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Global 3D Non-Rigid Registration of Deformable

Objects Using a Single RGB-D Camera
Jingyu Yang, Senior Member, IEEE, Daoliang Guo, Kun Li, Member, IEEE, Zhenchao Wu, Yu-Kun

Lai, Member, IEEE

Abstract—We present a novel global non-rigid registration
method for dynamic 3D objects. Our method allows objects to
undergo large non-rigid deformations, and achieves high quality
results even with substantial pose change or camera motion
between views. In addition, our method does not require a
template prior and uses less raw data than tracking based
methods since only a sparse set of scans is needed. We compute
the deformations of all the scans simultaneously by optimizing a
global alignment problem to avoid the well-known loop closure
problem, and use an as-rigid-as-possible constraint to eliminate
the shrinkage problem of the deformed shapes, especially near
open boundaries of scans. To cope with large-scale problems, we
design a coarse-to-fine multi-resolution scheme, which also avoids
the optimization being trapped into local minima. The proposed
method is evaluated on public datasets and real datasets captured
by an RGB-D sensor. Experimental results demonstrate that the
proposed method obtains better results than several state-of-the-
art methods.

Index Terms—3D scanning, global registration, non-rigid de-
formation, large deformation, depth camera, surface reconstruc-
tion.

I. INTRODUCTION

DYNAMIC 3D reconstruction, which aims to recover

dynamic scenes by capturing videos using a single or

multiple cameras, becomes increasingly popular in computer

graphics and computer vision [1]–[4]. With the availability

of commodity depth cameras, e.g., Microsoft Kinect, it is

easier and cheaper to reconstruct the shape and texture of

a 3D scene using a single RGB-D camera. This has many

applications [5], [6], such as 3D printing, gaming, and movie

production, to name a few. However, reconstruction results by

KinectFusion [7] for deformable objects have serious drifting

artifacts, because a static model is generally assumed. Besides,

the point clouds captured by depth cameras are usually pol-

luted by serious noise and outliers. Hence, it remains a huge
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challenge to reconstruct dynamic 3D scenes using a single

RGB-D camera.

To achieve dynamic 3D reconstruction, several research

groups have set up multi-camera systems [8], [9]. However,

practical applications of such systems are limited, due to high

cost, complex maintenance, and lack of portability. To reduce

system sizes, some methods use fewer cameras with depth cues

[10]–[12]. Using a single camera is cheaper but the problem

becomes more ill-posed. A template prior is usually used to

reduce the difficulty [3], [13], [14]. However, using a prior

template restricts the captured target as they can pre-scan e.g. a

deformable object, but cannot model deformations beyond the

prior template, such as facial expressions and loose clothing.

Some methods try to achieve dynamic 3D reconstruction using

a single camera without a template prior. Non-rigid structure

from motion methods [15]–[17] aim at recovering dynamic

3D shapes from multi-frame 2D images, but they cannot deal

with large scale cases. Alternative methods [18]–[20] based

on tracking and fusion of RGB-D sequences of non-rigidly

deforming objects are proposed, but small deformation be-

tween two neighboring viewpoints (time instances) is generally

assumed. To our knowledge, few work in the literature allows

large motions of the subject between different viewpoints

using a single camera, which happens commonly for snapshot

or high speed motion capture.

In this paper, we propose a method for global non-rigid

registration and reconstruction of deformable objects with a

single RGB-D camera without a template prior. The motion

of the object between different viewpoints can be very large.

Naive solutions of applying pairwise non-rigid registration in

succession lead to error accumulation and the well-known loop

closure problem. To address this, we compute the deformations

of all the scans simultaneously by optimizing a global align-

ment problem. We introduce an as-rigid-as-possible (ARAP)

constraint to the sparse non-rigid registration framework to

eliminate the shrinkage problem of the deformed models

when overlapping regions are small and the problem would

otherwise be underconstrained. We also design a coarse-to-fine

multi-resolution scheme to improve efficiency and robustness.

The proposed method is evaluated on public datasets and real

datasets captured by an RGB-D sensor. The results demon-

strate that the proposed method obtains better results than the

state-of-the-art methods.

The main contributions of this work are summarized as

follows:

• We propose a global optimization method for reconstruc-

tion of deformable objects with large motions, which is
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robust to noise and outliers, and avoids the loop closure

problem.

• We design a coarse-to-fine multi-resolution scheme to

avoid the optimization being trapped into local minima,

which also helps to attack large scale problems that

would otherwise be prohibitively expensive (in terms of

computation and storage costs).

• We introduce an ARAP constraint to the sparse non-rigid

registration framework, which eliminates the shrinkage

problem of the deformed models.

Preliminary results of this work were reported in a confer-

ence paper [21]. In addition to more thorough discussions and

literature review, the algorithm details are now provided and

experimental validation is substantially extended, including

quantitative evaluation, evaluation on more datasets, and com-

parison with more methods. We first summarize previous work

in Sec. II. Then, in Sec. III, we present our global registration

framework, including several constraint terms and the overall

optimization function. The solution to the optimization func-

tion is presented in Sec. IV. Finally, we provide experimental

results in Sec. V and conclude this paper in Sec. VI.

II. RELATED WORK

In this section, we review recent related work in 3D recon-

struction.

A. 3D Reconstruction With Multi-Cameras

Several groups have set up multi-camera systems, in which

drifting is not a concern because a relatively complete model

is captured at each frame. Starck et al. [8] design a system

to reconstruct a full human body using 16 cameras, which

requires careful positioning of cameras to obtain better raw

data. Aguiar et al. [9] build a sparsely sampled system of

eight cameras to capture the shape and motion of 3D objects

by effectively combining the power of surface-based and

volume-based shape deformation techniques. With multiple

high-speed cameras, Vlasic et al. [22] design a system for

high-resolution capture of moving 3D objects at high details

using a photometric stereo light stage. Gall et al. [23] propose

an approach based on a multi-view video sequence, which

captures the performance of a human or an animal from an

articulated template model and silhouettes, and the non-rigid

temporal deformation of the 3D surface is then recovered. Li et

al. [24] build a dome system with 20 cameras to synchronously

capture and recover the dynamic shape and texture of arbitrary

objects using a variational multi-view stereo method and a

volumetric deformation method. To reduce the number of

required cameras, some methods use depth cameras. Tong et

al. [10] scan a 3D full human body model using three Kinect

cameras, but the method assumes that the person keeps still.

