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Abstract: The use of Building Energy Models (BEM) has become widespread to reduce building
energy consumption. Projection of the model in the future to know how different consumption
strategies can be evaluated is one of the main applications of BEM. Many energy management
optimization strategies can be used and, among others, model predictive control (MPC) has become
very popular nowadays. When using models for predicting the future, we have to assume certain
errors that come from uncertainty parameters. One of these uncertainties is the weather forecast
needed to predict the building behavior in the near future. This paper proposes a methodology for
quantifying the impact of the error generated by the weather forecast in the building’s indoor climate
conditions and energy demand. The objective is to estimate the error introduced by the weather
forecast in the load forecasting to have more precise predicted data. The methodology employed
site-specific, near-future forecast weather data obtained through online open access Application
Programming Interfaces (APIs). The weather forecast providers supply forecasts up to 10 days ahead
of key weather parameters such as outdoor temperature, relative humidity, wind speed and wind
direction. This approach uses calibrated EnergyPlus models to foresee the errors in the indoor thermal
behavior and energy demand caused by the increasing day-ahead weather forecasts. A case study
investigated the impact of using up to 7-day weather forecasts on mean indoor temperature and
energy demand predictions in a building located in Pamplona, Spain. The main novel concepts in
this paper are: first, the characterization of the weather forecast error for a specific weather data
provider and location and its effect in the building’s load prediction. The error is calculated based on
recorded hourly data so the results are provided on an hourly basis, avoiding the cancel out effect
when a wider period of time is analyzed. The second is the classification and analysis of the data
hour-by-hour to provide an estimate error for each hour of the day generating a map of hourly errors.
This application becomes necessary when the building takes part in the day-ahead programs such
as demand response or flexibility strategies, where the predicted hourly load must be provided to
the grid in advance. The methodology developed in this paper can be extrapolated to any weather
forecast provider, location or building.

Keywords: weather forecast uncertainty; building energy model; building simulation; energy flexible
buildings; model predictive control

1. Introduction

The European Energy Efficiency Directive establishes a set of binding measures to help the EU
reach its 20% energy efficiency target by 2020 [1]. Under the Directive, all EU countries are required to
use energy more efficiently at all stages of the energy chain, from production to final consumption.
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By taking into account meteorological forecasts, building energy demand response solutions enable
end users to reduce energy consumption, improve their thermal comfort conditions, increase energy
grid efficiency and contribute to the penetration of renewable energy. A review by Lazo et al. [2] shows
that energy management optimization with weather forecasting can generate 15–30% savings in most
cases. At the individual building level, using both thermal and electric load prediction technologies
with weather forecasting could optimize energy demand, storage and supply, thus reducing costs and
greenhouse gas emissions. Furthermore, the use of weather forecast allows the building to adapt better
to the climate of the near future leading the building to be more resilient to increasing extreme weather
events, which has become essential to reduce the climate change effects [3,4].

One such energy management optimization strategy is model predictive control (MPC), around
which current research efforts are evolving. It has shown a high theoretical potential for energy savings
and improved indoor climate compared to conventional systems operation [5–11] and it allows the
building to be part of demand response or flexibility scenarios [12–14]. However, it must be taken into
account that some uncertainties are inherent to this predictive control:

• Simulation model accuracy: Previous work from authors have developed a calibration
methodology to get accurate simulation models and predictions [15–17].

• The correct initialization on the simulation model is crucial to get accurate results, which has
been studied as well by the authors in [15–17].

• MPC requires an optimization process that also has an inherent uncertainty. In [18], the authors
have proposed a methodology to measure the accuracy of the optimization.

• Occupancy and user behavior, which is a stochastic and complex to be predicted parameter.
• Weather forecast that corresponds with the objective of this paper: the quantification of the

weather forecasts’ errors and their effect on the indoor climate conditions and energy demand in
a predictive energy model.

