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ABSTRACT
BACKGROUND: Interferon-alpha (IFN-α) is a key mediator of antiviral immune responses used clinically for hepatitis C
treatment. Though effective, IFN-α induces marked behavioral changes that, when severe, can appear indistinguish-
able from major depression. Curiously, fatigue and motivational impairment evolve rapidly, suggesting acute
engagement of immune-brain communicatory pathways, yet mood impairments typically emerge later, after weeks
of treatment. Whether this reflects prolonged modulation of motivational processes underpinning fatigue or separate
neurobiological mechanisms is currently unclear.
METHODS: Here, we used quantitative magnetization transfer (qMT) imaging, an advanced microstructural
neuroimaging technique sensitive to effects of inflammation, in a prospective study design to measure acute brain
changes to IFN-α and relate these to later development of discrete behavioral changes. Twenty-three patients
initiating IFN-α treatment for hepatitis C underwent qMT imaging and blood sampling at baseline and 4 hours after
their first IFN-α injection. Comprehensive behavioral and psychological assessments were completed at both
scanning sessions and at treatment weeks 4, 8, 12, and 24.
RESULTS: IFN-α injection stimulated an acute inflammatory cytokine response and evoked fatigue that peaked
between 4 and 12 weeks, preceding mood change by 4 weeks. In the brain, IFN-α induced an acute change in striatal
microstructure that additionally predicted development of fatigue but not mood symptoms.
CONCLUSIONS: Our findings highlight qMT as an in vivo biomarker of central effects of peripheral inflammation. We
demonstrate exquisite sensitivity of the striatum to IFN-α, implicate striatal perturbation in IFN-α-induced fatigue, and
dissociate this from mechanisms underlying IFN-α-induced mood symptoms, providing empirical support for distinct
neural substrates mediating actions on motivation and mood.
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Interferon-alpha (IFN-α) is a type I interferon released by
specialized leucocytes (plasmacytoid dendritic cells) in
response to viral stimulation (1) as well as virally infected cells
and promotes a broader antiviral immune response. Externally
administered IFN-α is also used clinically in the treatment of
hepatitis C. Despite good clinical efficacy, direct and/or
indirect actions on the brain result in often highly disabling
behavioral changes including fatigue, mood, motivation, and
cognitive impairments (2). When severe, these changes can
appear indistinguishable from major depression and provide
powerful empirical support for inflammatory theories of
depression (3,4). A striking feature of IFN-α-based treatment,
though one rarely utilized experimentally, is that the impact on
individual behavioral domains follows markedly different tem-
poral trajectories. Changes in fatigue and motivation typically
emerge within hours of the first IFN-α injection, suggesting the
rapid engagement of immune-brain communicatory pathways
and motivational processes. However, mood and cognitive
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effects are rarely prominent before 4 weeks of treatment,
suggesting either a separate neurobiological mechanism or
alternatively the secondary emergence of affective symptoms
following prolonged modulation of motivational processes
underpinning fatigue (2). Thus, the experimental investigation
of early effects of IFN-α on the brain offers a unique window
into the neurobiological mechanisms underlying IFN-α-
induced depression, allowing the identification of neural
processes that are acutely susceptible to IFN-α and predict
the later emergence of discrete symptom clusters.

To date, most studies investigating the neurobiology of IFN-
α-induced behavioral change utilize cross-sectional study
designs, typically after 4 to 12 weeks of IFN-α treatment when
the full spectrum of behavioral change is evident (5–8). These
provide important insights into the neural processes and
structures susceptible to chronically administered IFN-α; how-
ever, their cross-sectional design limits the characterization of
causal relationships between IFN-α-induced changes in the
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brain and the subsequent development of discrete behavioral
changes that evolve with different temporal dynamics. In contrast,
prospective studies enable the differentiation of changes induced
by IFN-α from those resulting from the behavior itself. In one
example, Capuron et al. (9) showed that acute reactivity of
adrenocorticotropic hormone and cortisol to IFN-α injection can
differentiate individuals who later develop depression. Further, by
measuring the response well before the development of depres-
sion, they demonstrated this to be a key neurobiological process
selectively engaged by IFN-α, rather than a consequence of the
depression induced (which may alone cause hypothalamic-
pituitary-adrenal axis hyperactivity) (10). Prospective studies
investigating acute actions of IFN-α may also help identify and
offer treatment to individuals most susceptible to the behaviorally
impairing effects of IFN-α early in their treatment.