Ye et al. [11] use three hand-held Kinects to reconstruct human

skeletal poses, deforming surface geometry and camera poses

by deforming template models, which generates relatively fine

results. Dou et al. [12] scan and track deforming objects using

fusion of dynamic input from an eight-Kinect rig, by deform-

ing a human template. Collet et al. [25] use over 30 RGB-D

cameras and a large studio setting with a green screen and

controlled lighting to produce extremely high quality results.

Lin et al. [26] optimize the placement of multiple Kinect

sensors to achieve the desired scanning accuracy, leading to

an effective configuration with 16 RGB-D cameras. Dou et

al. [27] design an approach for live performance capture from

eight RGB-D sequences, which is robust to large frame-to-

frame motion and topology changes, and generates compelling

reconstruction results in real-time.

B. 3D Reconstruction With a Single Camera

Considering the high cost and the difficult maintenance of

multi-camera systems, monocular approaches become more

and more popular. Some methods focus on scanning persons

with a fixed pose. Weiss et al. [28] propose to estimate

a parametric model of the human shape combining low-

resolution image silhouettes with coarse range data. Cui et

al. [29] capture a full 3D human body model using a single

depth camera, which presents fine results, but limits the user

to keep a ‘T’ pose. Li et al. [30] adopt a more general non-

rigid registration framework which allows a wider range of

poses, which demonstrates compelling results but still requires

users to keep the same pose. Dou et al. [31] develop a

3D scanning system which allows a considerable amount of

deformations during scanning and shows fine results. However,

large deformation between two neighboring viewpoints (time

instances) is not allowed.

To reconstruct a dynamic scene using a single camera,

non-rigid structure from motion methods are used to recover

dynamic 3D shapes from multi-frame 2D images [15]–[17].

However, these methods normally are not able to recover 3D

shapes with a large number of vertices. To handle this, some

methods capture a static pre-scan as a template prior [9],

[12], [23], [32]. Li et al. [33] reconstruct the geometry and

motion of complex deforming shapes by using a smooth

template that provides a crude approximation to the scanned

object and serves as a geometric and topological prior. Zhang

et al. [14] build a personalized parametric model using a

single depth sensor, which can produce dynamic models

with a generic human template. Zollhöfer et al. [13] use a

single self-contained stereo camera unit to generate spatio-

temporally coherent 3D models, which also starts by scanning

a smooth template model of the object using KinectFusion

and registers the template to the sequences. In particular, it is

able to produce compelling reconstruction models for palms

and faces. Guo et al. [3] reconstruct non-rigid geometry and

motions from a single-view depth input captured by a depth

sensor, which also uses a template prior and presents fine

results. However, scanning a template model in advance is

inconvenient and impractical for many applications.

Some methods try to achieve dynamic reconstruction using

a single camera without a template prior. Liao et al. [34]

reconstruct complete 3D deformable models over time by a

single depth camera, which is able to reconstruct visually

plausible 3D surface deformation results. However, it assumes

that the deformation is continuous and predictable in a short

temporal interval. Newcombe et al. [20] design a dense SLAM

system, which is able to reconstruct non-rigidly deforming



YANG et al.: GLOBAL 3D NON-RIGID REGISTRATION OF DEFORMABLE OBJECTS USING A SINGLE RGB-D CAMERA 3

scenes in real-time. Innmann et al. [19] use sparse RGB

feature matching to make the tracking system robust to small

geometric variation. Dou et al. [18] propose a 360◦ perfor-

mance capture system that can reconstruct arbitrary non-rigid

scenes in real-time. However, all the methods have the same

limitation that small deformation between the neighboring

views (frames) is assumed.

C. Shape Registration for 3D Reconstruction

In 3D reconstruction, registration methods are developed to

align scans from multiple views with substantial movement,

including rigid and non-rigid registration methods [35]. The

former assumes that the object only undergoes rigid body

transformation [36]–[38], whereas the latter considers more

general deformable models, and is thus more suitable for

reconstruction of deformable objects. Typical non-rigid reg-

istration methods [39] generalize the iterative closest point

(ICP) method from rigid registration, and follow a similar

paradigm that alternately optimizes correspondences based on

the closest point criterion and local transformations according

to the updated correspondences. Recent work introduces var-

ious effective data and regularization terms to the non-rigid

ICP framework [40]–[44] to improve accuracy and robustness

of registration. However, such existing non-rigid registration

methods are based on pairwise registration. Applying them to

multiple scans in succession leads to error accumulation and

the loop closure problem, i.e., when a sequence of scans forms

a loop, the last scan fails to align with the first scan due to

accumulated drifting.

In this paper, we propose a global non-rigid registration

framework based on sparse priors as they are robust to noise

and outliers. Multiple scans are aligned simultaneously, which

effectively handles error accumulation and avoids the loop

closure problem. We further introduce an ARAP constraint

to the global non-rigid registration framework to eliminate the

shrinking problem, which is more critical for partial scans with

limited overlaps, and design a coarse-to-fine multi-resolution

scheme to avoid the optimization being trapped into local

minima and help to attack large scale problems. Our method

only requires sparse views as input and allows large scale

deformations of the object during scanning.

III. THE PROPOSED METHOD

A. Iterative Framework

The aim of global non-rigid registration is to find a set

of non-rigid transformations X that transforms scans for

consistent alignment. To this end, an iterative procedure is

applied with the following two alternating steps:

Step 1) given the current transformations (and hence the

vertex positions after deformation), refine the correspondences

between each pair of scans as long as they overlap. In practice,

if the scans are circularly distributed, it is sufficient to consider

adjacent pairs. At the first iteration, we use a technique

based on local geometric similarity and diffusion pruning of

inconsistent correspondence [45] as it often provides reliable

correspondences. Alternative correspondence techniques or

manual specification of a few correspondences may instead be

used. At other iterations, we update the correspondences by

using the closest points between two shapes to find additional

correspondences similar to ICP.