Although weather forecast parameters have a significant influence on the predictive models,
especially outdoor temperature [19–21], they have an ancillary treatment in the literature [22] and we
can find only a few articles where the effect of weather forecast uncertainty is analyzed and quantified:
Henze et al. [23] analyze the effect of the uncertainty using different weather prediction models on
the performance of a predictive control concept. The conclusion is that it takes elementary short-term
prediction models to realize almost all of the theoretical potential of the predictive optimal control
technique. The findings of Oldewurtel et al. [24] suggest that a stochastic model predictive control
(SMPC) strategy, which can directly account for the uncertainty of the weather forecast in control
decisions, outperforms current control systems. It was also shown that the SMPC performed better
using a complex weather prediction model compared to simple models. Zhao et al. [25] proposed a
load forecasting method and tested it in an office building located in Tianjin, China, and analyzed the
influence of weather forecast precision. They concluded that it had a slight effect on the proposed
model: when the forecast error of temperature is 1.68 ◦C, the Mean Absolute Relative Error (MARE)
of the 24-h ahead cooling load model for the testing period increases 1.56%.

The common approach of most of these studies is that they use weather prediction models based
on previous registered weather data that are not capable of dealing with changing future weather
factors. Nowadays, there are many established weather forecast services providers that have made
some of their data freely available through APIs (Application Programming Interface). The reason
why this data is not usually used is that often there is a missing link between the weather forecast
provider and the building energy management system [26]. Previous research from authors [26–28]
demonstrated a novel approach that develops a Representational State Transfer (REST) API for users
to obtain site-specific historical and near-future weather forecast data in Energy Plus Weather File
(EPW) format for building simulation using the free online toolchain.

Many of these providers also offer forecasts more than 1 day-ahead (up to a 10-day weather
forecast, i.e., provide forecast weather data predicted 10 days before), although its accuracy decreases
as time moves further forward [28]. This longer time horizon weather forecast approach is applicable
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to the growing electricity futures market, where electricity is purchased for longer periods of time than
the usual daily market [29]. It allows for having a stable price for a certain period of time, avoiding
high variations in the prices in the daily and intraday electricity markets. In an MPC based on a
weather forecast scenario, better planning and anticipation is enabled, which is an advantage for the
energy system and for the building’s energy management since its energy purchase risk is shortened.

The benefits of using simulation models for predictive strategies in MPC, demand response,
flexibility and future markets are clear but uncertainty in weather forecast, among others, is inherent
to these scenarios. This paper shows a methodology to quantify the impact of the error generated by
specific location weather forecasts in a building’s indoor climate conditions and energy load predictions.
This methodology, which can be applied to any building in any location, is based on previous recorded
information of real weather data from a near weather station and forecast weather data from a
specific open access provider. As an application of the methodology, the paper also proposes a novel
hour-by-hour error map of energy demand predictions that complements the hourly profile that shows
the building’s flexibility capacity used in demand response and flexibility scenarios [12,30] providing
information on the estimated error for each hour due to weather forecast.

The rest of the paper is structured as follows: Section 2 presents the test site description of
the case study used in this research. The methodology is described in Sections 3 and 4: Section 3
presents the weather files creation for both real and forecast data and Section 4 explains the simulation
model process and the error metrics used for the quantification of the error in the outdoor and indoor
temperature and building’s energy demand. Section 5 shows and discusses the results obtained for
this case study. In Section 6, an application of this methodology for model predictive control (MPC)
and building energy flexibility is exposed. Finally, Section 7 presents the conclusions where the main
results are emphasized.

2. Test Site Description

In order to carry out this research, the administrative building of the Architecture School at the
Universidad de Navarra in Pamplona (Spain) was chosen to be the case study. This building was built
in 1974 and it is mainly used as an administration building and by postgraduate students of the School
of Architecture.

It is a 760-square-meter single-storey building with a concrete structure. The interior and exterior
walls are built of red brick fabric and the windows, with aluminum frames, were installed in situ
with an air chamber. Figure 1 shows the building’s outdoor photograph, the space allocation and the
simulation model, which has been divided into 25 thermal zones, one for each room. They all have
Heating, Ventilation and Air Conditioning (HVAC) systems except for the bathrooms (TZ9 and TZ23),
the HVAC room (TZ13) and the north corridor (TZ10).
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Figure 1. Building’s outdoor photograph (above left), simulation model image from OpenStudio [31]
(below left) and thermal zones allocation (right).

