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Peripheral Inflammation Acutely Impairs Human
Spatial Memory via Actions on Medial Temporal Lobe
Glucose Metabolism

Neil A. Harrison, Christian F. Doeller, Valerie Voon, Neil Burgess, and Hugo D. Critchley
Background: Inflammation impairs cognitive performance and is implicated in the progression of neurodegenerative disorders. Rodent
studies demonstrated key roles for inflammatory mediators in many processes critical to memory, including long-term potentiation,
synaptic plasticity, and neurogenesis. They also demonstrated functional impairment of medial temporal lobe (MTL) structures by
systemic inflammation. However, human data to support this position are limited.

Methods: Sequential fluorodeoxyglucose positron emission tomography together with experimentally induced inflammation was used
to investigate effects of a systemic inflammatory challenge on human MTL function. Fluorodeoxyglucose positron emission tomography
scanning was performed in 20 healthy participants before and after typhoid vaccination and saline control injection. After each scanning
session, participants performed a virtual reality spatial memory task analogous to the Morris water maze and a mirror-tracing procedural
memory control task.

Results: Fluorodeoxyglucose positron emission tomography data demonstrated an acute reduction in human MTL glucose metabolism
after inflammation. The inflammatory challenge also selectively compromised human spatial, but not procedural, memory; this effect
that was independent of actions on motivation or psychomotor response. Effects of inflammation on parahippocampal and rhinal
glucose metabolism directly mediated actions of inflammation on spatial memory.

Conclusions: These data demonstrate acute sensitivity of human MTL to mild peripheral inflammation, giving rise to associated
functional impairment in the form of reduced spatial memory performance. Our findings suggest a mechanism for the observed
epidemiologic link between inflammation and risk of age-related cognitive decline and progression of neurodegenerative disorders
including Alzheimer’s disease.
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Although previously considered an immune-privileged site, it
is now clear that the immune system plays an integral role
in many fundamental neuronal processes, including long-

term potentiation (LTP) (1,2), synaptic plasticity (3), and neuro-
genesis (4), that are critical to learning and memory. In health,
immune mechanisms regulate each of these processes and assist
in the remodeling of neural circuits that promote learning and
memory (5). However, during systemic infection or injury (6), this
positive regulatory function is disrupted, resulting in acute memory
impairments: When inflammation is severe, cognitive impairment
may become persistent (7), and when chronic inflammation is
present, age-related cognitive impairment is accelerated (8).
Inflammation may drive the rapid progression of neurodegener-
ative diseases such as Alzheimer’s disease (9).
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Structures in the medial temporal lobe (MTL) appear to be
particularly sensitive to effects of inflammation. This increased
sensitivity may be related to their relatively high receptor and
messenger RNA expression for proinflammatory cytokines (10,11)
and their neural connectivity to regions such as the insula (12)
that support cortical representations of peripheral inflammatory
states (13). Rodent studies emphasized the role of the hippo-
campus; direct administration of inflammatory cytokines, partic-
ularly interleukin (IL)-1, into the hippocampus selectively impaired
spatial and contextual memory processes, including radial arm
and Morris water maze performance, and contextual, but not
auditory-cued, fear conditioning (5,14,15). Similarly, over-
expression of IL-1 messenger RNA within the hippocampus is
associated with delayed acquisition of spatial memory on the
Morris water maze task (14). For synaptic plasticity underlying the
encoding and recall of memories, LTP is arguably the key
neuronal mechanism. The cytokine IL-1 compromises both hippo-
campal and dentate gyrus LTP (1,17,18) and may mediate both
age-dependent decreases in LTP (19) and the modulation of LTP
by Aβ amyloid (20). Cytokine-induced inhibition of neurogenesis
within the dentate gyrus is also alleviated by the microglial
inhibitor minocycline (4). Together, these data highlight the
central action of inflammatory mediators (cytokines such as
IL-1) on MTL-dependent memory processes.