Here, we used a prospective study design to investigate the
relationship between acute actions of IFN-α on the brain and
subsequent behavioral change. We used quantitative magnet-
ization transfer (qMT) imaging, an advanced structural magnetic
resonance imaging (MRI) technique that exploits the phenomenon
of magnetization transfer (MT) between free and macromolecular
bound protons, to detect changes in microstructural environment.
Molecules rich in hydroxyl and/or carboxyl groups appear to play
a predominant role in MT (11). Though the precise molecules
mediating MT change cannot be determined, it is noteworthy that
metabolites such as lactate (which contains a hydroxyl and
carboxyl group) as well as pH have previously been implicated
(12,13). qMT has also been shown previously to be sensitive to
the central effects of peripheral inflammation in both rodents
(14,15) and humans (16).

We recruited 23 patients initiating IFN-α-based treatment
for hepatitis C infection and followed them over their 6-month
duration of treatment. Of these patients, 19 completed repeat
qMT imaging at both baseline and 4 hours after their first IFN-α
injection. Blood samples were obtained immediately after both
scanning sessions to characterize the profile of cytokine
changes induced acutely by IFN-α. Comprehensive clinical
assessments were completed at both scanning sessions and
at 4, 8, 12, and 24 weeks of treatment to quantify and
characterize symptoms of fatigue and depression.

Key aims were to determine first whether IFN-α induces
acute microstructural reorganization within the brain and
second whether the pattern of evoked changes provides
evidence for activation of an indirect (neurally mediated) or
direct immune-brain communicatory pathway. We next aimed
to investigate whether acute changes in brain microstructure
also predict the later development of fatigue and motivational
change. Finally, we tested if acute changes within systems
supporting motivational behavior (and linked to expression of
fatigue) additionally contributed to the later development of
mood change. A subaim was to further characterize the nature
of IFN-α-induced fatigue, in particular its relationship to
subjective sleepiness or the propensity to fall asleep.

Unlike the reported central response to inflammation
induced using bacterial antigens (16–20), the human literature
concerning response to chronic IFN-α provides little support
for engagement of typical interoceptive pathways to insula
(5,6,21). Instead, there appears to be a particular sensitivity of
striatal structures. It is currently unclear whether this reflects
habituation of interoceptive pathways during chronic IFN-α
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treatment or, alternatively, more direct actions of IFN-α on
subcortical structures as suggested by rodent studies (22,23).
To address this, we investigated the acute effects of IFN-α on
bilateral insula (the cortical terminus of human interoceptive
pathways) (24,25) and the striatum, a structure sensitive to
chronic IFN-α but not typically implicated in neurally mediated
interoception (24). Given the acute onset of fatigue and
motivational impairment, we predicted that acute changes in
ventral striatal microstructure would additionally predict the
evolution of fatigue but not necessarily later mood symptoms.
METHODS AND MATERIALS

Participants

Twenty-three individuals (17 male subjects, mean 48.8 6 10.9
years) initiating IFN-α-based therapy for hepatitis C were
recruited. All were fluent in English, aged 18 to 64 years, and
fulfilled National Institute for Health and Care Excellence guide-
lines for starting IFN-α-based therapy. Participants had a baseline
psychiatric evaluation of current mental state and previous
psychiatric history, using the Mini-International Neuropsychiatric
Interview (M.I.N.I.) (26). Participants were excluded if they were
receiving treatment for depression at study enrollment, had a
history of psychotic or autoimmune illness, had not abstained
from substance abuse for at least 6 months, were co-infected
with human immunodeficiency virus, or had any cause for liver
disease other than hepatitis C. The study was approved by the
Cambridge Central National Research Ethics Committee. All
subjects provided written informed consent.

