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Summary 

Introduction: Prostate cancer is a significant burden in the UK, despite continuing 
research our understanding of disease progression and at present treatment options are 
still limited. In small studies, Hepatitis A virus cellular receptor (HAVcR-1) has been linked 
to cancer aetiology and may regulate junctional complexes. Its role in prostate cancer 
remains unexplored. This study aimed to investigate the expression of HAVcR-1 in 
prostate cancer samples and explore the cellular and molecular impact of HAVcR-1, with 
particular focus on junctional complexes, using in vitro models. 

Methods: Clinical serum samples from prostate cancer patients were tested for HAVcR-1 
ectodomain levels through enzyme-linked immunosorbent assay. Clinical prostate 
cancer samples were tested for the expression of HAVcR-1 through 
immunohistochemistry. Cell models based on bone metastatic site prostate cancer 
(PC-3) and normal prostate epithelia (PZ-HPV-7) were employed to evaluate the 
influence of HAVcR-1 on cellular functions involved in cancer aetiology by use of in vitro 
functional assays. Cell signalling changes were explored by was or Kinex™ antibody 
microarray, western blotting analysis, immunofluorescence and polymerase chain 
reaction (PCR) 

Results: Levels of HAVcR-1 ectodomain in the serum of patients decreased in the serum 
of prostate cancer patients compared to healthy controls. Within prostate cancer 
patients ectodomain levels had no correlation to Gleason score. Histologically, total 
protein and gene expression of HAVcR-1 were increased in prostate cancer. 
Manipulation of HAVCR-1 levels within PC-3 cells had no impact on cell growth, invasion, 
adhesion, transepithelial resistance (TER) and paracellular permeability (PCP). Increased 
HAVcR-1 expression did however result in decrease PC-3 wound healing. Both increased 
as well as decreased HAVcR-1 expression increased constrain on current flow beneath 
cells during initial attachment and spreading as well as decreased barrier function 
resistance during electrical wound healing. Overexpression of HAVcR-1 in PZ-HPV-7 cells 
increased invasive potential, adherence to a cell matrix, whilst no changes in migration, 
TER, PCP and barrier function resistance were observed. At a protein level 
phosphorylation of β-catenin Y333 was observed in PZ-HPV-7 cells overexpressing 
HAVcR-1. Further analysis revealed HAVcR-1 overexpression decreased membranous 
E-cadherin, increased nuclear β-catenin and increased Cyclin D1 protein expression 
within PZ-HPV-7 cells. 

Conclusion: This study preliminary shows HAVcR-1 expression and ectodomain release 
coincides with the presence of prostate cancer thus indicating a potential of HAVcR-1 as 
a biomarker to aid in diagnostics. Furthermore, it also potentially indicates the 
involvement ofHAVcR-1 in cancer development, altering cancer associated cellular 
behaviours. Initial evidence from this study implicates HAVcR-1 in the process of EMT 
and the dysregulation of junctional complexes. Therefore, highlighting the potential 
involvement of HAVcR-1 in prostate cancers development and metastatic potential. 
Differences between cell models may suggest differences in signalling pathways that 
involve HAVcR-1 and thus further research is required to characterize HAVcR-1 signalling. 
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1.1 Prostate cancer  

1.1.1 The Prostate Gland  

The prostate is an exocrine gland found exclusively in mammals, it is comparable to 

a walnut in shape and size; being approximately 4 cm long and 2 cm wide. The 

prostate is located dorsally to the symphysis pubis at the base of the bladder where 

it surrounds a portion of the urethra, known as the prostatic urethra, and the two 

ejaculatory ducts (See Figure 1.1). The prostate is composed of a smooth muscle 

capsule and numerous smooth muscle partitions that radiate inwards towards the 

urethra [1]. A layer of pseudostratified columnar secretory epithelial cells cover these 

muscular partitions forming ducts with non-secretory basal epithelial cells 

interspaced along the basal lamina (See Figure 1.1) [2, 3]. These prostatic ducts 

originate from the urethra and radiate peripherally to completely surround the 

urethra. The stromal component of the prostate is not fully composed of smooth 

muscle cells but of all cellular and extracellular elements outside of the epithelial 

basal lamina, including fibroblasts, blood vessels and associated pericytes, wandering 

connective tissue cells, nerve terminals and lymphatics, all of which are embedded 

in a loose collagenous extracellular matrix [3]. 

A main role of the prostate is in male ejaculation via the production of the  fluid 

components of semen [2]. During ejaculation prostatic secretions are discharged 

from prostatic ducts into the prostatic urethra and transported down the urethra by 

muscular contractions [3]. Prostate secretions have a relatively high pH which aids in 

the neutralisation of the acidic urethra and secretions of the testes and vagina. These 

secretions contain clotting factors resulting in the transient coagulations of semen 
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via the conversion of fibrinogen, secreted from the seminal vessels, into fibrin. This 

coagulation keeps the semen as a single mass for a few minutes after ejaculation, at 

which time fibrinolysis occurs resulting in the dissolution of the coagulum and the 

release of sperm cells [1]. 

There are three main conditions which affect the prostate: benign prostatic 

hyperplasia (BPH), prostatitis and prostate cancer. BPH, also termed enlarged 

prostate and benign prostatic enlargement (BPE), is the most common. Mainly 

occurring in men after the age of 50, BPH is associated with restricted urination. 

Prostatitis by comparison can affect men of any age; however, it is most typical in 

men between aged 30 and 50. Prostatitis describes the set of symptoms thought to 

be caused by infection or inflammation and can be divided into four types: chronic 

pelvic pain syndrome (CPPS), acute bacterial prostatitis, chronic bacterial prostatitis 

and asymptomatic prostatitis. Similarly to BPH, prostatitis commonly results in 

restriction of urination however, pain and discomfort around the testis, rectum or 

lower abdomen may also occur [4]. The third condition is prostate cancer, which is 

the main focus of this study and will be explained in detail in the upcoming sections. 
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Figure 1.1. The Prostate Gland.  
Adapted from [2, 3]. Representation of the prostate gland: location, appearance at a 
cellular level and cellular components.  
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1.1.2 Prostate Cancer Statistics  

1.1.2.1  UK Statistics 

In the United Kingdom (UK), prostate cancer is the most common cancer in males 

and the fourth most common cause of deaths due to cancer. Prostate cancer 

accounts for approximately a quarter of cancer cases in males, there are 46689 

diagnoses of and 11287 deaths due to prostate cancer per year in the UK (See Figure 

1.2.A) [5]. The disease generally occurs in men over 50 years of age, with only 0.1 % 

of cases occurring in males under 50 years of age and 85 % of cases occurring in males 

aged 65 and above [6-8]. There is therefore a correlation between age and incidence 

of prostate cancer (See Figure 1.2.B). Over time there has been a shift towards a 

younger diagnostic age, with the percentage of cases being diagnosed in males aged 

75 and above decreasing from 46 % in 1979-1981 to 36 % in 2010-2012. However, 

rather than an earlier onset this is most likely to be due to earlier diagnosis of 

prostate cancer [8]. Prostate cancer incidence has been increasing over time with a 

147 % increase in the UK between 1979-1981 and 2010-2012 and this can also be 

somewhat attributed to better diagnostics as well as an aging population (See Figure 

1.2.C) . Prostate cancer mortality rates are also strongly associated with age, with 

99 % of prostate cancer deaths occurring in men aged 55 and older and 75 % 

occurring in men aged 75 and older (See Figure 1.2.B) [9]. This mortality rate has been 

decreasing since the peak in the late 1980’s/ early 1990’s, with a 21 % decrease 

between 1991-1993 and 2010-2012. This is also attributed to earlier diagnosis as well 

as improved treatment (See Figure 1.2.C) [10].  
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1.1.2.2  European Statistics 

In Europe, prostate cancer is the most common cancer in males, the third most 

common cancer overall and is the sixth most common cause of cancer death [11]. 

There are approximately 400364 diagnoses and 92328 deaths of prostate cancer per 

year [12].  

1.1.2.3  Worldwide Statistics 

Worldwide, prostate cancer is the second most common cancer in males and the fifth 

most common cancer overall [13]. In terms of mortality prostate cancer is the fourth 

most common cause of cancer deaths in males and the eighth most common cause 

of cancer death overall. There are approximately 1278106 new cases and 358989 

deaths per year worldwide [14]. 

  



  Chapter I 

7 
 

 

 

Figure 1.2 Prostate Cancer Statistics. 
Adapted from [15]. A Graph showing number of prostate cancer incidences and 
deaths in each country of the UK in 2012. B Graph showing prostate cancer incidence 
and mortality rates per 100000 in the UK in 2012 separated into age range. C Graph 
showing yearly prostate cancer incidence and mortality rate per 100000 males in the 
UK.  
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1.1.3 Risk and Preventative Factors 

There is a 1 in 8 lifetime risk of prostate cancer in the UK [16]. As previously discussed, 

incidence of prostate cancer is strongly correlated to age. However, age is not the 

only risk factor, others are detailed below. 

1.1.3.1  Family History, Genetics and Ethnicity 

Inherited factors are thought to explain an estimated 5-10 % of prostate cancer cases 

[17]. The risk of prostate cancer increases if a first degree relative (father, brother or 

son) has been previously been diagnosed [18]. Although generally associated with 

breast cancer, an increased risk of prostate cancer has also observed with BRCA1 and 

BRCA2 gene mutations [19, 20].  

The lifetime risk of developing prostate cancer increases to 1 in 4 in black men (black 

African, black Caribbean and black other but not black mixed) [16]. Age standardised 

rates for white males is 97 in every 100000 men and this increases in black males to 

203 in every 100000 men [7].  

Other genetic variations implicated in prostate cancer include: HPC1, EPAC2, RNASEL, 

MSR1, HPCX, HPC20 and vitamin D receptor [21]. Interestingly, genetic 

polymorphisms have also been reported as important in androgen metabolism 

including: genes for the androgen receptor, 5α reductase type 2 and steroid 

hydroxylase [22].   

1.1.3.2 Other Risk Factors 

Being overweight has also been linked to increased risk of advanced prostate cancer, 

though this may be due to late diagnosis. Other risk factors include dietary factors 
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(animal fat and calcium), smoking, alcohol consumption as well as previous 

vasectomy [21]. 

1.1.3.3  Preventative Factors 

Contrary to black males, men of Asian ethnicity have a decreased risk of developing 

prostate cancer; with age standardised rates decreasing from 97 per 100000 men for 

white males to 49 per 100000 men for Asian males [7].  

1.1.4 Prostate Cancer Aetiology  

1.1.4.1 Androgen Signalling Cascade 

Androgens are the male sex hormone of the steroid hormone family, which are 

mainly produced in the testes, ovaries and adrenals [23]. Testicular androgen is 

imperative for the male phenotype differentiation process as well as the 

maintenance of male reproductive function and gender dependent parameters 

including: bone and muscle mass and behaviour [23]. Testosterone, the androgenic 

steroid, is the precursor for dihydrotestosterone (DHT) and oestrogens. Both 

testosterone and DHT are ligands for the androgen receptor (AR), a nuclear 

transcription factor and member of the steroid hormone receptor superfamily of 

genes [23, 24]. 

The human AR is a 110 kDa protein consisting of approximately 919 amino acids, 

however this may vary due to variable length stretches of poly-glutamine and poly-

glycine. The AR is encoded by a single copy number gene, consisting of 8 exons, 

located on the X chromosome (q11-12) [23, 25]. The AR is composed of four domains: 

an N-terminal transactivation domain (NTD), a DNA binding domain (DBD), hinge 

region and a C-terminal ligand binding domain (LBD) (See Figure 1.3.A). The NTD is 

encoded by exon 1 and is thought to be constitutively active, it contains transcription 
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activation function (AF-1) composed of two transcriptional activation units (TAU): 

TAU 1 and TAU 5. TAU5 is responsible for the majority of constitutive activity and is 

able to remain active even with LBD deletion [24, 26]. The DBD is encoded by exons 

2 and 3 and contains two zinc finger motifs. The first contains a P-box motif that 

makes base specific contacts thus co-ordinating gene specific nucleotide contacts 

within the DNA groove, whilst the second contains a D-box motif functioning as a 

DBD/DBD binding site for DNA- dependent receptor homo-dimerization. The hinge 

region is a flexible linker between the DBD and LBD containing the nuclear 

localisation sequence (NLS). Filamin-A (FlnA), a cytoskeletal protein interacts with 

DBD, hinge region and LBD facilitating AR translocation to the nucleus. There also 

exist Ran and importin/ β-dependent NLS in the DBD and importin/ β-independent 

NLS in the NTD and LBD. The ligand binding domain facilitates ligand binding to the 

AR. It also contains an AF-2, which interacts with co-regulators [23, 24]. 

The AR is held inactive in the cytoplasm by association with heat shock proteins (HSP) 

and activation results from the binding of androgens. Testosterone is mainly 

produced in the testes with a small contribution from the adrenal glands. It is 

secreted into the circulatory system where the majority is bound to albumin and sex 

hormone binding globulin (SHBG). A minority of testosterone is freely dissolved in 

the serum and can enter the prostate where 90 % of it is converted to the more active 

metabolite DHT by 5α-reductase. Both DHT and testosterone can bind to the AR 

causing a conformational change and leading to the dissociation of HSP and receptor 

phosphorylation and thus activation [27, 28]. This activation allows the dimerization 

and translocation of AR into the nucleus, where, via interactions hormone response 

elements (HRE), commonly located within the regulatory regions of target genes, as 
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well as interactions with co-factors, the AR induces the formation of a stable 

pre-initiation complex near to the transcription start site, resulting in the expression 

of these genes [26, 29]. Ligand dissociation occurs and the AR is shuttled back to the 

cytoplasm where it can re-associate with HSP and process can repeat [30]. The genes 

transcribed due to AR signalling include: PSA, TMPRSS2, KLK2 and ATAD2 [31]. PSA is 

a kallikrein-related serine protease which is secreted into the blood and increased 

tumour burden correlates with increased detectable serum PSA, making PSA the key 

biomarker in the clinical monitoring of prostate cancer development and progression 

[32, 33]. ATAD2 is an AR co-factor possessing both an AAA-type ATPase domain and 

a bromodomain which recognise acetylated histones to permit control of androgen-

induced gene expression [34, 35]. ATAD2 overexpression promotes cell survival and 

proliferation and thus is tumorigenic in a number of prostate cancer subtypes (See 

Figure 1.3.B) [36]. Androgens and the activation of the androgen receptor are 

important in normal prostate gland growth, development and function as well as in 

prostate carcinogenesis and progression to androgen- independent disease [24, 37].   
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Figure 1.3. The Androgen Receptor.  
Adapted from [24].A Representation of androgen receptor protein. B Major 
androgen signalling cascade  
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1.1.4.2  Progression to Castrate Resistant Prostate Cancer 

The AR is expressed in the majority of primary prostate tumours and the majority of 

tumours are dependent on androgens at time of diagnosis [37, 38]. Androgens are 

the main regulators of the ratio of cells proliferating and those dying by stimulating 

proliferation and inhibiting apoptosis, thus prostate cancer depends on a crucial level 

of androgen signalling for growth and survival. Therefore, a possible treatment 

option of prostate cancer involves the reduction of the androgen signalling cascade 

resulting in cancer regression due to a decrease in proliferation and increased in 

apoptosis [28]. Unfortunately these therapies eventually fail in a median time of 12 

to 18 months and the tumour progresses to a lethal, hormone refractory state, 

known as castrate resistant prostate cancer (CRPC) [28, 37, 39]. 

This progression from clinically localised naïve cancer to CRPC is due to aberrant AR 

signalling and can develop via a number of pathways involving a complex interplay 

of a network of signalling molecules. These pathways can be separated into four 

types: hypersensitivity, promiscuous, outlaw and splice variant (See Figure 1.4) [28]. 

The hypersensitivity pathways involves the overactivation of androgen signalling via 

AR amplification/overexpression, increased AR sensitivity, stability and nuclear 

localisation, co-regulator amplification or increased DHT production [28, 40-43]. The 

promiscuous pathways involve mutation of the AR, leading to decreased specificity 

and resulting in inappropriate activation by alternative ligands including: non-

androgen steroids and AR antagonists [28, 41, 44]. Steroid hormone receptors that 

are activated by ligand independent mechanisms are referred as outlaw receptors, 

thus the outlaw pathway involves activation via phosphorylation of the AR due to 

cytokines and growth factors activating intracellular signalling cascades [24, 28, 37, 
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44]. AR splice variants (AR-Vs) have been found where by the native LBD is replaced 

by variant specific peptide sequences encoded by cryptic exons (CE) 1, 2, 3 and 2b. 

Due to the lack of a LBD, they exhibit ligand independent activity and thus are 

constitutively active [25, 45-47]. These pathways result in the reestablishment of AR 

signalling therefore allow the tumour to progresse and metastasize to secondary 

sites [28]. 
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Figure 1.4 AR Signalling in CRPC.  
Adapted from [28]. Representation of gain of AR signalling activity in CRPC 
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1.1.4.3 Prostate Cancer Metastasis 

Metastasis is the process by which malignant cells leave the primary tumour and 

travel to distant sites to establish a secondary tumour [48]. Metastatic disease is 

responsible for approximately 90 % of cancer related deaths, however the process is 

in reality quite inefficient, with only ≤0.01 % of cancer cells that leave the primary 

tumour developing into metastases in animal models [49-51]. The progression from 

a localised primary tumour to metastatic cancer is reliant on an evolutionary process 

involving a series of mutations resulting in six alterations in cell physiology: self-

sufficiency in growth signals, insensitivity to growth-inhibitory signals, evasion of 

apoptosis, limitless replicative potential, sustained angiogenesis and tissue invasion 

and metastasis [50]. There are three routes that cancer cells can take to metastasize: 

the circulatory system (haematogenous), lymphatic system (lymphatic) or body 

cavities (transcoelomic) (See Figure 1.5) [52]. The hematogenous route involves a 

series of steps: angiogenesis, cell dissemination, migration and invasion of stroma 

surrounding primary site, intravasation, circulation, extravasation, colonization and 

angiogenesis in secondary site [53].



  Chapter I 

17 
 

 

Figure 1.5. Routes of Metastasis.  
Adapted from [52, 54, 55]. Representation of the three possible routes of metastasis: haematogenous, lymphatic and body transcoelomic 
respectively. 
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Angiogenesis 

A tumour can only grow to a size of 1 mm in diameter due to diffusion distance from 

the circulatory system before angiogenesis is required to support its metabolic 

requirements [48, 56]. The hypoxic microenvironment of these tumours can then 

activate angiogenesis via the up regulation of hypoxia-inducible factor-1 (HIF-1) and 

other molecules, creating an imbalance in angiogenic factors. This imbalance is 

established by cancer cells, surrounding stromal cells, tumour associated 

macrophages and other components of the extracellular matrix (ECM) [48, 57]. The 

result is an increase in pro-angiogenic factors including: vascular endothelial growth 

factor (VEGF), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF) 

and platelet-derived growth factor (PDGF) as well as a decrease in anti-angiogenic 

factors including: angiostatin and thrombospondin-1 [48, 58]. Thus angiogenesis can 

occur via the partial degradation of the surrounding ECM, endothelial cell 

proliferation and migration, vascular loop formation and basement membrane 

development (See Figure 1.6) [48].  
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Figure 1.6. Angiogenesis.  
Adapted from [59]. Representation of the stages of angiogenesis
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Metastasis 

The next step in metastasis is cancer cell dissemination from the tumour, local 

migration and invasion [48]. Epithelial cell have a restricted migratory capability 

partly due to the basement membrane as well as cell-cell adhesion which is 

maintained by junctions including adherens junctions (AJs) and tight junctions (TJs) 

[53]. This adhesion between neighbouring cancer cells must be overcome; however 

adhesion mechanisms are required for migration, thus adhesion mechanisms are not 

lost but disordered in these cancer cells [48, 60]. This is achieved via the reduced 

expression of adhesion molecules required for epithelial -epithelial cell adhesion 

such as epithelial (E)-cadherin but with a concurrent increased expression of 

adhesion molecules required for cancer cell-ECM adhesion such as integrin α6β1 [48, 

53, 61, 62]. Depending on the environment the migration of single cells occur via two 

modes: elongated/ mesenchymal migration or rounded/ amoeboid migration, 

however they can also migrate as a cell group [63-65]. The Rho family of GTPases are 

key regulators of cell adhesion, with Rac1 promoting the formation of large 

membrane protrusions called lamellipodia that drive motility and Rho A and Rho C 

can recruit the ROCK family of kinases that phosphorylate cytoskeletal proteins 

promoting actin stress fibre production and resulting in the generation of contractile 

force [66-68]. Local invasion, whereby cancer cells extend and penetrate 

neighbouring tissues, is a prerequisite for cancer metastasis [69]. Local invasion 

requires the degradation of the surrounding stroma, mainly the basement 

membrane and interstitial connective tissue which is achieved via the use of 

proteases including: matrix metalloproteinases (MMPs), serine proteinases, cysteine 

proteinases and aspartyl proteinases [48, 53].  
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Cells enter the circulation by migrating through the vessel wall, this is known as 

intravasation, which can be separated into two types: paracellular intravasation 

where the cell migrates between endothelial cells which requires disruption of 

endothelial junctions and transcellular intravasation whereby the cell migrates 

through the endothelial cell body [65]. The new blood vessels generated by 

angiogenesis generally have weak cell-cell junctions and factors including: VEGF and 

transforming growth factor β (TGFβ) decrease the barrier function allowing for the 

transient disruption of junctions and the paracellular intravasation of cancer cells [65, 

70]. 

Once within the circulatory system cancer cells must survive physical damage from 

hemodynamic shear force as well as evade the immune system [49, 52]. Cancer cells 

may evade the immune system by decreasing the amount of class 1 human leucocyte 

antigen (HLA) expressed and preventing cytotoxic T-leucocyte (CTL) mediated killing 

[48]. Cells circulate as part of a fibrin clot surrounded by other tumour cells and 

platelets and leukocytes forming a microembolis which aids in protection against 

sheer stress and obstructs capillaries, facilitating arrest in the microvasculature [48, 

52]. The interaction between cancer cells and endothelial cells is thought to be 

comparable to leucocyte trafficking and extravasation at inflammatory sites via the 

‘dock and lock’ mechanism [71]. Cells arrest on endothelium by low-affinity binding 

between E-selectin and ligands sialyl Lewis a or x (sLea or sLex) or CD44 as well as 

neuronal selectin (N-selectin) homophilic interactions. Firmer cell adhesion is 

achieved by integrins, CD44 and mucin 1 (MUC1). Cells can then extravasate, which 

similarly to intravasation can be transendothelial or paracellular [48, 65]. The cancer 

cell must then invade the basement membrane, penetrate the local parenchyma and 
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establish a microenvironment conducive to tumour survival and proliferation [52, 56, 

65]. 

Extravasation could theoretically occur in any organ, however cancer types generally 

show organ specific metastasis patterns, with prostate cancer metastasising to the 

liver, lungs, pleura, adrenal glands, brain, lymph nodes and most predominantly to 

the bone (See Figure 1.7) [51-53, 56, 72]. Organ specificity was first explained by 

Stephen Paget’s ‘seed and soil’ model, whereby the cancer cell (seed) will only 

metastasise to specific organs (soil) well suited for tumour growth [73]. This model 

was contested by James Ewing who proposed a mechanical model in which the 

metastatic pattern was due to circulatory and lymphatic flow from the primary 

tumour [74]. It is now widely accepted that both mechanical factors and organ 

suitability are important as well as chemoattractant homing whereby cells move to 

organs expressing specific molecules [48]. Chemoattractant factors include: the 

minor bone matrix protein osteonectin (also known as SPARC/ BM40), TGF-β1 

secreted by osteoblasts, epidermal growth factor (EGF)  expressed by lymph node 

and medullary bone stroma, insulin like growth factors 1 and 2 (IGF1 and IGF2), HGF 

acting via the Met receptor and collagen peptides [48, 75-80]. Chemokines have also 

been implicated in cancer cell homing, they are thought to cooperate with adhesion 

receptors thus determining cell arrest and extravasation site. CXCL12 and CCL21 are 

ligands for CXCR4 and CCR7 receptors respectively. Both receptors are expressed on 

breast cancer cells and distinct tissue distribution of ligands at main metastatic breast 

cancer sites suggests they may be important in chemotaxis and the localisation of 

metastasis of breast cancer. CXCL12-CXCR4 chemotaxis has been suggested to also 

be important in prostate cancer metastasis [48, 52, 81].   
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Figure 1.7. Metastasis Sites.  
Adapted from [51-53, 56, 72]. Representation of prostate cancer metastasis sites 
(shown in bold) from primary tumour in the prostate (shown in red)   
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1.1.5 Prostate Cancer Models 

Pre-clinical model systems have been of great value in prostate cancer research, 

allowing for the increased understanding of the mechanisms involved in 

carcinogenesis and enabling the identification of therapeutic and preventative 

measures [82, 83]. These models have many benefits, however due to the complexity 

of prostate cancer development and progression all models have their limitations 

and there is no one ideal model system for the research of prostate cancer [82].  

Prostate cancer cell lines PC-3, Du145 and LNCaP derived from metastatic sites were 

the first identified and are still the most commonly used cell lines in published studies 

[84]. Due to the lack of patients giving rise to immortalised cell there has been 

numerous cell lines produced via the immortalization human prostate epithelia [85]. 

These cell lines have their advantages, with them having infinite replicative potential 

and being easy to handle however they do not represent the diversity of human 

tumours due to the lack of heterogeneity as well as lacking the microenvironment or 

immune influence that is present in prostate tumours [83]. Primary cell cultures 

better reflect the characteristics of the original tumours, however also have their 

limitations, with them not being as easily assessable as cell lines, having a finite 

lifespan and specific culture techniques making then harder to handle [85]. 

Animal models are the bridge between in vitro cell models and clinical trials. Prostate 

cancer research frequently relies on mouse models of which there are multiple types 

including: xenograft, allograft, knockout and genetically engineered. Whereby 

xenograft mouse models involve the introduction of human tumour tissues, cell lines 

or primary cell cultures into an immunocompromised mouse [86]. Allograft mouse 
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modes differ from xenograft due to introduced cells being from the same inbred 

immunocompetent mouse strain and thus allow the study of prostate cancer with 

the immune system present. The site of introduction in xenograft and allograft 

mouse models can vary depending on the purpose of the study but include 

subcutaneous, intravenous, orthotropic, tail vein and intracardiac [86-88]. Knockout 

mouse models involve of the silencing of tumour suppressor genes and genetically 

engineered mouse models enable flexible manipulation of particular genes, thus can 

reproduce the stages of prostate cancer through to the metastatic disease [86, 87].  

1.1.6 Prostate Cancer Detection and Staging  

Prostate cancer is a relatively silent disease, however at advanced stages urinary 

obstruction and bone pain may occur [2]. Primary diagnostic methods involve a 

digital rectal examination (DRE) and PSA assay, with irregularities prompting further 

diagnostic investigations to be carried out, including: biopsy and imaging techniques 

[2, 89]. 

1.1.6.1 Digital Rectal Examination (DRE) 

DRE is the physical examination of the prostate gland through the wall of the rectum 

to assess size and textual irregularities [90]. Unfortunately DREs are unreliable as 

they are subjective as results depend on the experience of the examiner and have 

poor sensitivity as tumour may arise from a untouchable site of the prostate [89, 91].  

1.1.6.2 Prostate Specific Antigen (PSA) Assay  

PSA is a 33 kDa glycoprotein of 237 amino acids produced primarily in prostatic 

secretory epithelium via androgen regulation. PSA is a kallikrein-related serine 

protease released into the seminal fluid and is believed to have a role in liquefaction 
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of seminal fluid via the hydrolysis of senenogelin [32, 33]. In normal conditions small 

amounts of PSA enter the circulation with serum level ranging from 0.1- 4 ng/mL. The 

development of prostate cancer results in the increased disruption of the normal 

prostate architecture and elevated levels of PSA are able to enter the serum; serum 

levels of >4 ng/mL are indicative of prostate cancer [92]. However, other factors may 

cause this increase including: BPH, prostatitis, ejaculation within 3 days prior to 

assay, urethral instrumentation such as cystoscopy, thus further diagnostic 

investigations are required. This makes PSA a nonspecific biomarker for prostate 

cancer which results in approximately 67 % false positives and 15 % false negatives 

[32, 33, 89]. 

1.1.6.3 Biopsy 

A needle biopsy is often performed through the rectum using trans-rectal ultrasound 

(TRUS) guidance. This involves 10-12 tissue samples being collected under local 

anaesthetic, which are then assessed for the presence of cancer and a Gleason score 

is given. However, there is the possibility that cancer is missed thus resulting in false 

negatives and there are a number of side effects that include: short term bleeding 

(rectal, urinary or haemospermia), infection, urine retention and pain [93][92]. A 

template biopsy may also be performed to rule out false negatives or are performed 

instead of a TRUS needle biopsy [94]. This involves at least 20 tissue samples being 

collected, normally under general anaesthetic, via a needle inserted through the 

perineum. There is a template on the perineum with holes approximately 5 mm apart 

and TRUS is also used to guide the needle into the prostate. Template biopsies have 

a decreased risk of false negatives due to increased samples taken but have similar 

side effects with decreased risk of serious infection but increased risk of urine 
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retention [95, 96]. Targeted biopsies are also an option, using the information 

gathered from imaging techniques to collect samples from abnormal areas [97].  

 

A Gleason score is given based on the biopsies taken. The Gleason score is a sum of 

the most common Gleason grade in the samples and the highest Gleason grade found 

in the samples. Gleason grade is given based on how normal the cells appear, where 

1 is normal prostate tissue and 5 is extremely abnormal tissue. The Gleason score can 

therefore range from 2-10 however as most cancers are Gleason grade 3 or more the 

Gleason score is normally between 6 and 10. The higher the Gleason score the more 

aggressive the cancer and the increased likelihood of metastasis [98, 99]. 

1.1.6.4  Imaging 

Various imaging techniques can be used to obtain an accurate diagnosis and to assess 

information on stage and grade of the cancer to facilitate treatment decisions. These 

techniques include: TRUS, magnetic resonance imaging (MRI), computerised 

tomography (CT) scans and bone scans and x-rays [100]. 

1.1.6.5 Staging 

Stage describes the spread of prostate cancer. Prostate cancer confined to the 

prostate gland is known as localised disease.  Localised prostate cancer is generally 

slow-growing and non-aggressive. If the cancer has broken out of the prostate 

capsule and has spread to the surrounding area including: seminal vessels, bladder, 

rectum, pelvic wall or local lymph nodes it is known as locally advanced disease. 

Advanced disease is also known as metastatic disease where prostate cancer has 

spread to more distant sites of the body. Further staging of prostate cancer uses the 
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TNM system, which stages the tumour (T), lymph nodes (N) and metastases (M) 

separately (See Table 1.1) [101].  
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Table 1.1. The TNM staging system. Adapted from [101].  

Tumour Staging 

Localised 

Disease 

T1 Small tumour that is undetectable by imaging or DRE, 

diagnosed by PSA assay and biopsy 

a Incidental histological finding in < 5% of tissue 

b Incidental histological finding in > 5% of tissue 

c Tumour identified by needle biopsy  

T2 Tumour is confined to the prostate 

a Tumour in one half of one prostate lobe 

b Tumour in both halves of one prostate lobe 

c Tumour in both prostate lobes 

Locally 

Advanced 

Disease 

T3 Tumour extends through the prostate capsule 

a Tumour broken out of prostate capsule  

b Tumour spread to seminal vessel 

T4 Tumour spread to local area such as external 

sphincter, rectum, bladder, levator muscles and pelvic 

wall 

Lymph Node Staging 

 NX  Lymph nodes cannot be checked 

N0  No cancer found in local lymph nodes 

N1  Cancer found in local lymph nodes 

Metastasis Staging 

 MX  Metastasis cannot be checked 

M0  No cancer found outside of the pelvis 

M1 a Cancer found in lymph nodes outside of the 

pelvis 

b Cancer found in the bone 

c Cancer found in other organs 
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1.1.7 Treatment  

There are various treatment options for prostate cancer including: surgery, 

radiotherapy, hormone therapy, chemotherapy, cryotherapy and steroids. 

Treatment decisions are based on cancer stage, Gleason score, age, general health, 

symptoms and prognosis. 

1.1.7.1 Monitoring Prostate Cancer 

Prostate cancer generally affects older men and is often a slow growing disease thus 

some patients may never need treatment. Instead of immediate treatment prostate 

cancer may be monitored and treatment given if disease progresses. This aims to 

reduce overtreatment and reduce treatment associated physical and psychological  

morbidity [102, 103]. Monitoring prostate cancer can be separated into two 

subtypes: active surveillance and watchful waiting. 

Active surveillance is the monitoring of low risk localised prostate cancer that is slow 

growing and unlikely to be causing any symptoms [102]. Regular tests are carried out 

to assess changes in the cancer they involve PSA assay every 3- 6 months, DREs, 

biopsies 12 months after diagnosis and imaging. If results suggest cancer progression 

treatment with a curative aim is given [102, 103]. In comparison, watchful waiting is 

the monitoring of generally locally advanced or metastatic prostate cancer. Watchful 

waiting is suitable if the prostate cancer is asymptomatic, there are other health 

problems that make the patient less able to cope with treatment or the prostate 

cancer isn’t likely to decrease life expectancy [104]. Tests are also used to assess 

cancer progression, involving PSA assays and DREs, however there is less likelihood 

of biopsies and more likelihood of bone scans [105]. The main difference in active 
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surveillance and watchful waiting is that if treatment is required in watchful waiting 

it is with the aim to control rather than cure the cancer [104-106]. 

1.1.7.2 Surgery 

Radical Prostatectomy 

Radical prostatectomy is the removal of the prostate gland. This is either performed 

as an open surgery via a retropubic or perineal incision or as a laparoscopic surgery, 

which may be by hand or robotic assisted. The surrounding tissue, local lymph nodes 

and seminal vessels are also removed and thus depending on the prostate cancer 

stage this surgery may be curative. Also depending on stage and location of the 

prostate cancer a nerve sparing surgery may be performed whereby the two nerve 

bundles that run alongside the prostate, which are important for erectile function, 

are preserved. Unfortunately, radical prostatectomy can result in mortality (30- day 

mortality in 0.11-0.13 % of patients), impotence (11-87 % of patients) and 

incontinence (0-87 % of patients). Although side effect can diminish over time it has 

been shown that at 52 months post radical prostatectomy 88% of patients report 

erectile dysfunction and 31% report urinary leakage [102, 107]. 

Orchidectomy 

Orchidectomy is the removal of the testes from the scrotum. This stops testosterone 

production in the testes resulting in lower testosterone levels and reduced AR 

signalling thus preventing prostate cancer growth [108]. Although this surgery is 

effective, it has become less common due the introduction of hormone therapy that 

reduce AR signalling without surgical risk and recovery time. Possible side effects of 

orchiectomy include: erectile dysfunction and osteoporotic changes [109]. 
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Transurethral resection of the Prostate (TRUP) 

Often used in the treatment of BPH TRUP is performed to alleviate the symptoms of 

prostate cancer rather than treat the disease. TRUP involves the removal of parts of 

the prostate causing urinary retention by blocking the urethra [110].  

1.1.7.3 Radiotherapy 

Radiotherapy is the use of ionising radiation to kill cancer cells. Depending on stage 

of prostate cancer this may be curative. Radiotherapy includes external, 

brachytherapy and palliative. Whereby, external radiotherapy involves high doses of 

radiation being delivered to the prostate. It is usually given daily for up to eight weeks 

[111]. Also known as internal radiotherapy, brachytherapy is separated into two 

types: low dose rate brachytherapy and high dose rate brachytherapy. Low dose rate 

brachytherapy is also known as seed implantation brachytherapy and involves the 

permanent implantation of between 70 and 150 small radioactive beads into the 

prostate, under TRUS guidance, via a needle through the perineum. These beads then 

give off a low dose of radiation with a half-life of 60 days. High dose rate 

brachytherapy involves the temporary implantation of hollow catheters, under TRUS 

guidance, into the prostate via the perineum. These catheters are then connected to 

a brachytherapy machine whereby radioactive seeds travel through the catheters 

releasing a dose of radiation to the prostate. Side effects include: proctitis, urinary 

retention, erectile dysfunction, rectal irritation and rectal bleeding [111-114]. 

