformation optimisa-
tion (Section 3.4). These components are underpinned by our incorporation of an anisotropic geodesic method. In this 
section, we first present an overview of the algorithm, and subsequently detail each component in the following subsec-
tions.

Algorithm 1 Algorithm overview.
Input: Source and target surfaces (X , Y ).
Output: deformed surface (X ′) and correspondences (CN-ICP)

1: dX ← ExactGeodesics(X)

2: dY ← ExactGeodesics(Y )

3: CFeatureMatch ← FeatureMatch(X, Y ) � Local feature matching.
4: Cpruned ← prune(dX , dY , CFeatureMatch)

5: X ′, CN-ICP ← N-ICP(X, Y , Cpruned)

6: while X ′ has sufficient changes over the last iteration do
7: E X ← PrincipalScalingFactor(X, Y , dX , dY , CN-ICP) � Output source edge lengths.
8: d′

X ← AnisotropicGeodesics(X, E X )

9: Cpruned ← prune(d′
X , dY , CN-ICP)

10: C landmark ← landmark(X, Y , d′
X , dY , Cpruned)

11: Cpruned ← prune(d′
X , dY , C landmark ∪ Cpruned) � Use scaling factor in consistency measure.

12: X ′, CN-ICP ← N-ICP(X, Y , Cpruned)

13: end while

3.1. Anisotropy estimation

In real-life non-rigid scenarios, anisotropic non-isometric deformation is common. For example, the contraction of the 
muscle bicep would cause the arm to bend at the elbow (as shown in Fig. 7). Such muscle contraction involves shortening in 
longitudinal and lengthening in lateral directions of the muscle. It is a typical anisotropic non-isometric deformation. How-
ever, most existing work assumes isotropic near-isometric deformation only. Such an assumption is inadequate to capture 
good correspondence in a non-rigidly deforming region.

To better model these anisotropic non-isometric deformations for a registration technique, we develop a local anisotropy 
metric, and incorporate it in the local geodesic computation. This allows more and better correspondences to be found 
in non-isometrically deforming areas, supporting more robust registration results. In the following, we first discuss the 
anisotropy metric in Section 3.1.1, then discuss how to adopt the metric for geodesic computation in Section 3.1.2.
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Fig. 1. Illustrations that demonstrate the idea of estimating anisotropic non-isometric deformation. a) An anisotropic deformation of points between two 
shapes (X & Y ) may be approximately modelled by an ellipse. The surrounding unlabelled points represent neighbouring points on the source shape 
s j ∈ N X (si) and the predicted correspondence of tv on surface Y . b) Two pairs of eigenvectors (ê1a, ̂e2a, ̂e1b, ̂e2b ∈R2) represent stretching for an edge vab . 
c) vab transforming into new basis B = (e1, e2, e3).

3.1.1. Local anisotropic deformation metric
To model the local anisotropic deformation at each vertex, we propose an anisotropy metric – a pair of local eigenvectors 

that defines the Principal Scaling Factor (PSF) of deformation.
We first project local points in the source mesh onto the tangential plane of the vertex of concern. Then we can estimate 

the local scaling factor by comparing these 2D coordinates with the corresponding geodesic distances from the target mesh 
(illustrated in Fig. 1a). This allows us to extract the scaling directions and magnitudes via eigen-analysis, inspired by the idea 
of principal curvatures Euler (1760). These constitute one part of a 2-order tensor field that describes changes in scaling at 
a per-vertex level of the source shape.

In order to estimate PSF, it is necessary to have some points with known correspondences. This leads to a chicken-
and-egg problem. We address this issue with an iterative approach. We first compute initial correspondences by matching 
features between shapes, as per step 3 of Algorithm 1. Consider a discrete vertex si on the source shape X , with neigh-
bouring vertices s j ∈ N X (si) where the correspondences of si and all s j are known. We project si onto a 2D plane with an 
arbitrary orientation that is tangential to the normal of si . Let ŝi and ŝ j be the projection of vertices si and s j onto the 
2D plane, respectively. The corresponding points on the target shape for si and s j on the source shape are denoted by tu

and t v .
For simpler formulation, we set ŝi = (0, 0) as the origin, and denote ŝ j = (x̂ j, ŷ j). We also define d j = dg(tu, t v) as the 

geodesic distance on the target shape between tu and t v . To ensure robustness, we formulate the problem as a least squares 
fitting, and use a quadratic function f (x̂, ŷ) to approximate d2

j since low-order polynomials are more stable. The squared 
distance should have its centre of symmetry at the origin and f (0, 0) = 0, at which the x term, y term and constant thus 
should all be 0, leading to

f (x̂, ŷ) = ax̂2 + bx̂ ŷ + c ŷ2, (1)

where a, b and c are coefficients to be determined. We formulate the least squares problem to minimise the following