Study Design

The study utilized a prospective cohort design. Participants
were evaluated at baseline (mean 7 days before treatment),
4 hours after their first IFN-α injection, and weeks 4, 8, 12, and
24 of IFN-α-based therapy. Psychopathological symptoms
were evaluated at each visit using the Profile of Mood States
(POMS) questionnaire (27), Epworth Sleepiness Scale (ESS)
(28), fatigue visual analog scale (fVAS), Hamilton Depression
Rating Scale (HAMD), State and Trait Anxiety Inventory (STAI),
and M.I.N.I. MRI followed by blood sampling, blood pressure,
and temperature was repeated at baseline and 4 hours after
the first IFN-α injection to index acute effects of IFN-α on brain
microstructural environment and circulating cytokines, respec-
tively. Of the total cohort, 19 participants (14 male participants,
mean 44.4 6 10.7 years) completed both MRI sessions and 20
participants (17 male participants, mean 49.6 6 11.2 years)
completed both blood samples. One female participant was
later excluded from the image analysis due to metal-induced
artifact. All participants completed all clinical evaluations.

Behavioral Analyses

Effects of IFN-α on global fatigue were measured using the
fVAS and fatigue subcomponents of tiredness, vigor, and
subjective sleepiness with the POMS and ESS. Actions on
depressive and anxiety symptoms were additionally recorded
using the M.I.N.I., HAMD, and STAI. Effects of IFN-α
on all psychopathological symptoms and the relationship
between different behavioral domains were analyzed in SPSS
hiatry February 15, 2016; 79:320–328 www.sobp.org/journal 321
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21.0 (IBM Corp., Armonk, New York) using repeated-measures
analyses of variance and subsequent paired sample t tests or
regression analyses, respectively. Mauchly’s sphericity test
was performed, and results reported followed Greenhouse-
Geisser correction of degrees of freedom where appropriate.

Cytokine Analyses

Blood (20 mL) was drawn into Vacutainer tubes (Becton and
Dickinson, Franklin Lakes, New Jersey) containing ethylene-
diaminetetraacetic acid anticoagulant then centrifuged at
1250g for 10 minutes. Plasma was removed, aliquoted, and
frozen at 2801C before analysis. Plasma IFN-α was measured
using high-sensitivity VeriKine ELISA (Human IFN Alpha Multi-
Subtype ELISA Kit (TCM); PBL Assay Science, Piscataway,
New Jersey). Interleukin-6 minimum detectable dose (MDD) 5
.039 pg/mL, tumor necrosis factor (TNF) MDD 5 .106 pg/mL,
interleukin-1β MDD 5 .057 pg/mL, and interleukin-10 MDD 5

.09 pg/mL for the high-sensitivity Quantikine ELISAs (R&D
Systems, Abingdon, United Kingdom) and interleukin-1 recep-
tor antagonist MDD 5 6.3 pg/mL for the Quantikine ELISA.

MRI

MRI was performed on a 1.5T Siemens Avanto (Erlangen,
Germany), equipped with a 32-channel phased-array receive-
only head coil. qMT data were acquired using the balanced
steady-state free precession method (29) with a three-
dimensional true fast imaging with steady-state precession
sequence (matrix 5 256 3 96, slices 5 32, slice thickness 5 5
mm). A total of 22 volumes were acquired (flip angle varied
between 51 and 401, pulse duration between .2 and 2.5 ms)
resulting in a range of repetition time (TR) from 3.66 ms to 5.96
ms and echo time (TE) from 1.83 ms to 2.98 ms. T1 mapping
was performed by acquiring three gradient echo volumes (flip
angles 5 51, 151, and 251; TR 5 30 ms; TE 5 5 ms) with
matched matrix size and field of view. A high-resolution T1-
weighted anatomical scan was acquired using a magnetization
prepared rapid acquisition gradient-echo (TR 5 1160 ms,
TE 5 4.24 ms, inversion time 5 600 ms, matrix 5 256 3

256, slices 5 192, slice thickness 5 1 mm, flip angle 5 151).
Other acquisitions including functional MRI were additionally
acquired and will be reported separately.