Inflammatory challenges administered outside the central
nervous system also induce IL-1 expression within brain regions,
including the MTL (21). Peripherally induced inflammation also
replicates many of the direct actions of inflammatory cytokines on
MTL-dependent memory (5,22,23). There are numerous mecha-
nisms through which peripheral inflammation can engender
changes in cytokine levels within sensitive brain regions. Circulating
cytokines may be actively transported across the blood-brain barrier
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(24) or activate microglia via the circumventricular organs (25) and
vascular endothelium (26). However, local synthesis of IL-1 is
suggested by the rapid upregulation of IL-1α and IL-1β gene
expression and the central predominance of the short half-life IL-1
isoform in the context of mild systemic inflammatory challenge (21).
Vagus nerve afferents show sensitivity to peripheral cytokines (27)
and mild inflammatory challenge (28) indicating an additional
neurally mediated immune-brain pathway. Central vagus nerve
targets show enhanced activity within 2–3 hours of peripheral
inflammatory challenge in both rodents and humans (29,30).
Electrical stimulation of vagus nerve afferents results in a rapid
increase in IL-1β expression within the hippocampus (31). Humoral
and neurally mediated routes may communicate peripheral inflam-
matory responses centrally to regions supporting memory processes.

These data from animal studies suggest mechanisms to
account for human epidemiologic data linking increased periph-
eral inflammation to accelerated cognitive aging and neuro-
degeneration. However, it is unknown whether systemic
inflammation modulates MTL function in humans. We used an
experimental inflammatory model, typhoid vaccination, together
with sequential fluorodeoxyglucose (FDG) positron emission
tomography (PET) scanning to quantify hypothesized effects of
peripheral inflammation on human MTL function and spatial
memory. In 20 healthy participants, three FDG-PET scans were
performed immediately before and 4 hours and 8 hours after
typhoid vaccination or control (saline) injection (Figure 1). After
each of the first two scanning sessions, participants performed a
spatial memory task in which they learned and then recalled the
identity and location of two sets of 16 objects positioned within a
virtual reality environment. This virtual reality task is analogous to
the Morris water maze (32), which is sensitive to inflammatory
effects on object-location accuracy in rodents, and to the hidden
tracer task, which is sensitive to lesions in discrete MTL structures
in humans (33). Recall of the spatial location and identity of both
sets of objects was tested again after the third scan to investigate
differential effects of inflammation on early encoding and later
consolidation processes. Participants also performed a mirror-
tracing procedural memory task to test general effects of
inflammation on psychomotor responses and motor learning.
Methods and Materials

Participants
We recruited 20 healthy male nonsmokers (mean age, 24.7 �

6.8 years old) and screened them for relevant physical or
www.sobp.org/journal
psychiatric illness; all were medication-free. Volunteers who had
received typhoid vaccine within 3 years or other vaccine within 6
months were excluded. Participants were advised to avoid
caffeinated beverages, alcohol, high-fat meals, and excessive
exercise for 24 hours and steroidal or nonsteroidal drugs for 2
weeks before testing. All participants fasted for 8 hours and
consumed only water until study completion. Written informed
consent was obtained from all participants, and procedures were
approved by the Brighton East National Research Ethics
Committee.

Study Design
A randomized, double-blind, repeated measures crossover

design was used in which all participants underwent three FDG-
PET imaging sessions each separated by 4 hours. After each of the
first two scanning sessions, participants randomly received intra-
muscular injections of either 0.025 mg Salmonella typhi vaccine
(Typhim Vi; Aventis Pasteur MSD Ltd., Lyon, France) or 0.5 mL
normal saline. Of participants, 13 were randomly assigned to the
early inflammation group and received vaccination after the first
PET scan 1, and 7 were randomly assigned to the late inflamma-
tion group and received vaccination after the second PET scan.
This study design enabled us to control for nonspecific time
effects as well as have sufficient participants (n ¼ 13) scanned 8
hours after typhoid vaccination to test late effects of inflamma-
tion. After each scan, participants performed a laptop-based
spatial memory task and a mirror-tracing procedural memory
task that took 35 min to complete. Vaccination or saline injection
was given after the PET scan immediately before memory testing;
this was done to minimize an already long testing day. We are
aware of no data to suggest that peripherally induced inflamma-
tion can impair memory at such a short latency, and if this were
the case, it would increase the risk of false-negative rather than
false-positive findings. A high-resolution inversion recovery echo
planar image was obtained to aid image registration.