In order to develop the simulation model, the first step is the definition of the baseline model by
introducing its geometry, geolocation and orientation. The EnergyPlus [32,33] engine, which complies
with the requirements of EU Directive 2010/31/EU [34], is used for the model’s development (.id f )
and the energy simulations.

For the building envelope parameters’ definition, a calibrated model that represents the accurate
thermal dynamics of the real building is used. The calibration process is based on the author’s
previous work [15–17]. The resulting calibrated model complies with the international quality
standards International Performance Measurement and Verification Protocol (IPMVP) [35], Federal
Energy Management Program (FEMP) [36,37] and American Society of Heating, Refrigerating and
Air-Conditioning Engineers guidelines (ASHRAE) [38,39]. In order to produce the correct model
initialization, the measured data from the installed temperature sensor network (23 temperature
sensors) are introduced in the model as thermal history.

For the correct simulation of the model, the internal loads are defined and adjusted to the real
ones. The occupancy of the building is established based on the personnel surveys undertaken. Data
from the two electricity meters installed in the building are used to define the load generated by the
lights and the equipment. The HVAC systems follow the Spanish Regulation of Thermal Installations
in Buildings (RITE) [40] and have a heating temperature set-point of 21 °C and a cooling temperature
set-point of 25 °C. The building has an office schedule and is used from 8:00 a.m. to 8:00 p.m. during
weekdays and from 8:00 a.m. to 2:00 p.m. on Saturdays. The building is not used on Sundays.

3. Weather Data Processing

Figure 2 shows the methodology used for the weather data processing. Using as inputs the
measured and forecast weather data, the different weather files are generated.

Weather
data

Real	weather	file
(.epw)

Forecast	weather	files
-1DA,...,	nDA-	(.epw)

Outdoor temperature (OT)

Measured weather data

Forecast weather data

Validation RMSE

In situ weather
station

Sensitivity analysis

APIs weather
forecast

Figure 2. Weather data processing scheme.
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3.1. Weather Files Generation

This methodology needs the preparation of different weather files for the real weather data,
which will be used as a benchmark, and for each day-ahead of forecast weather data (1DA-nDA).
The Weather Converter [41] tool, provided as an auxiliary program by EnergyPlus, is used for the
creation of these weather files. It translates and extends typical weather data into the EnergyPlus
format (.epw) making the necessary calculations for unavailable data.

Measured values are used to develop the real weather file. The more parameters available, the
more accurate the weather file will be. For the case study, the weather station installed in the building
is used and provides: outdoor temperature (°C), wind direction (°), wind speed (m/s) and relative
humidity (%). The rest of the weather parameters are provided by a nearby weather station belonging
to the Navarra Government: global solar radiation (W/m2), diffuse solar radiation (W/m2), rainfall
(L/m2) and atmospheric pressure (mbar). This weather station is located in the same city, about 2.5 km
away from the building of study.

For the forecast weather files, the data is obtained using the methodology presented by the authors
in [26–28]. This methodology, based on the free online toolchain, develops a REST API for users that
obtains site-specific near-future forecast weather data in EPW format from cost-free access providers.
Table 1 has listed six API weather forecast providers known to the authors that supply free available
data for Pamplona, Spain. Each provider uses different data sources and forecasting models and the
same provider can use different weather data sources that are aggregated together to provide the most
accurate forecast possible for a given location. For this reason, this methodology should be applied for
each specific weather forecast provider or location.

Table 1. Weather forecast providers.

API Provider Forecast Interval Format

aemet [42] Next 7-day hourly JSON
met.no [43] Next 10-day hourly XML
openweathermap [44] Next 5-day 3-hourly XML/ JSON
weatherbit [45] Next 5-day 3-hourly JSON
dark sky [46] Next 7-day hourly JSON
wunderground [47] Next 10-day hourly XML/ JSON

Since the weather forecast APIs are not developed for the building simulation industry, not all the
parameters needed for simulation are immediately or open access available from the APIs’ standard
responses. Key parameters such as temperature, relative humidity, wind speed and wind direction
are included in the open access API forecast response. However, a key parameter as it is the solar
radiation (direct and diffuse) is not available from APIs, or not for free, according to the knowledge
of the authors. In the literature, some studies use relative humidity and sun position to calculate
solar radiation [48,49]. However, previous work from authors [27], where this method was applied
to generate direct and diffuse solar radiation, did not produce good accuracy between forecast and
observed data. The particularities of the solar radiation forecast and its difficulties to be obtained
require a dedicated study where its calculation and impact can be studied. For this reason, in this study,
the solar radiation was not included as a forecast parameter and the data from Navarra Government
weather station was used in the weather files.