F (a,b, c) =
∑

s j∈N X (si)

(
ax̂2

j + bx̂ j ŷ j + c ŷ2
j − d2

j

)2
. (2)

Setting ∂ F
∂(a,b,c) = 0 leads to a linear system, which can be easily solved. Let x̂ = (x̂, ŷ). We construct a matrix Aq

Aq =
[

a 1
2 b

1
2 b c

]
, (3)

and f (x̂) = x̂T Aq x̂. We then find the first and second eigenvectors of Aq , i.e., ê1, ê2 and their respective eigenvalues (‖ê1‖, 
‖ê2‖). These eigenvectors represent the anisotropy metric at a specific vertex. We may calculate e1, e2 ∈R3 by mapping the 
tangential plane that e1, e2 lie on back into R3. This process is repeated for each vertex in X with a correspondence on Y .

3.1.2. Measuring anisotropic geodesic distance
To measure geodesic distance we use the method proposed by Liu et al. (2017). This method requires the anisotropy 

metric to be encoded into the predicted edge lengths of the shape. We update the estimated lengths of the edge set for the 
source shape using the following procedure.

Let vab be a vector that represents an edge between two adjacent vertices on the source shape (i.e., vab = sb − sa). At 
each vertex, there is a pair of eigenvectors, a principal and secondary vector (ê1, ê2). Thus, for each edge, there are two 
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Fig. 2. Example problematic region between two shapes with no correspondences.

pairs of eigenvectors (ê1a, ê2a) & (ê1b, ê2b). The eigenvalue is encoded into the length of each eigenvector ‖êα‖. An example 
of this in the 2D tangential plane is illustrated in Fig. 1b.

In practice, eα and vab are embedded in R3. We apply the following calculation for both points a and b. For simplicity, 
we only describe the process for one point. We assign the normal vector at the point of concern to e3 = e1×e2‖e1×e2‖ . We use 
the three normalised vectors as the current basis (i.e., B = ( e1‖e1‖ , e2‖e2‖ , e3), as e3 is already normalised). Transforming the 
subject edge into this basis ( ṽab = B−1 vab), the components of each axis now represent the amount of stretching in each 
direction (n.b. e3 always has a stretching factor of 1). We illustrate this new basis w.r.t. point a in 3D in Fig. 1c. We can 
then assign each of our scaling factors to an axis as follows: x : ‖e1‖, y : ‖e2‖ and z : 1. We can apply our scaling factor to 
each respective axis before transforming the stretched edge back into the original global basis ( ṽ∗

ab = B S ṽab), where S is a 
3-by-3 scaling matrix with S11 = ‖e1‖, S22 = ‖e2‖, S33 = 1 and remaining entries to be zero. This process is repeated for 
both points a and b using their respective eigenvectors (e1a, e2a, e3a & e1b, e2b, e3b). The average length of the resulting two 
edges is the new edge length (as a discrete approximation to the integration over the edge).

3.2. Correspondence generation

We now describe our method to find correspondences, as per Algorithm 1. In addition to local feature matching, which 
only works for regions with limited deformation, we further identify correspondences using automatic landmarking in an 
as-consistent-as-possible formulation. The formulation works even under substantial non-isometric deformation.

3.2.1. Local feature matching
In our implementation we have used SHOT signatures to produce a candidate set of correspondences. To reiterate, we 

have chosen SHOT for feature matching as it has acceptable performance Tam et al. (2014); Litany et al. (2017b); the focus 
of this paper is not to seek the best feature descriptor. SHOT signatures are computed at two scales for each vertex on X
and Y Tombari et al. (2010). Vertices between the two shapes are matched based on the similarity of their signatures.

As with most low-dimensional feature descriptors, locally symmetric areas may produce similar local signatures. This 
kind of incorrect correspondence may be identified by checking its consistency with other well matched feature points. For 
regions with isometric deformations, well established methods based on diffusion pruning Tam et al. (2014) can be used. 
We will discuss this along with our extended approach for non-isometric deformation later in Section 3.3.

3.2.2. Correspondence identification based on automatic landmarking
In regions with substantial non-isometric deformation, matching of local feature descriptors (e.g., SHOT) often fails. 