Inflammatory Model
We used a S. typhi vaccination model known to induce low-

grade inflammation without body temperature change (34).
Blood (10 mL) was drawn into ethylenediamine tetraacetic acid
BD Vacutainer tubes (Franklin Lakes, New Jersey) and centrifuged
at 1250 � g for 10 min, and plasma was removed, aliquoted, and
frozen at �801C. Plasma IL-6, IL-1 receptor antagonist, and tumor
necrosis factor alpha were assessed using high-sensitivity
enzyme-linked immunosorbent assays (R&D Systems, Abingdon,
United Kingdom). Limits of detection were .039 pg/mL, 6.26 pg/mL,
Figure 1. Study timeline. All participants completed
three fluorodeoxyglucose (FDG) positron emission tomo-
graphy (PET) scans. Each scan was preceded by a blood
draw and followed by a memory testing session. The
“early” inflammation group received the typhoid vacci-
nation after the first PET scan (and saline injection after
the second PET scan), and the “late” inflammation group
received the typhoid vaccination after the second PET
scan (saline injection after the first scan). In the first two
sessions (T1 and T2), participants encoded and then
recalled the identity and spatial location of two sets of
objects (object set 1 and set 2). In the third session (T3),
participants recalled the identity and spatial location of
the two sets of objects encoded at T1 and T2. The
mirror-tracing task was performed at each of the three
testing sessions. MRI, magnetic resonance imaging.
(Photo credit, copyright WGBH Educational Foundation.)
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and .038 pg/mL with associated intra-assay and interassay
coefficients of variation of 7.4% and 7.8%, 5.3% and 8.6%, and
5.3% and 8.4%.

Spatial Memory Task
UnrealEngine2 Runtime software (Epic Games, Cary, North

Carolina) was used to present a first-person perspective of a plane
surrounded by a circular cliff (virtual diameter 180 m). Back-
ground mountains, clouds, and the sun (created using Terragen;
Planetside Software, Cheshire, United Kingdom) projected at
infinity were used to provide orientation cues. Two separate
counterbalanced arenas with grassy or rocky planes and differ-
ently rendered mountains and clouds were used for the two
encoding sessions. Participants explored the arena for 2–3 min
using right-handed button presses to move forward, left, and
right. Then 16 unique objects were sequentially presented within
the arena, and participants were instructed to remember their
identity and spatial location before picking them up. After all
objects were acquired, participants performed free recall of the
object identities. They then returned to the virtual reality environ-
ment. A picture of one object was presented, following which
participants moved to where they thought the cued object had
been presented, indicated by a button press, and recorded their
confidence (range, 1–5) for this location. For the first two sessions
(T1 and T2), the object was shown again in its correct position,
and participants collected it by running over it. The next object
was cued after a variable intertrial interval. On the third session
(T3), object recall and relocation phases were completed for
objects learned at T1 (set 1) and T2 (set 2). Performance was
indexed by accuracy of object spatial location: mean (1/distance
from true object location in virtual meters) and number of objects
recalled.

Procedural Memory Task
Participants were asked to trace between two concentric five-

pointed stars viewed in a mirror as quickly and accurately as
possible. Both their hand and the concentric stars were obscured
from direct view. Time taken to complete two trials was used as
an index of performance.

Image Acquisition and Analysis
The PET scans (mean 155.3 � 11.8 MBq FDG) were acquired

for 35 min on a Siemens Biograph-64 PET-CT scanner (Siemens
Healthcare, Erlangen, Germany) in three-dimensional dynamic
acquisition mode. Participants lay supine with eyes open. Before
each PET acquisition, a low-dose computed tomography scan
(120 kVp, 10 mA) was acquired for attenuation correction. After
correction for scatter, random effects, and effects of attenuation,
images were reconstructed in 1-min windows using Siemens
proprietary iterative three-dimensional reconstruction schema (21
iterations and 8 subsets). Individual 1-min scans were realigned
and summed to produce a single 35-min activation scan per
session, which was coregistered to subjects’ structural magnetic
resonance imaging scans and then spatially smoothed with an 8-
mm full width at half maximum Gaussian kernel using standard
SPM8 methods (Wellcome Trust Centre for Neuroimaging, Insti-
tute of Neurology, United College London, London, United King-
dom; http://www.fil.ion.ucl.ac.uk/spm).