Participant-specific qMT and T1 mapping volumes were
spatially realigned to their respective anatomical volume using
SPM8 rigid-body registration (Wellcome Trust Centre for Neuro-
imaging, University College London, United Kingdom; http://
www.fil.ion.ucl.ac.uk/spm/). The qMT parameters forward
exchange rate constant (kf), T2 of free water component (T2f),
and bound proton fraction (F) were then extracted in a
voxelwise manner using Levenberg-Marquardt nonlinear least
squares fitting to the binary spin bath model (29). T1 maps were
obtained through voxelwise fitting of the data to theoretical
pixel values for the spoiled gradient echo for the three flip
angles. Symmetric diffeomorphic mapping using Advanced
Normalization Tools (http://stnava.github.io/ANTs) was applied
to the magnetization prepared rapid acquisition gradient-echo
images to generate a group-specific brain template (30). qMT
parameter maps were deformed to this template, transformed
into Montreal Neurological Institute space, and then smoothed
with an 8-mm3 full width and half maximum Gaussian kernel.
322 Biological Psychiatry February 15, 2016; 79:320–328 www.sobp.o
Voxelwise paired t tests were used to identify acute effects of
IFN-α on regional kf, T2f, and F parameters.

Finally, we performed regression analyses to investigate
whether acute actions of IFN-α on regional brain microstruc-
tural environment additionally predicted the subsequent devel-
opment of fatigue or mood change. Baseline parameter maps
were subtracted from their respective maps at 4 hours and
then regressed against changes in fatigue and mood. To
minimize variance induced by changes in medical manage-
ment, e.g., starting an antidepressant, we restricted this
analysis to changes at 4 weeks only. No participant had any
change in prescribed medication at this time. We restricted
these correlations with kf and T2f to a priori regions of interest
(ROIs) in the ventral striatum and insula.

ROIs

We defined four a priori ROIs for analyzing the main effects of
IFN-α: left and right striatum and insula. Results are addition-
ally reported for striatal subcomponents: putamen and cau-
date. Masks for each ROI were produced using the WFU
Pickatlas (http://fmri.wfubmc.edu/software/PickAtlas) (31). Val-
ues of kf and particularly T2f in cerebrospinal fluid (CSF) (�300
ms) are very different from those in tissue (�40 to 70 ms). As a
result, these parameters are extremely sensitive to CSF
contamination near the ventricles. To avoid biasing the mean
of kf and T2f values, we excluded voxels with implausibly high
T2f values (.150 ms) using a subject specific masking
procedure. Furthermore, since this was an ROI analysis, it
was not necessary to use smoothed T2f and kf parameter
maps, avoiding introducing further partial volume effects.
Mean changes in kf and T2f within all mask voxels were
extracted from the insula and ventral striatum (32) for each
participant using FSL (FMRIB, Oxford, United Kingdom; http://
fsl.fmrib.ox.ac.uk) and then used to investigate the relationship
with subsequent changes in fatigue and mood.

Multiple Comparisons

Whole-brain corrected cluster significance was determined
using stringent familywise error (FWE) correction. Only clusters
surviving a FWE cluster-corrected threshold of α , .05 are
reported for whole-brain analyses.
RESULTS

Inflammatory Cytokine Response to IFN-α
Initial IFN-α injection was associated with � fourteenfold
increase in plasma IFN-α (from mean 6 SE) (3.12 6 .95 pg/
mL at baseline to 43.26 6 7.77 pg/mL at 4 hours, t19 5 5.12,
p , .001) (Figure 1). We also observed a twofold increase
in interleukin-6 (2.13 6 2.18 pg/mL to 4.31 6 3.11 pg/mL,
t19 5 3.86, p 5 .001). Plasma TNF and interleukin-1β were not
significantly altered at this time point (1.89 6 .24 pg/mL to
2.05 6 .24 pg/mL, t19 5 1.45, p 5 .164, and .76 6 .065 pg/mL
to .74 6 .084 pg/mL, t19 5 .27, p 5 .79), though there
was a marked increase in interleukin-1 receptor antagonist
from 526.76 6 74.32 pg/mL to 3630.75 6 938.82 pg/mL
(t19 5 3.32, p 5 .004) and more moderate increase in
interleukin 10 from .83 6 .24 pg/mL to 1.13 6 .25 pg/mL
rg/journal
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Figure 1. Cytokine response to interferon (IFN)-alpha injection. Mean plasma cytokine concentrations before (Base) and 4 hours after the first
subcutaneous injection of pegylated interferon-α-2a. Error bars represent standard error of the mean. IL1, interleukin-1; IL1Ra, interleukin-1 receptor
antagonist; IL6, interleukin-6; IL10, interleukin-10; n.s., nonsignificant; TNF, tumor necrosis factor.