Here, we propose to use reliable correspondences from isometrically deforming regions as landmarks to help identify new 
candidate correspondences in these regions. The landmarks are automatically selected and updated in each iteration of 
our N-ICP framework. Given these landmarks, new candidate correspondences are proposed based on the consistency of 
their geodesic distances to the landmarks. There are three steps to this process, namely: problematic region identification, 
automatic landmark selection and correspondence matching.

Problematic region identification Initially, regions with substantial non-isometric deformation can be found by applying a 
pruning technique Tam et al. (2014). Regions with no (locally isometrically consistent) correspondences will be identified 
as problematic regions (Fig. 2). Each problematic region is then separately analysed. To save computation time, very small 
regions are disregarded since adequate correspondences will be identified later at the ICP stage.

Automatic selection of landmark correspondences Correspondences returned from the pruning algorithm Tam et al. (2014) are 
generally reliable, especially those scoring high confidence values. In principle, we can randomly pick any of these correspon-
dences as landmarks. However, landmarks that are far away from problematic regions are not very effective in estimating 
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new candidate correspondences. Further, in practice, we observe that only a small number of landmarks are necessary to 
uniquely determine a new candidate correspondence point y j ∈ Y for a given point xi ∈ X . We thus sample 20 landmarks 
that are closest to the boundary of a problematic region. This set of landmarks L helps to reduce the ambiguity and impact 
of slight errors in the landmark locations. Although a more sophisticated landmark selection procedure would be desirable, 
through experiments, we found that our method is insensitive to the number of landmarks, and produces consistent results 
when this parameter is varied within a reasonable range. We therefore fixed this parameter in our experiments.

Matching of correspondences For each point xi in a problematic region on surface X , the point y j ∈ Y with the most con-

sistent geodesic distances to landmarks is chosen as the corresponding point. Let lk = (lX
k , lY

k ) ∈ L be the kth landmark 
correspondence with lX

k ∈ X , lY
k ∈ Y . We measure the consistency of a correspondence (xi, y j) w.r.t. a landmark lk as

consk(xi, y j) = min

(
dg(xi, lX

k )

dg(y j, lY
k )

,
dg(y j, lY

k )

dg(xi, lX
k )

)
. (4)

Similar to Huang et al. (2008); Tam et al. (2014), Eqn. (4) provides a normalised measure of consistency in the range of 
[0, 1] where 0 is the worst and 1 is the best. dg(·, ·) measures the geodesic distance between two vertices. However, unlike 
existing work that sets a threshold, which does not generally work for non-isometrically deforming regions, we choose the 
target corresponding vertex y j as the one that gives the overall best geodesic consistency. It works even for regions with 
non-isometric deformations:

argmax
j

min
k

consk(xi, y j). (5)

The rationale is to choose correspondences that give good alignment (by maximising the minimum consistency) to all 
the landmarks, whilst reducing the effect of far away landmarks that are not discriminative enough for identifying a new 
good correspondence.

3.3. Correspondence pruning

Tam et al. (2014) proposes an efficient algorithm capable of pruning a set of candidate correspondences, preserving 
only those that are globally consistent. Poor correspondences are pruned based on their low consistency with good local 
correspondences. The consistency measure kab for a pair of correspondences a = (si, tu) and b = (s j, t v) is defined as:

kab = min

(
dg(si, s j)

dg(tu, t v)
,

dg(tu, t v)

dg(si, s j)

)
, (6)

where si, s j ∈ X and tu, t v ∈ Y are vertices on surfaces X and Y respectively. In their work Huang et al. (2008); Tam et al. 
(2014), a threshold c0 (set to 0.7, as suggested by Huang et al. (2008)) is introduced, and a pair of correspondences is con-
sidered acceptable if kab ≥ c0 in order to penalise non-isometric deformations. Tam et al. (2014) extends Huang et al. (2008)
by considering only local isometry where end points s j and t v of a correspondence b must be within a specified geodesic 
distance to the end points si and tu of a correspondence a. The global consistency of all reliable correspondences can be 
further inferred from local isometry via diffusion processing. This technique is shown to perform well in near-isometric 
cases.

However, in general, these techniques Huang et al. (2008); Tam et al. (2014) fail if the surfaces undergo non-isometric 
deformation, especially the large-scale deformation that we consider in this paper. Our observation is that large-scale defor-
mation often consists of non-isometric (esp. anisotropic) deformation. As these techniques model isotropic (near-)isometric 
deformation only, they fail to return any good correspondences essential for accurate N-ICP alignment. Here, we develop a 
local anisotropy metric (Section 3.1) to estimate anisotropic deformation during registration, and apply Eqn. (6) to incorpo-
rate an anisotropic geodesic measure Liu et al. (2017) d′

g(·, ·). To our knowledge, this is the first effort to explicitly model 
anisotropic non-isometric deformation in a pruning technique.