Normalized images were included within a second-level
flexible-factorial analysis of variance (ANOVA) (repeated factor
time, baseline, 4 hours, 8 hours; between-subject factor group,
early, late inflammation). Main effects of time and group and
group � time interaction were included in the model.
Normalization to a grand mean scaled value of 50 mL/100 g/
min was applied, and global effects were included as nuisance
covariates in the general linear model (analysis of covariance).
Correlations between changes in resting glucose metabolism and
object-location accuracy together with interactions with inflam-
matory status (modeled using a dummy variable) were inves-
tigated in a separate regression analysis.

Anatomic localization of MTL structures was based on Insausti
et al. (35), Monte Carlo simulation (1000 iterations) was used to
determine cluster extent thresholds for whole-brain correction at
p � .01 (36), and a cluster threshold of �19 voxels was adopted.
Regression analyses followed by Goodman test for mediation
were used to investigate relationships between inflammatory
challenge and changes in object-location accuracy and right
parahippocampal activity Montreal Neurological Institute (24,
�32, �32) between encoding sessions T1 and T2. Mediation
analyses were performed using the interactive calculation tool for
mediation tests (http://quantpsy.org/sobel/sobel.htm).
Results

Inflammatory Responses to Typhoid Vaccination
Cytokine analyses confirmed significantly higher circulating

inflammatory cytokines at encoding session 2 (T2) compared with
encoding session 1 (T1) in the early, but not late, inflammation
group (Figure 2A): group � time interaction IL-6 [F1,18 ¼ 6.91, p ¼
.017], IL-1 receptor antagonist [F1,18 ¼ 11.77, p ¼ .003]. A similar
increase in IL-6 (2.82 pg/mL) was also observed after typhoid
vaccination (between T2 and T3) in the late inflammation group
(Figure S1 in Supplement 1). Both groups showed inflam-
mation at T3 and absence of inflammation at baseline (T1) with
only the early inflammation group inflamed at encoding session
two (T2).

Effects of Acute Inflammation on Memory Performance
Immediate recall of object identity and location at T2 and T1

demonstrated a significant group � encoding session interaction
for object location but not object identity [F1,17 ¼ 5.01, p ¼ .039
and F1,17 ¼ .66, p ¼ .43]. Post hoc t tests also demonstrated a
significantly greater reduction in proximity score across the two
encoding sessions (T1 and T2) in the early inflammation group,
who demonstrated inflammation at T2, compared with the late
inflammation group, who did not demonstrate inflammation at
this time point (�.100 vs. .234 m�1; t17 ¼ 2.24, p ¼ .039)
(Figure 2B,C). Although performance increased from session T1
to session T2 in the late inflammation group given placebo at T1
(a practice effect), it decreased in the early inflammation group
given vaccine, suggesting that inflammation impaired object-
location encoding during the T2 session. This effect was main-
tained at the later recall session (T3) when both sets of objects
were recalled and both groups demonstrated inflammation:
group � encoding session interaction [F1,17 ¼ 8.40, p ¼ .01].
Post hoc t test again demonstrated a significantly greater
reduction in proximity score at T3 for objects encoded at T2
compared with objects encoded at T1 in the early compared with
late inflammation group (�.061 vs. .287 m�1; t17 ¼ 2.90, p ¼ .01)
(Figure 2E,F). The impairing effect of inflammation on encoding
location of objects seen at T2 was preserved when these objects
were later recalled at T3.

Performance on the mirror-tracing task revealed no significant
group � time interaction [F1,18 ¼ 1.00, p ¼ .33], although
improved performance across time was observed in both groups
www.sobp.org/journal
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Figure 2. Cytokine and memory performance in the early and late inflamed groups. (A) Plasma interleukin-6 levels demonstrating a significantly greater
increase in interleukin-6 (from session T1 to T2) in the early compared with late inflammation group. (B) Object location accuracy (proximity score) in units
of 1/virtual meters at each encoding session (T1 and T2). Location accuracy decreased 4 hours after typhoid vaccination (early inflammation group) but
increased 4 hours after placebo (late inflammation group). (C) Number of objects (maximum 16) correctly recalled during the two encoding sessions (T1
and T2). (D) Mean time taken to complete mirror tracing of a five-pointed star demonstrating a significant improvement across time in both groups. (E)
Object location accuracy (proximity score) at the final session (T3) for objects encoded at T1 (set 1) and T2 (set 2). (F) Number of objects (maximum 16)
correctly recalled at the final session (T3) for objects encoded at T1 (set 1) and T2 (set 2). Asterisk indicates statistical significance at p � .05. IL-6,
interleukin-6.
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[main effect of time F2,18 ¼ 23.58, p � .001] (Figure 2D). These
results suggest a selective action of inflammation on object-
location memory that is not mediated via nonspecific effects on
task motivation or response time.