Striatal Microstructure and Interferon-Alpha Induced Fatigue
Biological
Psychiatry
(t19 5 2.18, p 5 .042) demonstrating a broader proinflammatory
and anti-inflammatory cytokine response to IFN-α (Figure 1).

Exploratory multiple-regression analysis between acute
changes in plasma cytokines and fatigue (4 weeks minus
baseline) identified no significant association between any
mediator of the peripheral inflammatory response and subse-
quent development of fatigue (p . .05).

Psychological Effects of IFN-α-Based Treatment

IFN-α treatment showed a strong effect on global fatigue
(fVAS, F5,110 5 10.01, p , .001) increasing from 33.43 6 5.57
to peak 64.74 6 5.01, effect size (η2) 5 .63 at 8 weeks
(Figure 2A). This increase in fatigue was rapid, with a moderate
effect (η2 5 .29) already observed at 4 hours (t19 5 2.96, p 5

.007) demonstrating acute sensitivity to peripheral IFN-α
(Figure 2A). Analysis of fatigue subcomponent scores demon-
strated a similar profile of changes and effect sizes for the
POMS tiredness and vigor subscales. Modest effects were
also observed on sleep propensity (ESS, F5,110 5 3.19, p 5

.023) (Figure 2A). Together, these findings suggest a large
effect of IFN-α on global fatigue predominantly mediated
through an increase in feelings of tiredness and to a lesser
extent reduced vigor. Though associated with a modest
increase in sleep propensity, this contribution was relatively
weak and short-lived and did not persist throughout treatment.
As previously reported, IFN-α-based therapy had a large effect
on HAMD depression symptoms (F5,110 5 20.27, p , .001)
Biological Psyc
with significant effects observed from 4 weeks until the
end of treatment (Figure 2B). Moderate effects following
a similar trajectory were also observed for state (F5,110 5

6.64, p , .001) though not trait STAI anxiety (F5,110 5 2.46,
p 5 .066).

Acute changes in global fatigue (fVAS) weakly predicted the
increase in fatigue experienced at 4 weeks (R2 5 .125, p 5

.052). However, no comparable association between acute and
subsequent mood change was observed (R2 5 .00, p . .1) or
any association between acute change in fatigue and subse-
quent mood change (R2 5 2.05, p . .1).

Acute Effects of IFN-α on qMT Imaging

Initial whole-brain analysis using stringent FWE cluster-
correction identified a single left striatum centered cluster
associated with an IFN-α-induced increase in kf (cluster size 5

293, FWE p 5 .043, peak Z 5 4.02; Figure 3A) and a single
similarly located left striatal cluster showing a complementary
decrease in T2f (cluster size 5 282, FWE p 5 .030, peak Z 5

4.54; Figure 3A). No other brain region demonstrated a
significant change in either kf or T2f following IFN-α at this
stringent threshold. For T2f, this cluster was tightly constrained
to the basal ganglia, though for kf it extended to include the
left anterior insula (228, 24, 28) (Figure 3A).