3.4. N-ICP with extended ARAP regularisation

Our N-ICP implementation is inspired by Bouaziz and Pauly (2013). At each iteration of N-ICP, we work out the deformed 
position x′

i for each vertex xi minimising an objective function involving both the data and regularisation terms, i.e.:

E = Edata + λEreg. (7)

For the first 5 iterations, we only consider correspondences from pruning (Cpruned in Algorithm 1). This transforms the 
surface to an initial deformation that is more suitable. Let C be the set of pruned correspondences and m = |C | be the 
number of correspondences input. Denote each correspondence as ck = (xck , yck

) where xck ∈ X and yck
∈ Y respectively. 

The data term we used in the standard formulation:
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Edata =
m∑

k=1

∥∥∥x′
ck

− yck

∥∥∥2

2
. (8)

After the 5th iteration, we discard prior correspondences, and use nearest neighbour correspondences to help guide the 
mesh into alignment. Our data term is now formulated as a combination of point-to-point and point-to-plane distances, 
where yi is the closest point to x′

i on shape Y , and ni is the normal of point yi . w1 and w2 are the respective weights of 
point-to-point and point-to-plane terms.

Edata = w1

n∑
i=1

∥∥x′
i − yi

∥∥2
2 + w2

n∑
i=1

∥∥ni
(
x′

i − yi

)∥∥2
2 (9)

For the regularisation term, traditional N-ICP uses a local ARAP energy in 1-ring neighbourhoods Sorkine and Alexa 
(2007). We observe that this regularisation is not sufficient for registration of regions with large-scale deformations. For 
the purpose of shape deformation, Chen et al. (2017) generalises this concept to work with r-ring neighbourhoods. It would 
provide greater control over how the deformation of a vertex affects its connected vertices. We propose to incorporate r-ring 
ARAP into our N-ICP registration pipeline to handle large-scale deformations. Let Nr

i be the r-ring neighbourhood for the 
vertex xi , and n = |X | be the total number of vertices of X .

Ereg =
n∑

i=1

∑
j∈Nr

i

∥∥∥(x′
j − x′

i) − R i(x j − xi)

∥∥∥2

2
(10)

The optimisation of E involves alternating optimisation of the deformed positions X ′ = {x′
i} for each vertex xi (while 

fixing Ri ), and the calculation of the optimal local rigid rotation Ri (while fixing X ′). Similar to Sorkine and Alexa (2007); 
Chen et al. (2017), the former (global step) is a least-squares problem and can be solved by solving a linear system, and the 
latter is optimised for each vertex and can be solved using Singular Value Decomposition Sorkine and Alexa (2007); Chen 
et al. (2017).

Note that on line 12, Algorithm 1, we pass X as the source shape rather than X ′ , this enables the consistent application 
of local regularisation and helps ensure better registration results.

4. Evaluation

To evaluate the performance of our proposed method, we benchmark it on a series of synthetic and real datasets. 
These datasets contain challenging registration scenarios, that include a range of minor and major anisotropic non-isometric 
deformations. We compare our technique against the notable non-rigid ICP Bouaziz and Pauly (2013), two recent sparse 
non-rigid registration methods Yang et al. (2015); Li et al. (2018), and a state-of-the-art functional map method Vestner 
et al. (2017).

To measure the performance of each method on the datasets, we follow the Princeton benchmark protocol Kim et al. 
(2011) for geodesic error. The normalised geodesic error between a deformed vertex x′

i and the ground truth position g i is 
measured as follows:

εi = dg(x′
i, g i)

area(Y )1/2
(11)

Yang et al. (2015); Li et al. (2018); Vestner et al. (2017) and our proposed method each rely on an initial set of corre-
spondences. To ensure our tests were fair, we computed an initial set of correspondences using SHOT Tombari et al. (2010). 
Vestner et al. (2017) was provided a dense set of feature descriptors; while, for Yang et al. (2015); Li et al. (2018) and our 
method, we subsequently applied pruning Tam et al. (2014) once for each pair of shapes, and used the same set of initial 
correspondences. To demonstrate the generalisability of each method, we do not perform further parameter tuning between 
tests, except where specified.

