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ABSTRACT

In this paper, we present a novel framework for global
non-rigid registration of multi-view scans captured using
consumer-level depth cameras. In our method, all scans from
different viewpoints are allowed to undergo large non-rigid
deformations and finally fused into a complete high quality
model. To avoid the well-known loop closure problem, we
simultaneously optimize a global alignment problem instead
of pairwise non-rigid registration in succession. We employ
a joint point-to-point and point-to-plane positional constraint
to reduce the influence of wrong correspondences, and incor-
porate an as-conformal-as-possible constraint to avoid mesh
distortions during deformation. We also design a reweight-
ing scheme on position and transformation to reduce registra-
tion errors. Experimental results on both public datasets and
real scanned datasets demonstrate that our approach outper-
forms state-of-the-art methods through extensive quantitative
and qualitative evaluations.

Index Terms— 3D scanning, global non-rigid registra-
tion, large deformation, depth cameras, surface reconstruction

1. INTRODUCTION

3D reconstruction has been extensively studied for decades
due to its wide applicability in 3D printing, games and movie
production [1, 2, 3]. The availability of low-cost commod-
ity depth cameras, such as Microsoft Kinect, has made the
reconstruction of a 3D scene easier and cheaper than ever
using a laser scanner. However, the captured depth suffers
from the pollution of serious noise and outliers, which in-
creases the challenges of 3D reconstruction, especially for
dynamic non-rigid reconstruction with larger dimensionality
and higher complexity of the deformation space.

Some previous work achieves dynamic 3D reconstruction
based on multi-camera systems. Li et al. [1] at Tsinghua Uni-
versity build a dome system with 20 cameras to recover shape
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and capture motion from multi-view video sequences using
a separating and merging strategy and a volumetric deforma-
tion method. Collet et al. [4] obtain a textured high-resolution
mesh with different connectivity in each frame by a set of
high-speed RGB and IR cameras. Unfortunately, such sys-
tems are not readily usable in many real-world applications
due to high cost, complex maintenance and lack of portabil-
ity. The Microsoft Kinect has been extensively employed with
the advantage of low-cost and multi-sensing. Tong et al. [5]
use three Kinects to capture different parts of a human body
to generate a convincing 3D human model. Kinect Fusion [2]
achieves the reconstruction of a 3D object in real-time using
a single Kinect camera but requires the object to keep still. Li
et al. [6] develop a pipeline in which ordinary users capture
complete and fully textured 3D models of themselves using
only a Kinect sensor, but the captured body must keep the
same pose among various viewpoints. To reconstruct scenes
with non-rigid deformations, Newcombe et al. [7] present
a system that reconstructs non-rigidly deforming subjects in
real-time. However, drifting problems exist in both rigid and
non-rigid alignment where errors accumulate continuously.
To handle this, Zollhöfer et al. [3] propose a template-based
approach, which starts from a scanned template of the subject
and gradually deforms it toward the input depth sequences.
To remove the requirement of the template prior, Yu et al. [8]
propose a method to reconstruct detailed geometry, non-rigid
motion and the inner human body shape from a single Kinect
camera with a double layer representation consisting of para-
metric body shapes and gradually fused surfaces. Much effort
has been made to reconstruct small deformation between two
neighboring viewpoints, but little work in the literature allows
large motions of the subjects between different viewpoints. Li
et al. [9] present a pair-wise non-rigid registration method for
large deformation cases, but the loop closure problem tends
to occur due to error accumulation. Guo et al. [10] propose a
global non-rigid registration method to avoid the error accu-
mulation, but the viewpoints need to be reasonably dense to
avoid too large differences between neighboring views.

In this paper, we propose a method for global non-rigid
registration of multi-view scans captured by a single depth
camera, which allows large deformations of the objects be-
tween different viewpoints, i.e., sparse viewpoints. To dis-



tribute errors in the deformation space, we compute the de-
formations of all the scans simultaneously by optimizing
a global alignment problem. We employ a joint point-to-
point and point-to-plane positional constraint to reduce the
influence of wrong correspondences, and incorporate an as-
conformal-as-possible (ACAP) constraint to avoid mesh dis-
tortions and maintain mesh structures during deformation, es-
pecially when the meshes undergo large deformations. More-
over, a reweighting scheme on position and transformation is
designed in order to reduce the registration error. Experimen-
tal results on both public datasets and real scanned datasets
demonstrate that our approach achieves the best reconstruc-
tion compared with state-of-the-art methods with quantitative
and qualitative evaluations.