To investigate this further, we next examined the effect of
IFN-α on mean parameter values within each of our preplanned
striatum and insula ROIs. Of note, these ROIs were carefully
hiatry February 15, 2016; 79:320–328 www.sobp.org/journal 323
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Figure 2. Interferon-alpha (IFN-α)-induced changes in fatigue and mood. (A) Change in global fatigue (fatigue visual analog scale [fVAS]) and fatigue
subcomponents of tiredness and vigor (Profile of Mood States [POMS] subscales) and sleepiness (Epworth Sleepiness Scale [ESS]) during the 24 weeks of
treatment with INF-α. (B) Change in depression (Hamilton Depression Rating Scale [HAMD]) and state anxiety (State and Trait Anxiety Inventory [STAI]) during
the 24 weeks of treatment with INF-α. Base denotes baseline scores. Error bars show the standard error. Stars denote associated p values: *p , .05,
**p , .01, ***p , .005, ****p , .001. Numbers below denote associated effect sizes (η2).
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constructed to avoid potential biasing of findings by CSF partial
volume effects. This analysis confirmed the complementary
changes in kf and T2f in the left striatum observed in our whole-
brain analysis (mean kf increase: .071 s21, t1,17 5 3.50, p 5

.003, and mean T2f decrease: 1.29 ms, t1,17 5 3.04, p 5 .007,
respectively) with changes evident in both putamen (kf: p 5

.012, T2f: p 5 .012) and caudate subregions (kf: p 5 .032, T2f:
p 5 .021). However, it additionally identified similar though
statistically weaker changes in mean kf and T2f in the left insula
(mean kf increase: .053 s21, t1,17 5 3.45, p 5 .003, mean T2f
decrease: .76 ms, t1,17 5 2.16, p 5 .045) and a significant
increase in kf within the right striatum (mean change: .057 s21,
t1,17 5 2.42, p 5 .027) (Figure 3B; Table 1). The subsidiary
parameter F (bound proton fraction) was unchanged.

To investigate whether these acute changes in striatal and
insula magnetization exchange additionally predicted the later
development of fatigue, we next performed a correlational
analysis of acute changes in kf and T2f and changes in fatigue
experienced 4 weeks later. This analysis focused specifically
on ventral striatal and insula ROIs where IFN-α and typhoid
vaccine-induced changes in glucose metabolism, respectively,
have been shown to correlate with simultaneous change in
fatigue (5,19). This analysis demonstrated striking correlations
bilaterally between shifts in kf and T2f within the ventral
striatum and the subsequent development of fatigue
(Figure 4). However, no similar association was observed for
the insula and similar analyses exploring the associations
324 Biological Psychiatry February 15, 2016; 79:320–328 www.sobp.o
between these ROIs and change in mood (HAMD) were
negative.
DISCUSSION

Here, we used qMT, an advanced microstructural MRI techni-
que, to show that IFN-α induces a rapid and selective change
in striatal molecular structure, a region previously shown to be
metabolically and neurochemically sensitive to chronic IFN-α
administration and strongly implicated in concomitant motiva-
tional change (5,21). Specifically, we observed an increase in
the rate of MT from free (water) to molecular-bound protons
(kf) and a complementary reduction in free water spin-spin
relaxation (T2f) within the striatum 4 hours after IFN-α injection.
The functional significance of this acute change in micro-
structural environment was further supported by our between-
subject analysis, which demonstrated that acute actions of
IFN-α on ventral striatal MT were sufficient to predict fatigue
experienced 4 weeks later. Together, they demonstrate an
exquisite sensitivity of basal ganglia structures to acute
changes in peripheral IFN-α, which play a potentially etiolog-
ical role in the later development of fatigue. Interestingly, we
also observed more constrained changes within the insula,
suggesting that the cortical substrate for the representation of
many aspects of bodily physiology (24,33) is also sensitive to
acute changes in IFN-α. Importantly, however, unlike the
response observed in the striatum, these changes did not
rg/journal
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Figure 3. Interferon-alpha-induced changes in quantitative magnetization transfer parameters. Changes in quantitative magnetization transfer parameters
kf and T2f 4 hours after commencing interferon-alpha-based treatment compared with baseline. Voxels showing a significant increase in forward exchange
rate constant (kf) are shown in yellow and voxels showing a significant decrease in T2 of free water component (T2f) are shown in cyan. (A) Whole brain
analysis showing the left striatal clusters surviving stringent familywise error correction at p , .05. (B) A priori region of interest analysis showing changes in kf
and T2f for all voxels within the striatal region of interest at p , .05.
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predict subsequent development of fatigue, suggesting that
insula has a less prominent role in mediating cognitive and
behavioral symptoms evoked by IFN-α. Additionally, the
lack of a predictive association between acute changes in
the striatum (or insula) and later depressive symptoms pro-
vides empirical support for the presence of distinct neural
substrates mediating actions of IFN on motivation and mood/
cognition.