Step 2) given pairwise corresponding mappings, find a set

of local affine transformations by minimizing a global energy

function (details given later). Compared with straightforward

successive pairwise registration, the benefit of global registra-

tion is to avoid the well-known loop closure problem where

the misalignment accumulates and the surfaces do not match

up when the last pair are to be registered.

B. Global Registration

Assume that we have M scans to be registered

U (1),U (2), . . . ,U (M). For each scan, U (m) ,
{

u
(m)
1 ,u

(m)
2 , . . . ,u

(m)
Nm

}

, where Nm is the number of vertices

in the scan U (m). u
(m)
i , (x

(m)
i , y

(m)
i , z

(m)
i , 1) represents the

homogeneous coordinates of vertex u
(m)
i . For a neighboring

pair of scans U (m) and U (m+1) (assuming U (M+1) ≡ U (1)),

let fm→m+1 : {1, · · · , Nm} 7→ {1, · · · , Nm+1} be the

index mapping from the points on U (m) to the points

on U (m+1) established by correspondence computation:

u
(m+1)
fm(i) ∈ U (m+1) is the corresponding point of u

(m)
i ∈ U (m).

For non-rigid registration, we allow an affine transformation

for each point to cover a wide range of non-rigid deformations.

Denote the set of non-rigid transformations for scan U (m)

by X(m) ,

{

X
(m)
1 , · · · ,X

(m)
Nm

}

, where X
(m)
i is the 4 × 3

transformation matrix for point u
(m)
i . For convenience,

denote by X(m) ,

[

X
(m)
1 , · · · ,X

(m)
Nm

]⊤
of size 4Nm × 3 the

ensemble matrix containing Nm transformation matrices to

be estimated.

Energy Function Formulation: The overall function to be

minimized in Step 2) is given as follows:

E (X; f) =Edata (X; f) + αEsmooth (X)

+ λErig (X) + βEarap (X) ,
(1)

where Edata (X) is the data term to measure the registration

accuracy, Esmooth (X) is the smoothness term to measure the

smoothness of local transformations, Erig (X) is the orthogo-

nality term to measure the rigidness of local transformations

and Earap (X) is the as-rigid-as-possible constraint to ensure

the length of each edge to be as close as possible before and

after transformation; α, λ and β are weights to balance the

relative importance of the terms. The four terms are defined

as follows.

Data Term: A similar strategy as the pairwise registration

is used to estimate the mapping, fm→m+1 (denoted by fm
hereafter for short), between a neighboring pair of overlapping

scans U (m) and U (m+1). As neighboring surfaces only have

partial overlaps, not every point has a corresponding point.

Let Km be the number of corresponding points between

U (m) and U (m+1), where Km ≤ min(Nm, Nm+1). For the

correspondence mapping fm, let fm(i, 1) and fm(i, 2) be

the indexes of corresponding points on U (m) and U (m+1),

respectively. The data term is defined by summing over each

neighboring pair of overlapping scans U (m) and U (m+1):
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Edata (X; f) ,
∑

m

∑

u
(m)

fm(i,1)
∈U(m)

∥

∥em,i

∥

∥

1
,

em,i = u
(m)
fm(i,1)X

(m)
fm(i,1) − u

(m+1)
fm(i,2)X

(m+1)
fm(i,2),

(2)

where ‖ · ‖1 denotes ℓ1 norm of a matrix considered as a

long vector. The right hand side of the data term (2) can be

rewritten as
∑

m

∥

∥

∥

(

U
(m)
fm,1

X(m) −U
(m+1)
fm,2

X(m+1)
)∥

∥

∥

1
,

where U
(m)
fm,1

and U
(m+1)
fm,2

are of sizes Km×4Nm and Km×

4Nm+1 respectively. The ith row of U
(m)
fm,1

and U
(m+1)
fm,2

is

associated with the ith correspondence, with elements u
(m)
fm(i,1)

and u
(m)
fm(i,2) in relevant columns. Using matrix notation X ,

[

X(1), . . . ,X(M)
]⊤

, we have the following form of the data
term:

Edata (X; f) =
∥

∥HX
∥

∥

1
, (3)

where H is determined according to the overlapping relationship
between scans:

H =



















U
(1)
f1,1

−U
(2)
f1,2

0
U

(2)
f2,1

−U
(3)
f2,2

. . .
. . .

0 U
(M−1)
fM−1,1

−U
(M)
fM−1,2

−U
(1)
fM,2

U
(M)
fM,1



















. (4)

Smoothness Term: Similar to the pairwise registration, we

define the edge set with a neighboring system: For a 3D

mesh, the edges are simply defined by the edges of the

mesh; for a 3D point set, it can be transformed to a mesh,

or the edges can be defined by connecting each point with

its K-nearest neighbors (K is typically set to 6). For scan

U (m), denote by N
(m)
i the neighborhood of vertex u

(m)
i ,

and by e
(m)
ij the edge defined between each pair of neigh-

boring vertices u
(m)
j and u

(m)
i . So, we have the edge set

E(m) =
{

e
(m)
ij | u

(m)
j ∈ N

(m)
i ,u

(m)
i ∈ U (m)

}

. Smoothness is

regularized by the ℓ1 norm of transformation differences on

the neighboring system over all the scans U (m) [44]:

Esmooth (X) =
∑

m

∑

e
(m)
ij

∈E(m)

∥

∥

∥u
(m)
j X

(m)
i − u

(m)
j X

(m)
j

∥

∥

∥

1
,

(5)

which is rewritten into the matrix form:

Esmooth (X) =
∑

m

∥

∥B(m)X(m)
∥

∥

1
. (6)

In (6), B(m) is a sparse matrix, where each row contains only

two groups of nonzero entries. For example, assuming the

rth row is associated with edge e
(m)
ij , then the entries linked

to the reference vertex u
(m)
i are set to (x

(m)
i , y

(m)
i , z

(m)
i , 1),

while the ones linked to the neighboring vertex u
(m)
j are set to

(−x
(m)
j ,−y

(m)
j ,−z

(m)
j ,−1). Let B , diag

(

B(1), . . . ,B(M)
)

,

and we have the following form of the smoothness term:

Esmooth (X) =
∥

∥BX
∥

∥

1
. (7)

Orthogonality Term: In non-rigid registration, each vertex is

assigned an affine transformation, which provides sufficient

flexibility to capture non-rigidness of deformable objects.