To sum up, we contribute a novel global optimization
method for registration of multi-view scans with large defor-
mations, which is robust to noise and outliers and avoids the
loop closure problem. To achieve this, we use a joint point-to-
point and point-to-plane weighting for positional constraint
to reduce the influence of wrong correspondences. Moreover,
we incorporate an ACAP constraint to avoid mesh distortions
and maintain mesh structures by preserving the angles of tri-
angles in the meshes during deformation. We also design a
reweighting scheme on position and transformation with ex-
ponential functions to better approximate `0-norm in measur-
ing sparseness, which helps reduce final registration errors.

2. THE PROPOSED METHOD

The aim of global non-rigid registration is to find out a set of
non-rigid transformations X by the correspondences of pair-
wise scans. Given the transformations X, we transform and
align these scans consistently while keeping their shapes plau-
sible. There are two alternating steps in each iterative proce-
dure: (1) Find candidate correspondences in the overlapping
areas between pairwise scans after deformation; (2) Solve a
set of local affine transformations by minimizing a global en-
ergy function. Below we will discuss the energy function of
global non-rigid registration in detail.

Given a captured scan sequence
{
U (1),U (2), . . . ,U (n)

}
,

we compute a mapping between each neighboring pair of
scans U (m) and U (m+1) (assuming U (n+1) = U (1)). De-
note by U (m) ,

{
u
(m)
1 ,u

(m)
2 , . . . ,u

(m)
Nm

}
a set of 3D points

in each scan, where u
(m)
i , (x

(m)
i , y

(m)
i , z

(m)
i , 1) represents

the homogeneous coordinates of the ith vertex and Nm rep-
resents the number of vertices in scan U (m). The mapping
fm→m+1 : {1, · · · , Nm} 7→ {1, · · · , Nm+1} is established
by correspondence computation: u

(m+1)
fm(i) ∈ U

(m+1) is the

correspondence point of u
(m)
i ∈ U (m). At the first iteration,

we use a diffusion pruning method [11] for correspondence
computation as it often provides reliable correspondences.
Alternative correspondence techniques or manual specifica-
tion of a few correspondences may instead be used. At the

other iterations, we update the correspondences by using the
closest points between two shapes to find additional corre-
spondences similar to iterative closest point (ICP).

For non-rigid registration, we solve an affine transforma-
tion for each point to cover a wide range of non-rigid defor-
mations. Denote the set of non-rigid transformations for scan
U (m) by X(m) ,

{
X

(m)
1 , · · · ,X(m)

Nm

}
, where X

(m)
i is the

4× 3 transformation matrix for point u
(m)
i . For convenience,

denote by X(m) ,
[
X

(m)
1 , · · · ,X(m)

Nm

]T
of size 4Nm× 3 the

ensemble matrix containing Nm transformation matrices to
be estimated. The global non-rigid registration is formulated
as the minimization of the following energy function:

E (X; f) = Edata (X; f) + αEsmooth (X) + λErig (X)

+ βEarap (X) + γEacap (X) , (1)

which consists of data term and four regularizers weighted by
the factors α, λ, β and γ. Edata(X) is the data term to mea-
sure the position accuracy, Esmooth(X) is the smoothness
term to measure the smoothness of local transformations,
Erig(X) is the orthogonality term to measure the rigidness of
local transformations, Earap(X) is the as-rigid-as-possible
term to ensure the length of each edge to be as close as
possible before and after transformation and Eacap(X) is the
as-conformal-as-possible term to preserve angles of triangles
in the meshes during deformation.