Palliative radiotherapy is used to alleviate pain caused by bone metastases. Targeting 

bone metastases, either by external radiation or by an intravenous injection of 

radium 223 or strontium 89, causes tumour shrinkage as well as bone strengthening 

[115-118]. 
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1.1.7.4 Androgen Deprivation Therapy 

As previously discussed, androgen signalling is important in prostate cancer 

development and progression thus therapies have been developed to reduce 

signalling. These therapies are used to decrease the risk of cancer recurrence or to 

slow the growth of or shrink advanced prostate cancer. As an alternative to 

orchidectomy, androgen deprivation therapy can be used to decrease testosterone 

levels without the risks that come with having surgery. Gonadotrophin Releasing 

Hormone (GnRH) agonists are one type of hormone therapy. They act to activate 

GnRH receptors thus creating an initial surge in Luteinizing Hormone (LH) however 

chronic administration activates a negative feedback mechanism resulting in 

decreased LH and thus decreased testosterone production [119]. GnRH agonists 

include: leuprorelin, goserelin acetate, buserelin, triptorelin and histrelin (See Table 

1.2) [120]. In contrast the GnRH receptor antagonist degarelix inhibits the GnRH 

receptor decreasing LH and therefore testosterone levels without the initial surge 

found with GnRH agonists [119]. Anti-androgens are the third type of hormone 

therapy currently used, they include: bicalutamide, flutamide and enzalutamide (See 

Table 1.2). Bicalutamide and flutamide bind the AR allowing for nuclear translocation 

but prevent co-factor recruitment. Enzalutamide on the other hand inhibits the AR 

(wild type and T877A and W741C mutants) as well as inhibiting nuclear translocation, 

DNA binding and co-factor recruitment [121, 122]. The cytochrome p17 inhibitor 

abiraterone is the final hormone therapy currently used. Abiraterone acts to 

decrease both testicular and adrenal androgen concentrations (See Figure 1.8) [122]. 
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Table 1.2. Androgen Deprivation Therapies in Clinical Use. Adapted from [120].  

Name Brand Name Administration 

Route 

Administration 

Frequency 

Gonadotrophin Releasing Hormone (GnRH) Agonists 

Leuprorelin Prostap/ 

Lutrate 

Subcutaneous/ 

Intramuscular 

Injection 

Every 3 months 

Goserelin 

acetate 

Zoladex/ 

Novgos 

Subcutaneous 

Injection 

Every 4 weeks or 12 if 

long lasting 

Buserelin Suprefact Subcutaneous 

Injection/ Nasal 

Spray 

Injection 3 times a day 

for 7 days then nasal 

spray 6 times per day 

Triptorelin Decapeptyl 

SR/ 

Gonapeptyl 

Depot 

Subcutaneous/ 

Intramuscular 

Injection 

1 per month/ 1 per 3 

months/ 1 per 6months 

Gonadotrophin Releasing Hormone (GnRH) receptor Inhibitor 

Degarelix Firmagon Subcutaneous 

Injection 

2 injections then 1 per 

month 

Anti-Androgens 

Bicalutamide Casodex Tablet 1 per day 

Flutamide Drogenil Tablet 3 per day 

Enzalutamide Xtandi/ 

MDV3100 

Tablet 4 tablets once a day 

Cytochrome p17 inhibitors 

Abiraterone Zytiga Tablet 4 tablets once a day 
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Figure 1.8. Androgen Deprivation Therapy.  
Adapted from [122]. Hormone therapy targets in the treatment of Prostate Cancer  
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1.1.7.5 Chemotherapy 

Chemotherapy includes: docetaxel (Taxotere), mitoxantrone, epirubicin, paclitaxel 

(Taxol) and estramustine. They may be used alongside hormone therapy to treat 

metastatic prostate cancer or used to treat prostate cancer that isn’t responding to 

hormone therapy. Side effects include: nausea, hair loss, sore mouth and eyes, 

mouth ulcers and infertility [123]. 

1.1.7.6 Steroids 

Steroids, most commonly dexamethasone, are used to treat prostate cancer that is 

not responding to hormone therapy and may be used alongside chemotherapy. Side 

effects include: weight gain, swelling of hands, feet and eyelids and increased blood 

pressure [124]. 

1.1.7.7 Cryotherapy 

Cryotherapy, also known as cryoablation or cryosurgery, kills cancer cells by freezing. 

Cryotherapy needles are inserted into the prostate via the perineum under TRUS or 

x-ray guidance. A warming catheter is inserted into the urethra to protect the urethra 

during treatment. The treatment involves argon gas being circulated through the 

needles to freeze the tissue. Side effects include: impotence, incontinence, urinary 

retention and pelvic pain. Currently cryotherapy is only recommended to be used as 

part of clinical trials [125].  

1.1.7.8 Ultrasound therapy 

High intensity focused ultrasound (HIFU) waves are used to heat and kill cancer cells. 

HIFU waves are produced by ultrasound probe inserted into the rectum. The most 

common problems reported include: infections in the prostate area and urinary 
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retention. Currently HIFU therapy is only recommended to be used as part of clinical 

trials [126]. 
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1.2 Intercellular Junctions 

1.2.1 Epithelial and Endothelial Cell Junctions 

Epithelial and endothelial cells make up semi-permeable sheets that line both 

internal and external surfaces, thus separating internal compartments and 

separating a multi-cellular organism from the outside environment [127, 128]. 

Junctional complexes link these cells to one another creating a barrier to enable the 

maintenance of concentration gradients between compartments and therefore 

allowing for differentiated  fluid environments [129]. This barrier function allows for 

control of paracellular transport, transcellular transport and is controlled by cell 

polarization, which unlike the majority of cells that create transient polarisation, in 

endothelial and epithelial cells is more permanent [127, 128]. The plasma membrane 

of epithelial cells can be separated into three domains: apical, lateral and basal. The 

apical membrane domain is typically covered in microvilli and faces lumens or the 

outside environment. The lateral membrane domain membrane contains junctional 

complexes joining adjacent cells to one another and the basal membrane domain 

generally rests on a basal lamina, a type of ECM composed of mainly type IV collagen, 

laminin and proteoglycans, facing underlying tissue [127, 128]. There are three cell 

adhesion junctions on the lateral membrane: tight junctions (TJs), adherens junctions 

(AJs) and desmosomes (DS) as well as gap junctions (GJs) that function in cell 

communication (See Figure 1.9)[127, 128, 130]. Endothelial membrane structure is 

similar to that of epithelial cells with membrane domain segregated by junctional 

complexes  however unlike epithelial cells they do not contain DS [131]. All cell-cell 

junctions contain transmembrane (TM) proteins that join adjacent cells to one 
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another via homo- or hetero-typic TM protein binding and via scaffolding proteins 

associate with the actin cytoskeleton which allows for the transduction of signals 

between cells [128, 130].  
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Figure 1.9 Epithelial Junctions.  
Adapted from [127]. Diagrammatic representation of junctions within the lateral 
membrane domain of epithelial cells.  
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1.2.2 Junctional Location 

1.2.2.1 Adherens Junction Location 

AJs are observed in a variety of different cell types including myocytes and Schwann 

cells however, the most well-known example is within polarised epithelial cells [132]. 

Within polarised epithelia AJs form part of the tripartite junctional complex between 

adjacent cells and are typically located basally to TJs on the lateral membrane [132-

134]. AJs are characterised by parallel plasma membranes of neighbouring cells that 

are 10-20 nm apart. The intercellular spaces of AJs are occupied by numerous 

cylinder-like projections that bridge the two membranes [133, 135]. Furthermore, 

the cytoplasmic aspect of AJs are linked to a contractile bundle of actin filaments and 

thus link the plasma membrane to the actin cytoskeleton at discrete contact regions 

and are also known as the adhesion belt due to them completely enclosing cells along 

the F-actin lining/ circumferential actin belt [132, 134, 136]. In the majority of 

epithelia, AJs are continuous (belt-like) however, when the tripartite junctional 

complex is not present AJs are often discontinuous (spot-like) and are located along 

the entirety of the lateral membrane [133, 136]. In non-epithelial cells, such as 

neuronal synaptic junctions and mesenchymal tentacle-like processes, AJ are also 

present as discontinuous structures [137-139]. The importance of these two 

structures is currently unknown however, it is thought that either they perform 

different functions or that they are different stages of junctional maturation [140]. 

1.2.2.2 Tight Junction Location 

TJs occur in both epithelial and endothelial membranes, as well as being observed in 

Schwann cells [141]. TJs are an anastomosing networks of strands that encircle the 

cell apex, forming belt like structures with continuous intramembrane strands in the 
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protoplasmic (P)-face with complementary groves in the ectoplasmic (E)-face [142-

144]. TJ form gasket-like contacts between adjacent cells, which are seen as discrete 

sites of fusion (kissing) points between outer leaflets of adjacent cell membranes and 

result in the obliteration of intercellular space [128, 133, 143, 145-147]. In 

mammalian epithelia, TJs are typically found at the apical and lateral membrane 

boundary making them the most apical of the cell-cell junctions [128]. There are 

however some exceptions for instance in hepatocytes where there apical membrane 

domain is formed in the lateral membrane domain between two neighbouring cells 

[148]. Junctional complexes are less well defined in endothelia than in epithelia with 

AJs and TJs intermingled and GJs also found close to the luminal surface [149]. 

1.2.3 Junctional Proteins 

1.2.3.1 Adherens Junction Proteins 

AJs are composed of three classes of proteins: 1) adhesion receptors spanning the 

intercellular space of the junction and comprising the adhesive bond, 2) 

cytoskeleton/membrane plaque proteins that link the adhesion receptors with the 

cytoskeletal network and 3) the cytoskeletal network that anchors the junction 

(actin) [140]. 

Intercellular junctions rely on transmembrane proteins that bind homo- or hetero-

typically to transmembrane proteins on neighbouring cells and with AJs cadherin 

proteins are the main adhesion receptor [134]. The cadherin family of 

transmembrane proteins is composed of multiple subfamilies, one which being the 

classical cadherins. E-, N-, R- and P-cadherin are members of the classical subfamily 

that bind in a calcium dependent manner to cadherins on neighbouring cells [150, 

151]. Members of the classical cadherin subfamily have similar structures, with the 
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extracellular domain being broken into five cadherin extracellular (EC) domains 

section EC1-EC5. Binding of Ca2+ to each of the EC domains is important for the 

correct conformation of the extracellular domain and EC1 at the N-terminus 

determining binding specificity [126, 151].  

Cytoplasmic proteins affect the adhesive action of cadherin extracellular domains 

altering the strength and stability of the junction [134]. Classical cadherins bind 

directly and indirectly to numerous cytoplasmic proteins including members of the 

catenin family [151]. P120-catenin binds cadherins at the juxtamembrane portion of 

the cytoplasmic domain and this binding stabilises cadherin at the plasma 

membrane, increases the adhesiveness of the cells as well as regulating motility 

through the actin cytoskeleton via interactions with the Rho family of GTPases [152-

154]. β-catenin and γ-catenin both bind to the C-terminal half of the cadherin 

cytoplasmic domain [134]. β-catenin binds in a phospho-related manner with 

phosphorylation of cadherin at serine residues increasing binding affinity however 

phosphorylation of β-catenin tyrosine residues disrupts binding [151, 155, 156]. 

Catenin proteins in turn interact with a variety of other proteins such as β-catenin 

binding to α-catenin to form the β catenin-α catenin complex which joins cadherins 

to the cytoskeleton through mediators including formin, vinculin and EPLIN [134].  

The cadherin/catenin core adhesion complex is the most recognised component of 

AJs however there is a second complex that constitutes AJs, the nectin/afadin 

complex [140]. Within this complex the nectin family of four proteins (nectin-1, 

nectin-2, nectin-3 and nectin-4) are the adhesion receptors which, unlike cadherin 

proteins, mediate Ca2+ independent cell adhesion [150, 157]. Nectins are members 

of the IgG superfamily with their extracellular domains being comprised of three IgG-
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like loops and interacts in a homo- and hetero-typical manner to other nectin or 

nectin like receptors to form a junction between neighbouring cells. Similarly, to 

classical cadherin proteins, nectin proteins are single pass transmembrane proteins 

and the cytoplasmic domain of nectin interacts with plaque proteins that link the 

adhesion receptors with the cytoskeleton, with afadin being the predominant plaque 

protein [140, 157, 158]. Afadin binds a PDZ binding motif at the C-terminus of nectins 

[157]. Afadin is an F-actin binding protein that anchors the nectins to the actin 

cytoskeleton. Furthermore, nectin can bind a myriad of proteins including cell 

polarity proteins such as partitioning-defective homolog 3 (Par-3) and therefore 

ensures the correct spatial and temporal localisation of Par3, a protein crucial for the 

subsequent establishment of apico-basalateral polarity [150, 157]. 

1.2.3.2 Tight Junction Proteins 

TJs are multiprotein complexes and these proteins can be categorised into three 

groups: 1) integral membrane proteins, 2) associated scaffold/ plaque anchoring 

proteins and 3) regulatory proteins [143, 145, 159, 160]. Integral membrane proteins 

are transmembrane proteins that bridge the intercellular space between adjacent 

cells and are therefore responsible for cell adhesion. These are then linked to the 

cytoskeleton, to other transmembrane proteins of the same cell and to signalling 

cascades via plaque anchoring proteins in conjunction with regulatory proteins [143].  

Integral membranes associate with partners in opposing membrane of adjacent cell 

creating a zipper-like seal [129]. Integral membrane proteins can be separated into 

two groups: tetraspanning proteins and single spanning proteins. Tetraspanning 

proteins such as occludin and claudin proteins contain four transmembrane domains, 

two extracellular loops and cytoplasmic C and N termini. Single spanning proteins 
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that belong to immunoglobulin superfamily such as JAMs which only contain one 

transmembrane domain [129]. 

Occludin was the first TJ integral membrane protein identified and was achieved by 

the production of monoclonal antibodies against enriched chicken liver membranes 

[161]. Human occludin was discovered to be a 522 aa protein of 59 kDa. Occludin 

forms a zipper like seal by the two extracellular loops containing high levels of glycine 

and tyrosine residues making them hydrophobic and allowing their interaction with 

occludin extracellular loops on neighbouring cells [147, 161-163]. The claudin family 

of proteins, 26 of which are present in humans, were later identified as TJ integral 

membrane proteins. Sharing a similar structure to occludin with two extracellular 

loops, the first of which being responsible for homotypic binding of claudin 

extracellular loops on neighbouring cells [164-168]. JAMs belong to the 

immunoglobulin superfamily and are dissimilar to occludin and claudins having only 

one transmembrane domain. However, similarly to occludin and claudins, JAMs form 

homotypic interactions with the extracellular domains of JAMs on neighbouring cells 

[129, 169]. 

Plaque anchoring proteins connect integral membrane proteins to the cell 

cytoskeleton as well as connecting integral membrane proteins of the same cell to 

one another. Plaque anchoring proteins also link these integral membrane proteins 

to signalling molecules thus regulating TJ integrity and allowing communication 

between cells and the external milleu. These proteins include ZO-1, ZO-2, ZO-3, 

cingulin, MAGI-1, Pals1 and PATJ [143, 170, 171]. Occludin can bind to ZO-1 via the 

cytoplasmic C terminus [147, 163]. The claudin family also bind plaque anchoring 

proteins via its cytoplasmic C terminus, these proteins include: ZO-1, -2 and -3, PATJ, 
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MUPP1 and MAGI-1, -2 and -3 [129, 166, 172]. JAMs that a class I PDZ domain binding 

motif (the protein binding module that binds C-terminal tripeptide motif S/TXV) are 

able to bind to ZO-1 and MAGI-1 [129, 169, 173, 174]. JAMs that contain a type II PDZ 

binding motif (a protein binding module that binds hydrophobic amino acids with the 

C-terminal) can interact with PDZ domains of TJ plaque anchoring proteins including: 

AF-6, ASIP/Par3, ZO-1, cingulin [129, 173].  

Regulation of TJs is imperative not only for initial assembly and maintenance but in 

order to change TJ structure and integrity depending on cell requirements. This is 

achieved by the linking of TJs to signalling molecules to transmit signals between TJs 

and the rest of the cell. This allows for the regulation of multiple cellular processes 

as well as the regulation of TJs. TJs therefore associate with kinases, phosphatases, 

regulators of membrane traffic, guanine nucleotide exchange factors (GEFs) and 

GTPase activating proteins (GAPs) [175, 176]. GEFs and GAPs are both regulators of 

small GTPase via activation or inhibition respectively. GTPase activity must be 

regulated for correct junction assembly, cell-cell contact and junction stabilisation. 

Plaque anchoring proteins regulate this by recruiting GEFs and GAPs, restricting their 

localisation or by being the targets of activated GTPases [176]. The Rho family are 

important GTPases in TJ barrier function. Rho are members of the Ras superfamily of 

small GTPases and include RhoA, Cdc42 and Rac; with RhoA seemingly the most 

important. TJ are also regulated by phosphorylation for instances low resistance 

membranes have greater ZO-1 phosphorylation than higher resistant membranes. 

Protein kinase C (PKC) is one of the families of kinases that are responsible for TJ 

protein phosphorylation with novel PKC δ and θ as well as atypical PKC λ and ζ 

isoforms being associated with TJs. Other kinases include protein kinase A (PKA) and 
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protein kinase G (PKG) [177]. The reduction of phosphorylation of TJ proteins also 

affects TJ integrity thus phosphatases are also important regulatory proteins, these 

include protein phosphatase 1 (PP1), protein phosphatase 2A (PP2A) and protein 

phosphatase 2B (PP2B) [177].  

1.2.4 Junctional Function 

1.2.4.1 Adherens Junction Function 

AJs preliminarily function to maintain physical association between cells however, 

they have broader functions as they are important in for the formation of TJs, the 

regulation of the actin cytoskeleton, intercellular signalling and transcriptional 

regulation [151]. 

Cell adhesion is essential for the formation of multicellular organisms and AJs are 

responsible for the initiation and maintenance of cellular contacts and loss or 

disruptions of AJs result in the loosening of cell-cell contacts subsequently resulting 

in the disorganisation of tissue architecture [134, 151]. 

The formation of AJs can be broken into three stages: 1) transient contacts, 2) 

formation of stable contacts and 3) extension of stable contacts [178]. During the 

initial stage of formation spot-like junctions form at the tips of cellular protrusions 

from adjacent cells whereby nectins and cadherens separately form trans-dimers 

between cis-dimers on neighbouring cells. It is likely that nectins form the initial 

clusters which then recruit cadherens. The recruitment and interaction of nectins and 

cadherens with cytoplasmic proteins link these clusters to the actin cytoskeleton. 

These spot-like junctions then form more mature AJs [151, 178]. This formation of 

AJs results in the formation of TJs however once formed AJs are not critical for the 

maintenance of TJs [151]. 
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From the earliest stages of embryonic development cells of epithelial and 

mesenchymal in origin are crucial to the structure and function of organs [179]. 

However, the epithelial and mesenchymal phenotypes are not permanent with cells 

switching between them. These processes are termed epithelial to mesenchymal 

transition (EMT) and the mesenchymal to epithelial transition (MET) [179]. AJs are 

highly dynamic and enable the reorganisation and dispersal of cell such as during 

EMT and thus molecular hallmarks of EMT include the down regulation of the AJ 

transmembrane protein E-cadherin as well as the up regulation of N-cadherin as well 

as the dysregulation of vimentin and fibronectin [151, 180]. Histologically cells that 

go through EMT become more spindle shaped and lose basal-apical polarity as well 

as acquiring greater motility and resistance to apoptosis. These characteristics 

promote normal cell migration and survival during embryogenesis and wound 

healing. EMT and MET are therefore tightly regulated by epigenetic changes, 

transcription factors, micro-RNA and signalling pathways including that of AJ protein 

β-catenin [180]. 

Activation of β-catenin is classically attributed to Wnt signalling whereby Wnt binds 

its receptor Frizzled and co-receptors LRP5/6 resulting in the formation of an LRP-

Axin-FRAT complex. This complex frees β-catenin from GSK-3β sequestration 

preventing its degradation and allowing cytoplasmic accumulation and nuclear 

translocation [180]. However, Wnt-independent beta-catenin signalling also occurs 

such as via EGFR signalling whereby tyrosine phosphorylation of β-catenin results in 

the dissociation from E-cadherin and AJs. Within the cytoplasm β-catenin can be 

degraded or can be translocated to the nucleus. Nuclear β-catenin can regulate the 

expression of numerous genes including gene involved in cell proliferation (c-myc and 
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Cyclin D1),inhibition of apoptosis (MDR1/PGP, COX-2, PPARδ), tumour progression 

(MMPs, uPAR, Upa, CD44, Laminin γ2 and NrCAM), Growth factors (c-met, VEGF, 

WISP-1, BMP-4), transcription factors (c-jun, fra-1, ITF-2, Id2 and AF17) and negative 

feedback targets (conductin, Tcf-1 and Nkd) [181].  

Therefore, AJs are able to regulate and transduce intracellular junctions, which may 

result in changes to gene expression. AJs can also regulate the actin cytoskeleton and 

as they connect to the actin cytoskeleton as well as linking neighbouring cells AJ 

coordinate movement of cell groups [132, 151]. 

1.2.4.2 Tight Junction Function 

The most documented functions of TJ include: gate function; providing a diffusion 

barrier selectively regulating the paracellular passage of solutes and fence function; 

demarcating the apical and basolateral domains of the cell. However TJs are also 

important as intermediates and transducers of cell signalling important in processes 

such as differentiation and growth, mediators of cell adhesion and barriers to 

migration and motility (See Figure 1.10) [142, 143].  

Barrier function is essential for multicellular organisms to be able to establish and 

maintain distinct fluid compartments. Epithelial cells separate tissue spaces and 

endothelial cells line blood and lymphatic vessels [145, 160, 171, 182]. Epithelial cells 

and endothelial cells form continuous monolayers which function as selective 

permeability barriers between compartments by regulating the passage of ions, 

water and solutes via paracellular movement [145, 183]. This prevents the diffusion 

of non-specific solutes resulting in the maintenance of the distinct composition of 

adjacent tissue compartments which requires the paracellular space between 

adjacent cells to be sealed [171]. These barriers are due to a junction at the most 
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apical region of this zone, i.e. TJs [147, 171, 184]. The permeability of these barriers 

can vary considerably with the selection of claudin being expressed within the tissue 

and the expression being tissue specific [144, 185]. Different claudins have different 

size and charge selectivity and produce TJs of different tight/ leakiness as determined 

by the first extracellular loop [184]. Therefore the expression of TJ proteins help to 

define the overall transport characteristics of each epithelia and endothelia [147]. 

With TJ selectively blocking paracellular transport it is imperative that there is 

controlled transcellular movement of molecules [182]. For this to occur, cells need 

to differentiate their plasma membrane to form specialised domains of distinct 

protein and lipid compositions, known as cellular polarisation [145]. TJ do not initiate 

this polarization but form after cell polarization has occurred [128]. However along 

with other intramembrane fences formed from other junctional complexes, TJs are 

thought to be important in the maintenance of this polarisation by preventing the 

free diffusion of proteins and lipids between the apical and basolateral membrane 

domains. This polarisation is also important for other cell biological processes 

including: cell adhesion, cell signalling, cell migration, asymmetric cell division and 

epithelial as well as endothelial barrier formation [128, 145]. 

TJ are involved in numerous signalling cascades, the extent of which is still being 

investigated. PKC signalling is important in TJ regulation by phosphorylating TJ 

proteins with PKC stimulation triggering translocation of TJ proteins to cell borders 

and PKC inhibition decreasing transepithelial resistance (TER), indicating disruption 

of TJS. MAPK signalling modulates TJ paracellular transport by up/down regulating 

the expression of several TJ proteins. There is also crosstalk between PKC and MAPK 



  Chapter I 

51 
 

signalling in TJ regulation. One example of this is in corneal epithelial cells where 

activation of PKC results in decreased TER via MAPK activation [177].  

It has also been found that certain plaque anchoring proteins have a secondary role 

in gene expression. There appears to be correlation with subcellular location and 

confluence/ proliferation, with these proteins being found in the nucleus in 

proliferating low confluent cells, but at TJs in high confluent non-proliferating cells 

[176]. ZO-1 is one of these proteins that can shuttle between the nucleus and TJs, 

localised in the nucleus of low confluent cells and has been found to associate with 

the Y-box transcription factor ZONAB (ZO-1- associated nucleic acid-binding protein). 

In highly confluent cells ZO-1 sequesters ZONAB in the cytoplasm resulting in a 

decreased nuclear level of CDK4 the regulator of G1/S phase transition; which 

interacts with ZONAB and colocalises with ZO-1 at TJs. Cytoplasmic ZONAB also 

results in decreased gene expression of target genes including cyclin D1 and PCNA; 

which are important in cell cycle control and DNA replication and repair respectively. 

Other genes regulated by ZONAB include: proteins involved in DNA replication, 

proteins involved in chromatin remodelling and proteins involved in DNA repair. 

ZONAB has also been shown to interact with symplekin, a nuclear protein that can 

associate with TJs. Symplekin is linked to 3’- end processing of pre-mRNA and 

polyadenylation as well as regulating gene expression of ZONAB target genes 

including cyclin D1. This ZO-1/ZONAB signalling is controlled by RalA and Apg-2. RalA 

is a member of the Ras superfamily of small GTPases which are important in actin 

cytoskeleton remodelling, cell cycle control, cellular transformation and vesicle 

transport. GTP bound RalA inhibits ZONAB by increasing the levels of cytoplasmic 
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ZONAB. Apg2 is a heat shock protein that competes for the SH3 domain, ZONAB 

binding site, of ZO-1 thus is an activator of ZONAB [175, 176].  

Other TJ plaque anchoring proteins have been found in the nucleus including: ZO-2, 

ZO-3, PALS-1, MAGIs, PAR-6, PAR-3 and cingulin and have been shown to interact 

with transcription factors such as ZO-2 interacting with Fos, Jun and C/ERP [176, 186]. 

ZO-2 interactions with these transcription factors occurs in the nucleus as well as at 

TJs, suggesting that ZO-2 also acts to sequester transcription factors away from the 

nucleus and preventing transcription of target genes in polarised cells [187]. It is 

therefore possible for TJ to regulate the expression of a variety of genes and thereby 

regulate a variety of cellular processes.  
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Figure 1.10. Tight Junction Roles.  
Adapted from [169]. Systematic representation of the roles of TJs  
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1.2.5 Junctions and Disease 

1.2.5.1 Adherens Junctions and Disease 

Cells require the ability to adhere and communicate with other cells and the 

extracellular environment for morphogenesis and the maintenance of tissue 

integrity. Cellular junctions are dysregulated in many human disorders either by 

inherited gene mutation or during disease pathogenesis. Disruptions to AJs or defects 

in AJ proteins are associated with a variety of diseases including inflammatory bowel 

disease, hair and skin disorders and cancer [188-191]. 

Inflammatory bowel diseases such as Crohn’s disease and ulcerative colitis are 

multifactorial diseases resulting in the contribution of both environmental and 

genetic factors. Inflammatory bowel diseases are characterised by prolonged 

cytokine stimulation in the gut, dysbiosis of intestinal microbiota and the 

dysregulation of the mucosal immune system [189]. AJ have been implicated in these 

diseases with alterations in genes encoding E-cadherin and P-cadherin being 

important in their development and a decreased E-cadherin staining being observed 

around ulcerated mucosal regions in Crohn’s and ulcerative diseases [189, 192-194]. 

Decreased E-cadherin is essential to allow for cell regeneration, differentiation and 

migration. However, in inflammatory bowel disease the absence of E-cadherin 

expression results in the loss of cell-cell adhesion, impairing the integrity of the 

mucosal barrier and therefore allowing for the exposure of the lumen to the 

underlying mucosal immune system and in turn resulting in disease relapse [195, 

196]. Other AJ proteins have also been implicated in inflammatory bowel diseases 

including α-catenin, β-catenin and p120-catenin, which have been shown to be 

decreased around regions of ulceration [189]. 
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Mutations in the gene encoding P-cadherin (CDH3) have also been linked to 

hypotrichosis with juvenile macular dystrophy, an autosomal disorder characterised 

by early hair loss and the progressive degeneration of the central retina resulting in 

blindness. P-cadherin is expressed in hair follicle and retinal pigment epithelium and 

alterations in this protein via gene mutation is thought to result in loss of cell-cell 

adhesion [190, 197, 198]. 

With over 90 % of cancers being epithelial in origin it is unsurprising that factors that 

promote the normal architecture and functioning of epithelia are altered throughout 

the development and progression of cancer [199]. Adhesion molecules contribute to 

various functions including signal transduction, cell growth, differentiation, gene 

expression, morphogenesis, immunological function, cell motility and inflammation. 

Therefore adhesion molecules have pivotal role in development of recurrent, 

invasive, and distant metastasis with some acting as tumour suppressors [200]. The 

dysregulation of AJ has particular implications in transformation and tumour invasion 

with EMT being important in cancer progression and metastasis with EMT resulting 

in drug resistance, cancer stem cell transformation and poor prognosis of numerous 

cancers [180, 201]. One of the hallmarks of EMT is the loss of E-cadherin and the loss 

of E-cadherin based cell-cell adhesion has been observed during the progression of a 

multitude of human cancer [199].  

The inactivation of E-cadherin is thought to be an important step in the development 

of most, if not all, epithelial derived tumour types and loss of E-cadherin is associated 

with increased invasive and metastatic potential and with a poor clinical outcome 

[202, 203]. The importance of E-cadherin in cancer development has been 

demonstrated in mice whereby the loss of E-cadherin drives the transition of 
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adenomas to carcinomas of pancreatic β-cells expressing SV40 large T antigen and 

the maintenance of E-cadherin expression resulted in the stalling of these cells at the 

adenoma stage [203]. In non-small-cell lung cancer reduced E-cadherin is associated 

with tumour cell dedifferentiation, local invasion, regional metastasis and reduced 

survival [204]. In bladder cancer loss of membranous E-cadherin staining correlates 

with high grade, advanced stage and poor prognosis [200]. Furthermore mutations 

in the E-cadherin gene have been identified in familial gastric cancer [202]. 

E-cadherin is not the only AJ protein that has been linked to cancer, the dysregulation 

of cadherin molecules has been strongly associated with cancer metastasis and 

progression such as in breast cancer whereby an increased P-cadherin expression is 

related to a worse prognosis [205, 206]. Other AJ proteins are also implicated in 

cancer progression such as in colorectal cancer with an increased β-catenin nuclear 

staining and decreased E-cadherin membrane staining being two independent 

adverse prognostic factors [181]. 

The dysregulation of AJs and AJ proteins has also been associated with the 

development and progression of prostate cancer. Expression of E-cadherin, β-

catenin, α-catenin and p120 catenin are all decreased in prostate cancer and these 

decreases correlate to high Gleason grade [207-209]. Cadherin switching was 

associated with prostate cancer specific death although N-cadherin expression did 

not correlate with any prognostic parameters. However, P-cadherin expression is 

associated with a shorter time to skeletal metastasis [209, 210]. Furthermore, it is 

not only the expression of AJs proteins that is important for prostate cancer aetiology 

but also their localisation. An increased nuclear staining of β-catenin is associated 

with higher Gleason grade and β-catenin is thought to contribute to prostate cancer 
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progression through links with androgen signalling, cell proliferation and cell death 

[207].  

1.2.5.2 Tight junctions and Disease 

TJs have been linked to numerous diseases including Crohn’s disease whereby 

variations in claudin expression in intestinal epithelium results in variation in TJ 

integrity and decreased amounts of TJs which in turn results in an increased intestinal 

permeability and therefore diarrhoea. Within the blood brain barrier TJ regulate 

transport of molecules and immune cells from the blood into the brain and vice versa, 

thus maintaining homeostasis of central nervous system microenvironment. The 

increased migration of leukocytes in multiple sclerosis has been shown to reorganise 

the actin cytoskeleton and TJs and decrease ZO-1 and occludin synthesis. Hereditary 

deafness nonsyndromic recessive deafness DFNB29 can be caused by mutations in 

cochleal claudin-14 resulting in changes in TJ charge sensitivity. Familial 

hypomagnesemia with hypercalciuria and nephrocalcinosis may be caused by 

mutations in claudin-16 which impair TJ functions affecting permeability properties 

as well as claudin-19. TJs are important in both the inner (endothelial) and outer 

(epithelial) layers of the blood retinal barrier however in diabetic retinopathy it is the 

inner layer that is the primary site of vascular leakage resulting in macular oedema; 

thought to be the directly responsible for vision loss. This may be due to VEGF 

mediated TJ altering via decreased occludin expression and increased occludin and 

ZO-1 phosphorylation. Furthermore TJs have been implicated in cancer progression 

[185]. 

Multiple cancers originate from epithelia thus TJ exist between cancer cells as well 

as the endothelium these cells need to get through to metastasise via the circulatory 
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system. Secondary tumours are responsible for the majority of cancer mortality due 

to tumour metastasis. There is an emerging interest in TJ involvement in cancer 

progression and metastasis with numerous TJ proteins having been shown to be 

important in crucial changes of cell physiology including: evasion of apoptosis, 

limitless replicative potential, angiogenesis and tissue migration and motility; all of 

which are required for cancer to progress to metastatic disease as previously 

discussed in Section 1.1.4.3 [143].  

TJs are important in the maintenance of epithelial polarization. In cancer this is 

important due to polarized epithelia having low proliferation rates and loss of 

polarization therefore often leads to increased proliferation and is often seen in 

carcinogenesis [128]. An example of this is in airway epithelia which constitutively 

produce the growth factor heregulin and its oncogenic receptor tyrosine kinases 

ErbB2-4. Binding of heregulin to its receptors initiates proliferation, therefore to 

control this in differentiated airway epithelia heregulin-α is localised to the apical 

membrane domain as well as airway surface liquid and ErbB2-4 are located at the 

basolateral membrane domain and are thus physically separated from one another. 

They only interact when epithelial cell polarisation or TJ integrity is compromised 

resulting in proliferation [211].  

The claudin family of integral membrane proteins are frequently deregulated in 

cancer and appear to play important roles in multiple carcinogenic alterations in cell 

physiology. For instance, Claudin-1 down-regulation is seen in several cancers [212]. 

However, Claudin-1 expression in liver cancer is linked with increased MMP2 activity 

and activation of c-Abl-PKCδ mediated migration and invasion [213]. Claudin-4 
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expression in ovarian epithelial cells results in increased gene expression of pro-

angiogenic cytokines such as IL-8 [214]. Claudin-6 is reported to act as a tumour 

suppressor in breast cancer and down regulation results in decreased apoptosis as 

well as increasing MMP activity thus increasing invasion and transendothelial 

migration [215]. Claudin-7 down regulation results in increased migration in lung 

cancer, increased venous invasion and liver metastasis in colorectal and increased 

invasion in oesophageal cancer. This may be explained by decreased Claudin-7 

resulting in decreased E-cadherin expression as well as increased ERK/MAPK 

signalling pathway activity [216-218]. 

Other integral membrane proteins have also been implicated in these alterations of 

cell physiology with decreased occludin levels correlating with dedifferentiation and 

progression of several cancers and resulting in decreased pro-angiogenic expression 

[219, 220]. Alterations in JAM family proteins have been shown in several cancers 

including: breast and renal cancers as well as melanomas [221-223]. JAM-A down 

regulation results in increased epithelial cell proliferation and appears to be an early 

event in the development of renal cancer and increases migration of renal cancer 

cells [222, 224]. However, in certain models decreasing JAM-A has been shown to 

decrease tumour growth; with JAM-A appearing to inhibit Akt-dependent β-catenin 

activation [225]. JAM-A overexpression has also been associated with increased 

breast cancer metastasis [221]. Furthermore JAM-A is required for bFGF induced 

angiogenesis [226]. JAM-C appears to be required for melanoma cell transendothelial 

migration and increased JAM-C expression is linked to increased invasion and 

metastasis, whereas JAM-A impairs melanoma cell transendothelial migration [223]. 
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Plaque anchoring proteins have also been implicated in cancer aetiology. ZO-1 is able 

to regulate membrane-type 1 (MT1) MMP expression and ZO-1 knockdown in breast 

cancer cells results in decreased MT1-MMP expression and decreased invasion. 

Down regulation of the ZO-1 interacting protein Scribble in mammary epithelia 

resulted in decreased cell polarity, decreased apoptosis and increased dysplasia 

resulting in cancer after a period of latency [227]. Furthermore, as previously 

discussed ZO-1/ZONAB signalling is important in the regulation of proliferation thus 

decreased ZO-1 levels increases nuclear ZONAB levels and in turn increases 

proliferation [175]. It is therefore not surprising that ZO-1 is down regulated in 

certain cancers including breast, pancreatic and brain cancers [175]. 

It is therefore apparent that TJ proteins are imperative in stages of cancer 

progression, although different proteins may be important in different stages and 

expression may vary with cancer type. Thus, each cancer may have a different TJ 

protein expression fingerprint. 