4.1. Implementation

A 352-dimension SHOT feature descriptor was used for Yang et al. (2015); Vestner et al. (2017); Li et al. (2018) and our 
method. For the underlying N-ICP of our method, we used the following parameters: w1 = 10, w2 = 2, λ = 1000, iterations 
= 30, & r-ring = 2. The proposed PSF and landmark methods were enabled in all tests, except where specified. For the N-ICP 
method Bouaziz and Pauly (2013), we kept most of the default settings, except the number of iterations, for which we 
found a value of 50 was sufficient. To run Vestner et al. (2017), we created a low resolution (5,000 vertices) copy of each 
mesh using qslim Garland and Heckbert (1997) and then applied MeshFix Attene (2010), providing both a high resolution 
and low resolution version of each shape during run-time. Shape pairs were rescaled to ensure their area was consistent. 
We enabled partial matching and set α = 10−7 and t = [500, 323, 209, 135, 87, 56, 36, 23, 15, 10], initially solving for 10,000 
correspondences with a maximum problem size of 3,000 for all subsequent iterations.
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Fig. 3. TOSCA high-res dataset results.

Fig. 4. Deformation results on Bouncing dataset Vlasic et al. (2008). a) initial pose source (top) target pose (bottom), b) our method c) sparse non-rigid 
registration method Yang et al. (2015).

4.2. Synthetic datasets

TOSCA high-resolution dataset For the TOSCA dataset Bronstein et al. (2008), we generated 69 pairs of shapes with the same 
class label (i.e., cat to cat, dog to dog, etc.). Each mesh was simplified to have 10,000 faces using qslim Garland and Heckbert 
(1997). Models with flipped normals were excluded from tests. We disabled partial matching for Vestner et al. (2017) on 
this dataset, and kept other settings (see Section 4.1).

Fig. 3 shows the average registration accuracy of each method on the TOSCA dataset. These graphs show the proportion 
of vertices that have an error less than the value on the x-axis. The techniques corresponding to curves towards the top left 
of the graph are comparatively better. It should be noted that Bouaziz and Pauly (2013) failed to perform well on the TOSCA 
dataset, as well as the subsequent datasets. Since this was the simplest dataset, we excluded this method from further tests.

Fig. 10 shows the location of registration errors. For every vertex, we measure the average registration error across a 
set of deformed models for both our proposed method and Yang et al. (2015). Fig. 11 shows the registration result when 
dealing with a large non-isometric intra-class deformation on the hind legs of the TOSCA dog.

Bouncing dataset Fig. 4 shows the results of our proposed method, compared with Yang et al. (2015), on the Bouncing 
dataset Vlasic et al. (2008). We measure the fitting error between the deformed and target shapes with Hausdorff distance in 
MeshLab Cignoni et al. (1998). Note that Vestner et al. (2017) only produces correspondences rather than surface alignment, 
and cannot be used for this evaluation.
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Fig. 5. Results on SHREC’16 partial dataset compared with results (Par-
tial Functional Maps & Random Forests) from dense methods reported 
in Cosmo et al. (2016).

Fig. 6. Results of our method in different configurations on SHREC’16 partial 
dataset. In configurations where PSF is off, we use standard geodesics, rather 
than anisotropic ones (skipping lines 7 & 8 of Algorithm 1). Where landmark-
ing is off, we skip lines 10 & 11 of Algorithm 1.

SHREC’16 partial model dataset We further used the SHREC’16 partial model dataset Cosmo et al. (2016). This dataset is 
an important derivative work of the TOSCA dataset in which shapes have missing data (holes or cuts) that make non-
rigid registration challenging. Fig. 5 illustrates the results of the Partial Functional Maps Rodolà et al. (2017) and Random 
Forests Rodolà et al. (2014) reported in Cosmo et al. (2016) compared with the results of Yang et al. (2015); Li et al. (2018); 
Vestner et al. (2017) and our proposed method. This demonstrates that our method is robust to holes and cuts, and clearly 
outperforms state-of-the-art methods, especially for the cases with holes.

To demonstrate the effectiveness of the individual ideas in our technique (namely, selection of landmarks, principal 
scaling factor, and r-ring ARAP), we ran a series of experiments with different configurations on the SHREC’16 partial 
model dataset. Results are illustrated in Fig. 6, which show that all the components in our method contribute to improved 
performance.

In summary, our results demonstrate that our method consistently outperforms Yang et al. (2015); Li et al. (2018); 
Vestner et al. (2017); Bouaziz and Pauly (2013). In cases where the initial SHOT correspondences were poor, we found that 
the landmark-based correspondences and r-ring ARAP helped improve the alignment of large deformations.