Data Term: Similar to the pairwise registration, we represent
the mapping between a neighboring pair of overlapping scans
U (m) and U (m+1) by fm. As neighboring surfaces only have
partial overlaps, not all the vertices have correspondences, so
we define Ũ (m) ⊂ U (m) as the corresponding point set and
suppose the vertex u

(m)
i ∈ Ũ (m) has the kth correspondence

between the neighboring scans U (m) and U (m+1). We design
a reweighting scheme to update a weight WD

(m)
k in each iter-

ation, which is mentioned in detail later. Given the correspon-
dence mapping f , the data term is designed to penalize the
point-to-point and point-to-plane distances of each neighbor-
ing pair of overlapping scans U (m) and U (m+1) so that vertex
u
(m)
i is forced to move to its corresponding point u

(m+1)
fm(i) es-

pecially along the normal direction of u
(m+1)
fm(i) :

Edata(X; f) ,
∑
m

∑
u

(m)
i ∈Ũ(m)

WD
(m)
k (αpoint

∥∥∥u(m)
i X

(m)
i − u

(m+1)
fm(i) X

(m+1)
fm(i)

∥∥∥
1

+ αplane|n(m+1)
fm(i) (u

(m)
i X

(m)
i − u

(m+1)
fm(i) X

(m+1)
fm(i) )>|), (2)

where ‖ · ‖1 denotes `1 norm of a matrix considered as a long
vector, and n

(m)
i ∈ R1×3 represents the normal of vertex

u
(m)
i . We define θ(m+1)

fm(i) as the angle between n
(m+1)
fm(i) and



the opposite direction from vertex u
(m)
i to its corresponding

point u
(m+1)
fm(i) . Let X :=

[
X(1), . . . ,X(n)

]T
. For easier cal-

culation, we have the following form of the data term:

Edata (X; f) =
∥∥WDHX

∥∥
1
, (3)

WD = diag
(
WD

(1), . . . ,WD
(n)
)
,

WD
(m) = diag

(
WD

(m)
1 , · · · ,WD

(m)
Km

)
,

H =


Ǔ(1) −Û(2)

Ǔ(2) −Û(3)

. . . . . .
Ǔ(n−1) −Û(n)

−Û(1) Ǔ(n)

 ,

where diag(·) is the block-wise diagonal matrix of the input
vectors, and Km represents the number of the vertices in the
point set Ũ (m). Ǔ(m) and Û(m+1) are of size Km × 4Nm

and Km × 4Nm+1, respectively. The kth row of Ǔ(m) and
Û(m+1) are associated with the kth correspondence, with el-
ements ǔ

(m)
k and û

(m+1)
k in corresponding columns, in which

ǔ
(m)
k and û

(m+1)
k are defined as

ǔ
(m)
k = (αpoint + cos θ

(m+1)
fm(i) αplane)u

(m)
i ,

û
(m+1)
k = (αpoint + cos θ

(m+1)
fm(i) αplane)u

(m+1)
fm(i) . (4)

Smoothness Term: We assume that the vertex u
(m)
i should

have very close transformed position with the vertices u
(m)
j

in its neighborhood N (m)
i . Then we define e(m)

ij as the pth
edge of scan U (m), which is connected between the neigh-
boring vertices u

(m)
i and u

(m)
j . Hence, we have the edge

set E(m) =
{
e
(m)
ij | u(m)

j ∈ N (m)
i ,u

(m)
i ∈ U (m)

}
, and the

smoothness term [9] is formulated as

Esmooth (X) =
∑
m

∑
e
(m)
ij ∈E(m)

WS
(m)
p

∥∥∥u(m)
j X

(m)
i − u

(m)
j X

(m)
j

∥∥∥
1
,

(5)

where WS
(m)
p is our proposed reweighting weight introduced

later. The smoothness term can further be rewritten in the
matrix form as

Esmooth (X) =
∑
m

∥∥WS
(m)B(m)X(m)

∥∥
1
,

WS
(m) = diag

(
WS

(m)
1 , . . . ,WS

(m)
Pm

)
, (6)

where Pm represents the number of edges in scan U (m). Let
B = diag

(
B(1), . . . ,B(n)

)
, then we have the final form of

the smoothness term:

Esmooth (X) =
∥∥WSBX

∥∥
1
,

WS = diag
(
WS

(1), . . . ,WS
(n)
)
. (7)

Orthogonality Term: For non-rigid registration, there are
high degrees of freedom in deformation space, which may
lead to an unreasonable shape, especially when partial meshes
have large motions. Fortunately, the fact is observed and ver-
ified that the deformations of usual objects such as human
bodies and animals are locally rigid. Therefore, we use an
orthogonality constraint similar to [10]:

Erig (X) =
∑
m

∑
i

∥∥∥DX
(m)
i −R

(m)
i

∥∥∥2
F
,

s.t. R
(m)
i

>
R

(m)
i = I3,det(R

(m)
i ) > 0,

(8)

where D ∈ R3×4 is defined to extract the rotation transforma-
tion from X

(m)
i . To ensure R

(m)
i >0, we enforce to multiply

R
(m)
i with −1 if det(R

(m)
i ) < 0.

ARAP Term: The shrinkage problem of the deformed models
will occur when neighboring scans have less overlap. To ad-
dress this, we use an as-rigid-as-possible constraint to main-
tain the lengths of all the edges before and after transforma-
tions as much as possible. Denote by e

(m)
ij = v

(m)
i −v

(m)
j the

original edge and by e
′(m)
ij = v

′(m)
i − v

′(m)
j the transformed

edge, where v
(m)
i , (x

(m)
i , y

(m)
i , z

(m)
i ) represents the Carte-

sian coordinates of the vertex u
(m)
i ∈ Ũ (m), and v

′(m)
i is the

transformed vertex of v
(m)
i . The ARAP constraint is defined

as [12, 13]:

Earap (X) = min
T

(m)
i

∑
m

∑
i

∑
j∈N (i)

w
(m)
ij

∥∥∥(e
′(m)
ij − e

(m)
ij T

(m)
i )

∥∥∥2
F
,

(9)

where w(m)
ij = 1

2 (cotαij + cotβij) is defined by cotangent
weights, in which αij and βij are the angles opposite of the
mesh edge (i, j) (for a boundary edge, only one such angle
exists). T

(m)
i is a rotation matrix obtained by the singular

value decomposition (SVD) of S
(m)
i , where S

(m)
i is defined

as S
(m)
i =

∑
m

∑
j∈N (i)w

(m)
ij e

(m)
ij e

′(m)
ij

>
. Then, we obtain

the following by setting the partial deviation ∂Earap

∂v
′(m)
i

to zero:

∑
j∈N (i)

w
(m)
ij e

′(m)
ij =

∑
j∈N (i)

w
(m)
ij

2
e
(m)
ij (T

(m)
i + T

(m)
j ).

(10)

Let L(m) represent the linear combination on the left-hand
side, which is the discrete Laplace-Beltrami operator and
b(m) represent an n-vector whose ith row contains the right-
hand side expression. In the setting, the deformed edges have



positions determined by transformations X, which are op-
timized as a whole, so when defining Earap, only T

(m)
i

,
s

are optimized. Using matrix-vector notation, Earap can be
rewritten as

Earap (X) =
∑
m

∥∥L(m)X(m) − b(m)
∥∥2
F
. (11)

Denote by L = diag
(
L(1), . . . ,L(n)

)
, and by b =

[b(1), . . . ,b(n)]>, we have the following form of ARAP term:

Earap (X) =
∥∥LX− b

∥∥2
F
. (12)

ACAP Term: We observe that the registered surfaces may
have distortions and fold-overs for drastically different ge-
ometries. Hence, we incorporate conformal mapping into
the global non-rigid registration framework to suppress dis-
tortions and fold-overs by preserving the angles of triangles
in the meshes. The conformal mapping is defined by con-
straining local affine transformations as

(DX
(m)
i )>(DX

(m)
i ) = s2Id, (13)

where s is a scale and Id is a 3 × 3 identity matrix. Since
the original conformal mapping is nonlinear, we thus derive a
linearized version inspired by [14], which proposes the linear
approximation of a constrained transformation as:

DX
(m)
i =

 s −h3 h2
h3 s −h1
−h2 h1 s

 . (14)

Therefore, we define the ACAP term as

Eacap (X) =
∑
m

∑
i

∥∥∥DX
(m)
i − fLacap(X

(m)
i )

∥∥∥2
F
, (15)

where fLacap(·) is defined as

fLacap(X
(m)
i ) =

 X
(m)
i 22 −X

(m)
i 21 −X

(m)
i 31

−X
(m)
i 12 X

(m)
i 33 −X

(m)
i 32

−X
(m)
i 13 −X

(m)
i 23 X

(m)
i 11

 . (16)