Within prostate cancer the expression profiles of some TJ proteins have been 

investigated (See Table 1.3). Expression of claudin 3 and 4 mRNA was shown to be 

high in prostate cancer with the distribution of claudin-3 mRNA expression changing 

from being restricted to glandular epithelia in the normal prostate to also being 

found in malignant epithelia in prostate adenocarcinoma. As claudin-3 and 4 are 

capable of binding Clostridium perfringens enterotoxin (CPE) to mediate toxin-

dependent cytolysis it was found that prostate cancer highly expressing claudin-3 and 

claudin-4 is sensitive to CPE-mediated cytosis [228]. Similarly, another study found 

that claudin-3 and claudin-4 expression persisted in prostatic adenocarcinoma in 

comparison to benign epithelia with expression being similar or increased. This 
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expression of claudin-3 and claudin-4 correlated with advanced stage tumours and 

claudin-3 expression with recurrence. They also showed that claudin-1 and claudin-

7 expression decreased in prostatic adenocarcinoma in comparison to benign 

epithelia and that his decrease in claudin-1 and claudin-7 correlated with high 

tumour grade and decreased claudin-1 with biochemical recurrence [229]. In 

contrast to this it was shown that claudin-1 and claudin-7 levels were high in prostate 

cancer samples, in the majority of samples claudin-3 and claudin-4 were high and 

claudin-2 and claudin-5 levels were low [230]. When comparing prostate 

adenocarcinoma to BPH claudin-2, claudin-3 and claudin-5 expression was increased, 

claudin-4 expression was decreased and there was no change in claudin-1 and 

claudin-7. Increased expression of claudin-3 and claudin-5 was associated with 

perineural invasion [231]. Claudin-3 expression is also shown to be increased in 

prostatic intraepithelial neoplasia, prostate cancer and metastatic prostate cancer in 

comparison to normal epithelia and BPH [232]. Occludin was shown to be lost in 

unpolarised epithelial cells of Gleason grade 4 and 5 tumours [233]. Calcitonin (CT) 

and its G-couple receptor (CTR) are both up regulated in metastatic prostate cancer 

and activated CT-CTR causes increased tumourigenicty and metastatic potential in 

multiple prostate cell lines. This has been suggested to be due to disrupted TJs as 

indicated by decreased TER, increased paracellular permeability (PCP) and 

internalisation of ZO-1 [234]. Investigations into compounds that can reverse these 

changes led to the identification of phenyl-methylene hydantoin (PMH) as a potential 

therapeutic [235]. Studies into TJs in prostate cancer are limited and show conflicting 

results. However, this may be due to studies looking at differences in expression 

between normal and prostate epithelia, expression levels in prostate cancer epithelia 
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or comparisons between prostate cancer and BPH which are likely to have a changed 

expression profile from the normal prostate.  

Regulation of TJs in the prostate has been linked to androgen signalling with 

decreased testosterone or androgen serum levels being associated with decreased 

claudin-4 and claudin-8 expression in prostate epithelium. Decreased testosterone 

levels are associated with decreased contact points between adjacent membranes 

as well as being associated with increased prostate inflammation. It has therefore 

been proposed that decreased testosterone due to aging results in decreased TJs and 

increased inflammation, which may contribute to the development and progression 

of prostate neoplasia [236]. Furthermore, in the LNCaP cell line two forms of claudin-

7, full length 211 aa form and C-terminal truncated 158 aa form, are able to regulate 

PSA expression. They therefore may be involved in androgen regulation in prostate 

cancer; with increased androgen stimulation leading to increased claudin-7 and 

increased PSA gene expression [237].  
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Table 1.3.Changes in TJ protein expression in Prostate Cancer 

Protein Change in Expression Reference 

Claudin-1  Down regulated [229] 

Up regulated [230] 

No change [231] 

Claudin-2 Down regulated [230] 

Up regulated [231] 

Claudin-3 Up regulated [228] 

No change/ Up regulated [229] 

Up regulated [232] 

Up regulated [231] 

Claudin-4 Up regulated [228] 

No change/ Up regulated [229] 

Down regulated [231] 

Claudin-5 Down regulated [230] 

Up regulated [231] 

Claudin-7 Down regulated [229] 

Up regulated [230] 

No change [231] 

Occludin Down regulated [233] 
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1.3 Hepatocyte Growth Factor 

1.3.1 Hepatocyte Growth Factor Structure 

HGF, also known as scatter factor (SF), was identified as the ligand for the oncogene 

MET [238-242]. HGF gene is located on chromosome 7q21.11 and encodes a large 

multidomain 728 amino acid protein consisting of six domains: an amino terminal 

domain , four kringle domains 1-4 and a serine proteinase homology (SPH) domain; 

which lacks enzymatic activity due to mutations in essential residues [242]. HGF is 

secreted from mesenchymal cells as an inactive single chain precursor (pro-HGF) 

which is proteolytically cleaved after the K4 domain, between residues 494 and 495, 

to form two subunits: heavy (α) subunit of 463 amino acids and light (β) subunit of 

234 amino acids. These two subunits are disulphide linked to form the active HGF 

heterodimer [238, 243-246].  

1.3.2 Hepatocyte Growth Factor Receptor 

First identified in the 1980s MET is a proto-oncogene located on chromosome 

7q21-31 [245, 247]. The MET gene encodes the c-Met tyrosine kinase, the receptor 

for HGF and transcription is regulated by E-twenty six (Ets), paired box 3 (Pax3), 

activator protein-2 (AP2) and transcription factor 4 (Tcf-4) [246, 248-250]. Similarly 

to HGF, c-Met is disulphide linked heterodimer formed from proteolytic cleavage of 

a 1390 amino acid precursor between residues 307 and 308 resulting in an α subunit 

and β subunit. The α subunit  as well as amino acids 308 and 514 of β subunit make 

up the semaphorin (sema) domain the rest of the β subunit contains the cysteine rich 

domain, four immunoglobulin domains (Ig1-Ig4), a transmembrane region, 
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intracellular cytoplasmic juxtamembrane domain and tyrosine kinase domain [245, 

251]. 

1.3.3 Hepatocyte Growth Factor Signalling 

HGF binds to c-Met via NK1 and SPH domains interacting with the c-Met Sema 

domain [251]. HGF binding results in receptor dimerization and transphosphorylation 

of tyrosine residues, Tyr1234 and Tyr1235, located within the catalytic loop of the 

tyrosine kinase domain and the subsequent phosphorylation of Tyr 1349 and Tyr1356 

within the carboxyl-terminal tail. These residues are docking sites for intracellular 

adaptor proteins including GAB1, GRB2 and SHC, via Src-homology-1 (SH2) domains, 

phosphotyrosine binding (PTB) domains or Met binding domains (MBD) [252]. These 

mediate signal transduction via activation of signalling pathways including: MAPK, 

PI3K-Akt and STAT-3 to control a variety of cellular processes including: cell 

proliferation, cell survival, cell motility and differentiation  [245, 246, 253, 254].  

1.3.3.1 MAPK Cascade  

The MAPK cascade is a phospho-relay system in which a series of three protein 

kinases phosphorylate and activate one another [254]. Met activates Ras, a small 

GTPase, through the GRB2-SOS complex as well as through SHP2 which 

dephosphorylates and deactivates GAB1 a protein that normally deactivates Ras. 

Active GTP bound Ras recruits Raf, a Ser/Thr kinase, promoting a conformational 

changes and activation of Raf which can then phosphorylate and activate MAPK/ERK 

kinase 1 (MEK1) or MEK2. MEK1/MEK2 in turn phosphorylates and activates 

ERK1/ERK2, which then translocates to the nucleus where they phosphorylate and 

stabilise several transcription factors involved in G1-S cell cycle transition [246, 254]. 
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Met can also activate JNK MAPK cascade via Ras activating Rac1 as well as activation 

via Gab1-Crk1 [245, 254] . As well as activating the p38 MAPK cascade, both of which 

can control a range of cellular processes including: cell proliferation, differentiation, 

transformation and apoptosis [254].  

1.3.3.2 PI3K cascade  

PI3K can be activated directly by c-Met or indirectly through Ras activation. PI3K 

activation recruits Akt, a Ser/Thr kinase to the plasma membrane leading to the 

inactivation of BCL-2 antagonist of cell death (BAD), a pro-apoptotic protein and the 

activation of MDM2, an E3 ubiquitin protein that promotes degradation of p53, 

resulting in cell survival. Akt also inactivates glycogen synthase kinase 3β (GSK3β) 

resulting in the expression of Myc and cyclin D1 important in cell cycle regulation 

[254]. 

1.3.3.3 STAT Pathway 

STAT3 associates to c-Met directly and indirectly through Gab1 and is phosphorylated 

by active c-Met. Phosphorylated STAT3 then dislocates from c-Met, forms a 

homodimer through their SH3 domains, translocates to the nucleus and regulates 

the expression of several genes involved in proliferation, survival and differentiation 

[252, 254]. 

1.3.3.4 c-Met regulation 

c-Met activation is tightly regulated to maintain tissue homeostasis, this is achieved 

by a negative feedback loop resulting in Met degradation via an ubiquitin-

proteasome pathway [245, 255]. Activation of c-Met by HGF binding results in the 

recruitment of casitas B-lineage lymphoma (c-Cbl) via direct binding to Tyr1003 of c-

Met and indirectly through association with the N-terminal SH3 domain of Grb2 
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which in turn associates with Tyr1356 of Met [256]. c-Cbl is a E3 ubiquitin-protein 

ligase which ubiquitinates c-Met [255, 256]. This leads to c-Met internalisation into 

endosomes and degradation [257, 258]. c-Met activity is also modulated by 

dephosphorylation of tyrosine residues. This is accomplished through protein 

tyrosine phosphatases (PTPs) including:  the receptor-type PTPs density enhance 

phosphatase 1 (dEP1) and leukocyte common antigen-related molecule (LAR) as well 

as the non-receptor PTPs PTP1B and T-cell protein tyrosine phosphatase [246]. 

1.3.4 Hepatocyte Growth Factor and Tight Junctions 

HGF has been shown to dysregulate TJs in a number of cell lines resulting in 

decreased cell polarity [259]. HGF treatment changes the expression of TJ proteins 

expression including decreasing claudin-2 and increasing claudin-3 in MDCK cells, 

decreasing ZO-1 and claudin-1 in HUVEC cells and decreasing claudin-1 in retinal 

pigment epithelial monolayers  [259-262]. HGF also affects TJ protein distribution 

within cells with HGF treatment resulting in relocalisation of claudin-1 and occludin 

to the cytoplasm in retinal pigment epithelial monolayers, decreasing the amount 

ZO-1 and barmotin/7H6 at the cell membrane in MDCK cells and the amount of ZO-1 

at cell membranes in non-tumoral gastric epithelia (IMGE-5) cells [262-264]. 

Furthermore, HGF treatment results in increased ZO-1 phosphorylation in breast 

cancer cells as well as occludin phosphorylation in retinal pigment epithelial 

monolayer and decreases TER as well as increasing PCP in a number of cell types. All 

of which suggests HGF regulates TJ integrity and HGF signalling results in decreased 

TJ integrity resulting in decreased polarity and increased migratory potential [261, 

262, 264, 265]. 
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1.3.5 Hepatocyte Growth Factor and Cancer 

HGF/c-Met signalling controls many cellular processes shown to be deregulated in 

cancer thus over activation may be imperative in cancer development and/or 

progression. HGF-c-Met signalling has been shown to be overactive in numerous 

cancers and this can be due to gene amplification, activation mutations, 

chromosomal rearrangements, transcriptional upregulation and HGF overexpression 

[246]. 

1.3.5.1 Gene Amplification 

Amplification of the MET gene results in protein overexpression and increased c-Met 

activation. Gene amplification has been reported in a number of tumours including: 

oesophageal adenocarcinoma, gastric adenocarcinoma, medullablastoma and 

pancreatic adenocarcinoma [246, 266-272]. There is also a link between c-Met gene 

amplification and tumour grade and prognosis in some cancers [268].  

1.3.5.2 Activation Mutations 

Activating mutations have been discovered in the c-Met kinase domain in sporadic 

and inherited forms of human papillary renal carcinoma [246, 272-274]. Mutations 

have also been identified in the c-Cbl binding site and HGF-binding region of the c-

Met Sema domain [246]. 

1.3.5.3 Chromosomal Rearrangements 

c-Met was identified in an osteosarcoma cell line contained the chromosomal 

rearrangement fusing the tyrosine kinase domain of c-Met to the upstream 

translocating promoter region (TPR). This creates c-met with constitutive 

dimerization and activation promoting tumour development [246, 247, 272, 275].  
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1.3.5.4 Transcriptional Upregulation 

Transcriptional upregulation is also seen in the absence of gene amplification 

resulting in increased protein expression and c-Met over activation. This has been 

reported in a number of carcinomas including: thyroid carcinoma [246, 272]. Hypoxia 

has been shown to activate c-Met transcription via the transcriptional factor hypoxia 

inducible factor 1α (HIF1α) [246, 276, 277]. 

1.3.5.5 HGF Over Expression  

HGF has been found to be frequently overexpressed in the reactive stroma of primary 

tumours which increases c-Met activity in tumour cells [246, 272, 278]. 

1.3.5.6 Hepatocyte Growth Factor and Prostate Cancer 

The prostate gland may be well suited for the model by which HGF is produced in 

mesenchymal cells and affects nearby epithelial cells expressing c-Met especially in 

prostate cancer where stromal-epithelial interactions are thought to be important 

for cancer growth and progression. In cell lines HGF has been shown to be expressed 

by prostatic stromal myofibroblastic cells but not prostate cancer cell lines (PC-3, 

Du145 and LNCaP) and c-Met is expressed on some prostate cancer cell lines (PC-3 

and Du145) which fits this model. However, c-Met only being expressed on 

androgen-insensitive cell lines (PC-3 and Du145) but not androgen-sensitive cell lines 

(LNCaP) as well as expression of c-Met increasing in metastatic prostate cancer in 

comparison to primary prostate cancer and in rat prostate epithelia after castration 

suggests HGF/ c-Met signalling is important in prostate cancer progression. 

Furthermore, in Du145 cells HGF induced dose dependent proliferation and 

scattering, both of which are important in cancer progression [279]. HGF increased 

nuclear location and transcriptional activity of NF-κB via PI3K-AKT signalling cascade 
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in Du145 cells and resulting in antiapoptotic signals and cell protection which are also 

important in cancer progression [280]. In respect to TJs, HGF causes decreased ZO-1, 

ZO-2 and ZO-3 at cell junctions in prostate cancer cell lines (PC-3, Du145, PZ-HPV-7 

and CA-HPV-10) and decreases TER in these cell lines implying disruption of TJ 

integrity which has been shown to promote cancer development and progression 

[281].  
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1.4 Hepatitis A Virus Cellular Receptor  

The Hepatitis A virus cellular receptor (HAVcR-1) is the cellular receptor for Hepatitis 

A virus (HAV) a Hepatotropic picornavirus, the cause of acute hepatitis A in humans 

[282]. HAVcR-1 is also termed T-cell immunoglobulin and mucin domain containing 

molecule 1 (TIM-1) and kidney injury molecule-1 (KIM-1). HAVcR-1 is expressed on 

every tested human organ including: liver, small intestine, colon and spleen as well 

as high expression on the kidney and testis, however the natural function of HAVcR-

1 has not been fully investigated [282]. 

1.4.1 HAVcR-1 Structure 

Located on chromosome 5q31.1-32.3 in humans the HAVCR1 gene is approximately 

38.7 kb and consists of 9 exons and 8 introns (See Figure 1.11A) [283]. This encodes 

a 359 amino acid class I integral glycoprotein which can be roughly broken down into 

three sections; the extracellular domain, transmembrane domain (TMD) and the 

cytoplasmic domain (See Figure 1.11B).  

The extracellular domain that exists at the N-terminal section of the HAVcR-1 

proteins is approximately 272 amino acids and consists of a 109 amino acid cysteine 

rich region (Ig-like domain) and a 163 amino acid threonine, serine and proline rich 

region (mucin-like domain) [282]. The Ig-like domain contains six conserved cysteine 

residues as well as an N-glycosylation site [282, 284]. The mucin-like domain, termed 

so due to it being characteristic of a mucin-like O-glycosylated protein, contain 13 

conserved repeats of the consensus PTTTTL, two conserved N-glycosylation sides as 

well as a possible N-glycosylated site [282]. The mucin-like domain is therefore 

predicted to be highly glycosylated , to have an extended conformation and extend 
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the Ig-like domain away from the cell membrane to form a lollypop on a stick like 

configuration (See Figure 1.11C) [285, 286]. The TMD is the major hydrophobic region 

of HAVcR-1, it is 22 amino acids in length and exists between residues 290 and 311. 

Conserved within the TMD there is a cysteine residue at reside 296 which is thought 

to allow the addition of fatty acids to aid in the stabilisation of membrane attachment 

[282].The cytoplasmic domain that exists at the C-terminal end of HAVcR-1 is short 

in comparison to the extracellular domain only being 48 amino acids in length. This 

domain contains a tyrosine phosphorylation motif QAENIY starting at residue 350 

and may therefore make HAVcR-1 important in signalling events [282, 284].  

There are two splice variants of HAVcR-1 termed HAVcR-1a and HAVcR-1b; HAVcR-1b 

is described above. HAVcR-1a is 334 amino acids and only varies from the described 

HAVcR-1 structure at the C-terminus whereby the cytoplasmic domain is shorter and 

is therefore missing the QAENIY tyrosine phosphorylation motif (See Figure 1.11D). 

The complexity of HAVcR-1 leads to variability in protein size. The gene is expected 

to encode a 36 kDa protein however due to four possible N-glycosylation sites, 

multiple possible O-glycosylation sites and possible biotinylation, it can result in the 

mature protein being approximately 100 kDa as well as the immature protein being 

70 kDa or 50 kDa [284]. HAVcR-1 can also undergo cleavage to release an ectodomain 

as detailed in Section 1.4.2. This ectodomain is approximately 90 kDa and the 

membrane bound fragment which remains is approximately 14 kDa [287]. 
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Figure 1.11 HAVcR-1 Gene and Protein Structure.  
Adapted from [283, 284]. A Representation of the HAVCR1 gene showing the size in 
base pairs of the introns number 1- 8 and the exons numbered in roman numerals 
1-9. B Representation of HAVcR-1b protein showing the size and position of its 
structural domains, position of cysteine residues in the Ig-like domain represented 
by (c), position of possible N-glycosylation sites represented by triangles, position of 
the tyrosine phosphorylation motif QAEDNIY represented by (P) and predicted 
cleavage site represented by a black box. C Predicted secondary structure of 
HAVcR-1. D Amino acid sequence of the cytoplasmic domain of HAVcR-1a and 
HAVcR-1b.  
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1.4.2 HAVcR-1 Ectodomain 

There is a proteolytic cleavage site in the mucin-like domain near the TMD of HAVcR-

1 (See Figure 1.12). Cleavage at this site releases a HAVcR-1 ectodomain into the 

extracellular space [284, 288]. The site of cleavage is predicted to occur between 

residues 266 and 278 due to a monoclonal antibody targeting this site (ABE3) 

blocking cleavage and due to this site being present in both splice variants HAVcR-1a 

and HAVcR-1b are both believed to be equivalent substrates for proteases [284, 289]. 

The p38 signalling cascade is thought to regulate cleavage. This is because activating 

p38 and ERK-MAPK signalling via pervanadate treatment promotes cleavage and the 

use of SB202190, a p38 inhibitor, inhibiting this pervanadate induced cleavage but 

the MEK1 and MEK2 inhibitor U0126 having no effect on pervanadate induced 

cleavage [289]. The cleavage event has been attributed to metalloproteases of the 

matrix metalloprotease (MMP) family or the a desintegrin and metalloprotease 

(ADAM) family due to batimastat (BB-94) and ilomastat (GM6001) inhibiting and 

propidium monoazide (PMA) promoting HAVcR-1 cleavage [284, 289].  
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Figure 1.12 HAVcR-1 Ectodomain 
Adapted from [287]. Representation of HAVcR-1 cleavage proximal the membrane 
by metalloproteases to release a HAVcR-1 ectodomain. Treatments that are known 
to promote or inhibit this cleavage event are listed.  
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1.4.3 HAVcR-1 in Hepatitis A infection 

HAVcR-1 was first identified due to monoclonal antibodies protecting African green 

monkey kidney cells (AGMK) from Hepatitis A via blocking binding of the Hepatitis A 

virus (HAV) to the cells [290]. HAV has a positive-strand genomic RNA of 

approximately 7.5 kb. This RNA is covalently linked at its 5’ to a small virus protein 

VPg and contains a poly (A) tail at its 3’ [291]. The mature capsid of HAV is formed by 

60 copies of at least three viral proteins VP1, VP2 and VP3 and a small 

unmyristoylated protein, VP4, plays a signal role in the assembly of this capsid [292]. 

Currently the mechanisms of HAV entry into the cell are elusive with no receptor 

binding site found on this capsid [293]. However it is known that the Ig-like domain 

and its N-glycosylation site of HAVcR-1 is required for HAV binding and the Ig-like 

domain as well as the mucin-like domain is required to induce alteration and 

uncoating of HAV [294-296]. 

1.4.4 HAVcR-1 in Kidney Repair 

After injury to the proximal tubular epithelium, cells lose their polarity and epithelial 

cell apoptosis occurs. Surviving epithelia are then required to dedifferentiate, 

proliferate, migrate over the denuded basement membrane, redifferentiate and 

repolarise [297]. HAVcR-1 expression is low in the healthy kidney however this is 

increased in the renal proximal epithelial cells when injured and regenerating after 

ischemic and toxic kidney injury [298]. This is important as HAVcR-1 is a 

phosphatidylserine receptor and HAVcR-1 binding phosphatidylserine on the surface 

of apoptotic cells and mediates the epithelial phagocytosis of these apoptotic cells. 

Thus HAVcR-1 transforms kidney proximal epithelial cells into semi-professional 



  Chapter I 

77 
 

phagocytes, resulting in the clearance of injured cells without the need of the 

immune system and therefore down regulates innate immunity and inflammation 

[299-301]. HAVcR-1 overexpression after injury also promotes cell migration and 

proliferation, both of which are crucial for kidney regeneration as previously 

mentioned [302]. Therefore HAVcR-1 plays a crucial role in the process of kidney 

repair.  

Interestingly the metalloproteinase cleavage of HAVcR-1 proximal to the membrane 

in these cells releases the HAVcR-1 ectodomain into the urine [284, 289, 298]. Urinary 

HAVcR-1 is therefore a promising biomarker in kidney injury with it being increased 

in both acute and chronic kidney injury [303-306]. Levels of the HAVcR-1 ectodomain 

in the plasma was also increased with acute and chronic kidney injury thus there is a 

possibility of a blood test for HAVcR-1 [306]. Furthermore, there is a possibility of 

HAVcR-1 to be used as a biomarker in donor kidneys where acute kidney injury could 

lead to transplant rejection with donor urine HAVcR-1 levels being higher in kidneys 

that displayed post-transplant dysfunction. Therefore, a lateral flow detection 

system for urinary HAVcR-1 (RenaStick™; BioassayWorks, Ijamsville, MD, USA) has 

been developed to allow simple point of care diagnostic test [307]. Initial testing of 

this device has been promising with RenaStick™ results being able to rapidly detect 

kidney injury [308]. 

1.4.5 HAVcR-1 in Atopy  

Atopy including asthma, allergic rhinitis and atopic dermatitis (eczema) arises from 

environmentally induced immune responses in genetically susceptible individuals. 

HAVcR-1 has been found to be a gene that increases asthma susceptibility with 
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HAVcR-1 being expressed on CD4+ T cells, which play important roles in the 

pathogenesis of asthma and HAVcR-1 transcription occurring during antigen 

stimulation [309]. It is currently hypothesised that HAVcR-1 is important in regulating 

cytokine production in T-cells and it is due to this that a hypoallergenic response 

occurs [310]. HAVcR-1 is expressed on activated CD4+ T cells and this expression is 

maintained in TH2 cells but not TH1 cells. Activation of CD4+ T cells with a TIM-1 mAb 

and T cell receptor ligation increased proliferation and IL-4 and IFN-γ. In TH2 cells 

activation increased proliferation and the production of IL-4 leading to increased 

pulmonary inflammation in response to antigen challenge [311]. 

Interestingly there is thought to be correlation in asthma occurrence and the decline 

in HAV infection, with HAV seropositivity protecting against atrophy when certain 

HAVcR-1 variants are present [312]. It is thought that HAV infection reduces Th2 cell 

differentiation and therefore decreases the risk of developing atrophy. This fits the 

hygiene hypothesis whereby the rise in atrophy is explained by the increased 

standards of hygiene removing the exposure to protective infections in early life due 

[313]. 

1.4.6 HAVcR-1 in Cancer 

The correlation between total HAVcR-1 and urinary HAVcR-1 levels and kidney injury 

led to investigations to assess whether HAVcR-1 could be used as a biomarker in renal 

cell carcinoma (RCC) [314, 315]. RCC is the most common type of kidney cancer in 

adults being responsible for approximately 80 % of cases it is frequently diagnosed 

late making fatality rates high. The most common histological type of RCC, accounting 

for 75-80 %, is clear cell RCC (ccRCC) [316]. HAVcR-1 has been found to be 
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overexpressed by 2- 12 fold in 8/13 of ccRCC but interestingly expression is decreased 

in benign oncocytomas [283]. 60 % of ccRCC contain duplications in chromosome 5 

which has been mapped to Ch5q22 and Ch531.1 which contains the gene locus of 

HAVcR-1, explaining the increased expression of HAVcR-1 however transcriptional 

control, mRNA processing, mRNA export and protein stability may also contribute 

[283, 290]. Both the chromosomal location and overexpression of HAVcR-1 implicate 

it in the development of RCC and it is now thought that HAVcR-1 may be a 

susceptibility gene for RCC [283, 317]. 

 Urinary HAVcR-1 levels also show a potential to distinguish between benign renal 

tumours and renal cancer as well as between clear cell renal carcinoma and other 

histological types of the disease [315, 318]. Urinary HAVcR-1 levels also showed a 

correlation between renal tumour size and grade [315, 317]. This is of importance as 

the late presentation of ccRCC leads to high mortality rates and highlights the 

possibility of HAVcR-1 being clinically important in cancer diagnosis. Urinary HAVcR-1 

levels are also shown to be increased in prostate cancer thus highlighting the 

possibility of HAVcR-1 to be a biomarker of a multitude of cancers and opens up the 

possibility for the RenaStick™ to be used in cancer diagnosis as well as in the 

detection of kidney injury [315].  

Total HAVcR-1 levels have also been shown to be increased in a multitude of cancers 

including breast, colorectal, ovarian and prostate [283, 319, 320]. This 

overexpression has led to investigations into the role of HAVcR-1 in cancer aetiology. 

HAVcR-1 has been linked to TJs, which have an important role in the prevention of 

cancer metastasis. Evidence currently suggests that the HAVcR-1 overexpression 

seen in cancer is linked to TJ disruption and therefore links HAVcR-1 to cancer 
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metastasis [319]. A number of virus receptors have been found to be associated with 

junctional structures including TJs and AJs and investigations into the association of 

HAVcR-1 with junctional structures found via immunoprecipitation that the 50 kDa 

HAVcR-1 associates with the C terminal of ZO-1 and to a lesser extent ZO-2 as well as 

the N-terminal of occludin and RhoC [143]. Due to the importance of these molecules 

in TJs it is possible that HAVcR-1 is also involved in the TJ complex in endothelial and 

epithelial cells. Overexpression and knockdown analysis of HAVcR-1 in a human 

umbilical cord cell line (HECV cells) suggests the importance of HAVcR-1 expression 

in the HGF mediated breakdown of TJ as show by decreased TER in HAVcR-1 

overexpressed HECV cells in comparison to HAVcR-1 knockdown HECV endothelial 

cells when treated with HGF. Dual immunofluorescence of HAVcR-1 and ZO-1 

showed an increased expression and concentrated disruption of ZO-1 in cell-cell 

junctions in knockdown HECV cells in comparison to wild type HECV cells when 

treated with HGF. Therefore it has appears likely that both HGF and HAVcR-1 act on 

the same pathway responsible for the integrity and maintenance of TJs [143]. 

Overexpression of HAVcR-1 in cell lines results in decreased TJs, HAVcR-1 

overexpression in cancer is likely to also result in decreased TJs which may mediate 

metastasis. HAVcR-1 may therefore be a target for anti-metastatic cancer therapies.  

HAVcR-1 overexpression has also been shown to prevent differentiation and altered 

the expression of other members of the family that are associated with 

differentiation and de-differentiation events in kidney renal cell adenocarcinoma 

(769-P) and immortalised normal proximal tubular cell (HK-2) cell lines thus linking 

HAVcR-1 to these events [283]. In vitro HAVcR-1 overexpression and knockdown 

experiments using kidney renal cell adenocarcinoma (769-P) cells also revealed 
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delayed and increased migration as well as increased and decreased proliferation 

respectively [321]. HAVcR-1 may therefore play an important role in the regulation 

of multiple processes in cancer aetiology.  

Ig-like domains are implicated in mediating protein-protein interactions and if at cell 

surface especially cell-cell and cell-extracellular matrix interactions [322]. The mucin 

domain which extends Ig-like domain away from surface like a stalk could have a role 

in configuration and protection as well as cell adhesion [286, 322]. It is also possible 

that similarly to other cell surface mucins such as MUC1 the mucin-like domain of 

HAVcR-1 may act in an anti-adhesive manner by preventing interactions between 

cells as well as between cells and the extracellular matrix [323, 324]. This may be a 

mechanism to allow detachment of cancer cells from primary tumours, a critical step 

in metastasis [324]. 

HAVcR-1 may therefore be a novel target for therapeutics in a variety of cancers and 

it has been shown that the monoclonal antibody 190/4 (mAb 190/4) binds HAVcR-1 

and is internalized into the cell making it ideal for generation of an immunotoxin 

either by its conjugation with a toxin or its use in conjunction with a secondary 

antibody conjugated with a toxin [283, 325]. The use of the mouse mAb 190/4 

followed by a secondary anti-mouse antibody conjugated to the toxin saporin was 

shown to effectively kill the kidney cell line GL37 via the HAVcR-1 receptor, making it 

a possible anti-cancer treatment [283] 

Furthermore, the HAVcR-1 ectodomain has been shown to increase IL-6 expression 

which activates the STAT-3 pathway leading to increased HIF-1α [321]. High levels of 

IL-6 are present in patients with metastatic RCC and are correlated with poor survival. 

IL-6 binds the ligand binding receptor gp80 which leads to the phosphorylation of 
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tyrosine residues of the transducing receptor gp130. This allows for the docking and 

phosphorylation of the activator of transcription STAT-3 [326]. STAT-3 

transcriptionally activates genes involved in tumour proliferation, apoptosis 

inhibition and angiogenesis including HIF1A, a key protein in promoting hypoxia 

induced angiogenesis [327]. HAVcR-1 shedding may therefore mediate angiogenesis 

and metastasis by regulating adhesion, migration and HIF-1α levels thus could be 

targeted as therapeutic target. The production of soluble HAVcR-1 can be inhibited 

by small molecule inhibitors of metalloproteases. However similarly to Herceptin 

(Transtuzamab) blocking the proteolytic cleavage of HER2 in breast cancer, 

therapeutic monoclonal antibodies blocking the cleavage site of HAVcR-1 may be a 

more specific therapeutic in HAVcR-1 positive cancers [284, 328].  
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1.5 Hypothesis and Aims 

HAVcR-1 is a transmembrane protein that has been found to be overexpressed in 

breast, colorectal, renal and prostate cancer [283, 319]. Cleavage of HAVcR-1 

proximal to the membrane leads the release of the HAVcR-1 ectodomain of which 

levels in urine of ccRCC is increased and correlates with tumour size and grade. This 

therefore proposes the HAVcR-1 ectodomain as a potential non-invasive biomarker 

for certain cancers [315, 317].  

Links between HAVcR-1 and cellular junctions have been identified with HAVcR-1 

overexpression disrupting TJ integrity [319]. Furthermore, HAVcR-1 has been linked 

to HGF mediated breakdown of TJ and therefore poses an exciting opportunity to 

explore HAVcR-1 as an anti-metastatic therapeutic target [143].  

The role of HAVcR-1 in cancer development and progression is an active area of 

research however the role of HAVcR-1 in prostate cancer has not been fully 

investigated. Therefore, the main hypotheses of this study are that HAVcR-1 and/or 

the HAVcR-1 ectodomain will provide an effective biomarker for prostate cancer 

diagnosis and that through dysregulation of epithelial cell adhesion HAVcR-1 

contributes to the development and progression to metastatic disease of prostate 

cancer.  

The following aims will be addressed throughout the following chapters with the 

overall focus towards evaluating whether there is a potential to use HAVcR-1 is a 

prostate cancer biomarker and/or a viable therapeutic option to prevent/ treat 

prostate cancer metastasis. 

- To explore the expression of HAVcR-1 in prostate cancer in comparison to 

normal prostate tissue. 
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- To explore the levels of the HAVcR-1 ectodomain in the serum of prostate 

cancer patients in comparison to healthy controls. 

- To assess the expression profile of HAVcR-1 in prostate cancer cell lines. 

- To establish stable HAVcR-1 overexpression and knockdown cell models. 

- To investigate the effects of HAVcR-1 expression on cellular adhesion 

complexes. 

- To investigate the effects of HAVcR-1 expression on cellular behaviour 

including: growth, invasion, migration and adhesion. 

- To investigate the effects of HGF in conjunction with HAVcR-1 expression on 

cellular adhesion complexes and cellular behaviour. 
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2.1 Materials 

2.1.1 Mammalian Cell Lines 

This study used PZ-HPV-7 an immortalised prostate epithelial cell line, CA-HPV-10 

immortalised prostate adenocarcinoma cell line and LNCaP, PC-3 and Du145 

metastatic prostate cancer cell lines. In addition, the HECV vascular endothelial cell 

line was used. PZ-HPV-7, CA-HPV-10, LNCaP, PC-3 and Du145 cell lines were 

purchased from the American Tissue Culture Collection (ATCC) (Manassas, VA, USA) 

and the HECV cell line was purchased from Interlab Cell Line Collection (Genova, Italy) 

at the commencement of this study and further details about these cell lines can be 

found in Table 2.1.  

 



  Chapter II 

87 
 

Table 2.1 Cell Lines Used In This study  
Information regarding the source, morphology, growth properties and medium of cell lines used throughout this study. 

Cell Line Organism Tissue Disease/Cell Type Age (Years) Gender Morphology Growth Medium 

PC-3 Homo-Sapiens 
(Human) 

Prostate: Derived 
from Metastatic 
Site: Bone 

Grade IV 
Adenocarcinoma 

62 Male Epithelial DMEM 

Du145 Homo-Sapiens 
(Human) 

Prostate: Derived 
from Metastatic 
Site: Brain 

Grade IV Carcinoma 69 Male Epithelial DMEM 

LNCaP Homo-Sapiens 
(Human) 

Prostate: Derived 
from Metastatic 
Site: Lymph Node 

Grade IV Carcinoma 50 Male Epithelial RPMI 1640 

CA-HPV-10 Homo-Sapiens 
(Human) 

Prostate Human Papilomavirus 
18 (HPV-18) 
Transformed 
Adenocarcinoma 

63 Male Epithelial Keratinocyte -SFM 

PZ-HPV-7 Homo-Sapiens 
(Human) 

Prostate: 
Epithelial 

Human Papilomavirus 
18 (HPV-18) 
Transformed Epithelium 

70 Male Epithelial Keratinocyte -SFM 

HECV Homo-Sapiens 
(Human) 

Umbilical Code Endothelium 0 Female Endothelial DMEM 

DMEM- Dulbecco’s modified Eagle’s medium, RPMI- Roswell Park Memorial Institute, SFM- Serum free medium, HPV-Human papilloma virus 
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2.1.2 Primers 

Primers used were designed using the Primer-BLAST programme available from NCBI. 

Reverse primers used for quantitative polymerase chain reaction (qPCR) included the 

addition of a z-sequence on the 5’ end of the primer. Custom designed primers were 

synthesised by Sigma-Aldrich (Gillingham, Dorset, UK), diluted to 100 µM in PCR H₂O 

and stored at -20 °C.  Forward and reverse primers for polymerase chain reaction 

(PCR) as well as forward primers for qPCR were further diluted 1:10 before use. 

Reverse qPCR primers were further diluted 1:100 before and all diluted primers were 

temporarily stored at 4 °C. Full sequences are given in Table 2.2 and Table 2.3. 
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Table 2.2 Primer Sequences Used in PCR 
Target genes, sequences of primer pairs, cycle number and product size are detailed 
within this table. 

Target 
Gene 

Forward (F) and reverse (R) Primer Sequences 
5’-3’ 

Cycle 
Number 

Size 
(bp) 

HAVCR1 F: CAACAACAAGTGTTCCAGTG 35 436 

R: GCATTTTGCAAAGCTTTAAT 

GAPDH F: GGCTGTTTTAACTCTGGTA 25 475 

R: GACTGTGGTCATGAGTCCTT 

ZO1 F: CCACATACAGATACGAGTCCTC 30 533 

R: TGGCTTATGCTGAGATGAAGG 

ZO2 F: CTGACATGGAGGAGCTGA 30 844 

R: GAGACCATACTCTTCGTTCG 

CLDN1 F: ATGGCCAACGCGGGGC 30 636 

R: TCACACGTAGTCTTTCC 

CLDN2 F: TATAGCACCCTTCTGGGCCT 30 432 

R: CCTTGGAGAGCTCCTTGTGG 

CLDN3 F: ATGCAGTGAAGGTGTACGA 30 403 

R: TGGTGGCCGTGTACTTCTTC 

CLDN4 F: TGGGAGGGCCTCTGGATGAA 30 422 

R: TGGTGGCCGTGTACTTCTTC 

CLDN7 F: ATAACCCTTTGATCCCTACC 30 113 

R: ACTGAACCTGACCGTACAACAGG 

CLDN9 F: CTTCATCGGCAACAGCATCG 30 339 

R: AAGTCCTGGATGATGGCGTG 

JAMA F: AACAAGATCACAGCTTCCTA 30 600 

R: CTTACTCGAAGTCCCTTTCT 

OCLN F: ATGTCATCCAGGCCTC 30 579 

R: ATAGACAATTGTGGCA 

CTNNA1 F: CACAGAGAAGGTTCTGGAAG 30 518 

R: CCGATGTATTTTTGAGTGGT 

CTNNB1 F: AAAGGCTACTGTTGGATTGA 30 649 

R: TCCACCAGAGTGAAAAGAAC 

CCND1 F: CGGTGTCCTACTTCAAATGT 30 721 

R: ACCTCCTCCTCCTCCTCT 

EPLIN F: TCAAACTAAGATTCTCCGGG 30 875 

R: TCGGGGCATCTTCTACC 

GSK3β F: ATGTTTCGTATATCTGTT 30 534 

R: GGTGGAGTTGGAAGCTGATG 
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Table 2.3 Primer Sequences Used in qPCR. 
Target gene and sequences of primer pairs are detailed within this table. Reverse 
primer z-sequences are highlighted in bold. 