To explore whether effects on object-location memory were
mediated by actions at encoding or consolidation, we next
performed a three-way ANOVA: group (early inflammation, late
inflammation), encoding session (T1, T2), and recall session (T3
recall of first set, T3 recall of second set) with the prediction that
actions at consolidation would be reflected by greater effects at
late (T3) than early (T1 and T2) recall, owing to impaired
consolidation in the early compared with the late inflammation
group. This ANOVA confirmed the previously observed encoding
session � group interaction [F1,17 ¼ 4.44, p ¼ .028]. However, no
additional recall session � group or encoding session � recall
session � group interactions were observed [F1,17 ¼ .84, p ¼ .45
and F1,17 ¼ .80, p ¼ .47] suggesting a predominant effect at
encoding.

To address this situation further, we regressed immediate (T1
and T2) against late (T3) performance for both object sets with
inclusion of a dummy variable encoding group membership. This
regression demonstrated an anticipated strong dependence of
late on early performance for both sets of objects [F1,15 ¼ 6.08,
p ¼ .026 for object set 1 and F1,15 ¼ 29.67, p � .0001 for object
set 2] but no interaction with group [F1,15 ¼ 1.53, p ¼ .26 and F1,15 ¼
.77, p ¼ .39]. Finally, we performed a 2 (group) x� 2 (recall
www.sobp.org/journal
session) ANOVA on performance at T3 corrected for T1 and T2
performance. This ANOVA failed to show a significant recall
session � group interaction [F1,17 ¼ 2.16, p ¼ .16]. Together,
these analyses suggest a significant action of inflammation on
early encoding and consolidation processes with little evidence to
support additional effects on late consolidation processes. They
also provide empiric support for a direct influence of inflamma-
tion on early encoding and consolidation mechanisms rather than
nonspecific effects on motivation in which a greater decrement in
performance at T3 compared with T2 would be expected in the late
inflammation group (subjects demonstrated inflammation only at
the later time point) compared with the early inflammation group
(subjects demonstrated inflammation at both time points).

Effects of Acute Inflammation on Resting Brain
Glucose Metabolism

Analysis of PET data (T1 and T2 in the early compared with the
late inflammation group) demonstrated a reduction in glucose
metabolism within a discrete cluster of regions focused on the
right parahippocampal and perirhinal cortex 4 hours after
inflammation compared with placebo (Table 1; Figure 3A). These
regions all survived whole-brain correction at p � .01. This finding
was replicated 4 hours after inflammatory challenge in the late
compared with early inflammation group (T3 compared with T2)
(Table 1; Figure 3B), robustly demonstrating acute sensitivity of
MTL structures to peripheral inflammation.



Table 1. Brain Regions Showing an Acute Reduction in Resting Glucose Metabolism After Inflammatory Challenge

Side Region Coordinates Z Score Cluster puncorrected pcorrected

Inflammation-Induced Reductions in Glucose Metabolism (Early Inflammation Group)
R Parahippocampus/perirhinal (36 �28 �24) 3.73 345 �.001 �.01
R Fusiform gyrus (32 �54 �14) 3.89 190 �.001 �.01
R Inferior temporal gyrus (57 �18 �33) 3.56 76 �.001 �.01
R Temporal pole (57 11 �11) 3.42 28 �.001 �.01

Inflammation-Induced Reductions in Glucose Metabolism (Late Inflammation Group)
R Entorhinal/perirhinal (21 �19 �27) 3.50 117 �.001 �.01
L Entorhinal/perirhinal (�24 �13 �26) 3.67 71 �.001 �.01
R Parahippocampus/perirhinal (33 �24 �24) 3.22 10 �.001