Our findings also extend the earlier evidence for strikingly
localized changes in the neurochemistry of the striatum after
chronic IFN-α. This evidence includes bilateral (though left
predominant) increases in striatal 18

fluoro-deoxy-glucose
Table 1. Changes in kf and T2f Within Basal Ganglia ROIs
Measured 4 Hours After IFN-α

Side Region
Change in
kf (s

21) p Value
Change in
T2f (ms) p Value

Left Striatum .071 .003a 21.29 .009a

Putamenb .043 .012a 21.20 .012a

Caudateb .170 .032a 21.73 .021a

Insula .053 .003a 2.76 .045a

Right Striatum .057 .027a 2.74 .266

Putamenb .025 .250 2.83 .187

Caudateb .167 .024a 2.46 .642

Insula .011 .592 2.40 .315

IFN-α, interferon-alpha; kf, forward exchange rate constant; ROI,
region of interest; T2f, T2 of free water component.

aStatistically significant results.
bSubregions that make up the striatum.

Biological Psyc
uptake (with left ventral striatum changes additionally correlat-
ing with fatigue) (5); left-sided, but not right-sided, increases in
striatal glutamate/creatine ratio (which correlated with IFN-α-
induced motivational impairment) (21); and increased striatal
18
fluorodopa uptake (with changes in caudate additionally

correlating with fatigue) (6). We used qMT to measure the
exchange of magnetization between free (water) and bound
proton pools and provide an indirect quantification of hydro-
philic molecules rich in hydroxyl, amine, and carboxyl groups
(11). Though qMT cannot identify the precise molecules
underlying this change, previous data linking changes in kf
to alterations in lactate (which contains a hydroxyl and
carboxyl group) and local pH (12,13) suggest a likely metabolic
change driving these effects. Taken together, these conver-
gent data from four different neuroimaging techniques strongly
implicate the actions of IFN-α on the striatum in the etiology of
IFN-induced fatigue.

Interestingly, studies where inflammation is induced using
bacterial antigens (16,19,20) or inhaled antigens that induce an
allergic type response (21) often report prominent changes in a
human interoceptive pathway projecting to insula, which also
may correlate with evoked fatigue. However, in our current
study, we identified relatively modest changes within this
pathway, which is implicated in providing a cortical represen-
tation of bodily state across physiologic domains including
inflammation (24,33). This suggests that visceral afferents may
not be the principle pathway mediating the central effects of
IFN-α to engender experience of fatigue. Alternative potential
mechanisms include direct actions of IFN-α on the brain or
actions of downstream mediators such as cytokines or
hiatry February 15, 2016; 79:320–328 www.sobp.org/journal 325
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Figure 4. Left side shows voxels
where acute changes in T2f signifi-
cantly predict the increase in fatigue
at 4 weeks and the right side voxels
where acute changes in kf signifi-
cantly predict the increase in fatigue
at 4 weeks. Slices illustrate changes
across the whole of the ventral stria-
tum region of interest (from posterior
to anterior). Blue to light blue denotes
negative correlation and red to yellow
positive correlation with associated
t-scores denoting equivalent p values
(p 5 .05 to p 5 .0004).
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prostaglandins produced either peripherally or at the endo-
thelium. Though we cannot conclusively address this issue
with our current study, the remarkably acute nature of these
neurobehavioral changes (occurring 4 hours after IFN-α), as
well as relatively modest changes in other circulating cyto-
kines observed at this time, point toward a direct action of
IFN-α.