Target Gene Forward (F) and Reverse (R) Primer Sequences 5’-3’ Product 
Size 
(bp) 

HAVCR1 F: GACAATGTTTCAACGA 99 

R: ACTGAACCTGACCGTACATGGAGGAACAAA 

GAPDH F: CTGAGTACGTCGTGGAGTC 93 

R: 
ACTGAACCTGACCGTACACAGAGATGATGACCCTTTTG 
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2.1.3 Antibodies 

2.1.3.1 Primary antibodies 

Primary antibodies were diluted to 40 µg/mL in 0.1 % BSA (Bovine Serum Albumin) 

in PBS and aliquoted to 50 μL and stored at -20 °C. These were diluted for use for 

western blotting, immunohistochemistry or immunofluorescence as stated in Table 

2.4. The supplier, manufacturer’s code and species produced in are also given in 

Table 2.4. 

2.1.3.2 Secondary Antibodies 

Secondary antibodies were stored at 4 °C ready for use. Supplier, manufacturer’s 

code, species produced in and dilution of secondary antibodies used in western 

blotting, immunohistochemistry and immunofluorescence are given in Table 2.4. 

Also included are details on DAPI. 
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Table 2.4 Primary Antibodies Used In This Study. 
Primary antibodies used in western blotting (WB), immunohistochemistry (IHC) and 
immunofluorescence (IF) are detailed in this table. 

Target 
Protein 

Supplier Manufacture’s 
code 

Species  Dilution 

HAVcR-1 Abnova, Heyford, 
Oxfordshire, UK 

Pab13202 Rabbit 1:200 (WB) 

TIM-1 
(HAVcR-1) 

R & D Systems, 
Abingdon, Oxfordshire, 
UK 

AF1817 Mouse 1:500 (IHC) 

TIM-1  
(N-13) 
(HAVcR-1) 

Santa Cruz, Insight 
Biotechnology Limited, 
Middlesex, UK 

SC47495 Goat 2 µg/mL (IF) 

GAPDH Santa Cruz, Insight 
Biotechnology Limited, 
Middlesex UK 

SC32233 Mouse 1:1000 (WB) 

Cld-1 Santa Cruz, Insight 
Biotechnology Limited, 
Middlesex UK 

SC17658 Goat 2 µg/mL (IF) 

Cld-7 Santa Cruz, Insight 
Biotechnology Limited, 
Middlesex UK 

SC17670 Goat 2 µg/mL (IF) 

Occludin Santa Cruz, Insight 
Biotechnology Limited, 
Middlesex UK 

SC8145 Goat 2 µg/mL (IF) 

ZO-1 Santa Cruz, Insight 
Biotechnology Limited, 
Middlesex UK 

SC8146 Goat 2 µg/mL (IF) 

α-Catenin BD Transduction 
Laboratories, San Jose, CA, 
USA 

C1620 Mouse 2 µg/mL (IF) 

1:4000 (WB) 

β-Catenin Sigma-Aldrich, 
Gillingham, Dorset, UK 

SC8415 Rabbit 2 µg/mL-IF 

1:4000 (WB) 

E-
Cadherin 

R & D Systems, 
Abingdon, Oxfordshire, 
UK 

17029 Mouse 2 µg/mL (IF) 

1:200 (WB) 

EPLIN  Bethyl Lab, 
Montgomery, TX, USA 

A300-103A Rabbit 1:1000 (WB) 

PKM2 Santa Cruz, Insight 
Biotechnology Limited, 
Middlesex UK 

SC65176 Goat 1:200 (WB) 

Cyclin D1 Santa Cruz, Insight 
Biotechnology Limited, 
Middlesex UK 

Sc753 Rabbit 1:200 (WB) 
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Table 2.5 Secondary Antibodies Used In This Study  
Secondary antibodies used in western blotting (WB), immunohistochemistry (IHC) 
and immunofluorescence (IF) are detailed in this table. 

Antibody Supplier Manufacture’s 
code 

Species 
Produced In 

Dilution 

Anti-Mouse 
IgG (whole 
molecule)- 
Peroxidase  

Sigma-Aldrich, 
Gillingham, 
Dorset, UK 

A4416 Goat 1:1000 
(WB) 

Anti-Rabbit IgG 
(whole 
molecule)- 
Peroxidase  

Sigma-Aldrich, 
Gillingham, 
Dorset, UK 

A6154 Goat 1:1000 
(WB) 

Anti-Goat IgG 
(whole 
molecule)- 
Peroxidase  

Sigma-Aldrich, 
Gillingham, 
Dorset, UK 

A5420 Rabbit 1:1000 
(WB) 

Biotinylated 
anti- Mouse IgG 

Vector 
Laboratories, 
Orton 
Southgate, 
Peterborough, 
UK 

BA 2020 Goat 1:50 (IHC) 

AlexaFluor 488 Thermo Fisher 
Scientific, 
Cramlington, 
England, UK 

Anti-Rabbit 
A21206 

Donkey 1:500 (IF) 

Anti-Mouse 
A21202 

Anti-Goat 
A11055 

AlexaFluor 594 Thermo Fisher 
Scientific, 
Cramlington, 
England, UK 

Anti-Rabbit 
A21207 

Donkey 1:500 (IF) 

Anti-Goat 
A11058 

DAPI Thermo Fisher 
Scientific, 
Cramlington, 
England, UK 

D1306 N/A 1:1000 (IF) 
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2.1.4 Plastic- and Culture- Ware 

All plastic culture-ware including: flasks (T25 T75), plates (6, 24 and 96 well) and 

centrifuge tubes were obtained from Greiner Bio-One Ltd. (Gloucestershire, UK) 

unless otherwise stated. 

2.1.5 Serum Samples 

2.1.5.1 Prostate Cancer Serum Samples 

Prostate cancer serum samples (n=236) taken at time of surgery and were obtained 

from Wales Cancer Bank (WCB). Table 2.6 details prostate cancer grade and age of 

the patient at time of collection further details can be found in the Chapter VIII 

Appendix in Table 8.1. 

2.1.5.2 Healthy Control Serum Samples 

Whole Blood (n=9) was obtained from the Welsh Blood Service or obtained from 

male volunteers with informed consent (n=5). Serum from volunteers was extracted 

via centrifugation at 1500 g for 10 min and stored at -80 ⁰C. 
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Table 2.6 Prostate Cancer Serum Samples Information  

Gleason Grade Sample Number Age at Collection 

6 44 63.0±0.95 

7 91 63.5±0.66 

8 47 64.2±1.11 

9 48 64.9±1.27 

10 6 70.8±5.45 
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2.1.6 Patient Tissue Samples 

Prostate cancer samples (n=2) and normal control samples (n=2) were collected at 

the University Hospital of Wales by the team led by Mr RA Hurle between January 

2003 and 2006. Sections were collected with informed patient consent and with 

ethical approval from the South East Wales Research Ethics Committee (Panel C) 

under the project title “Hepatocyte growth factor (HGF) and its regulators on the 

behaviour of invasive/metastatic prostate cancer”. Ethics no: 03/5048. 

2.1.7 Solutions and Reagents 

2.1.7.1 General Solutions and Reagents 

Phosphate buffer saline (PBS) 

Phosphate buffered saline 10 X concentrate (Sigma-Aldrich, Gillingham, Dorset, UK) 

diluted 1:10 in dH₂O. PBS was stored at room temperature. 

Distilled H₂O (dH₂O) 

H2O purified using the Elix ® Water Purification System (Merck Millipore, Sigma-

Aldrich, Gillingham, Dorset, UK) and stored in 60 L Polyethylene Storage Tank 

(TANKPE060, Merck Millipore, Sigma-Aldrich, Gillingham, Dorset, UK) with a Vent 

Filter (TANKMPK01, Merck Millipore, Sigma-Aldrich, Gillingham, Dorset, UK) to 

protect against airborne contaminants. 

2.1.7.2 Cell Culture Solutions and Reagents 

Antibiotic Antimycotic Solution- 100 X  

Antibiotic Antimycotic Solution 100 X (A5955, Sigma-Aldrich, Gillingham, Dorset, UK) 

aliquoted to 5 mL and stored at -20 ⁰C 
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Trypsin Ethylenediaminetetracetic acid (Trypsin-EDTA) 

Trypsin-EDTA 10 X (T4174, Sigma-Aldrich, Gillingham, Dorset, UK) diluted 1:10 dH2O, 

aliquoted to 25 mL and stored long term at -20 ⁰C or short term at 4 ⁰C. 

Freezing Medium  

DMEM supplemented with 10 % (v/v) Dimethylsuphoxide (DMSO) (Sigma-Aldrich, 

Gillingham, Dorset, UK). Freezing medium was stored at 4 °C and used at room 

temperature. 

Maintenance Medium 

Cell medium containing 0.5 µg/mL of Blasticidin S. (Melford Laboratores Ltd., Suffolk, 

UK). All maintenance mediums were stored at 4 °C and used at room temperature. 

Selection Medium 

Cell medium containing 5 µg/mL of Blasticidin S. (Melford Laboratores Ltd., Suffolk, 

UK). All selection mediums were stored at 4 °C and used at room temperature. 

DMEM 

Dulbecco’s modified Eagle’s medium (DMEM) nutrient mixture F-12 HAM with 

15 mM HEPES, NaHCO₃, pyridoxine and L-Glutamine medium (Sigma-Aldrich, 

Gillingham, Dorset, UK) supplemented with 10 % (v/v) heat inactivated foetal bovine 

serum (FCS) (Sigma-Aldrich, Gillingham, Dorset, UK), 1 % (v/v) Antibiotic Antimycotic 

Solution (A5955, Sigma-Aldrich, Gillingham, Dorset, UK). DMEM was stored at 4 °C 

and used at room temperature. 

Keratinocyte Serum Free Medium (SFM) 

Keratinocyte serum free medium supplemented with 0.05 mg/mL Bovine Pituitary 

Extract BPE and 5 ng/mL EGF (Thermo Fisher Scientific, Cramlington, England, UK). 

Keratinocyte-SFM was stored at 4 °C and used at room temperature. 
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RPMI-1640 

RPMI-1640 medium (Sigma-Aldrich, Gillingham, Dorset, UK) supplemented with 10 % 

(v/v) heat inactivated FCS (Sigma-Aldrich, Gillingham, Dorset, UK), 1 % (v/v) Antibiotic 

Antimycotic Solution (A5955, Sigma-Aldrich, Gillingham, Dorset, UK). RPMI-1640 was 

stored at 4 °C and used at room temperature. 

2.1.7.3 Bacteriology Solutions and Reagents 

Liquid Broth (LB) 

Tryptone (10 g), NaCl (10 g) and Yeast extract (5 g) in 1 L distilled H₂0 

Liquid Broth Agar 

Typtone (10 g), NaCl (10 g), Yeast extract (5 g) and Agar (15 g) dissolved in 1 L of 

distilled H₂0  

TBE 

TBE 10 X concentrate (Sigma-Aldrich, Gillingham, Dorset, UK) diluted 1:10 in dH₂O. 

2.1.7.4 mRNA Detection Solutions and Reagents 

Diethylpyrocarbonate (DEPC) H₂0- 0.05% 

DEPC (250 μL) in 500 mL dH₂0 

PCR H₂0 

Autoclaved and UV treated dH₂O 

Reverse Transcription (RT) master mix- 2X 

RT 10 X buffer (2 μL), 25 XdNTP mix (0.8 μL), 10 X RT random primers (2 μL), 

multiscribe reverse transcriptase (1 μL), RNase inhibitor (1 μL), nuclease free H₂0 

(3.2 μL). 

2.1.7.5 Protein Detection Solutions and Reagents 

Ponceau S 

Ponceau S (0.1 % ) in 5 % acetic acid 
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5 % (w/v) Milk 

Milk powder (2.5 g) (Marvel, London, UK) in 50 mL TPBS 

1 % (w/v) Milk 

Milk powder (0.5 g) (Marvel, London, UK) in 50 mL TPBS 

Running Buffer 

Tris-Glycine SDS Buffer 10 X concentrate (1 L) (Sigma-Aldrich, Gillingham, Dorset, UK) 

made up to 10 L in dH₂O 

SDS- 10 % (w/v) 

SDS (10 g) in 100 mL distilled H₂0 

Tween PBS (TPBS)- 0.05 % (v/v) 

Tween (0.5 mL) made up to 1 L in PBS  

Transfer buffer  

Tris Glycine Buffer 10 X concentrate (1 L) (Sigma-Aldrich, Gillingham, Dorset, UK) and 

2 L methanol made up to 10 L in distilled H₂0. 

Western blotting Lysis buffer 

NaCL (150 mM), Tris, 0.02 % Sodium azide (50 mM), Sodium deoxycholate (0.5 %) 

and Triton X-100 (1.5 %) made up to 1 L in dH₂O. A cOmplete™, EDTA-free protease 

inhibitor cocktail tablet (Sigma-Aldrich, Gillingham, Dorset, UK) was also added and 

buffer stored at -20 ⁰C.  

Kinexus™ Antibody array Lysis Buffer 

A cOmplete™, EDTA-free protease inhibitor cocktail tablet (Roche Diagnostics, 

Mannheim, Germany), 10 % (v/v) 2-mercaptoethanol, 1 % (v/v) nonidet P-40 and 

50 mM NaF in Tris buffer (0.04 % w/v Tris powder in dH₂0). Stored at -20 °C. 
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In Vitro Functional Assays Solutions and Reagents  

10 % (v/v) Acetic Acid 

Acetic Acid ≥99.7 % (320099, Sigma-Aldrich, Gillingham, Dorset, UK) diluted to 1:10 

in dH2O and stored at room temperature.  

4 % (v/v) Formalin 

Formalin 10 % (HT501128, Sigma-Aldrich, Gillingham, Dorset, UK) diluted to 4 % in 

dH2O and stored at room temperature.  

2.2 Methods 

2.2.1 Mammalian Cell Culture 

2.2.1.1 Routine Cell Culture 

All cell work was carried out aseptically using a Class II Laminar Flow Cabinet with 

sterile and autoclaved equipment and consumables. PC-3, Du145 and HECV cell lines 

were maintained in DMEM medium. LNCaP clone FGC cell line was maintained in 

RPMI-1640 medium. PZ-HPV-7 and CA-HPV-10 cell lines were maintained in 

Keratinocyte-SFM. Transfected cell lines containing the pEF6 plasmid vector were 

cultured in selection medium for 10 to 14 days prior to culture in maintenance 

medium. Cells were cultured in 25 cm² (T25) culture flasks with 4.5 mL medium or in 

75 cm² (T75) culture flasks with 15 mL medium at 37 °C in a 95 % (v/v) humidified 

atmosphere of 5 % (v/v) CO 2. Cell media was replaced approximately every three 

days after a PBS wash and passaged at approximately 80 % confluence via 

trypsinisation.  

2.2.1.2 Trypsinisation 

Cells were trypsinised to detach cells adhered to the flask. This was performed for 

routine maintenance, sub-culture, freezing and seeding. Medium was aspirated and 
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cells were washed with 1 mL or 3 mL PBS for a T25 or T75 respectively to remove 

excess FCS and thus improve efficacy of trypsin-EDTA. PBS was then aspirated and 

1 mL or 3 mL of sterile trypsin-EDTA was added to the T25 or T75 respectively. Flasks 

were incubated at 37 °C in a 95 % (v/v) humidified atmosphere of 5 % (v/v) CO 2 for 

approximately 5-10 min until cells were detached. Trypsin-EDTA was then 

neutralised using 4 mL or 7 mL DMEM due to it containing FCS and mixture 

transferred into a sterile universal. Cells grown in keratinocyte-SFM required 

centrifugation at 12000 g for 5 min prior to re-suspension in keratinocyte-SFM. Cells 

were then counted and diluted prior to being transferred to further flasks for 

re-culturing and cell maintenance or into plates and other culture ware for 

experiments as described later in this chapter. 

2.2.1.3 Cell counting 

After trypsinisation and re-suspension in recommended growth media, 10 μL of cell 

suspension was transferred to a 0.1 mm depth cell counting chamber and counted 

with Neubauer Ruling (Hawksley, Sussex, UK) at 100 X magnification using an 

inverted light microscope (Reichert, Austria). This gave cell number per mL via 

equation shown below. 

(𝐶𝑒𝑙𝑙 𝑁𝑢𝑚𝑏𝑒𝑟)

𝑚𝐿
= 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑐𝑒𝑙𝑙𝑠 𝑐𝑜𝑢𝑛𝑡𝑒𝑑 𝑋 104 

The cell suspension was then diluted to give required cells per mL; this number 

changed depending on assay undertaken. The equation for this is shown below. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑒𝑙𝑙𝑠 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑/𝑚𝐿

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝐶𝑒𝑙𝑙𝑠 𝑖𝑛 𝐶𝑒𝑙𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛/𝑚𝐿
 𝑋 𝑉𝑜𝑙𝑢𝑚𝑒 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 (𝑚𝐿) = 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝐶𝑒𝑙𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑚𝐿) 
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2.2.1.4 Cell Storage 

Cells were trypsinised as previously described, centrifuged at 12000 g for 5 min to 

give a cell pellet which was then re-suspended in 1 mL or 3 mL freezing medium of a 

T25 or T75 respectively. The suspension was immediately divided into 1 mL aliquots 

in 1 mL CRYO.S™ tubes and stored overnight in a -20  C freezer prior to short term 

storage in a -80  C freezer or long-term storage in liquid nitrogen tanks. 

2.2.1.5 Cell Revival 

Frozen stocks were rapidly thawed in CRYO.S™ tubes using a water bath. The cell 

solution was then transferred into a sterile universal. DMEM was then added to make 

the solution up to 5 mL prior to centrifugation at 12000 g for 5 min to obtain a cell 

pellet. The supernatant containing DMSO was removed, cell pellet re-suspended in 

5 mL DMEM, transferred into a T25 flask and incubated at 37 °C in a 95 % (v/v) 

humidified atmosphere of 5 % (v/v) CO2. Cells were then subjected to routine cell 

culture. 

2.2.1.6 Mycoplasma Testing  

Mycoplasma Testing was undertaken every 3 months on every cell line using the 

EZ-PCR Mycoplasma Test Kit (Geneflow, Staffordshire, UK). Media was removed from 

cell culture prior to passaging. Cellular debris was removed via centrifugation at 

500 rpm for 2 min and supernatant centrifuged at 16000 g for 10 min to pellet 

potential mycoplasma. Pellet was re-suspended in 25 μL Buffer Solution prior to 

heating to 95 C for 3 min. The reaction mixture for PCR is then prepared using 2.5 μL 

resuspended pellet, 5 μL reaction mix and 17.5 μL sterile H₂0. PCR was then carried 

out on samples alongside a positive control provided using the thermocycler 

geneAmp PCR system 2700 (Applied Biosystems, Carlsbad, CA, USA); parameters are 
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shown in Table 2.7. PCR products alongside a PCR Ranger 100 bp DNA ladder 

(Geneflow, Staffordshire, UK) were then separated on 2 % (w/v) agarose (A9539, 

Sigma-Aldrich, Gillingham, Dorset, UK) gel via electrophoresis at 120 V, 100 mA and 

50 kW. Bands at 270 bp show a positive test at which point cells were discarded.   
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Table 2.7 Mycoplasma Testing PCR parameters 

Temperature Time Cycles 

94 C 30secs 1 

94 C 30secs 

35 60 C 2 min 

72 C 1min 

94 C 30secs 1 

60 C 2 min 1 

72 C 5 min 1 
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2.2.2 Generation of Plasmids  

2.2.2.1 PCR Amplification of HAVcR-1 Ribozyme 

Ribozymes were amplified using PCR using GoTaq Green mater mix (Promega, 

Southampton, UK). Each reaction consisted of the following ingredients: 

• 12 μL 2 X GoTaq G2 GREEN master mix 

• 5 μL of 500 nM HAVcR-1 ribozyme forward primer 

(ACTAGTGGAGAGGAGGTCCATCCATCTGTTTCGTCCTCACGGACT) 

• 5 μL of HAVcR-1 ribozyme reverse primer 

(CTGCAGTAGTGGCAGGGTAGTGTCTGATGAGTCCGTGAGGA) 

• 2 μL PCR H₂0  

This mixture was transferred to an RNase free PCR tube and placed in the 

thermocycler geneAmp PCR system 2700 (Thermo Fisher Scientific, Cramlington, 

England, UK). The parameters of this are specified in Table 2.8. PCR products were 

then visualised using gel electrophoresis to ensure expected product size of 

approximately 200 bp. Products were then stored short term at 4 C. 
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Table 2.8 PCR Parameters for HAVcR-1 Ribozyme Amplification 

Temperature Time Cycles 

94 C 5  min 1 

94 C 20 secs 8 

70 C 30 secs 

72 C 30 secs 

94 C 20 secs 8 

65 C 30 secs 

72 C 30 secs 

94 C 20 secs 8 

60 C 30 secs 

72 C 30 secs 

94 C 20 secs 8 

55 C 30 secs 

72 C 30 secs 

94 C 20 secs 8 

50 C 30 secs 

72 C 30 secs 

72 C 7  min 1 

 

  



  Chapter II 

107 
 

2.2.2.2 Production of pEF6 Ribozyme Plasmids 

The ribozyme insert was cloned into the plasmid using the pEF6/V5-His TOPO TA 

expression kit (Invitrogen, Paisley, Scotland, UK). Each reaction consisted of the 

following ingredients: 

• 4 μL of ribozyme PCR product 

• 1 μL salt solution 

• 1 μL TOPO vector 

This mixture was combined in a sterile microfuge tube and incubated at room 

temperature for 5 min. This was then used to transform 50 mL One Shot TOP10 

Chemically Competent Escherichia coli (E. coli) (Invitrogen, Paisley, Scotland, UK). 

2.2.2.3 Transformation of E. coli 

One Shot TOP10 Chemically Competent E.coli (Invitrogen, Paisley, Scotland, UK) 

(50 mL) were transformed with plasmid produced as described in 2.2.2.2. The was 

achieved via the heat-shocked method whereby the E.coli and plasmid were mixed 

by gentle pipetting then incubated at 42 C for 30 seconds prior to a 5 min incubation 

on ice. This was then added to 250 μL of SOC media (Invitrogen, Paisley, Scotland, 

UK) and cells were left to shake for an hour at 37 C. 

2.2.2.4 Plasmid selection and orientation analysis 

Transformed E.coli were spread on agar plates (12 mL LB agar with 100 μg/mL 

ampicillin) with plates split in half and 100 μL or 150 μL spread on each side. Agar 

plates were then incubated upside down overnight at 37 C. Ribozyme insert 

orientation with the plasmid was checked using PCR (See Table 2.9). Colonies were 
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picked twice and either mixed with primer mixes for correct or incorrect orientation. 

Correct orientation mix consisted of: 

• 10 μL 2 X GoTaq G2 GREEN master mix (Promega, Southampton, UK) 

•  2 μL of 500 nM T7 forward primer (TTAATACGCTCACTATAGGG) 

• 2 μL of 500 nM RB RMR primer (TTCGTCCTCACGGACTCATCAG) 

• 5 μL sterile H₂0 

Whereas the incorrect orientation mix consisted of:  

• 10 μL 2 X GoTaq G2 GREEN master mix (Promega, Southampton, UK) 

• 2 μL of 500 nM T7 forward primer(TTAATACGCTCACTATAGGG) 

• 2 μL of 500 nM RB TPF primer (CTGATGAGTCCGAGGACGAA) 

• 5 μL PCR H₂0.  

PCR products were then electrophoresed alongside a PCR Ranger 100 bp DNA ladder 

(Geneflow, Staffordshire, UK) on a 1 % (w/v) agarose (A9539, Sigma-Aldrich, 

Gillingham, Dorset, UK) gel at 120 V, 100 mA and 50 kW. Bands for both orientations 

were approximately 400 bp. Colonies with correct orientation were then picked and 

incubated in 5 mL of LB overnight at 37 C on a Stuart Orbital Shaker (SSLI, Stuart, 

Staffordshire, UK).   
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Table 2.9. Plasmid orientation analysis PCR parameters 

Stage Sub-stage Temperature Time 

Initial denaturation  94 C 10 min 

PCR cycle Denaturation 94 C 30 sec 

Anneal 55 C 30 sec 

Elongation 72 C 30 sec 

Final extension  72 C 7 min 

Hold  4 C   
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2.2.2.5 Plasmid Purification  

Plasmids were extracted and purified using GenElute Plasmid Miniprep Kit (Sigma-

Aldrich, Gillingham, Dorset, UK). After the overnight culture of 5 mL of transformed 

E.coli in LB (See Section 2.2.2.3) cells were pelleted via centrifugation at 12000 g for 

1 min. Cells were then re-suspended in 200 μL of Re-suspension solution and lysed 

using 200 μL Lysis solution. This lysis reaction was allowed to occur for less than 5 min 

prior to neutralization via the addition of 350 μL of Neutralization/ Binding solution 

and gentle inversion. The cell debris was then precipitated by centrifugation at 

12000 g for 10 min. Cleared lysate (supernatant) was then transfered to a previously 

prepared column. Column preparation involved the addition of 500 μL of Column 

Preparation solution and the centrifugation at 12000 g for 1 min. The column 

containing the supernatant was then centrifuged at 12000 g for 1 min and flow-

through discarded. The column was then washed twice to remove residual salts and 

other contaminants using 750 μL of diluted Wash solution and centrifugation at 

12000 g for 1 min. The plasmid was then eluted by the addition of 100 μL Elution 

solution to the column and centrifugation at 12000 g for 1 min. Purified plasmids 

were then stored at -20 C. 

2.2.2.6 Electroporation of cell lines 

Mammalian cell lines were washed with PBS, detached from growth surface using 

Trypsin-EDTA and diluted in medium so that there was 1 x 106 cells/mL. This cell 

suspension was then transferred into a sterile electroporation cuvette so that there 

was 800 μL of cell suspension and 4 µg of plasmid was added. Cells were then 

electroporated alongside a control containing no plasmid using the Gene Pulser Xcell 

Electroporation System (BioRad, Hertfordshire, UK) (See Table 2.10). Electroporated 
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cells were then transferred into a T25 flask with 4 mL of cell medium. After 24 hours 

cells are grown in selection medium for up to 2 weeks, until all control cells had died, 

before the medium was changed to maintenance medium.   
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Table 2.10. Electroporation Parameters 

Cell line  Voltage (V) Capacitance 

(µF)  

PC-3  310 1500 

PZ-HPV-7  290 1000 
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2.2.3 mRNA Detection 

2.2.3.1  RNA Extraction 

Cells were lysed and RNA extracted using EZ-RNA kit (Geneflow, Staffordshire, UK). 

Medium was aspirated and cells washed with PBS. Denaturing Solution was added at 

0.5 mL per 10 cm² culture dish area and cells were scraped using 28 cm length Cell 

Scrapers (Greiner Bio-One Ltd., Gloucestershire, UK) to maximize harvest. Cells were 

passed through a 1 mL pipette tip several times to produce a homogenate lysate and 

transferred into RNase free 1.5 mL microfuge tubes. To this lysate 0.5 mL of 

Extraction Solution per 0.5 mL of Denaturing Solution was added, vortexed for 15 

seconds and incubated at room temperate for 10 min. This was then centrifuged at 

12000 g for 15 min at 4 C. The colourless aqueous upper phase containing RNA was 

then transferred into a fresh RNAsase free 1.5 mL microfuge tube, washed with 

0.5 mL of isopropanol (propan-2-ol) (Fisher Scientific, Loughborough, UK) per 0.5 mL 

of Denaturing Solution, mixed via inversion and incubated at room temperature for 

10 min. This was then centrifuged at 12000 g for 8 min at 4 C. The supernatant was 

then discarded and the RNA pellet was washed with 75 % (v/v) ethanol (Fisher 

Scientific, Loughborough, UK). This was them centrifuged at 7500 g for 5 min at 4 C. 

The supernatant was discarded and the RNA pellet was dried at room temperature 

for approximately 5 min and then re-suspended via pipetting in 20-100 μL DEPC H₂0. 

Concentration and purity was then measured using a nanophotometer™ (Geneflow, 

Staffordshire, UK) at 260/280 OD. Extracted RNA was then stored at -80 ⁰C. 

2.2.3.2  Reverse Transcription (RT) 

RNA was reverse transcribed to cDNA using the GoScript™ Reverse Transcription 

System (Promega, Southampton, UK). RNA was diluted in DEPC H₂O to produce 
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500 ng RNA per 4 µL. In a thin walled PCR tube or well of a 96 well PCR plate 1 μL 

(0.5 µg) of Primer Oligo(dT)
15

 reagent was then added the RNA dilution. Samples 

were then heated to 70 ⁰C for 5 min, incubated on ice for 5 min and centrifuged for 

10 seconds. RT reaction mix was then added to the samples at 15 μL per reaction. 

The final 20 μL mix was then incubated at 25 ⁰C for 5 min, 42 ⁰C for 60 min and 70 ⁰C 

for 15 min. cDNA was then diluted 1:4 in PCR H₂O and stored at -20 ⁰C. 

2.2.3.3 Conventional Polymerase Chain Reaction (PCR) 

PCR was carried out using GoTaq Green Master Mix (Promega, Southampton, UK) 

with specific primers detailed in Table 2.2. A PCR mix consisted of the following 

components: 

• 8 μL 2 X GoTaq G2 GREEN Master Mix 

• 1 μL 500 nM forward primer 

• 1 μL 500 nM reverse primer 

• 1-4 μL cDNA made up to 6 μL with PCR H₂O 

All genes were normalised to the GAPDH housekeeping gene thus for every cDNA 

sample a PCR reaction with primers specific for GAPDH was carried out. Furthermore, 

for every primer set a negative control PCR reaction was carried out whereby the PCR 

mix contained no cDNA. The reaction mix was formulated in a RNase free thin walled 

200 μL PCR tube or a well of a 96-well PCR plate, which were then briefly centrifuged 

and placed in the thermocycler geneAmp PCR system 2700 (Thermo Fisher Scientific, 

Cramlington, England, UK). PCR conditions are described in Table 2.11 and the 

number of PCR cycles was primer dependent and are stated in See Table 2.2. PCR 
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products were then visualised using gel electrophoresis as described in Section 

2.2.3.4. 
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Table 2.11 Parameters for PCR 

Stage  Temperature Time 

Initial 

denaturation 

 94 C 5 min 

PCR cycle Denaturation 94 C 30 sec 

Anneal 55 C 30 sec 

Elongation 72 C 30 sec 

Final extension  72 C 7 min 

Hold  4 C  - until 

collection 
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2.2.3.4  Gel Electrophoresis 

Agarose gel electrophoresis was used to separate DNA fragments according to size. 

Samples were loaded onto a 2 % (w/v) agarose gel. Agarose gel was made by adding 

1 g or 3 g agarose (A9539, Sigma-Aldrich, Gillingham, Dorset, UK) into 50 mL or 

150 mL 1 X TBE buffer respectively. This mixture was then heated in a microwave 

until powder had fully dissolved to leave a transparent solution and this was then 

allowed to cool to approximately 70 °C. SYBR safe DNA gel stain (Invitrogen, Paisley, 

Scotland, UK) was then added, 5 μL for a 50 mL gel and 10 μL for a 15 mL gel. The gel 

mixture was the poured into prepared casting trays with assembled plastic combs 

(SCIE-PLAS, Cambridge, UK) and allowed to set at room temperature. Once the gel 

was set it was submerged in 1 X TBE buffer, combs were removed and PCR products 

were loaded into the wells at 10-15 μL per well alongside 5 μL PCR Ranger 100 bp 

DNA ladder (Geneflow, Staffordshire, UK). PCR products were electrophoresed at 

120 V, 100 mA and 50 kW using an EV243 power consort (Wolf Laboratories, York, 

UK) for approximately 30 min or until separation was sufficient. Bands created were 

then visualised and images were taken under UV light produced by the U:Genius 

System (Syngene, Cambridge, UK). 

2.2.3.5 Quantitative Polymerase Chain Reaction (qPCR) 

Precision FAST 2 X qPCR Master Mix with ROX (Primer Design, Southampton, UK) and 

Amplifuor™ Uniprimer™ Universal System (Intergen Company®, NY, USA) was used 

to carry out qPCR. A qPCR reaction mix consisted of the following: 

• 5 μL of precision FAST 2 X qPCR Master Mix with ROX 

• 0.3 μL Amplifuor™ Uniprimer™  

• 0.3 μL forward primer 
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• 0.3 μL reverse Z primer 

• 1-4 μL cDNA made up to 4μL in PCR H₂0 

qPCR was carried out for each sample using primers specific to the house keeping 

gene GAPDH; which was then used for normalising. The qPCR mixes were compiled 

in triplicate in a microamp® Fast Optical 96 well reaction plate with barcode (Applied 

Biosystems, Carlsbad, CA, USA) and covered with MicroAmp® Optical Adhesive film 

(Thermo Fisher Scientific, Cramlington, England, UK). qPCR was carried out using the 

StepOne Plus Real-Time PCR System (Thermo Fisher Scientific, Cramlington, England, 

UK). The conditions for qPCR are detailed in Table 2.12.  

The Amplifuor™ Uniprimer™ consists of a 3’ complementary sequence that pairs with 

the z-sequence (ACTGAACCTGACCGTACA) present on qPCR reverse primers as well 

as a 5’ hairpin loop labelled with a fluorophore reporter (FAM). When this hairpin 

loop is intact the 5’ reporter is in close proximity to the quencher (DABSYL) and thus 

the fluorescent signal is quenched. During the first amplification cycle the z-sequence 

containing reverse primer anneals and amplifies target mRNA. The Amplifuor™ 

Uniprimer™ can then anneal via the 3’ sequence to the amplified mRNA 5’ z-

sequence and is then extended. This extended Amplifuor™ Uniprimer™ now contains 

the template for the forward primer which anneals and extends disturbing the 

hairpin loop, which separates the reporter from the quencher and results in a 

fluorescent signal. The hairpin structure therefore stays intact when the Amplifuor™ 

Uniprimer™ is free in solution as well as during the first and second amplification 

round; fluorescence only occurs during extension of the Amplifluor™ Uniprimer™ by 

the forward primer. The cycle at which the fluorescent signal reached a particular 
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threshold, known as the CT value was then given and this was then analysed using ∆∆ 

CT normalised to the GAPDH housekeeping gene. 
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Table 2.12 Parameters for qPCR 

Stage  Temperature Time 

Initial 

denaturation 

 94 C 10 min 

PCR cycles  

(100 cycles) 

Denaturation 94 C 10 sec 

Anneal 55 C 30 sec 

Elongation 72 C 10 min 
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2.2.4 Protein Detection 

2.2.4.1 Protein Extraction 

Cells media was aspirated and cells were washed with PBS before being lysed with 

lysis buffer. The amount of lysis buffer used depended on culture size; 40 μL was used 

per well of a 6 well pate and 150 μL per 10 cm dish. Cell lysates were then incubated 

on ice for 5 min, collected to one area using 28 cm length Cell Scrapers (Greiner Bio-

One Ltd., Gloucestershire, UK) and transferred to 1.5 mL microfuge tubes. Cell lysates 

were then rotated for 30 min on a Labinoco LD79 Test-tube Rotator (Wolf 

Laboratories, York, UK) prior to centrifugation at 12000 g for 15  min at 4 C. 

Supernatant (protein lysate) was then transferred into a fresh 1.5 mL microfuge tube, 

it was then either stored at -20 C ready for protein sample quantification or equal 

volumes of LaemmLi 2 X Concentrate (Sigma-Aldrich, Gillingham, Dorset, UK) added 

prior to boiling at 100 C for 10 min. 