In this research, the period of study comprises three months, from 6 February 2018 to 6 May 2018.
The six weather forecast APIs from Table 1 are analyzed and compared with the observation data from
the in situ weather stations. In order to quantify the difference, the root mean square error (RMSE,
Equation (1)) is calculated between the observed data and the forecast data for 1 day-ahead prediction
horizon. Figure 3 shows the comparison done for the four weather parameters directly available
provided by the APIs: temperature, relative humidity, wind direction and wind speed. The example
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size (n) of the study is 2160 data points, covering hourly data for 90 days in the case of hourly forecast
APIs (1–4) and 720 data points for the case of 3-hourly forecasts of APIs 5 and 6.
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Figure 3. Root Mean Square Error (RMSE) for 1 day-ahead prediction horizon between observation
and forecasts from different weather providers (from 6 February 2018 to 6 May 2018). Above left:
RMSE temperature; above right: RMSE relative humidity; below left: RMSE wind direction; below
right: RMSE wind speed.

For this case study, the hourly weather forecast from DarkSky [46] is selected, which correspond
with API1 in Figure 3, as it provides hourly 7 day-ahead forecast for the four parameters required.

In the forecast weather files’ construction, the first step was the validation of the available data.
Within the 90-day period (6 February 2018 to 6 May 2018), some days were removed from the study
because there were no available forecast data for the 7 day-ahead horizon predictions. On the other
hand, the three months’ period was divided into weeks and the final period of study is composed of
ten complete weeks (Monday to Sunday) from 12 February 2018 to 22 April 2018 (70 days).

All the weather files have real data information from 1 January 2018 to 11 February 2018 to
maintain the same conditions in the previous period. From 12 February 2018 to 22 April 2018,
each forecast weather file has its own forecast data for outdoor temperature, relative humidity, wind
direction and wind speed. The rest of the weather parameters are data from the weather stations.
Figure 4 explains how the different forecast weather files are built. For the 1-day forecast weather file
(grey blocks), all the days have the forecast data predicted the midnight of the previous day. Similarly,
2-day forecasts (red blocks) have the forecast data predicted the midnight of two days before, and so
on up to 7-day forecasts (brown).

Taking advantage of the available 7-day forecast, a combined weather file (called CMB hereinafter
and represented in a black box in Figure 4) with a 1-week forecast is proposed in this case study.
This weather file was created week by week, where every Monday has a 1-day forecast (forecast data
predicted one day before), every Tuesday has a 2-day forecast (forecast data predicted two days before),
and so on, up to Sundays, which have a 7-day forecast (forecast done seven days before). The purpose
of this combined forecast week analysis is to investigate the impact of the energy performance caused
by a weather prediction made one day for the following seven days.

Figure 5 shows the comparison between the outdoor temperature observation and the 1-day
forecast (above) and the 7-day forecast (below) over the whole period of study. It shows that the
1-day forecast is fairly close to observations, but 7-day forecast generates significant differences when
compared with observed data. To understand the accuracy of the 1-, 2-, 3-, and up to 7-day forecasts,
the RMSE between the observed temperatures and forecasts are compared in Figure 6. It shows
that 1-day and 2-day forecasts have the best accuracy, and 3–4 day forecasts are reasonably accurate.
The accuracy decreases as the time span increases. The difference in the RMSE among different days
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forecasts is quite clear as can be seen in Figure 6. This measurement makes the sample selected for the
paper representative of the phenomena we try to show.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14
12/02/2018 13/02/2018 14/02/2018 15/02/2018 16/02/2018 17/02/2018 18/02/2018 19/02/2018 20/02/2018 21/02/2018 22/02/2018 23/02/2018 24/02/2018 25/02/2018