Reweighting: We design a reweighting scheme on both data
term and smoothness term in the form of exponential func-
tion instead of inverse function used in the method [9]. For
the data term, we design the weight WD

(m)
k for the vertex

u
(m)
i ∈ Ũ (m) as

WD
(m)
k = e

−

∥∥∥u(m)
i X

(m)
i − u

(m+1)
fm(i) X

(m+1)
fm(i)

∥∥∥
2

σD . (17)

The weight of the smoothness term is similar to that of the
data term. For the kth edge in scan U (m), it is defined as

WS
(m)
p = e

−

∥∥∥u(m)
j X

(m)
i − u

(m)
j X

(m)
j

∥∥∥
2

σS , (18)

where σD and σS are the parameters that control the magni-
tude of WD

(m)
k and WS

(m)
p .

To optimize the total energy, we set some boundary con-
ditions where a scan e.g. U (1) is fixed, i.e. with X

(1)
i being

an identity transform for each vertex of the scan. We also
introduce auxiliary variables A and C into the minimization
problem:

min
X,C,A

∥∥C∥∥
1

+ α
∥∥A∥∥

1
+ λ

∑
m

∑
i

∥∥∥DX
(m)
i −R

(m)
i

∥∥∥2
F

+β
∥∥LX− b

∥∥2
F

+ γ
∑
m

∑
i

∥∥∥DX
(m)
i − fLacap(X

(m)
i )

∥∥∥2
F
,

s.t. C =WDHX,A = WSBX,

R
(m)
i

>
R

(m)
i = I3,det(R

(m)
i ) > 0. (19)

We solve the constrained minimization Eq. (19) using the
augmented Lagrangian method (ALM).

Multi-Resolution Approach: Considering the high dimen-
sionality and complexity of the deformation space in non-
rigid registration, we use a coarse-to-fine approach [10] to
reduce the degrees of freedom and deal with the large scale
problems efficiently. Suppose that we decompose the shapes
up to S+1 scales. For any shape U (m), denote by U (m)(s) the
sth scale of the shape via standard downsampling [15]. Thus
U (m)(0) ≡ U (m) is at the full resolution while U (m)(S) is at
the coarsest resolution. The optimization Eq. (19) at scale s
can be eventually rewritten as:

min
X,C,A

∥∥C∥∥
1
+ α

∥∥A∥∥
1
+ λ

∑
m

∑
i

∥∥∥DX
(m)(s)
i −R

(m)(s)
i

∥∥∥2
F

+β
∥∥LMX(s) − b

∥∥2
F

+ γ
∑
m

∑
i

∥∥∥DX
(m)(s)
i − fLacap(X

(m)(s)
i )

∥∥∥2
F
,

s.t. C = WDHMX(s),A = WSBMX(s),

R
(m)(s)
i

>
R

(m)(s)
i = I3,det(R

(m)(s)
i ) > 0, (20)

where M contains the mapping transformations from U (m)(s)

to U (m)(s−1) for all scans, and X(s) contains the transforma-
tions on all the U (m)(s).

3. EXPERIMENTAL RESULTS

3.1. Results on Public Datasets

We first evaluate our method on Jumping dataset [16]
which contains complete models with large deformations and
known correspondences, compared with three state-of-the-
art methods [17, 9, 10]. For pairwise registration methods



[17, 9], we register all the models in sequence with the previ-
ous registration result used as the next target model. Besides,
we use the first model as the reference pose model for all the
methods. Fig. 1 shows alignment results of all the methods
for ten models. The registration errors between the deformed
models and the reference model are color-coded on the de-
formed models for visual inspection. The distance errors are
computed using the standard Metro tool [18]. It can be seen
that our method achieves best registration results. Table 1
gives quantitative evaluation for clean and noisy datasets. Our
method consistently has the smallest average fitting errors.

0

0.8

(a) (e)(b)

2.5 cm

(c) (d)

Fig. 1. Alignment results on Jumping dataset: (a) original
models, (b) results of [17], (c) results of [9], (d) results of [10]
and (e) our results.