2.2.4.2  Protein Sample Quantification 

The Bio-Rad DC™ Protein Assay Kit (BioRad, Hertfordshire, UK) was used for protein 

sample quantification. A standard curve using bovine serum albumin (BSA) was set 

up so that BSA concentration was 0, 0.25, 0.5, 1, 1.0, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 and 5 

mg/mL. Samples and standards were set up in duplicate with 5 μL per well of a 96-

well plate. Reagent A and S mix was prepared so that reagent S was diluted 1:50 in 

reagent A and 25 μL of this reagent A and S mix was added to each well containing 

sample or standard, alongside 200 μL reagent B. The plate was then agitated via a 

shaker and incubated at room temperature for 5 min to allow colorimetric reaction 

to occur. The plate was then read on an ELx800 Absorbance Reader (BioTek, Swindon, 

UK) at 630 nm. The absorbance of the standards was used to create a standard curve 
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and enabled the concentration of samples to be calculated. Samples were then 

diluted to desired concentration in lysis buffer and added an equal volume of 

LaemmLi 2 X concentrate (Sigma-Aldrich, Gillingham, Dorset, UK) prior to boiling at 

100 C for 10 min. Protein samples were stored at -20 °C ready for use. 

2.2.4.3 SDS Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

SDS-PAGE was undertaken on an acrylamide gel composed of a 10 % (v/v) running 

gel and 5 % (v/v) stacking gel in an OmniPAGE VS10DYS Vertical Electrophoresis 

System (OmniPAGE, Cleaver Scientific Ltd., Rugby, UK). The reagents to make up 

resolving and stacking gels are detailed in Table 2.13. Approximately 5 mL of 

resolving gel mixture was loaded between 2 glass slide that had been assembled in a 

loading cassette, the top was then covered with isopropanol (2-propanol) (Fisher 

Scientific, Loughborough, UK) and the gel was left to polymerise at room 

temperature for approximately 30 min. Once gel had polymerised the isopropanol 

was removed and approximately 2 mL of stacking gel mixture was loaded on top of 

the resolving gel, a well-forming Teflon comb inserted into the stacking gel and the 

stacking gel was left to polymerise at room temperature for approximately 30 min. 

The loading cassette was then transferred into an electrophoresis tank, running 

buffer was added so that the central reservoir was filled and the area surrounding 

the loading cassette was half filled and Teflon combs were removed. Samples were 

then loaded into wells so that there was 15-20 μL of sample per well depending on 

well size. Samples were resolved alongside a BLUeye Prestained Protein ladder 

(Geneflow, Staffordshire, UK). Protein samples were electrophoresed at 100 V, 

150 mA and 50 W for approximately 1.5 hours or until sufficient separation had 

occurred using an EV243 Power Consort (Wolf Laboratories, York, UK)  
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Table 2.13 Components of Resolving and Stacking Acrylamide Gels for SDS-PAGE 

Components 15 mL 10 % Running Gel 

Volume (mL) 

5 mL 5 % Stacking Gel 

Volume (mL) 

Acrylamide 30 % 

(Sigma-Aldrich) 

5.0 0.83 

dH₂0 5.9 3.4 

1.5M TRIS pH 8.8 

(Bio-Rad Laboratories) 

3.8  - 

0.5M TRIS pH 6.8 

(Bio-Rad Laboratories) 

- 0.63 

10 % SDS 0.15 0.05 

10 % APS 0.15 0.05 

TEMED (Sigma-Aldrich) 0.006 0.005 
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2.2.4.4 Western Blot Transfer of Proteins to Polyvinylidene Fluoride 

(PVDF) Membrane 

Samples were then transferred from the acrylamide gel to a PVDF Transfer 

Membrane (Merck Millipore, Sigma-Aldrich, Gillingham, Dorset, UK) using the Mini 

Trans-Blot® Cell (BioRad, Hertfordshire, UK) wet transfer system. Western blot 

transfer required the following per gel: 

• 1 piece of PVDF Transfer Membrane 

• 6 pieces of filter/ western blotting paper 

• 2 foam pads 

The PVDF Transfer Membrane was prepared by soaking it in 100 % methanol 

(Thermo Fisher Scientific, Cramlington, England, UK) for 30 secs and then submersion 

in transfer buffer whereas the filter paper and foam pads were only submerged in 

transfer buffer. On completion of the stacking gel component was discarded and the 

transfer cassette prepared. The transfer cassette was then prepared so that the black 

side of the cassette was the base and placed in order on top of this was a foam pad, 

3 pieces of filter paper, the acrylamide gel, the PVDF Transfer Membrane, 3 pieces of 

filter paper and the second foam pad. The transfer cassette was transferred to a Mini 

Trans-Blot Central Core which was then placed inside of a transfer tank along with an 

ice cooling unit and this was filled with transfer buffer. Electrophoresis was carried 

out at 100 V, 150 mA and 50 W for approximately 1 hr using an EV243 Power Consort 

(Wolf Laboratories, York, UK) 

2.2.4.5 Immunoprobing 

Upon completion of western blot transfer of proteins, the PVDF Transfer Membrane 

was stained with Ponceau S. (Sigma-Aldrich, Gillingham, Dorset, UK) to verify 
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successful protein transfer. Ponceau S. staining was then removed washing with 

dH2O. The PVDF Transfer Membrane was then transferred into a 25 mL Falcon Tube 

so that the protein faced inwards and blocked in 12.5 mL of 5 % (w/v) milk for 1 hr at 

room temperature on a Stuart Roller Mixer SRT2 (Stuart, Staffordshire, UK) to 

prevent non-specific antibody binding. Following this the 5 % (w/v) milk was 

discarded and 4 mL primary antibody diluted in 1 % (w/v) milk was added to the 

Falcon Tube and membranes incubated at 4 °C on a Stuart Roller Mixer SRT2 (Stuart, 

Staffordshire, UK) overnight. Primary antibody dilution specifications are detailed in 

Table 2.4. Following primary antibody incubation membranes were washed 3 times 

in 5 mL TPBS for 5 min per wash. HRP-conjugated secondary antibodies diluted in 1 % 

(w/v) milk were then added to falcon tube and membranes incubated in this at room 

temperature for 1 hr on a Stuart Roller Mixer SRT2 (Stuart, Staffordshire, UK). 

Secondary antibody specificity and dilution specifications are described in Table 2.5. 

Secondary antibody specificity chosen was based on the species of which the primary 

antibody was produced as detailed in Table 2.4. After the secondary antibody 

incubation, membranes were washed 3 times in TPBS for 5 min per wash and 1 time 

in PBS for 5 min. 

2.2.4.6  Protein Visualisation  

EZ-ECL Chemiluminescent Detection Kit (Geneflow, Staffordshire, UK) was used for 

protein visualisation. Per membrane, 1 mL of EZ-ECL solution, consisting of equal 

parts EZ-ECL solution A and B, was used. The EZ-ECL solution was made up and left in 

the dark at room temperature for 5 min. The EZ-ECL solution was then applied 

directly to the PVDF Transfer Membrane so that the membrane was covered and 

then incubated in the dark at room temperature for 5 min. Excess EZ-ECL solution 
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was then removed from the membrane and the chemiluminescent signal was 

detected and imaged using the G:Box Chemi RxQ Imaging System (Syngene, 

Cambridge, UK). Semi-quantitative analysis was then carried out on images obtained 

using ImageJ software, whereby integrated density was used to assess protein 

expression which was then normalised to the house keeping protein GAPDH. 

2.2.4.7 Protein Preparation for the Kinexus™ Antibody Microarray 

In preparation for a Kinexus™ Anibody Microarray PZ-HPV-7pEF6 and PZ-HPV-7HAVcR-

1EXP cells were cultures in 10 cm dishes. When confluent cells were washed twice in 

PBS, 100 μL Kinexus™ Antibody array lysis buffer was added to lyse cells and cell 

lysates were collected to an area of the plate using 28 cm length Cell Scrapers 

(Greiner Bio-One Ltd., Gloucestershire, UK). Cell lysates were then transferred into a 

1.5 mL microfuge tubes and rotated for 40 min on a Labinoco LD79 Test-tube Rotator 

(Wolf Laboratories, York, UK). Samples were then centrifuged at 14000 g for 30 min 

and the supernatant was transferred to a fresh microfuge.  

Protein was quantified using fluorescamine reagent (F9015, Sigma-Aldrich, 

Gillingham, Dorset, UK). Fluorescamine was dissolved to 3 mg/mL in absolute 

acetone (Fisher Scientific, Loughborough, UK) in a glass vial. BSA standards described 

in Section 2.2.4.2 were used in triplicate in a 96 well plate. Protein samples were 

diluted 1:10 in PBS and transferred in triplicate into the 96 well plate at 150 μL per 

well. Dissolved fluorescamine was added to BSA standards and protein samples at 

50 μL per well and plate was shaken for 1 min. The fluorescent signal was then 

measured with a 365 nm excitation and 410-460 nm emission filter using the 

GloMax®- Multi Microplate Multimode Reader (Promega, Southampton, UK). The 

signal from BSA standards was used to create a standard curve which was then used 
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to calculate the concentration of the protein samples. Protein samples were then 

diluted to 4 mg/mL using Kinexus™ Antibody array lysis buffer to a final volume of 

300 μL. Samples were then stored at -20 °C prior to being shipped to Kinexus 

Bioinformatics, Vancover, Canada for the Kinexus™ Antibody Microarray. 

2.2.4.8 Kinexus™ Antibody Microarray  

The Kinexus™ KAM880 Protein Array service provided by Kinexus Bioinformatics Ltd. 

(Vancouver, Canada) was utilised for this project. The Kinexus™ KAM880 Protein 

Array uses microarray chips which contain two sets of 877 antibodies, of which 518 

are pan-specific and 359 are phosphosite -specific, therefore allowing for two 

samples to be tested on the same chip and antibodies cover a wide array of cell 

signalling proteins and pathways. Antibodies are covalently bound to the array chip, 

the conditions of which ensure high bind efficiency and specificity. Each antibody has 

a loading control to ensure constant protein loading. Proteins are fluorescently 

labelled and the amount of protein present is measured via the amount of 

fluorescent signal produced. This is done with the ImaGene 8.0 system by Kinexus 

Bioinformatics Ltd.; which has predetermined settings for spot segmentation and 

background correction. Background corrected data is then globally normalised to the 

sum of the intensities of all net signal median values. The percentage change from 

control (%CFC) was then calculated as follows; whereby treated refers to PZ-HPV-

7HAVcR-1EXP and control refers to PZ-HPV-7pEF6 

%𝐶𝐹𝐶 =
𝐺𝑙𝑜𝑏𝑎𝑙𝑙𝑦 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 − 𝐺𝑙𝑜𝑏𝑎𝑙𝑙𝑦 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝐺𝑙𝑜𝑏𝑎𝑙𝑙𝑦 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
× 100 

Percentage error, Z-scores and Z-ratios were also calculated and returned within a 

Microsoft Excel spreadsheet. Significance was based on z-values of ≤-1.65 or ≥1.65. 
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2.2.4.9  Immunofluorescence 

Cell were seeded into 8 well glass Millicell EZ slides (Merck Millipore, Sigma-Aldrich, 

Gillingham, Dorset, UK) at 5 X 104 cells per well in 500 μL medium. Slides were then 

incubated at 37 °C in a 95 % (v/v) humidified atmosphere of 5 % (v/v) CO 2 until cells 

were confluent. Once confluent culture medium was removed and cells were washed 

with PBS and fixed in 500 μL 100 % ice cold ethanol per well and left at -20 °C for a 

minimum of overnight and a maximum of 2 weeks. Ethanol was then removed and 

cells were wash 3 times with PBS for 5 min per wash and permeabilised by adding 

500 μL 0.1 % Triton X-100 (Sigma-Aldrich, Gillingham, Dorset, UK) per well for 1-5 

min, depending on protein of interest, at room temperature. Cells were then washed 

3 times in PBS for 5 min per wash and blocked using blocking buffer, consisting of 

7.5 % (v/v) donkey serum (D9663, Sigma-Aldrich, Gillingham, Dorset, UK) in PBS, at 

300 μL per well for 6 hours at room temperature. Blocking buffer was then removed 

and cells were incubated in 250 μL of primary antibodies diluted to 2 µg/mL in 

blocking buffer overnight at 4 °C; primary antibodies are detailed in Table 2.4. The 

primary antibody was then removed and cells were washed 3 times in PBS for 5 min 

per wash and incubated with 250 μL secondary antibody solution per well for 2 hours 

in the dark at room temperature. The secondary antibody solution contained 

secondary antibodies diluted 1:500 and DAPI diluted 1:1000 in blocking buffer. The 

secondary antibody used was based on the species the primary antibodies had been 

produced in as detailed in Table 2.4 and secondary antibodies as well as DAPI are 

detailed in Table 2.5. Cells were then washed 3 times in PBS for 5 min per wash, the 

plastic chamber removed from slide and slides were mounted with FluorSave™ 

(345789, Sigma-Aldrich, Gillingham, Dorset, UK) and a cover slip. Slides were then left 
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to set in the dark at 4 °C overnight and visualised/imaged using the Hamamatsu Orca 

ER digital camera and the Olympus BXSA microscope at 100 X magnification. Merged 

images were then created using Adobe Photoshop software. 

2.2.4.10 Immunohistochemical Staining (IHC) 

Cryosections were stored at -80 ⁰C. These were allowed to thaw at room temp for 

approximately 15 min prior to being fixed with dried acetone (10162180, Fisher 

Scientific, Loughborough, UK) for 15 min, air dried for 15 min and washed 3 times 

with PBS for 5 min per wash. Cryosections were then incubated with blocking diluent 

(0.1 % (v/v) BSA, 0.01 % (v/v) Marvel, 10 % (v/v) horse serum and 90 % (v/v) PBS) for 

1 hour in a humidified box at room temperature. Sections were then incubated in a 

humidified chamber for 1 hour in primary antibody diluted in blocking diluent to a 

final concentration of 2 µg/mL or blocking diluent for negative controls. Section were 

again washed 3 times in PBS for 5 min per wash and then incubated for 30 min in ABC 

biotinylated secondary antibody diluted in blocking diluent in a humidified chamber 

for 30 min. Sections were washed 3 times in PBS for 5 min per wash, incubated in a 

humidified chamber for 30 min in ABC reagent provided in the Vectastastain 

Universal Elite ABC kit (Vector, Peterborough, UK), washed 3 times in PBS and 

developed with diaminobenzidine substrate (DAB) (Abcam, Cambridge, UK) (90 % 

(v/v) 10 % (v/v) DAB and 6 μL Hydrogen peroxide for 10 min). Sections were then 

washed in H₂O, counterstained in Erhlich’s Haematoxylin for 5-10 min and washed in 

H₂O. To dehydrate, sections went through a series of sequential 5 min washes in 50 % 

(v/v) ethanol, 70 % (v/v) ethanol, 90 % (v/v) ethanol, 100 % (v/v) ethanol, 100 % (v/v) 

ethanol, 50 % (v/v) ethanol, 50 %(v/v) xylene and 100 % (v/v) xylene. Dehydrated 
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sections were then mounted with Distyrene Plasticizer Xylene (DPX) (Sigma-Aldrich, 

Gillingham, Dorset, UK) and air dried prior to imaging.  

Visualisation and imaging of sections was performed using the Leica DM10000LED 

microscope with a MC120 HD camera and Leica Application Suite (version 3.0.0) 

software (Leica Microsystems, UK). Localisation and intensity of staining was judged 

blindly by two people independently of one another.  

2.2.4.11 Collection of Cell Media 

Cells were grown in 6 well plates until confluent. Cell medium was changed to FCS 

and Abx free DMEM 24 hours prior to collection. Media was then transferred to an 

microfuge tube and centrifuged at 12000 g for 5 min to remove free cells and stored 

at -80 ⁰C. 

2.2.4.12 Enzyme -Linked Immunosorbent Assay (ELISA) 

ELISA was performed using Human TIM-1 (HAVCR1) ELISA Kit (Thermo Fisher 

Scientific, Cramlington, England, UK). Serum samples were diluted 1:2 in Diluent B 

and 100 μL of each sample and provided standards were placed into appropriate 

wells of the provided 96 well plate. Wells were covered and the plate was incubated 

at room temperature for 2.5 hours. Solutions were discarded and wells were washed 

4 times with 300 μL of 1 X Wash buffer per well. 100 μL of 1 X biotinylated antibody 

was added to each well and plates were incubated at room temperature for 1 hour. 

Solution was discarded and wells were washed 4 times with 300 μL 1 X Wash buffer 

per well. 100 μL of Streptavidin-HRP solution was added to each well and plate 

incubated at room temperature for 45 min. The solution was discarded and wells 

were washed 4 times with 300 μL of 1 X Wash buffer per well. TMB substrate was 

added at 100 μL per well and the plate was incubated at room temperature in dark 
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for 30 min. Reaction was stopped using 50 μL of the provided Stop Solution. The 

absorbance was measured on an ELx800 Absorbance Reader (BioTek, Swindon, UK) 

at 450nm. The absorbance of standards was then used to form a four-parameter 

logistical standard curve and this was used to calculate the protein concentration of 

samples.  

2.2.5 In Vitro Functional Assays 

2.2.5.1 Growth Assay 

Cells were seeded in triplicate into 24 well plates at 1X103 cells per well in 1 mL of 

cell medium and incubated at 37 °C in a 95 % (v/v) humidified atmosphere of 5 % 

(v/v) CO 2 for 1, 3 and 5 days. After incubations cells were washed with PBS and then 

fixed, stained and imaged as described in Section 2.2.5.4. Cell growth was presented 

as the fold change in cell number from the 1 day time point. 

2.2.5.2 Adhesion Assay  

Matrigel™ basement membrane (BD Biosciences, Oxford, UK) was diluted to 

0.05 mg/mL in cell medium and 100 μL was loaded into each well of a 96 well plate. 

This was then dehydrated at 56⁰C for 2 hours and stored at 4⁰C ready for use. The 

Matrigel™ was then rehydrated using 100 μL cell medium for 30 min. Medium was 

then removed and cells were seeded at 5000 cells per well in 200 μL of cell medium 

and incubated for 30 min at 37 °C in a 95 % (v/v) humidified atmosphere of 5 % (v/v) 

CO 2. The cell medium was the discarded, the cells were washed with PBS and stained 

using crystal violet as detailed in Section 2.2.5.4. The experimental set up is shown in 

Figure 2.1.  
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Figure 2.1 Adhesion Assay Experimental Set Up 
Schematic of adhesion assay showing a well of a 96 well plate with a Matrigel™ layer 
at its base. Cells are added to wells and the number of cells that had adhered to the 
Matrigel™ layer in 30 min was quantified.  
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2.2.5.3 Invasion Assay 

Invasion assays used 8 µm pore ThinCert™ 24 well plate inserts (Greiner Bio-One Ltd., 

Gloucestershire, UK). Matrigel™ basement membrane (BD Biosciences, Oxford, UK) 

was diluted in serum free medium to 0.5 mg/mL and 100 μL loaded into each insert 

to replicate the extracellular matrix. This was then dehydrated at 56 ⁰C for 2 hours 

and stored at 4 ⁰C ready for use. The Matrigel™ layer was then rehydrated using 

200 μL serum free medium for 30 min, medium was removed prior to cell seeding at 

3X104 cells per insert in 500 μL of serum free medium. The wells containing these 

inserts contained 1 mL of cell medium. Cells were then incubated at 37 °C in a 95 % 

(v/v) humidified atmosphere of 5 % (v/v) CO 2 for 3 days. Post incubation medium 

was discarded and wells as well as inserts were washed using PBS. The Matrigel™ 

layer and any cells that had not invaded through this layer were then removed using 

a cotton bud. Cells that had invaded the Matrigel™ layer and had migrated through 

to the underside of the ThinCert™ 24 well plate inserts stained using crystal violet as 

described in Section 2.2.5.4. The experimental set up is shown in Figure 2.2. 
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Figure 2.2 Invasion Assay Experimental Set Up 
Schematic of invasion assay showing a 8 µm pore ThinCert™ insert within a well of a 
24 well plate with a Matrigel™ layer at the base of the insert. Cells were seeded into 
the insert and number of cells that had invaded through to the underside of the 
ThinCert™ insert within 3 days was quantified.  
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2.2.5.4 Crystal Violet Staining 

Growth, adhesion and invasion assays were all fixed with formalin and stained with 

crystal violet for visualisation. After cells were washed with PBS, they were fixed 

using 200 μL of 4 % (v/v) Formalin; for the invasion assay this was placed in the well 

outside of the insert. Plates were then incubated at room temperature for 1 hour and 

washed with dH₂O. Cells were then stained using 200 μL of crystal violet solution 

(V5265, Sigma-Aldrich, Gillingham, Dorset, UK) per well, with this being outside of 

the insert in the case of invasion assays and plates were incubated at room 

temperature for 30 min. Cells were then washed with dH₂0 to remove excess crystal 

violet and dried at 56 ⁰C for approximately 20 min. Images were taken at 5 X 

magnification and cells were counted. In the case of invasion assays the bottom of 

each insert was removed and placed on a glass slide for imaging before being 

returned to the plate. Crystal violet staining was then dissolved using 200 μL 10 % 

(v/v) Acetic Acid per well with a room temperature incubation of 5 min. The solution 

was then transferred into 96 well plates and absorbance were measured at 540 nm 

using the ELx800 Absorbance Reader (BioTek, Swindon, UK). 

2.2.5.5 Transepithelial Resistance (TER) 

TER used 0.4 µm pore ThinCert™ 24 well plate inserts (Greiner Bio-One Ltd., 

Gloucestershire, UK) in 24 well plates. Cells were seeded into inserts at 5X103 cells 

per insert in 500 μL of cell medium with 1.5 mL medium in the well outside of the 

insert. Cells were incubated at 37 °C in a 95 % (v/v) humidified atmosphere of 5 % 

(v/v) CO 2 until confluent. Media was then replaced and resistance across the 

membrane was then measured in triplicate immediately afterwards using the EVOM² 

Epithelial Volt/Ohm Meter (World Precision Instruments, Hitchin, Hertfordshire, UK). 
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Where treatments were applied resistance was also measured every hour after the 

initial measurement for 10 hours. Data was then converted to  . cm2 by the 

multiplication of measured resistance by the surface area of the ThinCert™ 24 well 

plate inserts (0.336 cm2) as detailed below. 

0𝑅𝑇𝑖𝑠𝑠𝑢𝑒( ) = 0𝑅𝑇𝑜𝑡𝑎𝑙( ) − 0𝑅𝐵𝑙𝑎𝑛𝑘( ) 

𝑇𝐸𝑅(. 𝑐𝑚2)  = 0𝑅𝑇𝑖𝑠𝑠𝑢𝑒( ) × 0𝑀𝐴𝑟𝑒𝑎(𝑐𝑚2) 

With single measurements TER were taken immediately after media change and 

analysed as fold change from pEF6 controls. With time point measurements TER were 

analysed as normalised to 0 hour time point via the subtraction of TER ( . cm2) at 0 

hours from the TER ( . cm2) at every subsequent time point. 

2.2.5.6 PCP (Paracellular permeability)  

PCP used 0.4 µm pore ThinCert™ 24 well plate inserts (Greiner Bio-One Ltd., 

Gloucestershire, UK) in 24 well plates. Cells were seeded into inserts at 5X103 cells 

per insert in 500μL of medium with 1.5 mL medium in the well outside of the insert. 

Cells were incubated at 37 °C in a 95 % (v/v) humidified atmosphere of 5 % (v/v) CO 2 

until confluent. Cell medium was then replaced and 0.2 mg/mL of 

Tetramethylrhodamine isothiocyante (TRITC)-dextran conjugate with an average 

molecular weight of 40 kDa (42874, Sigma-Aldrich, Gillingham, Dorset, UK) and 

0.2 mg/mL of Fluorescein isothiocyanate (FITC)-dextran conjugate with an average 

molecular weight of 10 kDa (FD10S, Sigma-Aldrich, Gillingham, Dorset, UK) was 

added to each insert. Immediately after media change and every hour thereafter 

until 10 hours, 20 μL of cell medium from outside of the inserts was transferred into 

a black 96 well cell culture microplate (Greiner Bio-One) in duplicate. Fluorescence 

was then measure using the GloMax® Multi Detection System (Promega, 
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Southampton, UK) at excitation 520 and emission 580-640 for TRITC-dextran and 

excitation 940 and emission 510-570 for FITC-dextran. Measurements were then 

normalised to the 0 hour time point measurement via subtraction and statistical 

analysis performed. The experimental set up is shown in Figure 2.3.  
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Figure 2.3 Paracellular Permeability Experimental Set Up 
Schematic of PCP showing 0.4 µm pore ThinCert™ insert within a well of a 24 well 
plate with a cell monolayer at the base of the insert. 40 kDa TRITC-Dextran and 
10 kDKa FITC-Dextran was added into the insert and the amount that moved to the 
outside of the insert was quantified every hour by measuring the amount of 
fluorescence produced from samples of cell medium.  
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2.2.5.7  Wound Healing Scratch Migration Assay 

Cells were seeded in quadruplicate into 24 well plates at 5X103 cells per well in 1 mL 

of cell media. Plates were then incubated at 37 °C in a 95 % (v/v) humidified 

atmosphere of 5 % (v/v) CO 2 until confluent. The cell medium was then removed 

and the cells were washed in 1 mL PBS. A scratch was then made manually using 

200 μL pipette tips. Cell debris was removed by a second PBS wash and 1 mL fresh 

medium used per well. Images were then taken at 5 X magnification to give the 

0 hour time point. Images were then taken every hour after this up to 10 hours. 

Between acquiring images plates were incubated at 37 °C in a 95 % (v/v) humidified 

atmosphere of 5 % (v/v) CO 2. As images were taken manually after their acquisition 

images from the same well at different time points were overlaid and aligned using 

Adobe Photoshop and cropped to ensure the same area of the well was analysed per 

well. Images were then analysed using ImageJ software to give wound area this was 

then used to percentage change in area from the 0 hour time point (presented as 

percentage wound closure)  

2.2.5.8 Electric Cell-substrate Impedance Sensing (ECIS) 

ECIS was performed using 96W1E+ plates (ECIS Cultureware™, IBIDI, Martinsried, 

Germany) and the ECIS® Z-theta model instrument (IBIDI, Martinsried, Germany). 

Prior to experimental runs, wells were stabilised with 200μL cell medium to clean the 

gold electrodes and reduce impedance drift during the experimental run. Wells were 

then inoculated with 5X104 cells per well in 300 μL recommended cell medium. The 

behaviour for cell monolayers were then electrically monitored at 7 predefined 

frequencies (1, 2, 4, 8, 16, 32 and 64 kHz). At 25 hours an electrical wound of 

60000 Hz and 3000 µA was applied to the cell monolayers for 30 secs. This was set 
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up using the Elevated Field Module which can create a high electric field sufficient to 

form pores in cell membranes and when applied for longer time period results in cell 

wounding and cell death of cells situated on the electrode. The resulting changes to 

the cell monolayers were continuously monitored, at the frequencies stated 

previously, during wounding and for 17 hours post wounding.  

ECIS measures the impedance at numerous time points and at the 7 predefined 

frequencies however the ECIS® Z-theta model instrument also measures the phase 

difference between voltage and current thus allowing the impedance measurements 

to be broken down into its resistance and capacitance components. This enables the 

measurement of different functional and structural properties of the cells cultured 

during initial attachment and spreading as well as during wound healing. At different 

frequencies the current flow varies, at low frequencies the majority of the current 

flows within the paracellular space, thus flowing underneath and between cells, the 

resistance at low frequencies (<4 kHz) is therefore representative of cell contacts, 

both cell- cell and cell-plate. At high frequencies the majority of the current flows 

through the cells themselves and thus capacitance at high frequencies (>32 kHz) is 

indicative of cell coverage. The ECIS® Z-theta model instrument can also be used to 

apply the ECIS model, a mathematical model that calculates the resistance between 

cells/ barrier function resistance (Rb), cleft resistance/ constraint on current flow 

beneath the cell (alpha) and the membrane capacitance (Cm) and thus giving more 

insight into the changes that are occurring to the cells. Therefore, the data collected 

was analysed as fold change from time 0 hours for initial attachment and spreading 

and from time 25 hours for wound healing for resistance and capacitance at 1 kHz 

and 64 kHz respectively as well as well as for Rb and alpha. 
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2.2.5.9 HGF Treatment 

Functional assays where HGF treatment as used cells were either treated with 

40 ng/mL HGF or an equal amount of 0.1 % BSA in PBS as the control. Treatment was 

done at time 0 in all cases with this being at seeding for growth, invasion and 

adhesion, immediately after scratch formation with migration, at the same time as 

fluorescent dextran conjugates for PCP and immediately after base line (time 0 hr) 

readings for TER. 

2.3 Statistical Analysis  

Microsoft Excel was used for statistical analysis of data utilising a two-tailed unpaired 

Student’s t-test. For patient serum samples Graphpad Prism (version 6, GraphPad 

Software Inc., CA, USA) whereby a D’Agostino &Pearson omnibus K2 normality test 

was performed on columns to assess normality. If data was of a normal distribution 

a two-tailed, unpaired Student’s t-test for the comparison of two data sets or a one-

way ANOVA for the comparison of three or more data sets. If data was not of a 

normal distribution a Mann-Whitney U test was performed for the comparison of 

two data sets or a Kruskal-Wallis test was performed for the comparison of three or 

more data sets. Mixed-design analysis of variance model (mixed ANOVA) was 

performed using IBM SPSS Statistics 24 software. This was used for any assay where 

two treatments were given and data was collected at different time points, these 

assays include scratch, TER, ECIS and PCP assays. In all cases p values of <0.05 was 

considered significant and represented on graphs by *. Where p<0.01, p<0.001 or 

p<0.0001 the representation of **, *** or **** was used respectively. 
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3.1 Introduction 

Prostate cancer is the second most common cancer in males worldwide and the most 

common cancer in males in the UK with approximately 1278106 and 46689 new cases 

per year respectively [5, 14]. Diagnostic techniques however are still reliant on the 

inherently flawed PSA blood test. The PSA blood test is a low level invasive test and 

therefore has limited associated risk in comparison to other invasive testing, such as 

prostate biopsies, which may result in subsequent infection and urinary incontinence 

[329, 330]. However, the PSA test is inaccurate, with 67 % false positive and 15 % 

false negative results due to PSA not being a cancer specific protein marker [329]. It 

is therefore important to identify novel biomarkers that can be used to improve the 

accuracy of low invasive testing.  

Of greater significance is the current inability to differentiate between low-risk 

progression and high-risk progression prostate cancer at an early curable stage [86]. 

Low-risk progression prostate cancers are those that are unlikely to grow or 

metastasise outside of the prostate for many years and therefore have limited risk of 

morbidity or mortality, whilst high-risk progression prostate cancer are those that 

are likely to grow and progress to metastatic disease resulting in increased morbidity 

and mortality [331]. The problem with not being able to identify high-risk progression 

prostate cancer is that it results in overtreatment of low-risk progression prostate 

cancer and the unnecessary associated morbidity [86]. Data from The European 

Randomised Study for Prostate cancer (ERSPC) suggested that for one prostate 

cancer death to be prevented 37 men would need to be treated for prostate cancer 

and thus 36 of which would be treated but have no benefit [82, 86]. This has severe 

implications when side effects of prostate cancer treatment are taken into 
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consideration, such as incontinence and impotence due to radical prostatectomy, as 

it means that the people who are receiving unnecessary treatment not only gain no 

survival benefit but potentially have a decreased quality of life [88]. This highlights 

the necessity of identifying biomarkers to categorise tumours that are likely to 

progress at an early stage to ensure treatment is provided. It is also just as imperative 

to identify tumours that are unlikely to progress and thus advocate the “watch and 

wait” treatment method. Active surveillance and watchful waiting are methods to 

combat this problem, whereby prostate cancer is monitored but remains untreated 

until cancer progression occurs [332, 333]. These approaches have a clinical benefit 

due to the decreased treatment associated morbidity whilst not affecting survival. 

This was demonstrated by The National Institute for Health Research-supported 

Prostate Testing for Cancer and Treatment (ProtecT) trial whereby there was no 10 yr 

survival benefit with radical prostatectomy or radiotherapy in comparison to active 

surveillance of clinically localised prostate cancer [334]. However, the monitoring of 

prostate cancer involves invasive testing including prostate biopsies, and their 

associated risks as well as the PSA blood test, which as previously discussed is 

unreliable [332]. Therefore, biomarkers that can be detected by low invasive 

methods are necessary to improve this monitoring process. 

Unsurprisingly due to the large number of cases, prostate cancer is the cause of a 

large number of deaths. It is the eighth most common cause of cancer related deaths 

worldwide and the fourth most common cause of cancer related deaths in the UK, 

with 358989 and 11287 deaths per year respectively [5, 14]. Metastasis is the cause 

of approximately 90 % of cancer related deaths [84]. Therefore, studies into the 

metastatic process are required to improve understanding with the aim of novel 
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target identification to treat or prevent metastatic disease and improve patient 

survival.  

HAVcR-1 has been found to be up-regulated in certain cancers, including: breast, 

ovarian, colon and renal [283, 319, 320]. HAVcR-1 is therefore a molecule of interest 

for cancer diagnosis and as a potential target for cancer therapies. HAVcR-1 is 

proteolytically cleaved proximal to the cell membrane to release an ectodomain 

[284, 288]. This HAVcR-1 ectodomain can be secreted into urine from certain tissue 

types and this release is increased in RCC (renal cellular carcinoma) [315]. The 

HAVcR-1 ectodomain is therefore a potential biomarker for certain cancers. HAVcR-1 

expression and ectodomain release in cancer is still poorly categorised. There is little 

known about its usefulness as a biomarker for prostate cancer diagnosis, progression 

and prognosis. Furthermore, there is a lack of study into the release of the HAVcR-1 

ectodomain into the circulation and the use of this as a potential biomarker for the 

use in a blood test for cancer diagnosis and monitoring.  

This chapter therefore aimed to determine levels of HAVcR-1 ectodomain in prostate 

cancer patient serum and to evaluate possible correlations between these levels and 

prostate cancer development and/or progression. It also aimed to assess and 

evaluate total HAVcR-1 protein levels in prostate cancer tissue sections and HAVCR1 

gene expression. Furthermore, it set out to assess total HAVcR-1 and ectodomain 

levels from prostate cell lines to ensure they are viable in vitro model systems for 

further study.  
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3.2 Materials and Methods 

3.2.1  Collection of Prostate Cancer Patient Serum Samples 

Prostate cancer serum samples (n=236) were obtained from Wales Cancer Bank 

(WCB). (See Section 2.1.5.1) 

3.2.2  Collection of Control Serum Samples 

Whole Blood (n=9) was obtained from the Welsh Blood Service or obtained from 

male volunteers with informed consent (n=5) and serum was extracted (See Section 

2.1.5.2) 

3.2.3  Collection of Tissue Samples 

Prostate cancer samples (n=2) and background control samples (n=2) were collected 

at the University Hospital of Wales (See Section 2.1.6) 

3.2.4 Mammalian Cell Culture 

All cell lines were obtained from the ATCC (Middlesex, UK), maintained in 

recommended media (See Table 2.1) as described in Section 2.2.1. 

3.2.5  Collection of Cell Media 

Cells were grown in 6 well plates until confluent. Cell medium was collected and 

prepared as described in Section 2.2.4.11. 

3.2.6  Enzyme-Linked Immunosorbent Assay (ELISA) 

ELISA was performed on serum and cell medium samples using the Human TIM-1 

(HAVCR1) ELISA Kit (Thermo Fisher Scientific, Cramlington, England, UK). The 

methodology is detailed in Section 2.2.4.12. 
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3.2.7  RNA Extraction from Cell Culture, PCR and qPCR 

Cells were seeded into 6 well plates and cultured until confluent. RNA was then 

extracted using the EZ-RNA kit (Geneflow, Staffordshire, UK) as detailed in Section 

2.2.3.1. Of this total RNA 500 ng was used to synthesise cDNA using Primer Design 

Precision Nanoscript 2 Reverse Transcription kit (Primer Design, Southampton, UK) 

as detailed in Section 2.2.3.2. PCR was then carried out using GoTaq G2 Green master 

mix (Promega, Southampton, UK) as detailed in Section 2.2.3.3 and primers listed in 

Table 3.1. PCR products were subjected to gel electrophoresis on a 2 % agarose gel 

as detailed in Section 2.2.3.4.  

cDNA was also used for qPCR, using Precision FAST 2 X qPCR Master Mix with ROX 

(Primer Design, Southampton, UK). qPCR methodology is detailed in Section 2.2.3.5 

and primers used within this chapter are detailed in Table 3.1. 

3.2.8  Protein Extraction from Cell Culture and SDS PAGE and 

Western Blotting Analysis  

Cells were seeded into 6 well plates and cultured until confluent. Protein was then 

extracted using protein lysis as detailed in Section 2.2.4.1. Protein samples were then 

subjected to SDS-PAGE and western blotting as detailed in Section 2.2.4.3 and 

Section 2.2.4.4. Immunoprobing and protein visualisation was carried out as 

described in Section 2.2.4.5 and Section 2.2.4.6 with specific antibodies detailed in 

Table 3.2. 
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3.2.9 Immunofluorescent (IF) Staining of Cell Lines 

Cells were seeded at 5X104 cells per well of a Millicell EZ-8-well chamber slide (Merck 

Millipore, Sigma-Aldrich, Gillingham, Dorset, UK) until confluent prior to being 

immunofluorescently stained as detailed in Section 2.2.4.9. Primary and secondary 

antibodies used are described in Table 3.2. 

3.2.10  Immunohistochemical (IHC) Staining of Tissue 

Samples 

IHC staining of cryogenically frozen tissue samples is detailed in Section 2.2.4.10. 