Forecast 1
Made 11/02/2018
Forecast 2
Made 12/02/2018
Forecast 3
Made 13/02/2018
Forecast 4
Made 14/02/2018
Forecast 5
Made 15/02/2018
Forecast 6
Made 16/02/2018
Forecast 7
Made 17/02/2018
Forecast 8
Made 18/02/2018
Forecast 9
Made 19/02/2018
Forecast 10
Made 20/02/2018
Forecast 11
Made 21/02/2018
Forecast 12
Made 22/02/2018
Forecast 13
Made 23/02/2018
Forecast 14
Made 24/02/2018

1DA 3DA 5DA 7DA
2DA 4DA 6DA CMB2 day ahead forecast 4 day ahead forecast 6 day ahead forecast Combined forecast

1 day ahead forecast 3 day ahead forecast 5 day ahead forecast 7 day ahead forecast

Week 1 Week 2
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re
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at
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ct

ed
 f
ro

m
 D
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k 

S
ky

.epw Combined forecast

.epw Combined forecast

.

Figure 4. Organization of forecast data and construction of forecast weather files.

Figure 5. Comparison between observed and forecast outdoor temperature at Pamplona (12 February
2018–22 April 2018). Above: 1-day forecast outdoor temperature. Below: 7-day forecast outdoor temperature.
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Figure 6. The temperature RMSE between Observation and Dark Sky forecasts from 1-day to 7-day
(from 12 February 2018 to 22 April 2018).

3.2. Sensitivity Analysis of Weather Parameters

A sensitivity analysis is performed to analyze the significance of the weather parameters for
this building. The methodology used is the Morris method [50] and the “relative deviation” method.
The Morris method shows graphically the importance of each parameter in relation to the others using
the mean (µ) and the standard deviation (σ). “Relative deviation” method, described by Hamby [51],
uses the coefficient of variation which relates the standard deviation (σ) with the mean (µ). In this
method, higher values are more sensitive than lower values.

The analysis is based on the real weather file generated with the observed data for the period of
study and the change, one by one, of the weather parameters. The variation range of the parameters
varies from −10% to 10%, step by 2.5%. With this variations, it is assured that the minimum and
maximum values for the parameters remain within the range of the real data for the period of study.
Comparing the energy demand between the real weather simulation and the simulations with each
changed parameters through the mean (µ) and the standard deviation (σ), the significance of each
weather parameter is obtained.

Figure 7 shows, for this period of study, that the outdoor temperature is the most sensitive weather
parameter and has the greatest impact on the energy demand, as other studies have concluded [25,52].
For this reason, in the following analysis, only the outdoor temperature will be used. However,
it should be noted that the forecast relative humidity, wind speed and wind direction are also
introduced in the weather files and therefore their impact will be also reflected in the results.
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Temperature

Diffuse radiation

Relative humidity

Wind speed

Direct radiation

Wind direction

Figure 7. (left) “Relative deviation” method; (right): Morris method representation

In addition to the parameters used in this study, the graphs also show the sensitivity for the solar
radiation. Diffuse solar radiation has a high impact on the energy demand of the building, just behind
the temperature. The significance of this parameter and the impossibility to obtain it and the direct
solar radiation from common and free-access APIs providers explain why solar radiation has not been
included in this study. Direct and diffuse solar radiation particularities and calculation difficulties
justify a dedicated study.
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4. BEM Simulation and Error Metrics Calculation

Figure 8 shows the methodology for the BEM simulation and the error metrics calculation.
The simulation process starts with a first baseline simulation with the real weather data file. Then,
iterative simulations are carried out for each forecast weather file. As outputs, the model is configured
to provide: the outdoor temperature (OT) that corresponds to the measured hourly temperature for real
weather data and forecast data for the different day-ahead forecast weather files; indoor temperature
(IT), which is the mean hourly indoor temperature that the model provides with different weather files
and energy demand (ED), which corresponds with the hourly heating or cooling energy demand to
maintain the building between the temperature set-points.

The period of study covers three months of data with winter outdoor conditions but also spring
conditions when cooling starts to be required. The HVAC system configuration of this building does
not allow heating and cooling to occur simultaneously. For this reason, a classification of the weeks
is made according to the prevailing demand for heating and cooling. The result is that among the
10 weeks of study, eight of them have heating needs and two have cooling needs.