4.3. Real datasets

Partial body scans Results from running our registration pipeline on a collection of partial body scans Allen et al. (2002) are 
shown in Fig. 7. We also observed that missing data can cause our correspondence generation technique to produce more 
incorrect correspondences. In our tests, using 2- or 3-ring neighbourhoods helped alleviate this problem and improved 
registration results. The results presented in Fig. 7 were computed using 3-ring neighbourhoods.

FAUST dataset We used the FAUST dataset Bogo et al. (2014) to help us objectively evaluate our method. FAUST is a collec-
tion of real scans captured using a 3D multi-stereo system. Ground-truth correspondences were acquired by covering each 
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Fig. 7. Results of our proposed non-rigid registration technique on partial body scans Allen et al. (2002). a) initial pose source X (blue), target Y (white), b) 
overlapped result. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 8. Registration results of pairs of models from the FAUST dataset.

subject’s body with a series of stamps that were matched using texture-based registration. We compared the performance 
of our method, Yang et al. (2015), Li et al. (2018) and Vestner et al. (2017).

Since none of the methods require any form of training, we used the training set for our evaluation. In our first experi-
ment we produced an intra-subject data as follows: for each person in the dataset, we registered every mesh of that same 
individual to their first mesh, creating a set of 90 intra-person shape pairs. We then created our own inter-subject data 
by pairing each person in the dataset to another person in the dataset in a single, randomly selected pose. This created 
a set of 90 randomly chosen pairs to evaluate each method with. We used exactly the same set of shape pairs for each 
method.

Registration results on the FAUST dataset are shown in Fig. 8, and some visual examples in Fig. 9. Our technique consis-
tently shows lower mean geodesic errors compared against the state-of-the-art methods.
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Fig. 9. Screenshots of correspondence results of a) our method, b) Li et al. (2018) and c) Vestner et al. (2017) on pairs of inter-person shapes from the 
FAUST dataset (left source, right target). Colours represent correspondence between shapes (i.e., the same point on each shape should have the same 
colour). Observe the reflection of correspondences in method (c) in the top row, and the colour bleed at the intersection between legs in the bottom row. 
The mean geodesic error for each method on the top row is as follows: a) 0.0373, b) 0.0419, c) 0.2971. Similarly, for the bottom row: a) 0.0639, b) 0.0820, 
c) 0.0840.

It should be noted that the curves in respective figures only show the aggregated performance over the entire datasets. 
For simpler cases (shape pairs and regions), all the methods work well. When it comes to challenging regions (esp. joints), 
our technique performs significantly better than the curves show. The superior performance of our method is illustrated by 
typical examples in the paper.

5. Limitations

With the help of local scaling metric estimation and additional correspondences from landmarks, our method is more 
robust to large-scale, especially non-isometric deformations in surface registration than existing methods, as demonstrated 
by extensive comparisons. However, our method still has some limitations. Our method still relies on some correct initial 
correspondences to start the iterative process, and may perform poorly if the initial correspondences are largely wrong. We 
currently take a simplified strategy to fix all the parameters. Some parameters, such as the number of landmarks and the 
r-ring ARAP, may work more effectively when more sophisticated, adaptive algorithms are used; we leave this as future 
work.

6. Conclusions

In this paper we present a novel pipeline capable of registering two 3D shapes with large and non-isometric non-rigid 
deformations. We develop a technique to estimate local anisotropic non-isometric deformation and compute reliable corre-
spondences in areas under large-scale deformation. We further develop a new consistency measure and automatic landmark 
selection method to support non-isometric consistency. We then extend the ARAP regularisation constraint to deform larger 
surfaces in a more uniform manner. Our experimental results demonstrate that our technique performs well in challenging 
scenarios. Comparative evaluations also highlight scenarios where state-of-the-art methods fail.

Our technique performs well in non-isometrically deformed regions, and we believe that the technique can be further 
developed to handle more challenging cases (e.g., heterogeneous objects). In addition, our technique currently only takes a 
source shape and a target shape as input. It is possible to generalise our method to exploit more example shapes to achieve 
more accurate registration results.
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Fig. 10. Results for the TOSCA cat, gorilla, David & dog sets, a) source/target models used, b) combined registration error of our method, c) combined 
registration error of Yang et al. (2015).

Fig. 11. Registration results on TOSCA dog. a) initial pose source (top) target pose (bottom), b) our method c) Yang et al. (2015).
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