L, left; R, right.
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To investigate whether this change in glucose metabolism
between encoding sessions predicted changes in object-
location accuracy. we next performed a regression analysis on
the PET data (i.e., T1 and T2 metabolism vs. T1 and T2 accuracy)
(Table 2). This analysis revealed striking correlations between
activity change in bilateral parahippocampal and rhinal cortex
and change in object-location accuracy across all participants
(Figure 3C)—that is, there was a general relationship between
change in parahippocampal and rhinal glucose metabolism and
change in object-location accuracy. However, repetition of this
analysis after inclusion of an interaction term coding group
membership (early or late) also revealed a discrete contiguous
region within the right parahippocampal gyrus that mediated
the detrimental effects of inflammation on object-location
encoding (Figures 3D and 4). In other words, inflammation
disrupted the relationship between parahippocampal metabo-
lism and subsequent accuracy for object-location encoding.
This interpretation was supported further by mediation analysis,
which showed that inflammation induced changes in right
parahippocampal glucose metabolism (T1 and T2) Montreal
Neurological Institute (24, �21, �32) that significantly medi-
ated effects of inflammation on object-location memory (T1 and
T2 accuracy) (Goodman test ¼ 3.58 [SE .74], p � .00035)
(Figure 5).
Figure 3. Brain regions sensitive to acute inflammation
and effects on object-location encoding. (A) Regions
showing a greater reduction in glucose metabolism after
inflammation compared with placebo between sessions
1 and 2. Contrast shown in T1 - T2 early group minus T1 -
T2 late group. (B) Regions showing a greater reduction
in glucose metabolism after inflammatory challenge in
the late compared with early inflamed group between
sessions 2 and 3. Contrast shown in T2 and T3 early
group compared with T2 and T3 late group. The y axis in
(A) and (B) shows estimated glucose metabolism in mL/
100 g/min. (C) Regions showing a positive correlation
between change in object-location accuracy and change
in glucose metabolism between the two encoding
sessions (T1 and T2) across all participants. (D) Medial
temporal lobe region showing a significant group �
location accuracy interaction between the two encoding
sessions (T1 and T2). The y axis shows change in glucose
metabolism between T1 and T2 in mL/100 g/min. E, early
inflammation group (received vaccine after first scan); L,
late inflammation group (received vaccine after second
scan 2).

www.sobp.org/journal



Table 2. Brain Regions in Which Changes in Blood Glucose Metabolism Between the Two Encoding Sessions (T1 and T2) Predicted Associated Changes in
Memory for Object Location

Side Region Coordinates Z Score Cluster puncorrected pcorrected
a

Regions Showing Positive Correlations Across All Participants
R Parahippocampus/perirhinal (27 �22 �27) 4.19 751 �.001 �.01
L Parahippocampus/perirhinal (�29 �28 �26) 3.38 80 �.001 �.01
R Precuneus (15 �60 45) 3.68 370 �.001 �.01
L Inferior parietal lobule (�20 �51 54) 3.65 829 �.001 �.01
R Inferior parietal lobule (33 �46 56) 3.31 99 �.001 �.01
L Supplementary motor area (�15 �4 63) 3.55 95 �.001 �.01
L Paracentral lobule (�3 �31 63) 3.36 221 �.001 �.01
R Mid-frontal gyrus (35 3 46) 3.21 26 �.001 �.01
R Mid-orbitofrontal gyrus (48 50 �9) 3.17 25 �.001 �.01

Medial Temporal Lobe Region Showing Interaction with Group
R Parahippocampus/perirhinal (24 �21 �32) 2.44 342 �.05 �.01b

L, left; R, right.
apcorrected ¼ cluster survives whole-brain correction.
bSurvives correction for a medial temporal lobe region of interest.
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Discussion

Systemic inflammation is associated with selective impairment
in human spatial memory but not MTL-independent procedural
memory (37). Deficits in spatial memory were observed for
objects learned and recalled during systemic inflammation but
not objects learned in the absence of inflammation and recalled
under inflammatory conditions. This study suggests a predom-
inant effect of inflammation on early encoding and consolidation
Figure 4. Right medial temporal lobe regions sensitive to inflammation,
change in object-location accuracy, and interactions with inflammation.
Cyan indicates regions showing a reduction in glucose metabolism after
inflammation (T1 - T2 early group minus T1 - T2 late group). Yellow
indicates regions showing a positive correlation between change in
object-location accuracy (T1 and T2) and change in glucose metabolism
(T1 and T2) across all participants. Red indicates area showing group �
accuracy interaction—that is, the region mediating the effects of group
membership (inflammation status) on change in accuracy for encoding
object location.