As Figure 8 shows, the outputs from the simulations are used to perform an uncertainty analysis
to provide the estimated error in the three parameters of analysis: outdoor temperature, indoor
temperature and energy demand.

Outdoor
Temperature (OT)

Indoor
Temperature (IT)

Energy
Demand (ED)

OT-WR

IT-WR

ED-WR

OT-1DA

IT-1DA

ED-1DA

...

...

...

OT-nDA

IT-nDA

ED-nDA

RMSE/MAE OT-1DA

RMSE/MAE IT-1DA

RMSE/MAE/MADP EN-1DA

RMSE/MAE OT-nDA

RMSE/MAE IT-nDA

RMSE/MAE/MADP ED-nDA

OUTDOOR
TEMPERATURE	ERROR

MAE (°C)/RMSE (°C)
OT-1DA,..., OT-nDA

INDOOR
TEMPERATURE	ERROR

MAE (°C)/RMSE (°C)
IT-1DA,..., IT-nDA

ENERGY
DEMAND	ERROR

MAE (°C)/RMSE (°C)/MADP (%)
ED-1DA,..., ED-nDA (kWh)

ERROR	METRICS	CALCULATION
For each day ahead forecast

OT-WR, OT-1DA,..., OTnDA

IT-WR, IT-1DA,..., ITnDA

ED-WR, ED-1DA,..., EDnDA

Simulation
Engine

EnergyPlus

Each weather file

Simulation model file
(.idf)

Real weather file
(.epw)

Forecast weather files
-1DA,..., nDA- (.epw)

.

Figure 8. Building energy model (BEM) simulation and error metrics calculation scheme.

Three error metrics commonly used in the forecasting literature are used in this study: the Root
Mean Square Error (RMSE) [25,53] (1) widely used for temperature forecast and the Mean Absolute
Error (MAE) [25] (2) and the Mean Absolute Deviation Percent error (MADP) [54] (3) usually used for
load forecasting. The equations of these error indexes are shown as:

RMSE = [
1
n

n

∑
i=1

(yi − ŷi)
2]

1
2 , (1)

MAE =
1
n

n

∑
i=1
|yi − ŷi|, (2)

MADP =
∑n

i=1 |yi − ŷi|
∑n

i=1 |yi|
. (3)

In the equations, n is the number of observations, yi represents the actual measured data at the
moment i and ŷi the predicted value at that moment.

Both RMSE and MAE measure the average magnitude of the error in the units of the variable of
interest and range from 0 to ∞. They do not consider the direction of error, thus positive and negative
errors are not cancelled. These indexes are used to indicate the error in ◦C for the outdoor temperature
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and the indoor temperature for the different forecasts. They are also used to analyze the error in the
energy demand in kWh.

For the energy demand results, the percentage error is also calculated using the ratio of the
absolute error with the actual value through the Mean Absolute Deviation Percent (MADP). In the
literature, the Mean Absolute Percentage Error (MAPE) is the most common measure used in the
forecast error, but it has some disadvantages that affect this study: it is infinite when the actual values
are zero and very large when actual values are close to zero what can misrepresent the overall error rate.
To overcome this issue, the Mean Absolute Deviation Percent (MADP) is used instead of MAPE [54].

5. Analysis of the Results

For the analysis of the results, the error indexes showed in Section 4 are calculated using the hourly
simulation outputs and comparing the results generated with the real weather data (WR) against the
results generated with each forecast weather file (1DA to 7DA and CMB) for the three parameters:
outdoor temperature, the mean indoor temperature and the energy demand. It is important to note
that the analysis is performed with the hourly data and not with longer periods of time (days, weeks,
months or for the whole period of study). The reason is because, depending on the weather forecast
error, the error in the indoor conditions can produce an over or underestimation of the energy demand
and, with longer periods of analysis, the results are accumulated and they compensate each other
distorting the error. For this reason, to analyze the impact of the weather forecast on the energy
demand prediction and avoid this cancellation effect, this methodology focuses on absolute energy
demand differences in a hourly basis. Table 2 shows the results for the different indexes.