However, even with smoothness regularization, the high de-

grees of freedom may still result in unreasonable deformation.

Since the deformation of usual objects such as human bodies

and animals are locally rigid, a local rigidness term is used to

reduce the flexibility of the transformations. Specifically, the

transformation X
(m)
i is assumed to be locally rigid, consisting

of a rotation and a translation where the rotation is represented

by an orthonormal matrix. To this end, the orthogonality term

is defined as follows [44]:

Erig (X) =
∑

m

∑

i

∥

∥

∥DX
(m)
i −R

(m)
i

∥

∥

∥

2

F
,

s.t. R
(m)⊤

i R
(m)
i = I3, det(R

(m)
i ) > 0,

(8)

where D = [I3 03×1] is a constant 3 × 4 matrix used to

extract the rotation transformation from X
(m)
i . To eliminate

the case of reflection, we enforce a positive determinant of

R
(m)
i . If det(R

(m)
i ) < 0, we multiply R

(m)
i with −1.

As-rigid-as-possible (ARAP) Term: We observe that some

vertices of the registered surfaces may have inward shrinkage,

especially when neighboring scans have less overlap. To

avoid this artifact, we introduce an as-rigid-as-possible term

to the sparse non-rigid registration framework to maintain

the lengths of all the edges before and after transformations

as much as possible. In the following, we denote the edge

e
(m)
ij = p

(m)
i − p

(m)
j , and similarly the transformed edge

e
′(m)
ij = p

′(m)
i − p

′(m)
j for the deformed model, where

p
(m)
i , (x

(m)
i , y

(m)
i , z

(m)
i ) is the vertex position of U (m). We

define the ARAP term as follows, similar to [13], [46]:

Earap (X) = min
T

(m)
i

∑

m

∑

i

w
(m)
i

∑

j∈N (i)

w
(m)
ij

∥

∥hm,i

∥

∥

2
,

hm,i = e
′(m)
ij − e

(m)
ij Ti

(m),

(9)

where w
(m)
i = 1 for vertices with known correspondence

and w
(m)
i = 0 otherwise, and Ti

(m) ∈ R
3×3 is a rotation

matrix. The cotangent weight w
(m)
ij is is used to reduce mesh

discretization bias:

w
(m)
ij =

1

2
(cotαij + cotβij), (10)

where αij and βij are the angles opposite to the mesh edge

(i, j) (for a boundary edge, only one such angle exists). Given

the positions of deformed vertices, Ti
(m) can be explicitly

obtained using the singular value decomposition (SVD) of

S
(m)
i , where S

(m)
i is defined as

S
(m)
i =

∑

m

∑

j∈N (i)

w
(m)
ij e

(m)
ij e

′(m)⊤

ij . (11)

Using SVD, we can obtain S
(m)
i = Vm

i Σ
(m)
i U

(m)⊤

i , and

T
(m)
i is solved as:

T
(m)
i = Vm

i U
(m)⊤

i . (12)
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To minimize Earap w.r.t. X
(m)
i , similar to hm,i, we denote

hm,j = e
′(m)
ji − e

(m)
ji Tj

(m). Then, we first work out
∂Earap

∂p
′(m)
i

where p
′(m)
i = u

(m)
i X

(m)
i is the transformed vertex position

as

∂Earap

∂p
′(m)
i

=
∂

∂p
′(m)
i





∑

j∈N (i)

w
(m)
ij

∥

∥hm,i

∥

∥

2
+

∑

j∈N (i)

w
(m)
ji

∥

∥hm,j

∥

∥

2





=
∑

j∈N (i)

2w
(m)
ij hm,i +

∑

j∈N (i)

−2w
(m)
ji hm,j .

(13)

Using the fact that w
(m)
ij = w

(m)
ji , we obtain

∂Earap

∂p
′(m)
i

=
∑

j∈N (i)

4w
(m)
ij

(

e
′(m)
ij −

1

2
e
(m)
ij (Ti

(m) +Tj
(m))

)

.

(14)

Setting the partial derivatives to zero leads to the following:

∑

j∈N (i)

w
(m)
ij e

′(m)
ij =

∑

j∈N (i)

w
(m)
ij

2
e
(m)
ij

(

T
(m)
i +T

(m)
j

)

.

(15)

Using matrix-vector notation, Earap can be rewritten as

Earap (X) =
∑

m

∥

∥L(m)X(m) − b(m)
∥

∥

2

F
, (16)

where L(m) represents the linear combination on the left-hand

side of (15), which is the discrete Laplace-Beltrami operator.

b(m) is an n-vector whose ith row contains the right-hand side

of (15). The definition of Earap in Eq. (9) depends on both the

deformed edges e
′(m)
ij ’s and rotations T

(m)
i ’s. In our setting,

the former are determined by transformations X, which are

optimized in the overall energy along with other terms, so we

optimize T
(m)
i ’s dedicated to the energy term such that the

formulation (16) only depends on X.

Denote by L = diag
(

L(1), . . . ,L(M)
)

, and by b =
[b(1), . . . ,b(M)]⊤, we have the following form of ARAP term:

Earap (X) =
∥

∥LX− b
∥

∥

2

F
. (17)

Boundary Conditions: For the optimization to have a unique

solution, some boundary conditions need to be set. One way is

to set a scan e.g. U (1) to be fixed, i.e. with X
(1)
i to be identity

transformation for each vertex of the scan.