Supporting this interpretation, CSF concentrations of IFN-α
have been shown to be markedly elevated in humans after 12
weeks of IFN-α therapy and a threefold increase in CSF IFN-α
observed in rhesus monkeys from 3 hours after IFN-α injection
(34). Like peripheral mononuclear cells (35), mouse basal
ganglia and hippocampal neurons show marked sensitivity to
locally administered IFN and upregulate hundreds of IFN-
stimulated genes within hours of administration (22). Further,
rodent studies have also reported profound central nervous
system induction of IFN-inducible genes within hours of
intraperitoneal injection of even modest amounts of mouse
IFN-α (two orders of magnitude lower than typical human
treatment doses) (23), indicating that central nervous system
326 Biological Psychiatry February 15, 2016; 79:320–328 www.sobp.o
cell populations are highly sensitive to IFN-α within the acute
time frames investigated here. Nevertheless, to date, no
saturable transport system for IFN-α has been described
(36). Thus, the appearance of IFN-α within the CSF following
peripheral injection suggests that IFN-α either enters the brain
via passage through leaky regions in the blood-brain barrier or
alternatively activates cells spanning the blood-brain barrier to
induce central IFN-α production.

Why the striatum should be so sensitive to peripherally
administered IFN-α remains unclear. Though it is interesting
to note that fatigue is a prominent symptom of other
diseases that affect the basal ganglia (37). The basal
ganglia are also exquisitely vulnerable to multiple neuro-
degenerative processes and hypoxic injury, as well as direct
viral invasion (37). Neurons, including those in the basal
ganglia, with a high turnover of neurotransmitter proteins
may also be more sensitive to processes such as ISGyla-
tion, which downregulates the function of host proteins
following IFN-α exposure, particularly those that are newly
synthesized (38).
rg/journal
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In our current study, we also show that acute changes in
ventral striatal microstructure differentiate individuals most
susceptible to the motivationally impairing effects of chronic
IFN-α. Specifically, we identified a spatial gradient to this
association with bilateral posterior regions showing a strong
positive association with motivational change and bilateral
anterior regions showing a negative association. Interestingly,
this finding accords well with human and rodent data that
implicate the ventral striatum in the learned control of behavior
in the face of rewards and punishments. For example,
Seymour et al. (39) localized appetitive prediction error to
more anterior regions than aversive prediction errors. This
anterior-posterior gradient also resembles that seen in stim-
ulation studies of the ventral striatum in rats, in which micro-
injection of a gamma-aminobutyric acid agonist (or glutamate
antagonist) into more anterior regions produces appetitive
responses (feeding) and into more posterior regions produces
aversive responses (paw treading, burying) (40–42). These
studies are characteristic of a growing body of evidence
pointing to a role of the ventral striatum in motivation with
distinct neuronal responses associated with appetitive and
aversive events (43–47).

As reported for inflammation induced with naturalistic inflam-
matory challenges (19), acute changes in circulating levels of
IFN-α or other measured proinflammatory or anti-inflammatory
cytokines did not show any predictive value for the later
development of fatigue. This provides further support for the
proposition that interindividual differences in sensitivity to the
central effects of inflammation, rather than their peripheral levels,
are likely to be most critical in determining subsequent behavioral
change (48). Indeed, the only association that could be identified
was between baseline fatigue scores and their subsequent
change, which is consistent with effects of response bias (the
tendency to over/underreport symptoms).

A caveat for our current study is that we focused on acute
responses to IFN-α; it is currently unclear whether more
prolonged exposure to IFN-α results in similar MT changes in
brain regions beyond the striatum, including potentially, brain
structures involved in the development of depression symp-
toms. Similarly, whether the MT changes persist though
treatment or relate to chronic fatigue occasionally experi-
enced even after completion of IFN-α-based therapy remains
to be resolved. The relatively modest sample size is a
potential limitation of our current study. However, our use
of an efficient within-subject design together with findings of
altered striatal MT parameters, even when averaged across
all ROI voxels, as well as at a stringent whole-brain FWE
cluster correction level, support the robustness of the results
reported.

To conclude, we show that IFN-α rapidly alters striatal
microstructural environment, an action that is sufficient to
predict the development of fatigue 4 weeks later. This high-
lights the acute sensitivity of striatal structures to peripherally
administered IFN-α and strongly implicates them in the
etiology of IFN-α-induced fatigue and motivational change. A
lack of association with mood change further supports the
position that actions on discrete behavioral components result
from actions on different neural substrates.
Biological Psyc
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