www.sobp.org/journal
processes rather than late consolidation and demonstrates a
relative absence of state-dependent effects. In rodent contextual
fear conditioning paradigms (5,23), inflammation impairs spatial
memory despite being induced after visuospatial information has
been attended to (and encoded) suggesting that our data are
likely mediated via an action on early consolidation processes.
Although our analyses failed to demonstrate significant late
consolidation effects, Figure 2B and E demonstrates a non-
significant reduction in performance at T3 compared with T1 in
the early (early T3 [set 1] compared with early T1) but not late
inflammation group (late T3 [set 1] compared with late T1)
consistent with a potential effect on late consolidation.

Resting glucose metabolism, particularly change in bilateral
parahippocampus and perirhinal cortex metabolism immediately
before task performance, predicted change in accuracy across
encoding sessions across all participants (Figures 2C and 3).
However, this relationship was critically modulated by systemic
inflammation. Within 4 hours of inflammatory challenge, glucose
metabolism decreased within perirhinal and entorhinal cortex
and parahippocampus (Table 1). This effect was replicated in
participants challenged after the first (Figure 3A) and second
(Figure 3B) scanning sessions. A discrete subregion centered on
the right parahippocampus also predicted and mediated inflam-
matory effects on subsequent object-location memory (Figures
3D and 5). Together, these data demonstrate sensitivity of human
MTL structures, notably parahippocampus, to systemic
Resting Glucose  
Metabolism 

Parahippocampus

Inflammation Object Location  
Memory 

PATH A PATH B 

PATH C 

15.62 (4.31) 
P = 0.002 

0.27 (0.009) 
P = 0.008 

0.334 (0.149) 
P = 0.039 

Figure 5. Mediation analysis showing that the changes in parahippo-
campal glucose metabolism mediate the effects of inflammation on
memory for object location. Path coefficients (standard error of path
coefficients) are shown for each path of the mediation model.
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inflammation and provide mechanistic insight relevant to a
broader literature linking severe or chronic inflammation to the
attrition of human memory.

Studies investigating effects of inflammation on rodent spatial
memory to date have predominantly focused on actions on the
hippocampus (1,5,15–17). We did not identify a major change in
hippocampal glucose metabolism after inflammation or any
association between hippocampal glucose metabolism and sub-
sequent memory performance. Although null results are hard to
interpret, learning object locations relative to the boundary in this
task correlates with functional magnetic resonance imaging signal
from both right hippocampal and parahippocampal regions (32),
suggesting greater sensitivity to detect metabolic changes in the
parahippocampus. In addition, there is good evidence to suggest
strong parahippocampal involvement in this type of task. Neuro-
psychological studies show that human performance on homo-
logues of the Morris water maze and direct tests of object-
location memory can be more strongly dependent on right
parahippocampal than hippocampal integrity (37–39). Studies
demonstrate a central role for the right parahippocampus in
human object-location memory and support our current finding
of a critical role for the parahippocampus in mediating
inflammation-induced spatial memory impairments.

Right parahippocampal activity during object-location encod-
ing has also been shown to predict subsequent retrieval success
with a spatial cue (40). In monkeys, one-trial memory for object-
place associations (similar to our current task) appears to be
critically dependent not on hippocampus but on posterior
parahippocampus (41). The contribution of the parahippocampus
to within-scene object location and context memory is also
dissociable from the role of perirhinal cortex in object perception
and memory (42–44). In rodents, perirhinal neurons respond
selectively to objects and their previous occurrence (45,46) with
selective lesions impairing performance on tasks requiring whole-
object information (47). In contrast, rodents with postrhinal
(parahippocampus) cortex lesions show impairment on tasks
sensitive to object location but not identity (48). Similar functional
distinctions between perirhinal and parahippocampal activity are
also apparent in humans, with parahippocampal cortex active
during object-location encoding and perirhinal cortex active to
objects alone (49). Our data suggest that systemic inflammation
may serve as a transient parahippocampal lesion resulting in a
discrete impairment in object-location memory.