With all these terms, we have the following minimization

problem:

min
X,C,A







∥

∥C
∥

∥

1
+ α

∥

∥A
∥

∥

1
+ β

∥

∥LX− b
∥

∥

2

F

+λ
∑

m

∑

i

∥

∥

∥DX
(m)
i −R

(m)
i

∥

∥

∥

2

F







s.t. C = HX,A = BX,

R
(m)⊤

i R
(m)
i = I3,

det(R
(m)
i ) > 0,

,m = 1, . . . ,M,

(18)

where A and C are auxiliary variables to facilitate opti-

mization. Then, we solve the constrained minimization (18)

using the augmented Lagrangian method (ALM) (see the next

subsection for details).

Multi-resolution Approach: Since the transformation Xi of

each vertex i has a rotation Ri ∈ R
3×3 and a translation ti ∈

R
3, there are 12 degrees of freedom (DoFs) in total for each

Xi. If a scan m has Nm vertices, there are Nm transformations

and 12Nm DoFs. However, even if each vertex has a positional

constraint (with 3 constraints), there are 3Nm constraints in

total, which are not enough to identify a unique solution. One

way of addressing this is to rely on regularization, but the high

complexity remains. We further use a coarse-to-fine approach,

which can not only provide a promising solution, but also deal

with large scale problems efficiently.

Suppose that we decompose the shapes up to S + 1
scales. For any shape U (m), denote by U (m,s) the sth scale

of the shape via standard downsampling [47]. We obtain

S multi-resolution shapes, U (m,S), U (m,S−1), · · · , U (m,0),

where U (m,S) is the shape at the coarsest resolution and

U (m,0) ≡ U (m) is at the full resolution. The optimization Eq.

(18) at scale s can be rewritten as:

min
X,C,A







∥

∥C
∥

∥

1
+ α

∥

∥A
∥

∥

1
+ β

∥

∥LMX(s) − b
∥

∥

2

F

+λ
∑

m

∑

i

∥

∥

∥DX
(m,s)
i −R

(m,s)
i

∥

∥

∥

2

F







,

s.t. C = HMX(s),A = BMX(s),

R
(m,s)⊤

i R
(m,s)
i = I3,

det(R
(m,s)
i ) > 0,

,m = 1, . . . ,M,

(19)

where M represents the mapping of transformations from

U (m,s) to U (m,s−1) for all the scans, and X(s) contains the

transformations on all U (m,s).

We start our multi-resolution method from the coarsest scale

S to solve the optimization problem (19), and use the solution

at previous scale as initialization to solve the transformation at

next scale until reaching the finest scale. Denote by u
(m,s−1)
i

a vertex at the (s − 1)th scale, and by Γ
(m,s)
i the index set

of vertices of u
(m,s−1)
i at the sth scale within the spherical

neighborhood. The corresponding deformation X
(m,s−1)
i is

estimated by a weighted average of the deformations of

vertices within a spherical neighborhood of radius r at the

sth scale [33]:

Xi
(m,s−1) =

∑

j∈Γ
(m,s)
i

mi,jX
(m,s)
j . (20)

The weight mi,j showing the contribution of the transforma-

tion of u
(m,s−1)
i to that of u

(m,s)
j is defined as

mi,j = max (0,di,j) ,

di,j = 1− d2
(

u
(m,s−1)
i ,u

(m,s)
j

)/

r2,
(21)

where r is the effective radius. In our experiment, the radius

is set to be twice of the average edge length of the coarser

mesh. d
(

u
(m,s−1)
i ,u

(m,s)
j

)

represents the Euclidean distance

between u
(m,s−1)
i and u

(m,s)
j . The weight drops steadily with

an increasing distance. Using the matrix notation, we can

rewrite Eq. (20) as:

X(m,s−1) = M(m)X(m,s), (22)
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where M(m) is constructed by collecting mi,j , and therefore

X(m,s−1) is obtained by a linear combination of relevant

transformations of X(m,s). Then, we have:

X(s−1) = MX(s), (23)

where M contains the mapping of transformations from

U (m,s) to U (m,s−1) for all the scans. Using Eq. (23) to replace

X in Eq. (18), we can get the optimization function Eq. (19).

By using the coarse-to-fine strategy, our method avoids the

optimization being trapped into local minima, and handles high

resolution shapes effectively. In our implementation, the global

registration is performed at two scales in which the coarser-

scale shapes have 500∼1000 vertices.

IV. THE PROPOSED ADM-ALM ALGORITHM

Our numerical algorithm is derived based on the ADM-

ALM framework due to the following three appealing merits:

1) convenient handling of equality constraints, 2) flexible

adaptability to large-scale problems with multiple sets of

variables, and 3) proven numerical convergence for various

minimization models across a wide range of applications.

The ALM method converts the original problem (18) to the

iterative minimization of its augmented Lagrangian function:

L(X,C,A,Y1,Y2, µ1, µ2) =
∥

∥C
∥

∥

1
+ α

∥

∥A
∥

∥

1

+ 〈Y1,C−HX〉+
µ1

2

∥

∥C−HX
∥

∥

2

F

+ 〈Y2,A−BX〉+
µ2

2

∥

∥A−BX
∥

∥

2

F

+ λ
∑

m

∑

i

∥

∥

∥DX
(m)
i −R

(m)
i

∥

∥

∥

2

F
+ β

∥

∥LX− b
∥

∥

2

F
,

s.t. R
(m)⊤

i R
(m)
i = I3, det(R

(m)
i ) > 0,

(24)

where (µ1, µ2) are positive constants, (Y1, Y2) are Lagrangian

multipliers, and 〈·, ·〉 denotes the inner product of two ma-

trices considered as long vectors. Under the standard ALM

framework, (Y1, Y2) and (µ1, µ2) can be efficiently updated.

However, each iteration has to solve X, C and A simulta-

neously, which is difficult and computationally demanding.