Antibodies used are detailed in Table 3.2 

3.2.11  Statistical Analysis 

PCR and western blot analysis bands were quantified using Image J, this data as well 

as q-PCR data was then statistically analysed utilising the Student’s t-test on 

Microsoft Excel; p<0.05 was considered statistically significant. Statistical analysis on 

ELISA data was performed using Graphpad Prism (version 6, GraphPad Software Inc., 

CA, USA). First a D'Agostino & Pearson omnibus normality test was performed on 

columns to assess normality and if data was of a normal distribution a two-tailed was 

performed for the comparison of two data sets or a one-way ANOVA for the 

comparison of more than three data sets. If data was not of a normal distribution a 

Mann-Whitney U test was performed for the comparison of two data sets or a 

Kruskal-Wallis test was performed for the comparison of more than three data sets. 

In all cases values p<0.05 was considered statistically significant. ImageJ was used to 

quantify staining in IHC as representative of protein concentration. For each tissue 
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section 15 areas were quantified prior to the Student’s t-test being carried out on 

Microsoft Excel; p<0.05 was considered statistically significant. 

  



 Chapter III 

150 
 

Table 3.1 Chapter III PCR and qPCR Primers 
 Target Primer 

Name 

Sequence 5’-3’ Number 

of Cycles 

Product 

Size (bp) 

PCR HAVCR1 HAV1F9 CAACAACAAGTGTTCCAGTG 35 436  

HAV1R9 GCATTTTGCAAAGCTTTAAT 

GAPDH GAPDHF8 GGCTGCTTTTAACTCTGGTA 25 475  

GAPDHR8 GACTGTGGTCATGAGTCCTT 

qPCR HAVcR-1 HAVR1F1 GACAATGTTTCAACGA 100 99 

HAV1ZR ACTGAACCTGACCGTACA 

TGGAGGAACAAA 

GAPDH GAPDHR2 CTGAGTACGTCGTGGAGTC 100 93 

GAPDH ZR2 ACTGAACCTGACCGTACA 

CAGAGATGATGACCCTTTTG 
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Table 3.2 Chapter III Protein Detection Antibodies 
Antibody Animal Source Company  Concentration  

HAVcR-1 Rabbit Abnova, Heyford, 

Oxfordshire, UK 

1:200- WB 

TIM-1 

(HAVcR-1) 

Mouse R & D Systems, 

Abingdon, 

Oxfordshire, UK 

1:500- IHC 

TIM-1 (N-13) 

(HAVcR-1) 

Goat Santa Cruz, Insight 

Biotechnology 

Limited, Middlesex 

UK 

2µg/ml- IF 

GAPDH Mouse Santa Cruz, Insight 

Biotechnology 

Limited, Middlesex 

UK 

1:1000- WB 

Anti- Mouse IgG 

(whole molecule)- 

Peroxidase antibody 

Rabbit Sigma-Aldrich, 

Gillingham, Dorset, 

UK 

1:1000-WB 

Anti- Rabbit IgG 

(whole molecule)- 

Peroxidase antibody 

Goat Sigma-Aldrich, 

Gillingham, Dorset, 

UK 

1:1000-WB 

Biotinylated anti- 

Mouse IgG 

Goat Vector 

Laboratories, Orton 

Southgate, 

Peterborough, UK 

1:50-IHC 

Anti- Goat AlexaFluor 

594 

Donkey Thermo Fisher 

Scientific, 

Cramlington, 

England, UK 

1: 500- IF 
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3.3 Results 

3.3.1  Serum HAVcR-1 Ectodomain Levels Decrease with 

Prostate Cancer  

To investigate the release of the HAVcR-1 ectodomain into the circulation with the 

occurrence of prostate cancer HAVcR-1 ectodomain levels were assessed in serum 

samples from patients with prostate cancer and from healthy controls using ELISA.  

HAVcR-1 ectodomain levels were decreased in serum samples from the prostate 

cancer patient group (64.53 pg/mL) compared with serum samples from the healthy 

control group (154.4 pg/mL). Statistical analysis revealed this decrease was 

significant (p<0.0001) (See Figure 3.1.). 
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Figure 3.1. Serum HAVcR-1 Ectodomain Levels in Cancer in Comparison to Control 
Prostate cancer and control serum samples were analysed for HAVcR-1 Ectodomain 
using Human TIM-1 (HAVCR1) ELISA Kit. Graph shows the difference in medians of 
levels between healthy controls and prostate cancer patients. Statistical analysis was 
then performed using the Mann Whitney test, utilising Graphpad Prism software and 
p<0.05 was considered significant. p<0.0001 is represented by **** and error bars 
show interquartile range.  
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3.3.2 Serum HAVcR-1 Ectodomain Levels are Independent of 

Gleason Score 

Serum samples were collected with pathophysiological parameters, including 

Gleason score, therefore allowing for more in-depth analysis of serum HAVcR-1 

ectodomain levels to be performed. This was to identify potential trends between 

HAVcR-1 ectodomain levels and prostate cancer progression. Gleason scores 6, 7, 8, 

9 and 10 prostate cancer serum samples as well as healthy control serum samples 

were compared. 

This showed significant decreases between the healthy control group (154.4 pg/mL) 

and Gleason score 6 (48.88 pg/mL; p<0.0001), Gleason score 7 (66.94 pg/mL; 

p<0.0001), Gleason score 8 (48.38 pg/mL; p<0.0001) and Gleason score 9 (68.21 

pg/mL; p=0.0095). However, there was no significant change in serum HAVcR-1 

ectodomain levels between he healthy control group (154.4 pg/mL) and Gleason 

score 10 (89.57 pg/mL; p=0.2599) (Figure 3.2A).  

When analysed without the healthy control group there was no trend in serum 

HAVcR-1 ectodomain levels with Gleason score; with the Kruskal-Wallis One Way 

Analysis on Ranks revealing no significant differences in the medians of each Gleason 

score (p=0.2688). Furthermore, when prostate cancer patient serum samples were 

separated into low grade (Gleason score 6 and 7) and high grade (Gleason score 8, 9 

and 10) there was no significant change in serum HAVcR-1 ectodomain levels 

between low-grade samples (63.94 pg/mL) and high-grade samples (64.53 pg/mL) 

(p=0.6811) (See Figure 3.2B).   
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Figure 3.2 Serum HAVcR-1 Ectodomain Levels with Gleason Scores 
Serum samples were analysed for HAVcR-1 Ectodomain levels via ELISA. Results were 
then analysed to assess differences in levels in serum samples between A control 
group and Gleason score 6, 7, 8, 9 and 10 prostate cancer and B between low Gleason 
score (6 and 7) and high Gleason score (8, 9 and 10). Statistical analysis performed 
using Mann-Whitney U Test (Graphpad Prism software) whereby. p<0.05 was 
considered significant and p<0.01 and p<0.0001 are represented by ** and **** 
respectively. Graphs show the medians with error bars showing interquartile range.  
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3.3.3 High HAVcR-1 Protein Expression in Prostate Cancer 

Tissues 

Total HAVcR-1 protein expression was then assessed to investigate the relationship 

between total expression and serum ectodomain levels. To achieve this as well as to 

investigate the localisation of HAVCR-1 in prostate tissue, total HAVcR-1 in prostate 

cancer (n=2) and background control (n=2) tissue samples was stained via IHC. 

This revealed that the HAVcR-1 protein is expressed in prostate glandular epithelia. 

Analysis of staining intensity, as representative of HAVcR-1 expression, revealed a 

significant increase in HAVcR-1 total protein expression in malignant prostate 

epithelia in comparison to control prostate epithelia (p=0.0006) (See Figure 3.3).   
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Figure 3.3 Prostate Tissue Staining for Total HAVcR-1 Levels 
Tissue samples stained for HAVcR-1 protein expression using IHC. HAVcR-1 
expression in malignant prostate epithelia in comparison to normal prostate 
epithelia was quantified via ImageJ software and statistical analysis was performed 
via the Student’s t-test using Microsoft Excel software; p<0.05 was considered 
significant and the p value stated next to images.  
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3.3.4  High HAVCR1 Gene Expression in Prostate Cancer 

HAVCR1 gene expression was then investigated. Unfortunately, patient sample RNA 

was unavailable thus data available on the Gene Expression Omnibus (GEO) 

(www.ncbi.nlm.nih.gov/geo/) repository, in particular the GSE55945 

(www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55945) and GSE6919 

(www.ncbi.nlm.nih.gov/geo/query/acc.cgi) GEO DataSets, were utilised to evaluated 

total HAVCR1 gene expression in tissues.  

The GSE55945 GEO DataSet assessed differences in gene expression between benign 

prostate tissue (n=8) and malignant prostate tissue (n=13). When utilised for HAVCR1 

gene expression there was a significant increase in expression in malignant prostate 

tissue in comparison to benign prostate tissue (p=0.047) (See Figure 3.4A). The 

GSE6919 GEO DataSet was used to assess for differences in HAVCR1 gene expression 

between normal prostate tissue free of any pathological alteration (n=18) and 

primary prostate tumour samples (n=65). This showed an increase of HAVcR1 gene 

expression in primary tumours however significance was not reached (p=0.185) (See 

Figure 3.4B). 

  

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE55945
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
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Figure 3.4 GEO DataSets Analysis of HAVCR1 Gene Expression in Prostate Cancer 
GEO datasets utilized to identify changes in HAVCR1 gene expression between 
normal and prostate cancer tissue samples in GEO DataSets 
(www.ncbi.nlm.nih.gov/geo/) A GSE55945 and B GSE6919. Data shown are the 
means with error bars showing SEM and n numbers are shown within bars. Statistical 
analysis preformed via Graphpad Prism software D'Agostino & Pearson omnibus 
normality test revealed, A data was of Gaussian distribution thus the parametric t-
test with Welch’s correction was utilised and p<0.05 was considered significant and 
represented by * and B data was not of Gaussian distribution thus the non-
parametric Mann-Whitney U Test was utilised and significance (p<0.05) was not 
reached  

http://www.ncbi.nlm.nih.gov/geo/
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3.3.5  Prostate Cell Lines Release Constant Levels of HAVcR-1 

Ectodomain  

Levels of HAVcR-1 ectodomain released from prostate cell lines in vitro were 

measured to assess whether they showed a similar trend to that of serum HAVcR-1 

ectodomain levels. The amount of HAVcR-1 ectodomain secreted from various cell 

lines within 24hours were assessed via ELISA on collected cell media (See Figure 3.5). 

These were analysed as fold change relative to the HECV positive control.  

This revealed that there was no significant difference between HAVcR-1 ectodomain 

levels from the cell media of PC-3 cells (0.11± 0.025), Du145 cells (0.11± 0.032), 

LNCaP cells (0.08±0.014), CA-HPV-7 cells (0.08± 0.01) or PZ-HPV-7 cells (0.07 ± 0.013). 
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Figure 3.5 HAVcR-1 Ectodomain Release from Prostate Cell Lines 
Cells lines were grown in 6 well plates in recommended media, media was changed 
to FCS and Abx free DMEM 24 hours prior to 100 % confluency and media was 
collected at 100 % confluency. This media was then analysed for HAVcR-1 levels using 
Human TIM-1 (HAVCR1) ELISA Kit. Results were then analysed to assess differences 
HAVcR-1 ectodomain level between different cell lines and shown as fold change 
relative to HECV positive control (not shown on graph). Statistical analysis was 
performed using Student’s t-test however significance (p<0.05) was not reached. 
Graph shows the means of three independent experiments with error bars showing 
SEM  
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3.3.6 HAVcR-1 Protein Expression Varies in Prostate Cell Lines 

The expression of HAVcR-1 mature and immature (~100 kDa and ~70 kDa 

respectively) cellular protein levels were assessed in various prostate cell lines, 

alongside the HECV cell line as a positive control, using western blot analysis as well 

as IF staining. Band intensity as well as fluorescent intensity, as representative of 

protein expression, was then quantified via ImageJ software and analysed as fold 

change relative to the HECV positive control.  

A similar trend was seen in the expression of both the mature and immature protein 

with a greater expression in metastatic tumour derived cell lines PC3, Du145 and 

LNCaP than in the immortalised cell lines CA-HPV-10 and PZ-HPV-7. The highest 

expression was in LNCaP cells and the lowest in PZ-HPV-7 cells however, significance 

was not reached (See Figure 3.6).  

Total HAVcR-1 staining also showed greater protein expression in PC3, Du145 and 

LNCaP cells lines than the CA-HPV-10 cell line and this in turn was greater than the 

expression in the PZ-HPV-7 cell line (See Figure 3.7). 
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Figure 3.6 HAVcR-1 Protein Expression in Prostate Cell Lines 
Cell lines grown in supplemented medium and harvested at 100 % confluence. Data 
shown are the means of three independent experiments and error bars show SEM. 
HAVcR-1 protein expression was assessed using A SDS PAGE and western blot 
analysis where the blot is representative of three independent experiments. B and C 
Graphs show band intensity as quantified by ImageJ software for B the ~100 kDa 
mature protein and C the ~70 kDa immature protein. B and C HAVcR-1 protein 
expression was normalised to GAPDH and is shown as fold change relative to HECV 
positive control (not shown).  Student’s t-tests were performed and significance of 
p<0.05 was not reached  
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Figure 3.7 HAVcR-1 Protein Staining in Prostate Cell Lines 
Cell were grown in 8 well chamber slides in supplemented media and subjected to 
immunofluorescence at 100 % confluence with HAVcR-1 and nuclear staining. Images 
were taken at 100 X magnification. Scale bars are representative of 20 µm. A Images 
are representative of three independent experiments and show fluorescence 
emission correlating to HAVcR-1 expression or nuclear staining and a merged image 
of both. B Graph shows quantitative analysis of immunofluorescent staining of 
HAVcR-1   
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3.3.7 HAVCR1 Gene Expression Varies in Prostate Cell Lines 

HAVCR1 gene expression of several prostate cell lines was assessed using PCR and 

qPCR. PCR band intensity as representative of gene expression was then quantified 

via ImageJ software. Data for both PCR and qPCR were analysed as fold change 

relative to the HECV positive control. 

PCR revealed a significantly higher HAVCR1 gene expression in PC3 cells than in 

LNCaP (p=0.005), CA-HPV-10 (p=0.019) and PZ-HPV-7 (p=0.009) cell lines. Although 

not significant, HAVCR1 gene expression appears to be highest in the Du145 cell line 

and lowest in the PZ-HPV-7 cell line (See Figure 3.8A and B). qPCR revealed the same 

trend with the highest HAVCR1 gene expression seen in Du145 cell and the lowest in 

PZ-HPV-7 cells however significance was not reached (See Figure 3.8C). 
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Figure 3.8 HAVCR1 Gene Expression in Prostate Cell Lines 
Cell lines were grown in 6 well plates in supplemented media and harvested via RNA 
extraction at 100 % confluence. Data shown are the means of three independent 
experiments and error bars show SEM. HAVCR1 mRNA expression was assessed using 
A PCR or C qPCR. B Graph shows band intensity as quantified by ImageJ software. B 
and C HAVCR1 mRNA expression was normalised to GAPDH and is shown as fold 
change relative to HECV positive control (not shown on graph). Student’s t-tests were 
performed and significance is indicated by * and **, which signify p<0.05 and p<0.01 
respectively.  
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3.4  Discussion and Conclusion 

This study commenced with the investigation of serum HAVcR-1 ectodomain levels 

in prostate cancer; which showed a decreased serum HAVcR-1 ectodomain levels in 

comparison to healthy control levels. Furthermore, decreases in serum HAVcR-1 

ectodomain levels between Gleason score 6, 7, 8, 9 and 10 prostate and healthy 

controls presents HAVcR-1 as a potential diagnostic biomarker, which would be of 

particular interest in prostate cancer where the current biomarker (PSA) is highly 

nonspecific [329]. However, there were limitations with this study with low numbers 

of control serum samples reducing reliability of these conclusions. In addition, 

healthy control samples were not aged matched and therefore does not rule out the 

possibility of the decreasing in HAVcR-1 ectodomain levels being attributed to age 

rather than the presence of prostate cancer. Therefore, further study with increased 

n numbers and age matched controls should be undertaken. It is also currently it is 

not known whether changes in serum levels would be unique to prostate cancer and 

due to changes in expression levels of HAVcR-1 in other cancers as well as in other 

disease, it may be unlikely that serum HAVcR-1 levels are a prostate cancer specific 

biomarker [283, 298, 314, 315, 319, 320]. It is possible that serum levels decrease in 

a variety of cancer types and thus HAVcR-1 may need to be used in conjunction with 

other biomarkers, such as PSA in the instance of prostate cancer or be followed by 

further testing to determine cancer/ disease type.  

Prostate cancer is an age-related disease, however despite the high incidence the 

associated mortality rate is relatively low [8]. This is due to the majority of prostate 

cancer cases remaining a localised disease and not progressing to the metastatic 

disease responsible for the related lethality [331]. Amongst others, the recent 
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ProtecT randomised trial highlights the amount of potentially unnecessary treatment 

given [334]. In conjunction with the side effects of such treatments, the treatment of 

localised prostate cancer may in fact be more harmful than beneficial [334]. Due to 

the alternatives to treatment (active surveillance and watchful waiting) relying on 

the non-cancer specific PSA test as well as the more invasive prostate biopsy there is 

a requirement for less invasive but more specific testing to determine disease 

progression as well as a biomarker for prostate cancer that is more likely to progress 

to metastatic disease [332]. It was due to this that links between Gleason score and 

HAVcR-1 ectodomain levels were investigated. However, there was no change in 

levels with increasing Gleason score or between low Gleason score and high Gleason 

score prostate cancer. It is therefore possible that serum HAVcR-1 ectodomain levels 

are of little or no clinical benefit in the monitoring of prostate cancer progression 

Gleason score is only one prognostic indicator and therefore it may be of use to 

investigate levels in relation invasiveness and metastasis. In ccRCC a link between 

HAVcR-1 ectodomain shedding and invasiveness and tumour malignancy, it would 

therefore be interesting to investigate if a similar effect is seen in prostate cancer 

[317]. Unfortunately, information into cancer metastasis in terms of TNM staging was 

either unavailable or incomplete for many serum samples used in the study and 

therefore future study would investigate any correlation between metastasis and 

serum HAVcR-1 ectodomain levels. 

This study also aimed to assess total HAVcR-1 expression in prostate cancer, which 

revealed a significant increase in HAVcR-1 protein expression in prostate cancer 

tissue samples in comparison to normal control samples. This result was unsurprising 

as it has been previously documented that there is increased HAVcR-1 staining in 
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prostate cancer tissue samples [335]. Furthermore, using GEO DataSets HAVcR-1 

overexpression in prostate cancer was also shown at gene level. HAVcR-1 

overexpression has been previously observed in breast cancer, ovarian cancer and 

renal cell carcinoma therefore providing further evidence that HAVcR-1 is not specific 

to a certain cancer type [317, 336]. Interestingly, this increase in total HAVcR-1 

protein expression is the opposite of the observed decreased serum HAVcR-1 

ectodomain levels. Two possible explanations for this are that either the cleavage 

event that results in the release of the ectodomain is decreased in prostate cancer 

or that there is decreased entry of the HAVcR-1 ectodomain into the circulation in 

prostate cancer. Decreased cellular cleavage appears unlikely due to a previously 

documented increased urinary HAVcR-1 levels with the occurrence of prostate 

cancer [315]. In regards to decreased entry into the circulation as HAVcR-1 is 

expressed in prostate glandular epithelial cells it would be expected that, similarly to 

PSA, the disruption of the normal prostate architecture that occurs with prostate 

cancer progression would cause an increased entry into the circulation [298]. A 

possible explanation as to why this is not the case is that the HAVcR-1 ectodomain is 

sequestered within the tumour. HAVcR-1 is expressed on the surfaces of CDK4+ T 

cells, CDK8+ T cells, natural killer (NK) cells, NKT cells, dendritic cells, B cells and mast 

cells  [85, 86]. HAVcR-1 is a co-stimulatory molecule with ligand binding resulting in 

the activation, proliferation and cytokine production of T cells and the activation of 

NKT cells [85, 86, 337]. HAVcR-1 ligands include TIM-4 and phosphatidylserine (PS) 

[86, 337]. The HAVcR-1 can bind PS and thus, it is possible that the released HAVcR-

1 ectodomain is sequestered within the tumour, binding to TIM-4 and PS preventing 

the activation of infiltrating immune cells [86]. If this is the case the release of the 
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HAVcR-1 ectodomain may contribute to the non-responsiveness of many tumour 

infiltrating immune cells and would be of interest for future study. 

HAVcR-1 is overexpressed in prostate cancer and therefore the staining of prostate 

biopsies could be used to aid in prostate cancer diagnosis however it would be of 

interest to investigate whether there is any correlation with total HAVcR-1 expression 

and disease prognosis as this would have more clinical benefit. Furthermore, as 

HAVcR-1 is a transmembrane protein it may be possible for HAVcR-1 to be a target 

for an antibody-drug complex (ADC) in the treatment of prostate cancer. Intriguingly, 

the CDX-014 ADC which targets HAVcR-1 is currently in phase I and II clinical trials for 

advanced or metastatic renal carcinoma [338]. Although this trial is not expected to 

be completed until August 2020 it may result in a viable treatment for other cancers 

of which HAVcR-1 is overexpressed including prostate cancer.  

Depending on the function of HAVcR-1 in prostate cancer there may also be the 

possibility of a HAVcR-1 targeted therapy however further study is required to assess 

the role of HAVcR-1 in cancer development and progression. Therefore, various 

prostate cell lines were assessed to determine whether they were suitable models 

for further HAVcR-1 study. PC-3, Du145 and LNCaP were assessed to model 

metastatic disease, CA-HPV-10, to model localised disease, and PZ-HPV-7 to model 

normal prostate epithelia. HAVCR1 gene expression was increased in PC-3, Du145, 

LNCaP and CA-HPV-10 cell lines in comparison to PZ-HPV-7 with this change being 

significant in PC-3 cells in comparison to LNCaP, CA-HPV-10 and PZ-HPV-7 cells. There 

was also consistent increased total HAVcR-1 protein expression in PC-3, Du145, 

LNCaP and CA-HPV10 cells in comparison to PZ-HPV-7 cells. Therefore, a similar trend 

was seen in cell lines as in the clinical samples; that HAVcR-1 is overexpressed at 
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protein and gene level in prostate cancer. Furthermore, there was no change in 

HAVcR-1 ectodomain levels found in cell media between cell lines thus conferring 

with the clinical data theory that the variation in serum HAVcR-1 ectodomain levels 

with the occurrence of prostate cancer is not due to a variation on the amount of 

HAVcR-1 cleavage. Cell line expression therefore agreed with clinical data to a 

suitable degree that they would be used for further study into the effect of HAVcR-1 

in prostate cancer. 
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4.1 Introduction 

Prostate cancer is extremely prevalent in the western world and the majority of 

prostate cancer mortality is associated with cancer metastasis. Advanced metastatic 

disease accounts for 90 % of cancer deaths [49, 339]. There has been extensive study 

into metastasis with the hopes of improving therapeutics and therefore lowering 

mortality. However, metastasis is extremely complex involving a multitude of 

signalling cascades, the variations of which are still not fully understood [50]. 

Treatment and management of metastatic prostate cancer relies heavily upon 

androgen deprivation therapy (ADT) which, although initially effective, resistance to 

treatment and disease progression inevitably occurs [87]. It is therefore important 

for the continuation of research into the deregulated proteins associated with 

prostate cancer metastasis as well as the signalling pathways they are involved in. 

This would provide a greater understanding of the processes that occur with the 

overall aim of identifying novel biomarkers for prostate cancer progression as well as 

novel targets for prevention and treatment of metastatic disease.  

For metastasis to occur a cancer cell must undergo an evolutionary series of 

mutations resulting in alterations in cell characteristics including cell growth, 

apoptosis, migration and dissemination [87]. Research into the role of HAVcR-1 in 

these characteristics is limited however, in colorectal cancer HAVcR-1 has been 

demonstrated to affect cell invasion and adhesion [320]. Furthermore, dissemination 

and migration require disordered adhesion and decreased TJ integrity leading to 

cancer invasion and metastasis [87]. In endothelial cells HAVcR-1 expression reduces 

TJ integrity and was found to precipitate with key TJ proteins ZO-1, ZO-2 and the TJ 

regulatory protein RhoC; an important protein in the migration of cancer cells 
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especially from a primary tumour [340-342]. Therefore, the interaction between 

HAVcR-1 and TJs in prostate cancer may aid in the understanding of cancer 

metastasis and provide a novel target for metastatic prostate cancer treatment. 

The increase in HAVCR1 gene and protein expression in prostate cancer and cell 

models as shown in Chapter III presents HAVcR-1 as important in prostate cancer 

development and progression. Therefore, HAVcR-1 could prove a therapeutic target 

for prostate cancer therapeutics. This chapter aimed to establish HAVcR-1 

overexpressing and HAVcR-1 knockdown in vitro cell models, based on the metastatic 

prostate cancer PC-3 cell line. Then to use these cell models to assess the effects 

HAVcR-1 have on cell behaviours that are important for metastasis to occur. It also 

aimed to utilise these generated cell models to assess the effect of HAVcR-1 on the 

integrity of cell-cell contacts as well as the expression of TJ proteins to examine 

whether HAVcR-1 may be an important regulator of junctional complexes.  
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4.2 Materials and Methods 

4.2.1 Mammalian Cell Culture 

All cell lines were obtained from the ATCC (Middlesex, UK), maintained in 

recommended media (See Table 2.1) as described in Section 2.2.1. 

4.2.2 Generation of Plasmids 

HAVcR-1 ribozyme inserts were amplified as detailed in Section 2.2.2.1 via 2 X GoTaq 

G2 GREEN master mix (Promega, Southampton, UK) PCR. The ribozyme sequence 

was then cloned into the PEF6/V5-His TOPO TA plasmid to produce the HAVcR-1KD 

plasmid utilising the PEF6/V5-His TOPO TA expression kit (Invitrogen, Life 

technologies, Paisley, UK) as detailed in Section 2.2.2.2. This was then used to 

transform One Shot TOP10 Chemically Competent E. coli (Thermo Fisher Scientific, 

Cramlington, England, UK) as detailed in Section 2.2.2.3. Colonies for amplification 

and purification were selected as detailed in Section 2.2.2.4 and were subject to 

plasmid purification via the GenElute Plasmid Miniprep Kit (Sigma-Aldrich, 

Gillingham, Dorset, UK) as detailed in Section 2.2.2.5. 

PEF6/V5-His TOPO TA control plasmid (termed pEF6 control) and HAVcR-1 

overexpression PEF6/V5-His TOPO TA plasmid (termed HAVcR-1EXP) was obtained 

courtesy of Dr T.A. Martin (as described in [340]). Amplification of plasmids was 

achieved via transformation of One Shot TOP10 Chemically Competent E. coli 

(Invitrogen, life technologies, Paisley, UK) (detailed in Section 2.2.2.3) and plasmid 

purification using the GenElute Plasmid Miniprep Kit (Sigma Life Sciences, Dorset, UK) 

as detailed in Section 2.2.2.5. Purified plasmids were then stored at -20C. 
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The PC-3 cell line was then transformed with pEF6 control, HAVcR-1EXP or 

HAVcR- 1KD plasmid via electroporation as detailed in Section 2.2.2.6. 

4.2.3  RNA Extraction, PCR and qPCR 

Cells were grown in 6 well plates until confluent, total RNA was then extracted using 

the EZ-RNA kit (Geneflow, Staffordshire, UK) as detailed in Section 2.2.3.1. Five 

hundred nanograms of total RNA was then used to synthesise cDNA using Primer 

Design Precision Nanoscript 2 Reverse Transcription kit (Primer Design, 

Southampton, UK) as detailed in Section 2.2.3.2. Polymerase chain reaction (PCR) 

was then carried out, as detailed in Section 2.2.3.3, using GoTaq G2 Green master 

mix (Promega) and primers detailed in Table 4.1. Products were then subjected to 

gel electrophoresis as described in Section 2.2.3.4. cDNA was also used for qPCR, 

using Precision FAST 2 X qPCR Master Mix with ROX (Primer Design, Southampton, 

UK). qPCR methodology is detailed in Section 2.2.3.5 and primers used within this 

chapter are detailed in Table 4.1. 

4.2.4 ImmunoFluorescence (IF) Staining 

Cells were seeded at 5X104 cells per well of a Millicell EZ-8-well chamber slide until 

confluent prior to being subject to IF staining as detailed in Section 2.2.4.9. Primary 

and secondary antibodies used are described in Table 4.2.  

4.2.5  Cell Growth Assay 

Growth assays were carried out as described in Section 2.2.5.1 and cells were stained 

with crystal violet as described in Section 2.2.5.4. 
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4.2.6 Cell Adhesion Assay 

Adhesion assays were carried out as described in Section 2.2.5.2 and stained with 

crystal violet as described in Section 2.2.5.4. 

4.2.7 Cell Invasion Assay 

Invasion assays were carried out as described in Section 2.2.5.3 and cells were 

stained with crystal violet as described in Section 2.2.5.4. 

4.2.8 Cell Migration Assay 

Migration assays were performed as detailed in Section 2.2.5.7. 

4.2.9 Transepithelial Resistance (TER) 

TERs were measured as described in Section 2.2.5.5. 

4.2.10 Paracellular Permeability (PCP) 

PCPs were performed as described in Section 2.2.5.6. 

4.2.11 Electric Cell-Substrate Impedance Sensing (ECIS) 

ECIS experiments were performed as described in Section 2.2.5.8. 

4.2.12 Statistical Analysis 

PCR and western blot analysis bands were quantified using Image J software, with 

data such as qPCR, cell growth, adhesion, invasion and TER was statistically analysed 

to assess for changes from PC-3pEF6 control using the Microsoft Excel Student’s t-test. 

Wound area was quantified using Image J software and this data as well as data from 

other assays whereby time points were assessed, which included: ECIS and PCP, was 
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statistically analysed to assess changes from PC-3pEF6 control using the IBM SPSS 

Statistics 24 mixed-design ANOVA.   
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Table 4.1. Chapter IV Primers used in PCR and qPCR 
 Target  Sequence 5’-3’ Number 

of 

Cycles 

Product 

Size (bp) 

PCR Plasmid 

correct 

orientation 

T7F TTAATACGCTCACTATAGGG 30 400 

RB 
BMR 

TTCGTCCTCACGGACTCATCAG 

Plasmid 

incorrect 

orientation 

T7F TTAATACGCTCACTATAGGG 30 400 

RB 

TPF 

TTCGTCCTCACGGACTCATCAG 

HAVCR1 F: CAACAACAAGTGTTCCAGTG 35 436 

R: GCATTTTGCAAAGCTTTAAT 

GAPDH F: GGCTGCTTTTAACTCTGGTA 25 475 

R: GACTGTGGTCATGAGTCCTT 

ZO1 F: CCACATACAGATACGAGTCCTC 30 533 

R: TGGCTTATGCTGAGATGAAGG 

ZO2 F: CTGACATGGAGGAGCTGA 30 844 

R: GAGACCATACTCTTCGTTCG 

CLDN1 F: ATGGCCAACGCGGGGC 30 636 

R: TCACACGTAGTCTTTCC 

CLDN2 F: TATAGCACCCTTCTGGGCCT 30 432 

R: CCTTGGAGAGCTCCTTGTGG 

CLDN3 F: ATGCAGTGAAGGTGTACGA 30 403 

R: TGGTGGCCGTGTACTTCTTC 

CLDN4 F: TGGGAGGGCCTCTGGATGAA 30 422 

R: TGGTGGCCGTGTACTTCTTC 

CLDN7 F: ATAACCCTTTGATCCCTACC 30 113 

R: ACTGAACCTGACCGTACAACAGG 

CLDN9 F: CTTCATCGGCAACAGCATCG 30 339 

R: AAGTCCTGGATGATGGCGTG 

JAMA F: AACAAGATCACAGCTTCCTA 30 600 

R: CTTACTCGAAGTCCCTTTCT 

OCLN F: ATGTCATCCAGGCCTC 30 579 

R: ATAGACAATTGTGGCA 

qPCR HAVCR1 

 

F: GACAATGTTTCAACGA 100 

 

99 

 
ZR: ACTGAACCTGACCGTACA 

TGGAGGAACAAA 

GAPDH F: CTGAGTACGTCGTGGAGTC 100 93 

ZR: ACTGAACCTGACCGTACA 

CAGAGATGATGACCCTTTTG 
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Table 4.2 Chapter IV Antibodies used in Immunofluorescence 

Antibody Animal Source Company  Concentration  

HAVcR-1 Rabbit Abnova, Heyford, 

Oxfordshire, UK 

2 µg/mL 

TIM-1 (N-13) Goat Santa Cruz, Insight 

Biotechnology 

Limited, Middlesex 

UK 

2 µg/mL 

Cld-1 Goat Santa Cruz, Insight 

Biotechnology 

Limited, Middlesex 

UK 

2 µg/mL 

Cld-7 Goat Santa Cruz, Insight 

Biotechnology 

Limited, Middlesex 

UK 

2 µg/mL 

Occludin Goat Santa Cruz, Insight 

Biotechnology 

Limited, Middlesex 

UK 

2 µg/mL 

ZO-1 Goat Santa Cruz, Insight 

Biotechnology 

Limited, Middlesex 

UK 

2 µg/mL 

Anti-Goat AlexaFluor 

594 

Donkey Thermo Fisher 

Scientific, 

Cramlington, 

England, UK 

1:500 

Anti-Goat AlexaFluor  

488 

Donkey Thermo Fisher 

Scientific, 

Cramlington, 

England, UK 

1:500 

Anti-Rabbit AlexaFluor 

594 

Donkey Thermo Fisher 

Scientific, 

Cramlington, 

England, UK 

1:500 

  



 Chapter IV 

181 
 

4.3 Results 

4.3.1  Generation and Validation of Plasmids 

The HAVcR-1 targeting ribozyme insert was created using PCR methods prior to being 

cloned into the pEF6/V5-HISTOPO TA vector and then transformed into E.coli. To 

ensure purification of plasmids that had incorporated this ribozyme insert in the 

correct orientation five colonies were checked for orientation analysis. This was 

achieved by utilising two sets of primers: one for correct orientation and one for 

incorrect orientation. All five colonies contained plasmids containing the ribozyme 

insert of the correct orientation (See Figure 4.1A). Colony 1 was chosen for plasmid 

purification.  

HAVcR-1EXP plasmids were amplified using E.coli and to ensure HAVCR1 gene was 

inserted into the plasmid PCR was performed alongside the HECV RNA positive 

control. This confirmed the plasmid contained the HAVCR1 gene insert (See Figure 

4.1B). The pEF6 control plasmid was also amplified purified and validated via a PCR 

alongside the original pEF6 plasmid (See Figure 4.1C).  
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Figure 4.1 Generation of Plasmids 
A Post transformation with ribozyme containing plasmid five colonies were checked 
for plasmids containing ribozyme of correct orientation. Positive orientation was 
shown via the use of T7F and RB BMR primers (indicated by +) and negative 
orientation was shown via the use of T7F and RB TPF primers (as indicated by -). B 
PCR of HAVCR-1 to ensure gene was inserted. C PCR using T7F and RB BGH to ensure 
pure pEF6 plasmid with MidRanger 1 kb DNA Ladder.  
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4.3.2 HAVCR1 Gene Expression Validated PC-3 Cell Models 

PC-3 cells were transfected via electroporation with plasmids: pEF6 control (termed 

PC-3pEF6), HAVcR-1EXP plasmid (termed PC-3HAVcR-1EXP) or HAVcR-1KD plasmid 

(termed PC-3HAVcR-1KD). The success of these transfections was assessed at mRNA 

level via PCR and qPCR. PCR band intensity as representative of mRNA expression 

was quantified via ImageJ software and analysed as fold change relative to the PC-

3pEF6 (See Figure 4.2). 

The PC-3pEF6 cell model was verified as a suitable control with PCR showing that there 

was no significant variation in HAVCR1 gene expression between PC-3WT and PC-3pEF6 

with fold change from PC-3pEF6 being 1.46±0.50; p=0.25. This was also shown with 

qPCR with fold change from PC-3pEF6 being 1.32±0.64; p=0.66. 

PCR showed a 4.55±2.19 fold increase in HAVCR-1 expression in PC-3HAVcR-1EXP 

compared to PC-3pEF6 however this was not significant (p=0.25). qPCR however did 

show a significant increase with a 75.26±15.91 fold increase (p=0.043).  

PCR showed a 0.37±0.299 fold decrease of HAVCR1 expression in PC-3HAVcR-1KD in 

comparison to PC-3pEF6 and qPCR showed a 0.51±0.22 fold decrease however results 

were not significant in either case (p=0.17 and p=0.16 respectively).  
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Figure 4.2 Validation of PC-3 HAVCR1 Overexpression and Knockdown at Gene 
Level 
Cells were grown in 6 well plates in supplemented media and harvested via RNA 
extraction at 100 % confluence. Data shown are the means of three independent 
experiments and error bars show SEM. HAVCR1 mRNA expression was assessed using 
A PCR or C qPCR. B Graph shows band intensity as quantified by ImageJ software. B 
and C HAVCR1 mRNA expression was normalised to GAPDH and is shown as fold 
change relative to pEF6 control. Student’s t-tests were performed and significance of 

p<0.05 is represented by *.  
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4.3.3  HAVcR-1 Protein Expression Validated PC-3 Cell Models  

IF staining was utilised to validate successful cell transfection at protein level (See 

Figure 4.3 A) and the amount of fluorescence as representative of protein expression 

was quantified using ImageJ software (See Figure 4.3 B). 