The cellular mechanisms mediating this selective impairment
of human MTL function are unclear, although these mechanisms
may be usefully informed by rodent studies. For example, IL-1 has
been shown to reduce basal synaptic activity and synaptic
transmission in a manner dependent on gamma-aminobutyric
acid (50). It impairs LTP both dependent on and independent of
N-methyl-D-aspartate (1,2) and can decrease LTP-associated
glutamate release within the dentate gyrus (51). Although these
effects are currently demonstrated only in rodent hippocampus,
operation of either mechanism within human parahippocampus
or perirhinal cortex could conceivably contribute to the observed
reduction in glucose metabolism. Local or peripheral inflamma-
tion can also impair hippocampal neurogenesis in proportion to
the associated increase in microglial activation (4). However,
given the time course of this effect, it is unlikely to have
contributed to our results. Perhaps more pertinent is the role of
neurally mediated mechanisms. Peripheral inflammation has been
shown to increase rapidly activity within vagus nerve projection
areas in both rodents and humans (29,30), including insular
cortex, a region that in primates has direct neural connectivity
to perirhinal and parahippocampal cortex (12), areas that provide
the vast bulk of inputs into entorhinal cortex and the hippo-
campal formation. Electrical stimulation of vagus nerve afferents
results in a rapid increase in IL-1β expression within the hippo-
campus (31). Activation of neurally mediated immune-brain
communicatory pathways may potentially modulate memory
processes even in the absence of significant signaling of inflam-
mation across the blood-brain barrier at the endothelium (26) or
circumventricular organs (25).

A concern from rodent studies is that apparent effects of
inflammation on learning and memory may be confounded by
actions on psychomotor speed (52). We also previously reported
psychomotor slowing after typhoid vaccination (53). However, our
current data strongly argue against a purely psychomotor
explanation for our effects. In particular, vaccination did not
change time taken to relocate objects; the late inflammation
group showed no decrement in recall performance at time three,
and mirror-tracing task performance was unimpaired by inflam-
mation. As such, our data support and reinforce the interpretation
of rodent studies.

One unresolved question is why we did not observe an effect
on object identity memory, especially given reduced glucose
metabolism across an expansive MTL region encompassing
perirhinal cortex. Although participants did not perform at ceiling,
the relatively small number of exemplars may have reduced
variability associated with this measure, and consequently it may
have been insensitive to subtle changes in object identity
memory. This interpretation is also suggested by data from
studies that show more global reductions in memory after potent
inflammatory challenges with lipopolysaccharide, which have
evoked decreased immediate verbal recall of story items, imme-
diate and delayed spatial figural features, and word list learning
(54). In another study, using low-dose lipopolysaccharide chal-
lenge, declarative memory impairment was also inversely corre-
lated with IL-6 levels (55).

Our study identifies a mechanism through which peripheral
inflammation affects human spatial memory. This study has
important implications for understanding how chronic inflam-
mation exacerbates age-related cognitive decline and plausibly
the increased risk of neurodegenerative disorders such as
Alzheimer’s disease. Increased inflammatory markers are
observed in the MTL of patients with age-related cognitive
decline and Alzheimer’s disease (56). The profile of memory
impairment observed in Alzheimer’s disease—selective impair-
ment of MTL-dependent memory including impaired spatial
memory (57) with often striking preservation of procedural
memory (58)—is similar to what we describe here. Nevertheless,
it is uncertain whether they are the cause of cognitive symptoms
or a consequence of a primary disease process. Increased
circulating proinflammatory cytokines have been associated
within an increased risk of cognitive decline in both cross-
sectional and prospective epidemiologic studies (8). Similarly,
acute infections requiring admission to the intensive care unit
convey a significantly greater risk of subsequent cognitive
decline compared with other causes of intensive care unit
admission (7). In healthy middle-aged adults, levels of circulating
inflammatory cytokines are linked to the volume of MTL
structures, specifically hippocampus (59).

In conclusion, our data suggest that MTL structures are acutely
sensitive to peripheral inflammation with consequent functional
impairment. Peripheral inflammation results in an acute reduction
in resting MTL glucose function associated with an acute decline
in human spatial memory. This knowledge is motivation for
www.sobp.org/journal
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further investigation into the cognitive consequences of chronic
or severe infections and inflammation.
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