Hence, we resort to the alternate direction method (ADM) [48]

to optimize A, C and X separately at each iteration:



















































































































































C(k+1) = argminC ‖C‖1 +
〈

Y
(k)
1 ,C−HX(k)

〉

+
µ
(k)
1

2

∥

∥

∥C−HX(k)
∥

∥

∥

2

F
,

A(k+1) = argminA α‖A‖1 +
〈

Y
(k)
2 ,A−BX(k)

〉

+
µ
(k)
2

2

∥

∥

∥A−BX(k)
∥

∥

∥

2

F
,

X(k+1) = argminX

〈

Y
(k)
1 ,C−HX(k)

〉

+
µ
(k)
1

2

∥

∥

∥C−HX(k)
∥

∥

∥

2

F
+
〈

Y
(k)
2 ,A−BX(k)

〉

+
µ
(k)
2

2

∥

∥

∥A−BX(k)
∥

∥

∥

2

F
+ β

∥

∥

∥LX(k) − b
∥

∥

∥

2

F

+λ
∑

m

∑

i

∥

∥

∥DX
(m)(k)

i −R
(m)(k)

i

∥

∥

∥

2

F
,

R
(k+1)
i = argminRi

λ
∥

∥

∥DX
(k)
i −Ri

∥

∥

∥

2

F

s.t. R⊤
i Ri = I3, det(Ri) > 0,

Y
(k+1)
1 = Y

(k)
1 + µ

(k)
1

(

C(k+1) −HX(k)
)

,

Y
(k+1)
2 = Y

(k)
2 + µ

(k)
2

(

A(k+1) −BX(k)
)

,

µ
(k+1)
1 = ρ1µ

(k)
1 , ρ1 > 1,

µ
(k+1)
2 = ρ2µ

(k)
2 , ρ2 > 1.

(25)

The C-subproblem has the following closed solution:

C(k+1) = shrink

(

HX(k) −
1

µ
(k)
1

Y
(k)
1 ,

1

µ
(k)
1

)

, (26)

where shrink(·, ·) is the shrinkage function applied to the

matrix element-wisely:

shrink (x, τ) = sign(x)max(|x| − τ, 0). (27)

The A-subproblem is solved in a similar way:

A(k+1) = shrink

(

BX(k) −
1

µ
(k)
2

Y
(k)
2 ,

α

µ
(k)
2

)

. (28)

The Ri-subproblem is solved as follows:

R
(k+1)
i = UI3V

⊤,

(U,D,V⊤) = svd
(

DX
(k+1)
i

)

.
(29)

Being quadratic, the X-subproblem is equivalent to solving

the following normal equations according to the first-order

optimality condition:

X(k+1) = M−1g,

M , µ
(k)
1 H⊤H+ µ

(k)
2 B⊤B+ βL⊤L+ λ

∑

i

D⊤D,

g , B⊤
(

Y
(k)
2 + µ

(k)
2 A(k+1)

)

+H⊤
(

Y
(k)
1 + µ

(k)
1 C(k+1)

)

+ βL⊤b+ λ
∑

i

D⊤R
(k)
i .

(30)

Note that M is diagonally-dominant and sparse. We use the

sparse solver for linear equations in Matlab to solve the

above normal equation. Compared with existing ADM-ALM

approaches, our optimization solution has the following major
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differences: On the one hand, the proposed global registration

model incorporates an as-rigid-as-possible (ARAP) term to

avoid the collapse of the registered 3D model. Then the X-

subproblem involves the Laplace-Beltrami operator in the nor-

mal equations. On the other hand, although the compact form

of objective function is similar to [43], [44], the algorithm in

this work simultaneously optimizes all available partial scans

in a global manner. As a result, the construction of the matrix

H in the data term is different from those in [43] and [44].

Also, the proposed model has a large problem scale, and is

suitable to be solved by the ADM-ALM framework.

The global non-rigid registration algorithm is summarized

in Algorithm 1 (outer loop), and the algorithm for minimizing

Eq. (18) is summarized in Algorithm 2 (inner loop). L is the

number of outer iterations, K is the number of inner iterations,

and N is the number of vertices of all the scans. In our

experiments, we set L = 5 and K = 25. The convergence can

be determined by checking if the change of energy is below a

threshold. In practice, we find that the setting (5 iterations of

the outer loop each involving 25 iterations of the inner loop)

is often sufficient to converge to decent results.

Algorithm 1 Global Alignment

Input: {U (m)}Mm=1 and corresponding points.

for l = 1 to L do

Find correspondence mapping fm : U (m) 7→ U (m+1);

Update Ti according to Eq. (12);

Solve for transformations X(l) via Algorithm (2);

end for

Output: X.

Algorithm 2 ADM algorithm to solve Eq. (18)

Input: H ∈ RN×4N , B ∈ R|E|×4N , L ∈ R|E|×4N ;

Initialize: X(l) = X(l−1) (X(1) = I4N×3);

Y
(0)
1 ,Y

(0)
2 = 0, µ1, µ2 > 0, ρ1, ρ2 > 1;

for l = 1 to K do

Solve for C(l,k+1) by Eq. (26);

Solve for A(l,k+1) by Eq. (28);

Solve for R
(l,k+1)
i by Eq. (29);

Solve for X(l,k+1) by Eq. (30);

Update µ
(k+1)
1 , and µ

(k+1)
2 according to Eq. (25);

Update Y
(k+1)
1 , and Y

(k+1)
2 according to Eq. (25);

end for

Output: X(l).

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed

method on public complete datasets (Section V-A), partial

datasets (Section V-B) and real scans (Section V-C).

A. Results on Public Complete Datasets

Firstly, we evaluate the proposed method on the Jumping

and Swing datasets [22], which contain complete models with

dramatic deformations. They have known correspondences to

allow quantitative evaluation. Fig. 1 and Fig. 2 show the

alignment results, compared with four pairwise registration

methods [3], [43], [44]. Considering that these methods only

register two models, we apply them to register all the models in

sequence with the previous registration result used as the next

target model. Besides, we use the first model as the reference

pose model for all the methods. The original 10 complete

models with very different poses are shown in Fig. 1(a) and

Fig. 2(a). The registration errors between the deformed model

and the reference model are color-coded on the reference

model for visual inspection. Here, the corresponding distance

errors are computed using the standard Metro tool [49]. It can

be seen that the results of methods [3], [4], [43] have visible

misalignment due to error accumulation. Both the results of

method [44] and our method are visually well aligned, but our

method has smaller error. Table I gives quantitative evaluation

with average errors over all the frames. Our method has the

smallest errors which demonstrates that our global registration

method suppresses error accumulation and produces more

accurate registration results.