Table 2. Error metrics for forecast hourly outdoor temperature, mean hourly indoor temperature and
hourly energy demand. RMSE: Root Mean Square Error; MAE: Mean Absolute Error; MADP: Mean
Absolute Deviation Percentage; 1DA: 1 day-ahead weather forecast; CMB: Combined weather forecast.

Parameter Index 1DA 2DA 3DA 4DA 5DA 6DA 7DA CMB

Outdoor temperature RMSE (◦C) 1.82 1.98 2.2 2.4 2.72 3.01 3.44 2.68
MAE (◦C) 1.39 1.55 1.73 1.88 2.14 2.34 2.68 2.1

Indoor temperature RMSE (◦C) 0.33 0.36 0.41 0.48 0.5 0.58 0.66 0.44
MAE (◦C) 0.25 0.28 0.32 0.37 0.39 0.44 0.54 0.33

Energy Demand RMSE (kWh) 1.74 1.73 1.92 2.11 2.51 2.91 3.44 2.04
MAE (kWh) 1.33 1.32 1.49 1.61 1.97 2.1 2.81 1.55
MADP (%) 23 23 26 28 35 37 50 27

Figure 9 shows the RMSE results for the outdoor and indoor temperature (◦C) and MAE for
the energy demand (kWh) and it can be seen that, as the day-ahead forecast horizon increases,
the error in the three parameters increases, showing a clear relationship between the error on outdoor
conditions and the error on indoor conditions and energy demand of the model. Indeed, the correlation
between the outdoor temperature RMSE and indoor temperature RMSE is 0.99 and between outdoor
temperature RMSE and energy demand MAE is 0.95. It indicates that both the error on the mean
indoor temperature and the energy demand have a positive and a strong correlation with the errors on
outdoor temperature. In the case of the combined case (CMB), the results show that the indicators stay
in the mean with respect to the 1- to 7-day forecasts as it is a combination of daily forecasts.

In order to analyze and explain in depth the impact of using growing day-ahead weather forecasts
in predicting energy demand, Figure 9 also shows the percentage error through the hourly MADP (%)
index for each day-ahead and the combined option. These two parameters have a strong and positive
dependence, thus as the outdoor temperature RMSE increases with the growing day-ahead, so too
does the percentage of hourly energy demand error (MADP). Figure 9 also represents the MADP (%)
error for the whole period of study (70 days). As expected, using this period of analysis generates
the compensation between the overestimated and underestimated energy demand, generating no
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correlation between the increasing day-ahead forecasts and the energy error. The cancel out effect also
produces that the overall impact in the energy demand for the whole period to be very low compared
to the hourly energy demand error.

Analyzing the results from Figure 9, we can conclude that, although the whole period MADP
for the different day-ahead forecasts have low percentages, if the hourly absolute energy demand
differences (hourly MADP) are analyzed, the weather forecasts have a big impact (the lower percentage
is 23%), which grows along as the day-ahead forecasts increase (from 23% for the 1-day forecast to
50% for a 7-day forecast). For example, having a 1-day forecast means that, for this building and
this weather provider, on average, a 23% hourly energy demand error is estimated between the 1
day-ahead energy demand prediction and the real building’s behavior with real data.
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Figure 9. (above): comparison between hourly outdoor temperature error (RMSE) and hourly mean
indoor temperature error (RMSE) for the different day-ahead forecasts. (middle): MAE and MADP
for hourly energy demand for the different day-ahead forecasts. (below): MADP and energy demand
for the whole period of study for real weather and forecast weathers

6. Application of the Methodology: Model Predictive Control (MPC) for Building
Energy Flexibility

The hourly impact of weather forecast in load prediction showed in previous analysis becomes
crucial when the building interacts in the demand response or flexibility market. Model Predictive
Control (MPC) and a simulation model are needed in these strategies to determine the building’s
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capacity in providing energy flexibility to the grid. MPC is used to predict energy demand commonly
for the next 24 h (but it could be longer) based on the expected conditions of building use, energy
production and weather forecast. Subsequently, the building’s flexibility hourly profile [30] with the
maximum and minimum flexibility capacity over these 24 h and with 1-h granularity is computed,
taking into account the comfort boundaries. However, there is an inherent uncertainty in the results
due to several parameters, and one of them is the weather forecast. In this context, a deeper hourly
analysis of the error between the energy demand provided by the real weather and the forecast
weathers can be performed in order to add the estimate error due to weather forecast hour-by-hour in
the flexibility map. For doing this, the data is classified hour-by-hour and the MAE index is calculated.
Figure 10 shows the results for each hour and for the 7 day-ahead and the combined forecasts.
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Figure 10. Error metric (MAE) for the energy demand hour-by-hour.