There was no change in HAVcR-1 expression in PC-3WT from PC-3pEF6 (0.86±0.22 fold; 

p=0.600). Increased expression of HAVcR-1 in PC-3HAVcR-1EXP (2.32±0.25 fold; p=0.033) 

was observed compared to the expression inPC-3pEF6. The protein expression of 

HAVcR-1 in PC-3HAVcR-1KD was decreased 0.82±0.05 fold from that of PC-3pEF6, however 

this was not significant (p=0.079). Staining of HAVcR-1 was diffuse throughout the 

cell. Within PC-3HAVcR-1EXP HAVcR-1 staining was increased within the cytoplasm and 

nucleus.  
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Figure 4.3 Protein Validation of HAVcR-1 Overexpression and Knockdown PC-3 Cell 
Lines Using Immunofluorescence 
Cell were grown in 8 well chamber slides in supplemented media and subjected to 
immunofluorescence at 100 % confluence with HAVcR-1 and nuclear staining. A 
Images show fluorescence emission at 100 X magnification correlating to HAVcR-1 
expression or nuclear staining and a merged image of both. Images are 
representative of three independent experiments. Scale bars represent 20 µm. B 
Graph shows quantitative analysis of immunofluorescent staining of HAVcR-1 (mean 
+SEM, n=3, * represents p<0.05)  
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4.3.4  HAVcR-1 Levels Have no Effect on Cell Growth 

PC-3 transfected cell lines were then used to assess the influence if any of HAVcR-1 

on cell growth via an in vitro cell growth assay.  

This revealed that there was no significant change in cell growth in PC-3HAVcR-1EXP in 

comparison to PC-3pEF6 at Day 3 (2.50±0.66 vs 1.52±0.20: p=0.40) or at Day 5 

(7.61±0.81 vs 5.67±0.20: p=0.185). It also showed no significant change in growth 

between HAVcR-1 PC-3HAVcR-1KD and PC-3pEF6 at Day 3 (3.15±1.00 vs 1.52±0.20: p=0.29) 

or Day 5 (10.71±2.30 vs 5.67±0.20: p=0.15) (See Figure 4.4). 
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Figure 4.4 The Effect of HAVcR-1 Overexpression and Knockdown on PC-3 Cell 
Growth.  
Cells were seeded into 24 well plates at 1X104 cells per well in triplicate and 
incubated for 1, 3 or 5 days. Post incubation cells were fixed, stained with crystal 
violet and images were taken at 5 X magnification. A Images are representative of 
three independent experiments. Scale bars represent 2 mm B Cells were counted and 
graph shows the means of three independent experiments as fold change relative to 
the cell count at day 1 with error bars showing SEM. Statistical analysis was 
performed at each time point via the Student’s t-test using Microsoft Excel and 
significant of p<0.05 was not reached.  
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4.3.5  HAVcR-1 Levels have no Effect on PC-3 Cell Invasion 

The influence of HAVcR-1 on cell invasion was assessed utilising in vitro transwell 

Matrigel™ invasion assay. This assay analysed the number of cells which could invade 

though Matrigel™ in a 8 µm pore insert after 3 days with the amount of crystal violet 

staining being used as representative of cellular invasion.  

This revealed no significant change in cell invasion with PC-3HAVcR-1EXP in comparison 

to PC-3pEF6 with a 2.58±1.017 fold increase (p=0.26). PC-3HAVcR-1KD also showed no 

significant increase in invasion in comparison to PC-3pEF6 with a 1.69±0.41 fold 

increase (p=0.24) (See Figure 4.5).  
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Figure 4.5 The Effect of HAVcR-1 Overexpression and Knockdown on PC-3 Cell 
Invasion 
Cells seeded in triplicate into 8 µm size pore inserts coated in 200 µl of 500 µg/mL 
Matrigel™ in at 24 well plate at 3X104 cells per insert and incubated for 3 days. Post 
incubation cells were fixed, stained with crystal violet which was then dissolved and 
absorbance readings taken. Graph shows the means of three independent 
experiments as fold change relative to the absorbance of the pEF6 control with error 
bars showing SEM. Statistical analysis was performed via the Student’s t-test using 
Microsoft Excel and significance of p<0.05 was not reached.  
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4.3.6 HAVcR-1 Levels Have no Effect on PC-3 Cell Adhesion 

To assess the importance of HAVcR-1 on cell adhesion an in vitro Matrigel™ adhesion 

assay was carried out. This assay analysed the amount of cell adhesion to Matrigel™ 

in 30 min there was relative to the pEF6 control (See Figure 4.6). 

There was no significant change cell adhesion from to PC-3pEF6 and PC-3HAVcR-1EXP 

(2.24±0.67 fold; p=0.207) or PC-3HAVcR-1KD (1.67±0.41 fold; p=0.250). 
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Figure 4.6 The Effect of HAVcR-1 Overexpression and Knockdown on PC-3 Cell 
Adhesion 
Cells seeded into 96 well plates coated in 200 µl of 50 µg/mL Matrigel™ at 5X103 cells 
per well in triplicate and incubated for 30 min. Post incubation cells were fixed, 
stained with crystal violet and images were taken at 5 X magnification. A Images are 
representative of three independent experiments. Scale bars represent 2 mm. B Cells 
were counted and graph shows the means of three independent experiments as fold 
change relative to the cell count of the pEF6 control with error bars showing SEM. 
Statistical analysis was performed via the Student’s t-test using Microsoft Excel and 
significance of p<0.05 was not reached.  
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4.3.7 HAVcR-1 Impacts PC-3 Barrier Resistance During Initial 

Attachment and Spreading  

ECIS was used to investigate the effect of HAVcR-1 on cell attachment and spreading 

of PC-3 cells. Capacitance at 64 kHz was assessed as at this frequency the flow of 

current is mainly flowing through the cells thus it is representative of the amount of 

cell coverage on the electrode. There was no change in capacitance of PC-3HAVcR-1EXP 

in comparison to PC-3pEF6 (F(22,88)=0.159, p=1.000). There was also no change in 

capacitance of PC-3HAVcR-1KD in comparison to PC-3pEF6 (F(22,88)=0.116, p=1.000) (See 

Figure 4.7A). Resistance at 1 kHz was also assessed as at this frequency the current is 

mainly flowing outside of the cell and therefore is representative of cellular 

interactions with both the electrode as well as with adjacent cells. This revealed no 

change in resistance of PC-3HAVcR-1EXP in comparison to PC-3pEF6 (F(22,88)=0.194, 

p=1.000) or in PC-3HAVcR-1KD in comparison to PC-3pEF6 (F(22,88)=0.108, p=1.000) 

during PC-3 initial attachment and spreading (See Figure 4.7B). 

The ECIS mathematical model was used to gain a greater understanding of the 

changes occurring to these cells as they attach and spread. Here the barrier function 

resistance (Rb) can be assessed thus giving an insight as to cellular junctional 

structures between cells. This showed a significant decrease in the Rb of PC-3HAVcR-

1EXP in comparison to PC-3pEF6 (F(22,88)=2.341, p=0.003) as well as in the Rb of 

PC-3HAVcR-1KD in comparison to PC-3pEF6 (F(22,88)=1.750, p=0.035) (See Figure 4.8A). 

The adhesion to the electrode was also assessed via alpha (constraint on current flow 

beneath the cells) which showed no significant change in PC-3HAVcR-1EXP in comparison 
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to PC-3pEF6 (F(22,88)=0.033, p=1.000) or PC-3HAVcR-1KD in comparison to PC-3pEF6 

(F(22,88)=1.619, p=0.060) (See Figure 4.8B).   
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Figure 4.7 The Effect of HAVcR-1 Overexpression and Knockdown on PC-3 Initial 
Attachment and Spreading. 
Cells seeded in octuplicate into 96W1E+ plates at 5X104 cells per well and resistance, 
capacitance and impedance were monitored for 22 hours post seeding at varying 
frequencies ranging from 1-64 kHz. Graphs show the means of three independent 
experiments as fold change relative to 0 hours with error bars showing SEM for A 
capacitance at 64 kHz and B resistance at 1 kHz. Statistical analysis was performed at 
each hour time point via IBM SPSS Statistics 24 Mixed ANOVA and p values of <0.05 
were considered significant; significance was not reached.  
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Figure 4.8 The Effect of HAVcR-1 Overexpression and Knockdown on PC-3 Barrier 
Function and Constraint on Current Flow Beneath Cells During Initial Attachment 
and Spreading. 
Using the ECIS software the ECIS™ Model was applied to initial attachment data to 
give Rb (barrier function resistance) and alpha (constraint on current flow beneath 
the cells) values. Graph show then means of three independent experiments with 
error bars showing SEM for A Rb and B alpha shown as fold change relative to 0 hours. 
Statistical analysis was performed using IBM SPSS Statistics 24 Mixed ANOVA and 
p<0.05 was considered significant (p<0.05 and p<0.01 are represented by * and ** 
respectively.
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4.3.8  HAVcR-1 Decreases PC-3 Wound Healing  

To assess the importance of HAVcR-1 on PC-3 cell migration an in vitro scratch assay 

was performed whereby cells grown in 24 well plates were scratched once a 

confluent monolayer was formed. Images were taken every hour (See Figure 4.9A), 

the area of the scratch at each time point was calculated via ImageJ and percentage 

wound closure was calculated from area at 0 hours.  

This revealed that there was a significant decrease in wound healing of PC-3HAVcR-1EXP 

in comparison to PC-3pEF6 (F(10,40)=3.436, p=0.003) however there was no difference 

in healing rate with PC-3HAVcR-1EXP closing 4.68 ±0.57 %/hr and PC-3pEF6 closing 

5.01±1.24 %/hr (p=0.830) (See Figure 4.9) 

There was no significant change in wound healing of PC-3HAVcR-1KD in comparison to 

PC-3pEF6 (F(10,40)=0.135, p=0.999) and no significant difference in healing rate with 

PC-3HAVcR-1KD closing 5.88 ±0.73 %/hr and PC-3pEF6 closing 5.01±1.24 %/hr (p=0.730) 

(See Figure 4.9).  
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Figure 4.9 The Effect of HAVcR-1 Overexpression and Knockdown on PC-3 Cell 
Migration 
Cells seeded into 24 well plates in quadruplicate and scratched once confluent layer 
formed. Images were taken at 5 X magnification immediately afterward and every 
hour thereafter. A Images shown are representative of three independent 
experiments. B Wound area was measured using ImageJ software and percentage 
wound closure was calculated as relative to 0 hour time point. Data shown are the 
means of three independent experiments and error bars represent SEM. Statistical 
analysis was performed using IBM SPSS Statistics 24 utilising a Mixed ANOVA and 
p<0.05 was considered significant and represented by * (** represents p<0.01).  
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4.3.9 HAVcR-1 Impacts PC-3 Constraint on Current Flow 

Beneath Cells During Electrical Wound Healing 

ECIS was used to further investigate cell migration, whereby an electrical wound was 

applied to cells after initial attachment and spreading had concluded. Capacitance at 

64 kHz was measured for 17 hours post wounding as indicative of cell coverage. This 

showed no change with PC-3HAVcR-1EXP  (F(17,68)=0.148, p=1.000) or PC-3HAVcR-1KD 

(F(17,68)=0.120, P=1.000) in comparison to PC-3pEF6 during wound healing (See 

Figure 4.10A). Resistance at 1 kHz was also measured for 17 hours post wounding to 

investigate cell-cell and cell-plate interactions. There was no change in resistance 

with PC-3HAVcR-1EXP (F(17,68)=0.203, p=1.000) and PC-3HAVcR-1KD (F(17,68)=0.056, 

p=1.000) in comparison to PC-3pEF6 during wound healing (See Figure 4.10B). 

 

ECIS mathematical modelling of this data to look at barrier function resistance (Rb) 

and constraint on current flow beneath the cells (alpha) revealed no significant 

difference in Rb with either PC-3HAVcR-1EXP (F(17,68)=0.627, p=0.859) or PC-3HAVcR-1KD 

(F(17,68)=1.105, p=0.368) in comparison to PC-3pEF6 (See Figure 4.11A). However 

there were significant increases in alpha of both PC-3HAVcR-1EXP (F(17,68)=6.808, 

p<0.0001) and PC-3HAVcR-1KD (F(17,68)=2.056, p=0.019) in comparison to PC-3pEF6 (See 

Figure 4.11A). 
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Figure 4.10 The Effect of HAVcR-1 Overexpression and Knockdown on PC-3 
Electrical Wound Healing 
Post initial attachment and spreading cells were electrically wounded at 6000 Hz and 
3000 μA for 30 seconds. Resistance, capacitance and impedance were then 
monitored at varying frequencies (1-64 kHz) for 17 hours. Graphs shows the means 
of three independent experiments as fold change relative to 0 hours with error bars 
showing SEM for A capacitance at 64 kHz and B resistance at 1 kHz. Statistical analysis 
was performed at each hour time point via Mixed ANOVA using IBM SPSS Statistics 
24 and p values of <0.05 were considered significant; significance was not reached.  
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Figure 4.11 The Effect of HAVcR-1 Overexpression and Knockdown on PC-3 Barrier 
Function and Constricted Current Flow Beneath Cells During Initial Attachment and 
Spreading. 
Using the ECIS software the ECIS™ Model was applied to electrical wound healing 
data to give Rb (barrier function resistance) and alpha (constraint on current flow 
beneath the cells) values. Graph show then means of three independent experiments 
with error bars showing SEM for A Rb and B alpha shown as fold change relative to 0 
hours. Statistical analysis was performed using IBM SPSS Statistics 24 Mixed ANOVA 
and p<0.05 was considered significant; p<0.05 and p<0.0001 were represented by * 
and **** respectively. 
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4.3.10 Effect of HAVcR-1 on the Gene Expression of PC-3 

TJ Components 

To begin exploring the potential relationship between HAVcR-1 and TJs in PC-3 cells 

a PCR screening to investigate gene expression of ten TJ proteins was undertaken. 

Changes in the gene expression of these ten TJ proteins in PC-3HAVcR-1EXPand 

PC-3HAVcR-1KD were investigated in relation to expression in PC-3pEF6 (See Figure 4.12). 

From these ten gene, eight encoded integral membrane proteins (Claudin -1, -2, -3, -

4, -7, and -9, Occludin, and JAM-A and two encoded plaque anchoring proteins (ZO -1 

and ZO-2). 

There was no significant change in the gene expression in PC-3HAVcR-1EXP in comparison 

to PC-3pEF6 of CLDN1 (1.07±0.09 fold; p=0.503), CLDN2 (0.98±0.46 fold; p=0.962), 

CLDN3 (1.07±0.09 fold; p=0.536), CLDN4 (0.86±0.09 fold; p=0.245), CLDN7 (0.12±0.12 

fold; p=0.272), CLDN9 (0.71±0.20 fold; p=0.280), JAMA (1.02±0.29 fold; p=0.945), 

OCLN (0.96±0.09 fold; p=0.718), ZO1 (1.02±0.11 fold; p=0.848) or ZO2 (0.87±0.10 

fold; p=0.334). There was also no significant change in gene expression in PC-3HAVcR-

1KD in comparison to PC-3pEF6 of CLDN1 (1.01±0.09 fold; p=0.909), CLDN2 (1.81 ±1.15 

fold; p=0.553), CLDN3 (1.01±0.09 fold; p=0.909), CLDN4 (0.80±0.13 fold; p=0.263), 

CLDN7 (0.93±0.11 fold; p=0.602), CLDN9 (0.63±0.20 fold; p=0.207), JAMA (1.11±0.55 

fold; p=0.866), OCLN (1.01±0.0.8 fold; p=0.872), ZO1 (0.95±0.12 fold; p=0.734) or ZO2 

(0.90±0.12 fold; p=0.493). 

  



 Chapter IV 

203 
 

 

 

 

Figure 4.12 The Effect of HAVcR-1 Overexpression and Knockdown on Gene 
Expression of TJ Proteins 
Cell were grown in 6 well plates in supplemented media and harvested via RNA 
extraction at 100 % confluence. Data shown are the means of three independent 
experiments and error bars show SEM. A Gene expression was assessed using PCR. B 
Graph shows band intensity as quantified by ImageJ software. Expression was 
normalised to GAPDH and is shown as fold change relative to pEF6 control. Student’s 
t-tests were performed and significance of p<0.05 was not reached.  
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4.3.11 Effect of HAVcR-1 on PC-3 Protein Expression and 

Localisation of TJ Components 

Preliminary investigations into Claudin1, Occludin, ZO-1 and RhoC protein expression 

and localisation were assessed using immunofluorescence. 

Claudin 1 staining was slightly increased in PC-3HAVcR-1EXP and PC-3HAVcR-1KD in 

comparison to PC-3pEF6 cells with staining intensity being 1.12 fold and 1.19 fold 

increased respectively. Staining of Claudin 1 was highly localised within the 

cytoplasm with a minority of staining at the cell membrane. Staining was diffuse 

throughout the cell and showed no change with manipulation of HAVcR-1 expression 

(See Figure 4.13 A and E) 

Occludin staining intensity decreased in PC-3HAVcR-1EXP cells and increased in PC-3HAVcR-

1KD cells with 0.88 fold and 1.09 fold change from PC-3pEF6 cells. PC-3pEF6 and 

PC-3HAVcR-1KD cells showed diffuse staining through the cell. However, within 

PC-3HAVcR-1EXP although staining intensity was decreased, there was clear staining at 

the cell membrane (See Figure 4.13 B and E). 

ZO-1 staining intensity decreased in both PC-3HAVcR-1EXP and PC-3HAVcR-1KD cells with a 

0.66 fold change and 0.60 fold change respectively from PC-3pEF6 cells. Staining was 

diffuse throughout the cell in all cases however there appeared to be decreased 

nuclear staining within PC-3HAVcR-1EXP cells (See Figure 4.13 C and E). 

RhoC staining intensity was also decreased in both PC-3HAVcR-1EXP and PC-3HAVcR-1KD 

cells with a 0.34 fold and 0.57 fold change from PC-3pEF6 cells. Expression of HAVcR-1 

had no effect on the localisation of RhoC (See Figure 4.13 D and E)  
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Figure 4.13 Effect of HAVcR-1 on TJ Protein Expression and Localisation 
Cell were grown in 8 well chamber slides in supplemented media and subjected to 
immunofluorescence at 100 % confluence with antibodies specific for the protein of 
interest and nuclear staining. Data shown are of n=1. A-D Images show fluorescence 
emission correlating to protein expression (A:Claudin 1, B:Occludin, C:ZO-1 and 
D:RhoC),HAVcR-1 expression, DAPI nuclear staining and a merged image of both. 
Images were taken at 100 X magnification and scale bars represent 20 µm. E Graph 
shows quantitative analysis of immunofluorescent staining of proteins. White arrows 
highlight membranous staining.  
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4.3.12  PC-3 Transepithelial Resistance is Independent of 

HAVcR-1 

The assess whether HAVcR-1 influenced PC-3 TER an in vitro TER assay was 

performed on transfected PC-3 cells. Resistance across a monolayer grown on a 

transwell insert was measured. Data was then analysed as change from PC-3pEF6. 

There was no significant change in TER of PC-3HAVcR-1EXP, with a 1.02  0.05 fold change 

from the PC-3pEF6 control (p= 0.706) (See Figure 4.14). The was also no significant 

change in TER of PC-3HAVcR-1KD, with a 1.00  0.02 fold change from the PC-3pEF6 control 

(p= 0.999) (See Figure 4.14). 
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Figure 4.14 The Effect of HAVcR-1 Overexpression and Knockdown on PC-3 
Transepithelial Resistance. 
Cells seeded in triplicate into 0.4 µm size pore inserts 5X104 cells per insert and 
incubated until confluent. Post incubation resistance across the membrane was 
measured immediately after media change. Graph shows the means of three 
independent experiments as fold change relative to the resistance of PC-3pEF6. Error 
bars show SEM. Statistical analysis was performed via the Student’s t-test using 
Microsoft Excel and p<0.05 was considered significant.  
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4.3.13 PC-3 Paracellular Permeability is Independent of 

HAVcR-1 

To assess the effect if any HAVcR-1 has on PC-3 paracellular permeability an in vitro 

PCP assay was performed on PC-3pEF6, PC-3HAVcR-1EXP and PC-3HAVcR-1KD cells.  

This assay revealed no change in the amount of 40 kDa TRITC-dextran conjugate able 

to pass through PC-3HAVcR-1EXP monolayers in comparison to PC-3pEF6 monolayers 

(F(10, 40)=0.552, p=0.842) (See Figure 4.15A). There was also no change in the 

amount of paracellular movement of 40 kDa TRITC-dextran conjugate able to pass 

through PC-3HAVcR-1KD monolayers in comparison to PC-3pEF6 monolayers (F(10, 

40)=0.470, p=0.900) (See Figure 4.15A).  

Furthermore, there was no change in the passage of a smaller 10 kDa FITC-dextran 

conjugate through PC-3HAVcR-1EXP monolayers in comparison to PC-3pEF6 monolayers 

(F(10, 40)=0.259, p=0.987), (See Figure 4.15B). There was also no change in the 

passage of 10 kDa FITC dextran conjugate through the PC-3HAVcR-1KD monolayers in 

comparison to PC-3pEF6 monolayers (F(10, 40)=0.488, p=0.888) (See Figure 4.15B). 
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Figure 4.15 The Effect of HAVcR-1 Overexpression and Knockdown on PC-3 
Paracellular Permeability 
Cells seeded in triplicate into 0.4 µm size pore inserts 5X104 cells per insert and 

incubated until confluent. Post incubation cell media inside of the inserts were 

changed to media containing 0.2 mg/mL of 40 kDa TRITC-dextran conjugate and 

0.2 mg/mL of 10 kDa FITC-dextran conjugate. Samples were then taken of medium 

outside of the insert were then taken every hour and fluorescence measured. Graph 

shows the means of three independent experiments as change to fluorescence from 

0 hours for A the 40 kDa TRITC-dextran conjugate and B the 10 kDa FITC-dextran 

conjugate. Error bars show SEM. Statistical analysis was performed via Mixed 

ANOVAs using IBM SPSS Statistics 24 and significance of p<0.05 was not reached.  
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4.4 Discussion 

This chapter set out to evaluate the effect of HAVcR-1 on prostate cancer cell 

behaviours that are imperative to allow for disease progression to metastatic. To 

accomplish this cell models were created based on the PC3 cell line due to the 

consistent high protein and gene expression of HAVcR-1 as shown in Chapter III. 

These cell models were verified at gene and protein level and used for a variety of 

functional assays. Consistent with HAVcR-1 studies in colorectal cancer HAVcR-1 had 

no significant effect on cell growth [320]. However, unlike the colorectal study which 

showed that increased HAVcR-1 decreased invasion and adhesion this chapter 

showed no significant change in either with HAVcR-1 overexpression or knockdown. 

Furthermore HAVcR-1 overexpression in colorectal cells resulted in no change in cell 

migration, however overexpression in PC-3 showed decrease in wound healing and 

may therefore propose HAVcR-1 as a tumour suppressor [320].  

The second area of interest of this chapter was the effect of HAVcR-1 on intercellular 

interactions, with a specific interest on TJs. PC-3HAVcR-1EXP and PC-3HAVcR-1KD cell models 

were utilised in a series of assays to assess this, the first being TER, a quantitative 

technique for the measurement of TJ integrity, which showed no change in resistance 

with PC-3HAVcR-1EXP or PC-3HAVcR-1KD [343]. Therefore, suggesting that HAVcR-1 has no 

effect on tight junction integrity and is inconsistent with the hypothesis that the 

increased HAVcR-1 expression seen in prostate cancer is important for metastasis to 

occur via the decreased integrity of TJs. The effect of HAVcR-1 on paracellular 

permeability was also assessed due to TJs being the primary determinant of epithelial 

permeability with Claudin expression patterns in particular being responsible for 

pore selectivity [344]. However, HAVcR-1 appeared to have no effect on PC-3 



 Chapter IV 

212 
 

permeability and thus further suggesting that HAVcR-1 expression has no bearing on 

the integrity of TJ within PC-3 cells or on the composition of TJs within PC-3 cells. The 

compositional stability of PC-3 TJs with manipulated HAVcR-1 expression was further 

validated with gene expression of all TJ proteins investigated remaining constant. 

Preliminary investigations into TJ protein expression showed minute changes in 

expression and localisation of occludin and ZO-1. Decreased occludin staining in 

PC-3HAVcR-1EXP and increased staining in PC-3HAVcR-1KD suggests that overexpression of 

HAVcR-1 would decrease TJ integrity and that targeting HAVcR-1 could therefore be 

a potential therapeutic target for prostate cancer. However contradictory to this, 

there was also an increase in occludin membranous staining with HAVcR-1 

overexpression suggesting an increase in TJs. Furthermore, in PC-3 cells that 

overexpressed HAVcR-1 there was a decreased nuclear staining of ZO-1. ZO-1 

contains both NLS and NES thus scan shuttle between TJs and the cell nucleus [129]. 

Nuclear levels are generally associated with decreased TJ integrity being found in 

proliferating low confluent cells [176]. Therefore, low ZO-1 nuclear staining further 

suggests an increased junctional stability with HAVcR-1 overexpression.  

To gain further insight into the effect of HAVcR-1 on cellular interactions during cell 

attachment and wound healing ECIS experiments were carried out. Results from 

which were inconsistent with previous assays, whereby HAVcR-1 expression had no 

impact on TER and PCP. There was a decrease in barrier resistance with HAVcR-1 

overexpression and knockdown during cell adhesion and spreading indicating a 

decrease in cell-cell junction integrity. TER results suggested that junctional integrity 

remained constant regardless of HAVcR-1 expression, thus it is possible that HAVcR-1 

levels effect the initiation of junction assembly however, do not affect the integrity 
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of junctions once formed. The cell adhesion assay as well as ECIS initial attachment 

experiment showed no change in cell adhesion with manipulated HAVcR-1 

expression. However, there was an increased constraint under cells with both 

increased and decreased HAVcR-1 expression suggesting decreased focal adhesion. 

To validate changes to focal adhesion further analysis is required such as a dynamic 

culture cell adhesion assay would be required [345].  

The lack of significance within this chapter suggests that the HAVcR-1 overexpression 

seen in prostate cancer does not decrease TJ integrity and may therefore not be 

involved in the process of metastasis. However, it is also possible that due to the PC-3 

cell line being highly mutated from that of the normal prostate and being a 

metastatic prostate cancer cell line that these cells are no longer reliant on HAVcR-1. 

It is therefore possible that HAVcR-1 overexpression may be an initiation step for 

tumorigenesis or metastasis of which PC-3 have succeeded. It would therefore be of 

interest to investigate the effect of HAVcR-1 overexpression in a prostate cancer cell 

line which is closer to that of the normal prostate. It is also possible that HAVcR-1 

overexpression alone is not responsible for cellular changes but the combination of 

HAVcR-1 overexpression and HAVcR-1 activation. There has been some research to 

indicate that HGF is important in HAVcR-1 activation and therefore it would be 

interesting to investigate the effect of a combination of HGF and HAVcR-1 on cell 

behaviours and TJ integrity [340].
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5.1 Introduction 

The majority of prostate cancers originate from glandular epithelial cells, with 99 % 

being adenocarcinomas [346, 347]. Therefore, understanding the regulation of 

normal epithelial architecture and the mechanisms by which they are disturbed is 

critical in the understanding of carcinogenesis of prostate cancers [348]. Intercellular 

junctions are important in the homeostasis of epithelial sheets maintaining tissue 

integrity and cellular polarity as well as regulating paracellular transport and 

signalling events. The dysregulation of these junctions correlates with a loss in cell-

cell adhesion and an increase in migratory potential and thus, are important in 

malignant transformation and progression [346, 349, 350]. 

AJs, key intercellular junctions, are composed of three main protein families: 

transmembrane cadherins, armadillo proteins and plakins. E cadherin is the 

predominant transmembrane protein in epithelial cell AJs and is responsible for cell-

cell adhesion via homotypic binding to E-cadherin on neighbouring cells. Armadillo 

proteins, including α- and β- catenin, facilitate the interaction between the 

cytoplasmic tail of E-cadherin and the actin cytoskeleton. As well as the role in cellular 

adhesion, AJs are also important in the regulation of the actin cytoskeleton, signalling 

and transcriptional processes [346, 348]. Tumours originating from epithelial cells 

acquire alterations in cellular adhesion and cytoskeleton dynamics. These changes 

have the capacity to transduce intracellular signals which act to promote cell 

proliferation and survival as well as regulate cell motility and invasion. Thus, the 

dysregulation of AJs can play an important role in carcinogenesis [346, 349]. 

Changes in the expression and localisation of junctional proteins such as cadherin-

switching are important in cancer progression. One of the most frequent is the loss 
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of E-Cadherin which has a role in the transformation from the normal epithelial 

morphology toward an invasive and less differentiated mesenchymal phenotype, 

known as EMT [346, 349, 351]. EMT is a natural process, seen in embryogenesis (type 

I) and wound healing (type II), which becomes pathological in the case of cancer. EMT 

is also characterised by the loss of other epithelial markers, including β-catenin, and 

the simultaneous increase of mesenchymal markers including N-cadherin and 

vimentin. EMT results in decreased adhesion, increased migration and the initiation 

of invasion and metastasis [209, 349]. Cancer cells that undergo EMT are therefore 

more invasive and are more likely to metastasise [346, 349]. EMT has been shown to 

be important in prostate cancer progression. Decreased E-cadherin and increased N-

cadherin have been found in more aggressive prostate cancer cell lines and  have 

been associated with cancer stage, progression and cancer-specific death [5, 209, 

351, 352].  

Cell adhesion complexes transduce signalling between cells and are critical for 

regulating cellular processes including gene expression, cell cycle and programmed 

cell death [6]. Dissociation of β-catenin from E-cadherin and the actin cytoskeleton 

enables its translocation to the nucleus where it can bind to transcription factors to 

promote gene expression including genes involved in cell proliferation [348]. 

Reduced membranous β-catenin and increased nuclear β-catenin have therefore 

been associated with aggressive prostate cancer [353]. 

HAVcR-1 expression is increased in prostate cancer therefore, to evaluate whether 

this increase is implicated in the development and progression of prostate cancer 

this section of my study aimed to create a HAVcR-1 overexpression cell model using 

the PZ-HPV-7 cell line. Utilising this cell model this chapter aimed to evaluate the 
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effect manipulated HAVcR-1 expression had on the expression and phosphorylation 

of signalling molecules using the Kinex™ Antibody Microarray, validating and further 

exploring the potential signalling pathways presented. Furthermore, this chapter set 

out to assess the effect HAVcR-1 had on cell behaviours crucial for prostate cancer 

development and progression to metastatic disease using in vitro functional assays.  
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5.2 Materials and Methods 

5.2.1 Mammalian Cell Culture 

The PZ-HPV-7cell line was purchased from ATCC (Middlesex, UK) and maintained in 

supplemented Keratinocyte-SFM medium (Sigma, Dorset). PZ-HPV-7pEF6 and PZ-HPV-

7HAVcR-1EXP were maintained in maintenance Keratinocyte-SFM medium. Routine cell 

culture was carried out as described in Section 2.2.1 

5.2.2 Generation of Plasmids 

PEF6/V5-His TOPO TA control plasmid (termed pEF6 control) and HAVcR-1 

overexpression PEF6/V5-His TOPO TA plasmid (termed HAVcR-1EXP) was obtained 

courtesy of Dr T.A. Martin. Amplification of plasmids was achieved via transformation 

of One Shot TOP10 Chemically Competent E.coli (Invitrogen, life technologies, 

Paisley, UK) (detailed in Section 2.2.2.3) and plasmid purification using the GenElute 

Plasmid Miniprep Kit (Sigma-Aldrich, Gillingham, Dorset, UK) as detailed in Section 

2.2.2.5. Purified plasmids were then stored at -20 C. 

The PZ-HPV-7 cell line was then transformed with pEF6 control or HAVcR-1EXP 

plasmid via electroporation as detailed in Section 2.2.2.6 

5.2.3  RNA Extraction, PCR and qPCR 

Cells were grown in 6 well plates until confluent, total RNA was then extracted using 

the EZ-RNA kit (Geneflow, Staffordshire, UK) as detailed in 2.2.3.1. Five hundred 

nanograms of total RNA was used to synthesise cDNA using the GoScript™ Reverse 

Transcription System (Promega, Southampton, UK) as detailed in Section 2.2.3.2. 

Polymerase chain reaction (PCR) was carried out, as detailed in Section 2.2.3.3, using 



 Chapter V 

219 
 

GoTaq G2 Green master mix (Promega, Southampton, UK) and primers detailed in 

Table 4.1. Products were subjected to gel electrophoresis as described in Section 

2.2.3.4. cDNA was also used for qPCR, using Precision FAST 2 X qPCR Master Mix with 

ROX (Primer Design, Southampton, UK) as detailed in Section 2.2.3.5 using the 

primers listed in Table 4.1. 

5.2.4 Protein Extraction and SDS PAGE and Western Blotting 

Analysis 

Cells were seeded at 3X104 per well of a 6 well plate and incubated until confluent, 

total cellular protein was extracted using western blotting lysis buffer and denatured 

using laemmli 2 X concentrate (Sigma-Aldrich, Gillingham, Dorset, UK) and boiling at 

100C for 10 min. Samples were resolved using a polyacrylamide gel, consisting of a 

4 % (v/v) stacking component and 10 % (v/v) running component. Resolved proteins 

were transferred to a PVDF membrane (Merck Millipore, Sigma-Aldrich, Gillingham, 

Dorset, UK). PVDF membranes were blocked using 5 % (w/v) milk. Primary antibodies 

and HRP-conjugated secondary antibodies diluted in 1 % (w/v) milk were used for 

immunoblotting (See Table 5.2). Proteins were detected using EZ-ECL 

Chemiluminescent Detection (Geneflow, Staffordshire, UK) and visualized using the 

G:Box Chemi RxQ Imaging System (Syngene, Cambridge, UK). Protein detection 

methodology is described in Section 2.2.4. 

5.2.5 ImmunoFluorescence (IF) Staining 

Cells were seeded at 5 X104 cells per well of an 8 well glass Millicell EZ slides (Merck 

Millipore, Sigma-Aldrich, Gillingham, Dorset, UK) and left to reach confluency prior 
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to being subjected to IF staining as detailed in Section 2.2.4.9. Primary and secondary 

antibodies used are described in Table 5.2. 

5.2.6  Cell Growth Assay 

Growth assays were carried out as described in Section 2.2.5.1 and cells were stained 

with crystal violet as described in 2.2.5.4 

5.2.7 Cell Adhesion Assay 

Adhesion assays were carried out as described in Section 2.2.5.2 and stained with 

crystal violet as described in Section 2.2.5.4. 

5.2.8 Cell Invasion Assay 

Invasion assays were carried out as described in Section 2.2.5.3 and cells were 

stained with crystal violet as described in Section 2.2.5.4. 

5.2.9 Cell Migration Assay 

Migration assays were performed as detailed in Section 2.2.5.7. 

5.2.10 Transepithelial Resistance (TER) 

TERs were measured as described in Section 2.2.5.5. 

5.2.11 Paracellular Permeability (PCP) 

PCPs were performed as described in Section 2.2.5.6. 

5.2.12 Electric Cell-Substrate Impedance Sensing (ECIS) 

ECIS experiments were performed as described in Section 2.2.5.8. 
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5.2.13 Kinex™ Antibody Microarray 

Further detailed in Section 2.2.4.7, cells were cultured in 10 cm dishes and protein 

was extracted using Kinex™ Antibody Microarray lysis buffer. Protein was then 

quantified using fluorescamine and diluted in Kinex™ Antibody Microarray lysis 

buffer to 4 mg/mL and shipped to Kinex Bioinformatics, Vancouver, Canada for the 

Kinex™ Antibody Microarray. 