In order to evaluate the robustness of our method, we also

experiment on the dataset with added noise and outliers. For

the first test, each vertex is perturbed with Gaussian noise

along the normal directions, with the mean set to zero and

the deviation σ set as 0.1l in our experiments, where l is

the average length of triangle edges on all meshes. Fig. 3

demonstrates the alignment results compared with other three

methods. We also evaluate the methods on the dataset with

outliers in Fig. 4, in which 10% vertices are perturbed by

Gaussian noise. As shown in Fig. 3 and Fig. 4, our method is

more robust to noise and outliers than the other three methods.

The corresponding distance errors are also shown in Table I.

TABLE I
QUANTITATIVE EVALUATION FOR WHOLE-TO-WHOLE REGISTRATION

(CM).

Method Swingclean Jumpingclean Jumpingnoise Jumpingoutlier

L0 [3] 5.2758 1.0162 1.1011 1.1984

PR-GLS [4] 1.1154 1.8122 1.8646 1.9780

L21 [43] 0.5621 0.7878 0.8003 0.8160

L11 [44] 0.2181 0.1392 0.2033 0.2245

Ours 0.1224 0.1281 0.1466 0.1595

B. Results on Partial Datasets

We also evaluate our method on a clean partial dataset

extracted from the Bouncing dataset [22]. Since the original

models are complete, we extract the visible part of each

complete model with a virtual camera rotating around the

model. We select 37 partial models and allow large defor-

mations among the selected models. Sample partial models of

Bouncing are shown in Fig. 5(a). We use a multi-resolution

approach for improved robustness and efficiency. First, we

obtain low-resolution models from the original partial models

by downsampling them to 1/10 of the full resolution. Each

original partial model contains about 3,000-5,000 vertices

and therefore each low-resolution model has about 300-500
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0

1.5cm

0.2

(a) (c) (d) (e)(b) (f)

Fig. 1. Comparison results on the Jumping dataset: (a) original complete models, (b) the results of [3], (c) the results of PR-GLS [4], (d) the results of [43],
(e) the results of [44], and (f) our results.

0

7.5cm

1.2

(a) (c) (d) (e)(b)

    

(f)

Fig. 2. Comparison results on the Swing dataset: (a) original complete models, (b) the results of [3], (c) the results of PR-GLS [4], (d) the results of [43],
(e) the results of [44], and (f) our results.

0

1.5cm

0.2

(a) (c) (d) (e)(b) (f)

Fig. 3. Comparison results on the Jumping dataset with noise (σ = 0.1l): (a) original complete models with noise, (b) the results of [3], (c) the results of
PR-GLS [4], (d) the results of [43], (e) the results of [44], and (f) our results.

0

1.5cm

0.2

(a) (c) (d) (e)(b) (f)

Fig. 4. Comparison results on the Jumping dataset with 10% outliers: (a) original complete models with outliers, (b) the results of [3], (c) the results of
PR-GLS [4], (d) the results of [43], (e) the results of [44], and (f) our results.
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Fig. 5. Sample partial models of test datasets: (a) Bouncing, (b) Waving and (c) Flying.

(a) (b) (c) (d) (e) (f)

Fig. 6. Iterative results of our method. (a) initial 37 partial scans, (b) registration result after 1 iteration, (c) registration result after 10 iterations, (d) registration
result after 20 iterations, (e) registration result after 30 iterations, and (f) total energy vs. the number of iterations.

vertices. Then, we find the corresponding points between

neighboring scans using the approach [45]. The method is

intrinsic and works well even for partial scans with large

deformation. The iterative results of our method are shown

in Figs. 6(a-e). Fig. 6(f) demonstrates that the total energy

reduces steadily over iterations.

We apply our multi-resolution global registration to the set

of models from coarse to fine. In Fig. 7(A), we show four

partial scans and the deformed scans after registration using

our method and alternative methods. It can be seen that the

method [43] has a serious shrinkage problem and a similar

phenomenon happens to the method [44] although to a lesser

extent. Our method produces the best registration result. Fig. 8

and Fig. 9 illustrate the results when scans are accumulated

gradually, using the first 4 scans, the first 20 scans, and all

the scans for registration, compared with four state-of-the-art

methods. We also use standard Poisson reconstruction [50] to

obtain watertight meshes. Because the L0 method [3] requires

a template mesh for tracking, we choose a complete mesh

from the original dataset as the template mesh and register

this mesh to the partial meshes. We can see that the L0

method [3] has wrong estimation for the head and dress, and

the PR-GLS method [4] has misalignment for the back. The

shrinkage problem becomes more and more severe for L21

method [43] in arms and legs. The results of L11 method [44]

have clearly visible misalignment in the results of registration

and even after Poisson reconstruction, especially in the arms,

which are resulted from the accumulation of registration errors.

Compared with these methods, the results of our method are

smoother and better aligned. By using global registration, our

method does not suffer from error accumulation and the use of

ARAP constraint avoids shrinking. Our results are better than

alternative methods, even with only the first four views. The

quantitative evaluation is given in Table II. Our method has

the smallest error. The running times of L0 [3], PR-GLS [4],

L21 [43], L11 [44], and our method are 20min14s, 60min45s,
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Fig. 7. Comparison of results on datasets: (A) Bouncing, (B) Waving and (C) Flying: (a) original partial scans, (b) the results of [43], (c) the results of [44]
and (d) the results of our method.

7min56s, 19min30s, 180min55s, respectively. The experiments

were carried out on a desktop PC with an i7 3.4-GHz CPU

and 8-GB RAM. Our method is currently implemented using

unoptimized MATLAB code.