From Figure 10, we can conclude that, for the hour-by-hour analysis, the increasing error as the
day-ahead forecast increases is maintained. All the day-ahead forecasts have a high error value at 9:00
a.m. because, during the night, the HVAC systems are switched off and, in the first morning hours,
the energy demand to reach the set-point is very high. The result of this hour-by-hour methodology is
a map of the error for each hour that complements the predicted hourly load provided in advance to
the grid in a demand response or flexibility strategy.

7. Conclusions

This paper shows through a case study a methodology that characterizes the accuracy of the
weather forecast provided for a specific location and analyzes the impact of this inaccuracy in the load
prediction of a building. Each site will require a similar study case and the results should be analyzed
in the same way. Therefore, the methodology can be extrapolated and applied on any other building,
location or weather forecast provider.

Several error metrics have been used for the analysis or the results. RMSE and MAE characterized
the hourly outdoor temperature and mean hourly indoor temperature errors (◦C) and the hourly
energy demand error (kWh) due to the use of increasing day-ahead weather forecasts. For the analysis
of the hourly energy demand, MADP was also used to obtain the percentage error. On the other
hand, it is remarkable that, to take full advantage of this methodology, it is important to perform the
analysis using hourly data since longer periods generate a compensation between the overestimated
and underestimated energy demand and distort the error.

The uncertainty analysis showed that, as the day-ahead forecast increases, the error in the three
parameters grows, showing a positive and strong correlation between the error for outdoor conditions
and those for indoor conditions and energy demand. Analyzing the hourly absolute energy demand



Energies 2019, 12, 1309 13 of 16

errors, it can be concluded that for this case study the weather forecasts have an important impact
(1-day forecast has a MADP of 23% between the energy demand prediction and the real one) and it
grows as the number of days ahead are increased.

This effect is essential when the building interacts in the demand response or flexibility market and
uses MPC to determine its capacity in providing hourly energy flexibility to the grid. For the application
of this study in these growing scenarios, an energy demand error analysis is done classifying the
data hour-by-hour and an hourly error profile is generated for the different day-ahead time horizons.
The conclusion is that the hour-by-hour impact of the different weather forecast also grows and scales
as the day-ahead increases. This effect is also seen with the pass of the hours during the day. The error
increases as the hours pass because the forecast is done the night before; therefore, as time passes,
the weather forecast is less accurate. The analysis demonstrated that this methodology acquires its full
meaning when it is applied using predicted weather data that is close today.

The results and analysis done allow us to conclude that the sample selected in this paper is
representative of the phenomena we try to study. As results have demonstrated, the three error metrics
(RMSE, MAE and MADP) for the outdoor temperature, indoor temperature and energy demand,
including the hour-by-hour analysis, have shown a clear and robust trend to grow as the day-ahead
increases. This robust result enables us to scale and estimate the error in the predicted load produced
for each day-ahead weather forecast.
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Abbreviations

The following abbreviations are used in this manuscript:

APIs Application Programming Interfaces
ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
BEM Building Energy Model
CMB Combined Weather File
DA Day-Ahead
ED Energy Demand
EPW EnergyPlus Weather File
FEMP Federal Energy Management Program
HVAC Heating, Ventilation and Air Conditioning
IDF EnergyPlus Input Files
IPMVP International Performance Measurement and Verification Protocol
IT Mean Indoor Temperature
JSON JavaScript Object Notation
kWh Kilowatt Hour
MADP Mean Absolute Deviation Percentage
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
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MARE Mean Absolute Relative Error
MPC Model Predictive Control
OT Outdoor Temperature
REST Representational State Transfer
RMSE Root Mean Square Error
WR Real Weather
XML Extensible Markup Language
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