Table 1. Quantitative evaluation for Jumping dataset (cm).
Method Clean Data Noise Data Outlier Data

[17] 1.8122 1.8646 1.9780
[9] 0.1497 0.1841 0.1844
[10] 0.1210 0.1550 0.1621
Ours 0.0931 0.1444 0.1379

We also evaluate all the methods on 35 partial models ex-
tracted from the complete models with different geometries
and poses in Bouncing dataset [16]. To obtain these par-
tial models, we only extract visible parts of each complete
model under different viewpoints by rotating a virtual camera
round the model. Then we downsample the original partial
models with 3000-5000 vertices to 1/10 of the full resolution
and get low-resolution models with 300-500 vertices using
method [15] in order to use the multi-resolution approach. We
solve the global registration problem from coarse to fine, and
use standard Poisson reconstruction [19] to merge all the reg-
istered scans into a watertight mesh. As shown in Fig. 2, the
method [17] has severe distortions on the left arm and right
leg, and large fitting errors for the back. Visible misalignment
on the left arm and head of the fused model can be found for
the method [9] due to error accumulation. With the strategy
of global registration, both the method [10] and our method
avoid the well-known loop closure problem and obtain plau-
sible reconstruction results, but our method has smaller regis-
tration error, especially on the left arm/shoulder. Table 2 gives
quantitative evaluation for clean and noisy cases. Our method
consistently has the smallest average fitting errors.

Table 2. Quantitative evaluation for partial models in
Bouncing dataset (cm).

Method Clean Data Noise Data Outlier Data
[17] 1.6989 1.7631 2.1537
[9] 1.0045 1.0093 1.0426

[10] 0.7396 0.9853 0.9580
Ours 0.4950 0.5338 0.5440

(a) (b) (c) (d)

0

6.6cm

1.0

Fig. 2. Results on Bouncing dataset of method [17] (top row),
method [9] (second row), method [10] (third row) and our
method (bottom row): (a) alignment results of all the scans,
(b) Possion reconstruction results for (a), (c) the overlap be-
tween (b) (blue) and the reference model (gray), and (d) the
color-coded models by the fitting errors.

3.2. Results on Real Scans

We test our method on Flying dataset [10], a very chal-
lenging real dataset scanned using a Kinect v2.0 containing
much noise and a large number of outliers. Fig. 3 illustrates
the results when scans are accumulated gradually. From vi-
sual inspection, it is obvious that the results of [17] have se-
vere distortions during pairwise non-rigid registration in suc-
cession. Besides, there is palpable misalignment in the results
of [9] because of error accumulation, especially on the arms.
The fused models of both the method [10] and our method
look acceptable, but the deformed scans by our method are
aligned more accurately, such as the hands.

4. CONCLUSIONS

This paper presents a novel approach which achieves
global non-rigid registration of multi-view scans with drasti-
cally different geometries and motions. Our approach allows
to preserve mesh structures during deformation by incorporat-



(a) (b) (c) (d)

Fig. 3. Results using gradually accumulated scans on Flying
dataset of method [17] (top row), method [9] (second row),
method [10] (third row) and our method (bottom row): (a)
results of scans 1-6, (b) results of scans 1-10, (c) results of all
the scans, and (d) Poisson reconstruction results for (c).

ing ACAP constraint into the energy function. Moreover, with
the reweighting scheme, the global alignment problem is opti-
mized with smaller registration errors. The problem is solved
by the alternating direction method under the augmented La-
grangian multiplier framework, which has exact solutions and
guaranteed convergence. Experimental results on both pub-
lic and real scanned datasets show that our method achieves
better results compared with state-of-the-art methods. As fu-
ture work, we will exploit potential overlaps between non-
adjacent scans to find more candidate correspondences to en-
able accurate alignment and high fidelity reconstruction.
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C. Rössl, and H. Seidel, “Laplacian surface editing,”
in SGP. ACM, 2004, pp. 175–184.

[15] M. Garland and P. S. Heckbert, “Surface simplification
using quadric error metrics,” in ACM SIGGRAPH, 1997.

[16] D. Vlasic, I. Baran, W. Matusik, and J. Popović, “Ar-
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