To evaluate the performance for correspondences with par-

tially incorrect matchings, we obtain two thirds of corre-

spondences using diffusion pruning [45] and the remaining

one third using local geometric feature matching based on

SHOT signatures [51]. The majority of correspondences from

the former are correct while many correspondences from the

latter are incorrect due to the ambiguity of local features. One

example of correspondences for two partial meshes is shown

in Fig. 10(a), and final reconstruction results are shown in

Figs. 10(b-d). Wrong correspondences are marked as red. It

can be seen that our method is robust with respect to incorrect

correspondences. Thanks to the regularization terms in our en-

ergy function, in particular the transformation smoothness term

and the as-rigid-as-possible term, incorrect correspondences

which are likely to be substantially different from their neigh-

boring correspondences, are substantially down-weighted, due

to large regularization costs if local transformations were to

follow them.

To evaluate the robustness of our method, we also experi-

ment on the dataset polluted by dense noise and sparse outliers

with the same approach as mentioned in Section V-A. Fig. 11

and Fig. 12 show our results compared with the other methods,

and the corresponding distance errors are shown in Table II.

The results show that our method is more robust to noise and

outliers than the alternative methods.

TABLE II
QUANTITATIVE EVALUATION FOR PARTIAL DATASETS (CM).

Method Sambaclean Bouncingclean Bouncingnoise Bouncingoutlier

L0 [3] 0.6318 1.0042 1.0437 1.0145

PR-GLS [4] 1.8008 1.6973 1.7556 2.1227

L21 [43] 1.2959 1.4986 1.5575 1.5417

L11 [44] 0.4910 0.9887 1.0158 1.0225

Ours 0.2508 0.7186 0.9849 0.9506

C. Results on Real Scans

We now test our method on real scans, which are very

challenging, because they have much noise and a large num-

ber of outliers. Here, we create two datasets scanned using

a Kinect: Waving and Flying datasets. The Waving dataset

involves large deformations which allows the hands and feet to

wave forward and backward. It contains 30 scans with about

9,000-14,000 vertices for each partial scan. Sample partial

models of Waving are shown in Fig. 5(b). We obtain the

low-resolution models by subsampling with 1/10 of vertices,

similar to the clean datasets, and compare our method with

the pairwise registration methods [43], [44] in Fig. 7(B).

Similarly, we can see that the method [43] produces highly

distorted results and the results of method [44] also contain

misalignment. Fig. 13 illustrates the results when scans are

accumulated gradually. Since no ground truth data is available,

it is not possible to measure the errors quantitatively. However,

from visual inspection, it is clear that our global registration

method produces superior results. The results of [43] (top

row) not only have serious shrinkage but also become more
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(a) (b) (c) (d) (e)

0

6.6cm

1.0

Fig. 8. Comparative results using gradually accumulated scans on the partial dataset Bouncing. Top row: L0 [3], second row: PR-GLS [4], third row: L21 [43],
fourth row: L11 [44], and bottom row: our method. (a): the results of scans 1-4, (b) the results of scans 1-20, (c) the results of all the scans, (d) Poisson
reconstruction results based on (c) (the top row shows the template mesh), (e) corresponding color-coded error distributions.

and more flat. With the accumulation of registration errors,

the misalignment problem for method [44] also becomes

unacceptable, especially in the head and arms. Our method

generates significantly better results, including the head and

arms.

In order to show the robustness and effectiveness of our

method, for the Flying dataset, we just use 15 partial scans

with dramatic deformations between scans which allow the

arms to wave up and down. Sample partial models of Flying

are shown in Fig. 5(c). As shown in Fig. 7(C), there are serious

distortions in the results of method [43], and the transformed

scans become more flat. The misalignment of method [44]

is also apparent. On the contrary, the results of our method

have no such problems. Fig. 14 gives the results when scans

are accumulated gradually. The results of method [43] have

a serious shrinkage problem and the misalignment problem

for method [44] also becomes unacceptable. Our method

has better registration results and the reconstructed complete

model is accurate and watertight.

VI. CONCLUSION

This paper proposes a novel global sparse non-rigid align-

ment method which registers a sequence of scans with dra-

matic deformations simultaneously to reconstruct a complete

object with a single RGB-D camera. We formulate the energy

function with dual sparsity on both data term and smooth term,

along with the local rigidity constraint and the ARAP (as-rigid-

as-possible) constraint. It is solved by the alternating direction
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Fig. 9. Comparative results using gradually accumulated scans on the partial dataset Samba. Top row: L0 [3], second row: PR-GLS [4], third row: L21 [43],
fourth row: L11 [44], and bottom row: our method. (a): the results of scans 1-4, (b) the results of scans 1-20, (c) the results of all the scans, (d) Poisson
reconstruction results based on (c) (the top row shows the template mesh), (e) corresponding color-coded error distributions.

(b) (c) (d)
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6.6 cm
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(a)

Fig. 10. Comparison results on Bouncing dataset with partially incorrect correspondences: (a) part of correspondences for two scans, (b) registration result
of all the scans, (c) Poisson reconstruction result, (d) corresponding color-coded error distributions.

method under the augmented Lagrangian multiplier (ADM-

ALM) framework which has exact solutions and guaranteed

convergence. Experimental results on public datasets and real

scanned datasets show that our method is effective and robust

for challenging deformations such as large-scale movement of

arms and legs, as well as noise and outliers. In addition, our

method allows fewer partial scans to reconstruct a full object.

Our method also has some limitations. First, although our

method can handle a wider range of deformations, it becomes

more difficult with very few scans, such as the example shown
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Fig. 11. Comparative results using gradually accumulated scans on the partial dataset Bouncing with noise (σ = 0.1l). Top row: L0 [3], second row:
PR-GLS [4], third row: L21 [43], fourth row: L11 [44], and bottom row: our method. (a): the results of scans 1-4, (b) the results of scans 1-20, (c) the results
of all the scans, (d) Poisson reconstruction results based on (c) (the top row shows the template mesh), (e) corresponding color-coded error distributions.

in Fig. 14, since neighboring scans have less overlap. Not all

the partial scans are well aligned such as the arms, although the

reconstructed complete model removes most artifacts. Second,

our current formulation only considers the registration errors

of neighboring scans while other scans that have overlap with

the current scan will also help for accurate registration. Third,

the computation complexity is a little high due to the global

formulation. In the future, we will investigate more robust

schemes by exploiting potential overlaps between non-adjacent

scans and speed up the algorithm using GPU.
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