5.2.14 Statistical Analysis 

PCR and western blot analysis bands were quantified using Image J software, and 

with data from qPCR, cell growth, adhesion and invasion assays was statistically 

analysed to assess for changes from PZ-HPV-7pEF6 control using the Microsoft Excel 

Student’s t-test. Wound area was quantified using Image J software and this data as 

well as data from other assays whereby time points were assessed, which included: 

ECIS and PCP, were statistically analysed to assess changes from PZ-HPV-7pEF6 control 

via two way mixed ANOVAs using IBM SPSS Statistic 24 software.   
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Table 5.1. Chapter V Primers used in PCR and qPCR screening of PZHPV-7 cells 

 Target  Sequence 5’-3’ Number 

of Cycles 

Product 

Size (bp) 

PCR HAVCR1 F: CAACAACAAGTGTTCCAGTG 35 436 

R: GCATTTTGCAAAGCTTTAAT 

GAPDH F: GGCTGCTTTTAACTCTGGTA 25 475 

R: GACTGTGGTCATGAGTCCTT 

CTNNA1 F: CACAGAGAAGGTTCTGGAAG 30 518 

R: CCGATGTATTTTTGAGTGGT 

CTNNA1 F: AAAGGCTACTGTTGGATTGA 30 649 

R: TCCACCAGAGTGAAAAGAAC 

CCND1 F: CGGTGTCCTACTTCAAATGT 30 721 

R: ACCTCCTCCTCCTCCTCT 

EPLIN F: TCAAACTAAGATTCTCCGGG 30 875 

R: TCGGGGCATCTTCTACC 

GSK3β F: ATGTTTCGTATATCTGTT 30 534 

R: GGTGGAGTTGGAAGCTGATG 

qPCR HAVCR1 

 

F: GACAATGTTTCAACGA 100 

 

99 

 
ZR: ACTGAACCTGACCGTACA 

TGGAGGAACAAA 

GAPDH F: CTGAGTACGTCGTGGAGTC 100 93 

ZR: ACTGAACCTGACCGTACA 

CAGAGATGATGACCCTTTTG 
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Table 5.2 Chapter V Antibodies used in the screening of PZHPV-7 cells 
Antibody Animal Source Company  Concentration  
HAVcR-1 Rabbit Abnova, Heyford, 

Oxfordshire, UK 
2 µg/mL-IF 

1:200-WB 
TIM-1 (N-13) Goat Santa Cruz, Insight 

Biotechnology Limited, 
Middlesex UK 

2 µg/mL-IF 

1:100-WB 
α-Catenin Mouse BD Transduction 

Laboratories, San Jose, 
CA, USA 

2 µg/mL-IF 

1:4000- WB 
β-Catenin Rabbit Sigma-Aldrich, 

Gillingham, Dorset, UK 
2 µg/mL-IF 

1:4000- WB 
E-Cadherin Mouse R & D Systems, 

Abingdon, Oxfordshire, 
UK 

2 µg/mL-IF 

1:200-WB 
EPLIN  Rabbit Bethyl Lab, 

Montgomery, TX, USA 
1:1000- WB 

PKM2 Goat Santa Cruz, Insight 
Biotechnology Limited, 
Middlesex UK 

1:200-WB 

Cyclin D1 Rabbit Santa Cruz, Insight 
Biotechnology Limited, 
Middlesex UK 

1:200- WB 

Anti-Goat AlexaFluor 
594 

Donkey Santa Cruz, Insight 
Biotechnology Limited, 
Middlesex UK 

1:500-IF 

Anti-Mouse 
AlexaFluor  

488 

Donkey Thermo Fisher Scientific, 
Cramlington, England, 
UK 

1:500-IF 

Anti-Rabbit 
AlexaFluor  

488 

Donkey Thermo Fisher Scientific, 
Cramlington, England, 
UK 

1:500-IF 

Anti-Rabbit 
AlexaFluor 594 

Donkey Thermo Fisher Scientific, 
Cramlington, England, 
UK 

1:500-IF 

Anti-Mouse IgG 
(whole molecule)- 
Peroxidase  

Goat Sigma-Aldrich, 
Gillingham, Dorset, UK 

1:1000 -WB 

Anti-Rabbit IgG 
(whole molecule)- 
Peroxidase  

Goat Sigma-Aldrich, 
Gillingham, Dorset, UK 

1:1000 -WB 

Anti-Goat IgG (whole 
molecule)- Peroxidase  

Rabbit Sigma-Aldrich, 
Gillingham, Dorset, UK 

1:1000 -WB 
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5.3 Results 

5.3.1 HAVCR1 Gene Expression Validated PZ-HPV-7 Cell 

Models 

PZ-HPV-7 cells were transfected via electroporation with the pEF6 control plasmid to 

form PZ-HPV-7pEF6 or HAVcR-1EXP plasmid to form PZ-HPV-7HAVcR-1EXP. Plasmid 

validation are shown in Section 4.3.1. The success of these transfections was then 

assessed using PCR and qPCR to investigate HAVCR1 gene expression. PCR band 

intensity as representative of gene expression was then quantified via ImageJ 

software and PCR and qPCR data were analysed as fold change relative to PZ-HPV-

7pEF6 (See Figure 5.1). 

The PZ-HPV-7pEF6 cell model was verified as a suitable control with PCR showing that 

there was no significant variation in HAVCR1 gene expression between PZ-HPV-7WT 

and PZ-HPV-7pEF6 with fold change from PZ-HPV-7pEF6 being 0.71±0.28; p=0.41 (See 

Figure 5.1 A and B). This was also shown with qPCR with fold change from PZ-HPV-

7pEF6 being 3.56±1.32; p=0.19 (Figure 5.1C).  

The PZ-HPV-7HAVcR-1EXP cell model was also verified as a suitable HAVcR-1 

overexpression model with PZ-HPV-7HAVcR-1EXP having a significant 3.63±0.26 fold 

increased in HAVCR1 gene expression from PZ-HPV-7pEF6 as shown by PCR with 

p=0.010 ( See Figure 5.1A and B). There was also a 109.10±44.93 fold increase via 

qPCR however this wasn’t significant with p=0.14 (See Figure 5.1 C). 
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Figure 5.1 Gene Expression Validation of PZ-HPV-7pEF6 and PZ-HPV-7HAVCR-1EXP  
Cell were grown in 6 well plates in supplemented media and harvested via RNA 
extraction at 100 % confluence. Data shown are the means of three independent 
experiments and error bars show SEM. HAVCR1 mRNA expression was assessed using 
A PCR or C qPCR. B Graph shows band intensity as quantified by ImageJ software. B 
and C HAVCR1 mRNA expression was normalised to GAPDH and is shown as fold 
change relative to PZ-HPV-7pEF6. Student’s t-tests were performed and significance of 
p<0.01 is represented by **.  
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5.3.2  HAVcR-1 Protein Expression Validated PZ-HPV-7 Cell 

Models 

Immunofluorescence was utilised to assess HAVcR-1 protein expression and 

therefore further validate PZ-HPV-7pEF6 and PZ-HPV-7HAVcR-1EXP cell models. Cells were 

stained for total HAVcR-1 as well as for the nucleus using DAPI staining (See Figure 

5.2A). The amount of fluorescence as representative of protein expression was 

quantified using ImageJ software and analysed as fold change relative to PZ-HPV-

7pEF6 HAVcR-1 expression (See Figure 5.2B). 

Protein expression also verified PZ-HPV-7pEF6 as a suitable control with there being 

no variation in HAVcR-1 protein expression in PZ-HPV-7WT from PZ-HPV-7pEF6 

(0.72±0.17 fold; p=0.524).  

PZ-HPV-7HAVcR-1EXP was also verified as a suitable HAVcR-1 overexpression cell model 

at protein level. There was a consistent increase in HAVcR-1 protein expression in PZ-

HPV-7HAVcR-1EXP with a 1.86 ±0.58 fold increase from PZ-HPV-7pEF6 HAVcR-1 protein 

expression, although significance was not reached (p=0.375).  
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Figure 5.2 Protein Expression Validation of PZ-HPV-7pEF6 and PZ-HPV-7HAVCR-1EXP  
Cell were grown in 8 well chamber slides in supplemented media and subjected to 
immunofluorescence at 100 % confluence with HAVcR-1 and nuclear staining. A 
Images show fluorescence emission at 100 X magnification correlating to HAVcR-1 
expression or nuclear staining and a merged image of both. Images are 
representative of three independent experiments. Scale bars represent 20 µm. B 
Graph shows quantitative analysis of immunofluorescent staining of HAVcR-1 (mean 
+SEM, n=3).  
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5.3.3 HAVcR-1 Overexpression Results in Significant Changes 

in Expression or Phosphorylation of Numerous Proteins 

Protein lysates extracted from PZ-HPV-7pEF6 and PZ-HPV-7HAVcR-1EXP cell models were 

used to investigate changes in protein expression and phosphorylation levels using 

the Kinex™ KAM-880 Antibody microarray. The Kinex™ antibody microarray screens 

877 antibodies, of which 518 were pan-specific and 359 were phosphosite-specific 

and thus was used to identify research leads. A data report was returned whereby 

every result that had a Z-ratio of ≤-1.65 or ≥1.65 was considered significant. This 

showed 20 significantly increased phosphorylation’s at specific phosphosites in 

PZ-HPV-7HAVcR-1EXP in comparison to PZ-HPV-7pEF6 (See Figure 5.3A). It also showed the 

total expression of 12 proteins which were significantly increased (See Figure 5.3B). 

There were also 20 cases of decreased phosphorylation at specific phosphosites in 

PZ-HPV-7HAVcR-1EXP in comparison to PZ-HPV-7pEF6 (See Figure 5.4A). Furthermore, 

total protein expression was decreased in 12 cases (See Figure 5.4B). 
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Figure 5.3 Protein Expression and Protein Phosphorylation That was Significantly 
Increased with HAVcR-1 Overexpression. 
Protein was extracted from PZ-HPV-7pEF6 and PZ-HPV-7HAVcR-1EXP and sent to Kinex 
Bioinformatics for a Kinex ™ antibody microarray. Graphs show the percentage 
change from control of A protein phosphorylation or B total protein expression for 
all significantly increased results (z value ≥1.65)   
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Figure 5.4 Protein Expression and Protein Phosphorylation That was Significantly 
Decreased with HAVcR-1 Overexpression. 
Protein was extracted from PZ-HPV-7pEF6 and PZ-HPV-7HAVcR-1EXP and sent to Kinex 
Bioinformatics for a Kinex ™ antibody microarray. Graphs show the percentage 
change from control of A protein phosphorylation or B total protein expression for 
all significantly decreased results (z value ≤-1.65).  
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5.3.4  Significantly Increased β-CateninY333 in 

PZ-HPV-7HAVcR-1EXP Cells 

The changes to protein expression and phosphorylation that were seen from the 

Kinex™ antibody microarray as summarised in Figure 5.3 and Figure 5.4 were 

assessed for proteins of interest for immediate further study. β-catenin showed a 

1.74 fold increase at the Y333 phosphorylation site in PZ-HPV-7HAVcR-1EXP when 

compared to levels in PZ-HPV-7pEF6 (z value=1.77) and was chosen for further study. 

This interest was due to the involvement of β-catenin in AJs whereby β-catenin binds 

E-cadherin, which attaches to E-cadherins on adjacent cells, as well as binding to α-

catenin which links the junction to the actin cytoskeleton, via EPLIN. Interestingly, 

phosphorylation of β-catenin at Y333 is WNT independent and is instead Src induced 

upon EGFR activation [354]. The phosphorylation of α-catenin is also induced via 

EGFR activation resulting in the activation of C2Kα via ERK. There was also a 1.63 fold 

increase in α-catenin S641 phosphorylation; however this was not significant with a 

z-value of 1.59. Phosphorylation of β-catenin at Y333 results in the dissociation of β-

catenin from AJs and the translocation of β-catenin into the nucleus whilst 

phosphorylation of α-catenin at S641 also results in β-catenin dissociation and 

nuclear translocation. Within the nucleus β-catenin, in combination with other 

transcription factors such as PKM2 and the TCF/LEF family results in the transcription 

of certain genes including Cyclin D1 and c-Myc (See Figure 5.5B) [14, 354, 355]. 

Therefore, the data produced by the Kinex™ KAM-880 antibody microarray was 

subsequently assessed for proteins involved in the β-catenin Y333 signalling 

pathway. Along with α-catenin and β-catenin the microarray also screened Src, EGFR, 
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c-Myc and Cyclin D1. The fold change from PZ-HPV-7pEF6 are displayed from all on 

these proteins in Figure 5.5A however the only significant change was that of 

β-catenin Y333 phosphorylation.  
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Figure 5.5 β-Catenin Y333 Signalling Changes with The Kinex™ Antibody Microarray 
A Graph shows fold change from PZ-HPV-7pEF6 control of all proteins and 
phosphosites involved with β-catenin signalling included within the Kinex™ antibody 
microarray. B Diagramatic representation of β-catenin Y333 and α-catenin S641 
signalling (Amended from [354, 355]).  
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5.3.5 HAVcR-1 Overexpression Increases Cyclin D1 Expression 

The Kinex™ KAM-880 Antibody microarray screens non-denatured proteins and 

therefore there is a possibility of false positives and negatives. Kinex states that in an 

internal study between 30-45 % of protein changes are reproducible by 

immunoblotting and 20-30 % could not be validated by immunoblotting due to the 

antibody microarray being 10-fold or more sensitive than standard western blotting. 

Therefore, it was imperative to verify Kinex™ KAM-880 Antibody microarray data. 

Furthermore, β-catenin signalling is complex and there was only a limited number of 

the potential proteins involved screened in the Kinex™ KAM-880 Antibody 

microarray, thus to further investigate the effect of HAVcR-1 on β-catenin signalling, 

gene and protein expression as well as localisation of proteins involved were 

screened using other in vitro techniques. 

There was no significant change in the gene expression of CTNNA1 

(1.28±0.40;p=0.470), CTNNB1 (0.78±0.15; p=0.177), CCND1 (0.70±0.18; p=0.161), 

EPLIN (1.21±0.70; p=0.591) or GSKβ (1.30±0.51; p=0.541) between PZ-HPV-7HAVcR-1EXP 

and PZ-HPV-7pEF6 (See Figure 5.6).  

There was no significant change in the protein expression of α-catenin (1.26±0.07; 

p=0.073), β-catenin (1.37±0.22; p=0.243), E-Cadherin (1.59±0.487; p=0.352), EPLIN-

β (1.07±0.27; p=0.82), EPLIN-α (0.79±0.16; p=0.339) or PKM2 (2.00±0.53; p=0.199) 

between PZ-HPV-7HAVcR-1EXP and PZ-HPV-7pEF6. However, there was a significant 

increase in Cyclin D1 protein expression by 1.74±0.13; p=0.030 in PZ-HPV-7HAVcR-1EXP 

in comparison to PZ-HPV-7pEF6 (See Figure 5.7) 
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The localisation of α- catenin, β-catenin and E-cadherin was also assessed via 

immunofluorescence. This showed a potential increased membrane localisation of 

α- catenin, although staining was discontinuous (See Figure 5.8.A), increased nuclear 

localisation of β-catenin (See Figure 5.8.B) and decreased membrane localisation of 

E-cadherin (See Figure 5.8.C)  
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Figure 5.6 Changes to α- and β-Catenin Signalling Gene Expression 
A to C Cell lines grown in 6 well plates and RNA extracted once confluent. HAVCR1 
mRNA expression was assessed using PCR. A. Figure is representative of three 
independent experiments. B Graph shows band intensity as quantified by ImageJ 
software. Data shown are the means of three independent experiments with gene 
expression shown as normalised to GAPDH and relative to PZ-HPV-7pEF6 and error 
bars show SEM. Student’s T tests were performed using Microsoft Excel and p<0.05 
was significant and shown by *.  
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Figure 5.7 HAVcR-1 Induced Changes to β-Catenin Signalling Protein Expression  
Cell lines grown in 6 well plates and harvested at 100 % confluency. Data shown are 
the means of three independent experiments and error bars show SEM. Protein 
expression was assessed using SDS PAGE and western blot analysis where A blots are 
representative images B Graph shows band intensity as quantified by ImageJ 
software and normalised to GAPDH and is shown as fold change relative to PZ-HPV-
7pEF6. Student’s T tests were performed and significance of p<0.05 is represented by 
*.  
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Figure 5.8 HAVcR-1 Induced Changes to α-Catenin, β-Catenin and E-Cadherin 
Protein Localisation 
Cell were grown in 8 well chamber slides in supplemented media and subjected to 
immunofluorescence at 100 % confluence at 100 X magnification with A α-catenin, B 
β- catenin, or C E-cadherin alongside HAVcR-1 expression, nuclear staining and a 
merged image of both. Scale bars represent 20 µm and membranous staining and 
nuclear staining is highlighted by white and red arrows respectively  
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5.3.6  PZ-HPV-7 Cell Growth is Independent of HAVcR-1 

Due to the link between β-catenin signalling and cell growth as well as increased cell 

growth being a phenotype of cancer, PZ-HPV-7HAVcR-1EXP and PZ-HPV-7pEF6 were used 

to assess the effect HAVcR-1 expression has on cell proliferation. An in vitro growth 

assay was performed whereby cells were seeded at the same time and cell count 

analysed after 3 or 5 days of growth relative to day 1 day of growth as a seeding 

control.  

This showed no significant difference in cell growth with PZ-HPV-7HAVcR-1EXP in 

comparison to PZ-HPV-7pEF6 at Day 3 (2.47± 0.45 vs 3.10±0.36; p=0.34) or at Day 5 

(7.00±0.8 vs 10.8±1.82; p=0.16) (See Figure 5.9). 
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Figure 5.9 The Effect of HAVcR-1 Overexpression on PZ-HPV-7 Cell Growth.  
Cells were seeded into 24 well plates at 1 X104 cells per well in triplicate and 
incubated for 1, 3 or 5 days. Post incubation cells were fixed, stained with crystal 
violet and images were taken at 5 X magnification. A Images are representative of 
three independent experiments. Scale bars represent 2 mm B Cells were counted and 
graph shows the means of three independent experiments as fold change relative to 
the cell count at day 1 with error bars showing SEM. Statistical analysis was 
performed at each time point via the Student’s t-test using Microsoft Excel and 
significance of p<0.05 was not reached.  
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5.3.7 HAVcR-1 Overexpression Increases PZ-HPV-7 Cell 

Invasion 

An in vitro Matrigel™ transwell invasion assay was performed with PZ-HPV-7pEF6 and 

PZ-HPV-7HAVcR-1EXP cell models to assess the effect of HAVcR-1 on PZ-HPV-7 cell 

invasion. This revealed an increase in cell invasion with PZ-HPV-7HAVcR-1EXP in 

comparison to PZ-HPV-7pEF6 with a 1.95±0.07 fold increase in invaded cells. This 

difference was significant with p=0.006 (See Figure 5.10).  
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Figure 5.10 The Effect of HAVcR-1 Overexpression on PZ-HPV-7 Cell Invasion 
Cells seeded in triplicate at 3x104 cells per 8 µm pore ThinCerts™ 24 well plate insert 
coated with 500 µg/mL Matrigel™ and incubated for 3 days. Post incubation cells 
were fixed, stained with crystal violet and images were taken at 5 X magnification. A 
Images are representative of three independent experiments. Scale bars are 
representative of 2 mm B Cells were counted and graph shows the means of three 
independent experiments as fold change relative to the cell count of PZ-HPV-7pEF6 
with error bars showing SEM. Statistical analysis was performed via the Student’s t-
test using Microsoft Excel and significance of p<0.05 was reached. ** represents 
p<0.01.  
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5.3.8 HAVcR-1 Overexpression Increases PZ-HPV-7 Cell 

Adhesion 

PZ-HPV-7pEF6 and PZ-HPV-7HAVcR-1EXP cell models were used to assess the importance 

of HAVcR-1 on cell adhesion via an in vitro Matrigel™ adhesion assay. There was a 

significant 1.73±0.04 fold increase in adhered cells with PZ-HPV-7HAVcR-1EXP in 

comparison to PZ-HPV-7pEF6 with p=0.002 (See Figure 5.11). 
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Figure 5.11 The Effect of HAVcR-1 Overexpression on PZ-HPV-7 Cell Adhesion 
Cells seeded into 96 well plates coated in 200 µl of 50 µg/mL Matrigel™ at 5 X103 cells 
per well in triplicate and incubated for 30 min. Post incubation cells were fixed, 
stained with crystal violet and images were taken at 5 X magnification. A Images are 
representative of three independent experiments. Scale bars represent 2mm. B Cells 
were counted and graph shows the means of three independent experiments as fold 
change relative to the cell count of the PZ-HPV-7pEF6 control with error bars showing 
SEM. Statistical analysis was performed via the Student’s t-test using Microsoft Excel 
and significance of p<0.05 was reached. ** represents p<0.01.  
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5.3.9 PZ-HPV-7 Initial Attachment and Spreading is 

Independent of HAVcR-1 

ECIS was utilised to investigate the effect of HAVcR-1 on PZ-HPV-7 initial attachment 

and spreading. Capacitance at 64 kHz was assessed as at this frequency current is 

flowing through the cell thus capacitance at this frequency shows cell coverage of 

the electrode. HAVcR-1 had no impact on PZ-HPV-7 capacitance during initial 

attachment and spreading (F(22, 88)=0.488, p=0.971) (See Figure 5.12A).  

The resistance at 1 kHz was assessed due to current mainly flowing around the cell 

and it therefore indicative of junctional complexes. HAVcR-1 also had no impact on 

PZ-HPV-7 resistance during initial attachment and spreading (F(22, 88)=0.146, 

p=0.731) (See Figure 5.12B).  

The ECIS mathematical model was applied to this data to provide Rb (barrier function 

resistance) and alpha (constraint on current flow beneath cells). This model was 

unable to calculate Rb. However alpha was calculated and this showed that HAVcR-1 

had no impact on PZ-HPV-7 alpha (F(22, 88)=0.615, p=0.903) (See Figure 5.13).  
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Figure 5.12 Effect of HAVcR-1 Overexpression on PZ-HPV-7 Initial Attachment and 
Spreading. 
Cells seeded in octuplicate into 96W1E+ plates at 5 X104 cells per well and resistance, 
capacitance and impedance were monitored for 22 hours post seeding at varying 
frequencies ranging from 1-64 kHz. Graphs shows the means of three independent 
experiments as fold change relative to 0 hours with error bars showing SEM for A 
capacitance at 64 kHz and B resistance at 1 kHz. Statistical analysis was performed 
via  IBM® SPSS Statistics 24 Mixed ANOVA and p <0.05 were considered significant; 
significance was not reached.  
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Figure 5.13 The Effect of HAVcR-1 Overexpression on the Constraint on Current 
Flow Beneath PZ-HPV-7 Cells During Initial Attachment and Spreading. 
The ECIS™ Model was applied to initial attachment data using the ECIS software to 
give alpha (constraint on current flow beneath the cells) values. Graph shows the 
means of three independent experiments with error bars showing SEM for alpha 
shown as fold change relative to 0 hour. Statistical analysis was performed using  
IBM® SPSS Statistics 24 Mixed ANOVA and p<0.05 was considered significant; 
significance was not reached.  
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5.3.10 PZ-HPV-7 Cell Migration is Independent of HAVcR-1 

PZ-HPV-7pEF6 and PZ-HPV-7HAVcR-1EXP cell models were utilised to assess the 

importance of HAVcR-1 on cell migration. An in vitro scratch assay was performed 

and area of the wound was analysed every hour (up to 10 hours) in respect to the 

initial area. This showed that HAVcR-1 had no impact on PZ-HPV-7 cell migration 

(F(10, 40)=1.786, p=0.950) (See Figure 5.14). There was also no significant difference 

in healing rate with PZ-HPV-7HAVcR-1EXP closing 3.53 ±0.42 %/hr in comparison to 

PZ-HPV-7pEF6 closing 4.64±0.70 %/hr (p=0.262).  
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Figure 5.14 The Effect of HAVcR-1 Overexpression on PZ-HPV-7 Cell Migration 
Cells seeded into 24 well plates in quadruplicate and scratched once confluent layer 
formed. Imaged were taken at 5 X magnification immediately afterward and every 
hour thereafter. A Images shown are representative of three independent 
experiments. Scale bars represent 2 mm B Wound area was measured using ImageJ 
software and percentage wound closure was calculated as relative to 0 hour time 
point. Data shown are the means of three independent experiments and error bars 
represent SEM. Statistical analysis was performed using IBM® SPSS Statistics 24 
utilising the Mixed ANOVA significance of p<0.05 was not reached.  
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5.3.11 PZ-HPV-7 Electrical Wound Healing is Independent 

of HAVcR-1 

Post initial attachment and spreading of PZ-HPV-7 cells an electrical wound was 

applied and data was collected for 17 hours. Cell coverage of the electrode was 

assessed by assessing capacitance at 64 kHz and there was no difference in 

capacitance between PZ-HPV-7HAVcR-1EXP and PZ-HPV-7pEF6 (F(17, 64)=0.258, p=0.998) 

(See Figure 5.15A). To give an insight into junctional complexes resistance at 1 kHz 

was assessed and there was no difference in resistance between PZ-HPV-7HAVcR-1EXP 

and PZ-HPV-7pEF6 (F(17, 68)=0.550, p=0.916) (See Figure 5.15B).  

The ECIS mathematical model was applied to gain further insight into cellular 

interactions via calculating alpha to assess cell-plate interactions and Rb to assess cell 

to cell interactions. HAVcR-1 had no impact on PZ-HPV-7 alpha during electrical 

wound healing (F(17, 69)=1.214, P=0.278) (Figure 5.16A). HAVcR-1 also had no 

impact of PZ-HPV-7 Rb during electrical wound healing (F(17, 68)=0.798, p=0.690) 

 (Figure 5.16B).  
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Figure 5.15 The Effect of HAVcR-1 Overexpression on PZ-HPV-7 Electrical Wound 
Healing 
Post initial attachment and spreading cells were electrically wounded at 6000 Hz and 
3000 μA for 30 seconds. Resistance, capacitance and impedance were then 
monitored at varying frequencies (1-64 kHz) for 17 hours. Graphs show the means of 
three independent experiments as fold change relative to 0 hours with error bars 
showing SEM for A resistance at 1 kHz and B capacitance at 64 kHz. Statistical analysis 
was performed at each hour time point via the IBM® SPSS Statistics 24 Mixed ANOVA 
and p values of <0.05 were considered significant; significance was not reached.  



 Chapter V 

252 
 

 

 

 

Figure 5.16 The Effect of HAVcR-1 Overexpression on the Constraint on Current 
Flow Beneath PZ-HPV-7 Cells and PZ-HPV-7 Barrier Resistance During Electrical 
Wound Healing. 
The ECIS™ Model was applied to wound healing data using the ECIS software to give 
A Rb (Barrier Resistance) and B alpha (constraint on current flow beneath the cells) 
values. Graphs show the means of three independent experiments with error bars 
showing SEM shown as fold change relative to 0 hour. Statistical analysis was 
performed using IBM® SPSS Statistics 24 Mixed ANOVA and p<0.05 was considered 
significant; significance was not reached.  
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PZ-HPV-7 Transepithelial Resistance is Independent of 

HAVcR-1 

To assess whether HAVcR-1 influenced PZ-HPV-7 TER an in vitro TER assay was 

performed on transfected PZHPV-7 cells. Resistance across a confluent monolayer 

grown on a transwell insert was measured. Data was analysed as fold change from 

the PZ-HPV-7pEF6. 

 

There was no significant change in TER of PZ-HPV-7HAVcR-1EXP, with a 0.81  0.12 fold 

change in comparison to PZ-HPV-7pEF6 control (p=0.248) (See Figure 5.17).  
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Figure 5.17 The Effect of HAVcR-1 Overexpression on PZ-HPV-7 Transepithelial 
Resistance 
Cells seeded in triplicate into 0.4 µm size pore inserts 5 X104 cells per insert and 
incubated until confluent. Post incubation resistance across the membrane was 
measured immediately after media change. Graph shows the means of three 
independent experiments as fold change relative to PZ-HPV-7pEF6. Error bars show 
SEM. Statistical analysis was performed via the Student’s t-test using Microsoft Excel 
and p<0.05 was considered significant.  
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5.3.13 PZ-HPV-7 Paracellular Permeability is Independent 

of HAVcR-1 

Junctional integrity is impetrative in the maintenance of paracellular permeability. 

Loss of junctional complexes between cancer cells is required for metastasis to occur 

thus an in vitro paracellular permeability assay was performed using the PZ-HPV-7pEF6 

and PZ-HPV-7HAVcR-1EXP cell models to provide insight into the importance of HAVcR-1 

in junctional integrity. 

There was no significant difference between the paracellular permeability of 

PZ-HPV-7HAVcR-1EXP in comparison to PZ-HPV-7pEF6 of 40 kDa TRITC-dextran conjugate 

(F(10, 40)=0.960, p=0.492) (See Figure 5.18A). There was also no significant 

difference in the paracellular permeability of 10 kDa FITC-dextran conjugate between 

PZ-HPV-7HAVcR-1EXP  and PZ-HPV-7pEF6 (F(10, 40)=1.528, p=0.165) (See Figure 5.18B). 
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Figure 5.18 The Effect of HAVcR-1 Overexpression on PZ-HPV-7 Paracellular 
Permeability 
Cells seeded in triplicate at 5x103 cells per 0.4 µm pore ThinCerts™ 24 well plate 
insert and incubated until confluent. Once confluent, 0.2mg/mL of both TRITC-
dextran (40 kDa) and FITC-dextran (10 kDa) was added to each insert and samples 
were taken from outside of the insert to measure fluorescence immediately after and 
every hour thereafter for 10 hours. Graphs show the means of three independent 
experiments as change in fluorescence from 0 hours of A the 40 kDa TRITC-dextan 
conjugate and B the 10 kDa FITC-dextan conjugate. Error bars show SEM. Statistical 
analysis was performed via the IBM SPSS Startistics 24 Mixed ANOVA and significance 
of p<0.05 was not reached.  
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5.4 Discussion 

The chapter set out to identify potentially important signalling pathways responsible 

for the development and progression of prostate cancer that involve HAVcR-1. This 

was achieved by a commercially available Kinex™ KAM880 Protein array. After 

analysis 64 proteins were identified as being statistically altered either in expression 

or phosphorylation. Although there were numerous proteins that would be of 

interest for further study, β-catenin was chosen. β-catenin Y333 showed a 

significantly increased phosphorylation with HAVcR-1 overexpression. As well as 

β-catenin being an important structure component of AJs it also has a role in the 

de-differentiation process [19]. β-catenin has been shown to play a role in the 

tumorigenesis of numerous cancers with dysregulation being associated with 

prostate cancer progression however studies have generally focused on the 

Wnt/wingless cascade and activation mutations [7]. However, phosphorylation of 

β-catenin at residue Y333 has been shown to be due to EGFR signalling, thus 

identifying a novel area of interest in the study of prostate cancer research [354].  

HAVcR-1 has no direct effect on total gene or protein expression of β-catenin in 

PZ-HPV-7 cells. However, HAVcR-1 overexpression alters the subcellular localisation 

of β-catenin which is an important indicator of signalling [7]. This chapter showed an 

increase in β-catenin nuclear staining and since nuclear staining is indicative of β-

catenin activation, this therefore supports the Kinex™ KAM880 Protein array data 

and the theory that HAVcR-1 is involved in β-catenin signalling [14]. Interestingly 

nuclear accumulation of β-catenin has been associated with poorly differentiated 

and highly proliferative tumours with increased vascular invasion [6, 7]. As invasion 
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is a hallmark of malignancy and a prerequisite for cancer metastasis this proposes 

HAVcR-1 as a potential anti-metastatic target [356]. 

The Kinex™ KAM880 Protein array also revealed an increase in α-catenin S641 

phosphorylation. Interestingly phosphorylation at this residue is also a result of EGFR 

activation and subsequently results in the dissociation of β-catenin from the 

membrane and its nuclear translocation [355]. Gene and protein analysis of 

α-catenin expression showed that HAVcR-1 had no effect on total expression levels. 

However, immunofluorescence showed a discontinuous staining of α-catenin at the 

cell membrane thus suggesting a breakdown of AJs, which was further shown by 

discontinuous membrane staining of E-cadherin with HAVcR-1 overexpression. These 

results therefore support the Kinex™ KAM880 Protein array and the theory that 

HAVcR-1 leads to the phosphorylation of α-catenin, which subsequently results in the 

disassociation of β-catenin from AJs and nuclear accumulation. However, further 

verification of this is necessary with co-immunofluorescence with β-catenin to assess 

disassociation of the two proteins as well as verifying the phosphorylation status of 

α-catenin at S641 and β-catenin at Y333. Junctional integrity was further investigated 

however no changes to paracellular permeability or transepithelial resistance were 

observed and therefore, conflict with the theory that HAVcR-1 affects junctional 

stability via β-catenin signalling. However, these assays primarily assess changes to 

TJs and although AJs have been shown to be important for the initialisation of TJs, 

once formed TJ stabilisation is independent of AJs. Therefore, further assays 

investigating junctional formation during initial attachment and spreading were 

carried out however no changes in resistance were observed. It may also be of 
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benefit to deplete and reintroduce calcium whilst performing a TER to gain further 

insight on the effect of HAVcR-1 on PZ-HPV-7 AJ stability. 

Once accumulated in the nucleus, β-catenin binds PKM2 and this complex can be 

recruited to the CCND1 promoter leading to targeted gene transcription: including 

cyclin D1 [354, 357]. HAVcR-1 has no direct effect of PKM2 gene expression however 

this is unsurprising due to the localisation of PKM2 being important in β-catenin 

signalling. Thus, it would be of more interest to perform an immunoprecipitation to 

investigate whether HAVcR-1 influences the association of PKM2 and β-catenin and 

a co-immunofluorescence of PKM2 and β-catenin to investigate nuclear 

colocalization. CCND1 (Cyclin-D1) gene expression remained constant with HAVcR-1 

overexpression however, the protein expression was significantly increased. It would 

be expected that activated β-catenin signalling would increase cyclin D1 transcription 

therefore increasing cyclin D1 gene expression and protein expression [99]. This 

therefore suggests that either PCR was not sensitive enough to identify these 

changes in gene expression or that the increase in expression was due to changes in 

the regulation of post-translational, transcriptional or degradational stages [12]. 

Cyclin-D1 is a cell cycle control protein and has been linked to the development and 

progression of cancer. Cyclin D1 is a regulator cell progression to the proliferation 

stage of cell cycle, in LNCaP cells cyclin D1 overexpression enhancing S-phase entry, 

increasing colony formation and tumour growth rate [11, 13, 99]. Interestingly cyclin 

D1 regulates of cell cycle progression via retinoblastoma protein phosphorylation 

and the Kinex™ KAM880 Protein array showed significant increases in retinoblastoma 

protein phosphorylation at S795, S807, S811 and T356 with HAVcR-1 overexpression 

[100]. Therefore, the increased cyclin D1 protein expression and 
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hyperphosphorylation of retinoblastoma protein with HAVcR-1 overexpression was 

predicted to increase cell growth however, there was no change in cell growth in 

PZ-HPV-7HAVcR-1EXP cells. It may however be of interest to investigate the cell cycle 

changes with HAVcR-1 overexpression.  

EMT is a multi-step process involving the decreased integrity of junctional complexes 

[16]. As previously discussed, immunofluorescence showed as decreased integrity of 

AJs with E-cadherin, α-catenin and β-catenin membrane staining being disturbed 

after HAVcR-1 overexpression therefore it is possible that HAVcR-1 has an important 

role in the initiation of EMT. EMT is also characterised by an increased cellular 

invasion, modulation of cell-extracellular matrix adhesion and increased cellular 

migration [209, 349]. HAVcR-1 overexpression increased cellular invasion and 

adhesion thus supporting this theory. However, HAVcR-1 overexpression decreased 

cell migration and had no effect on the constraint on current flow beneath cells 

during initial attachment or wound healing, thus suggesting no change in focal 

adhesion. EMT is also characterised by the increase in mesenchymal markers and 

therefore it would be of interest to investigate whether HAVcR-1 expression has an 

effect on the expression or localisation of these markers, such as N-cadherin and 

vimentin [209, 349]. 

This chapter proposes HAVcR-1 as a potentially important protein in the regulation 

of AJs, β-catenin signalling and EMT and therefore prostate cancer development and 

progression. This makes HAVcR-1 a protein of interest in prostate cancer for future 

research. 
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6 Chapter VI: 

HGF and HAVcR-1 in PC-3 

and PZ-HPV-7 Cells 
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6.1 Introduction 

The development and progression of cancer is controlled by variations in normal 

cellular signalling. These changes results in alterations in cellular behaviours 

described as cancer hallmarks, such as apoptosis, proliferation, survival and invasion 

as well as alterations in cellular architecture, including polarity and intercellular 

junctions [50, 92]. Signalling pathways are generally studied and described as 

independent cascades however they form a greater network intermingling with one-

another. Therefore, the study of cellular signalling and the identification of 

dysregulated molecules is extremely complex with new interactions and the effect of 

these on cells being constantly discovered [92]. 

The HGF/c-met signalling cascade has been an area of interest in the study of cancer, 

with HGF activating a variety of signalling pathways that control cellular processes. 

These cellular processes are intrinsic to cancer development and progression 

including: cell proliferation, survival, motility and differentiation [245, 246, 253, 254]. 

HGF activation of the MAPK pathway results in changes to proliferation, 

differentiation, transformation and apoptosis. Whereas, HGF activation of the PI3K 

pathway results in changes in cell cycle regulation and invasion and the activation of 

the STAT pathway results in changes in proliferation, survival and differentiation [21, 

252, 254]. HGF/ c-met signalling has also been shown to alter cellular architecture 

with HGF treatment dysregulating TJs, decreasing TER and decreasing cellular 

polarity [259]. It is therefore unsurprising that HGF/ c-met signalling has been linked 

to the development and progression of numerous cancers including prostate cancer 

[21, 22, 280]. High HGF plasma levels are associated with advanced stage and poor 

prognosis in patients with prostate cancer [93]. HGF has been shown to decrease 
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cellular junctions in prostate cancer cell lines, with HGF treatment decreasing TER 

and ZO-1, ZO-2 and ZO-3 expression levels at cell membranes as well as being shown 

to increase cell attachment [22, 281, 358]. Interestingly, knockdown of HAVcR-1 in 

HECV cells resulted in resistance to HGF mediated TJ disruption and decreased TER 

therefore suggesting a potential link between HAVcR-1 and HGF signalling [340]. 

However, the effect of HAVcR-1 and HGF in prostate cancer has not yet been studied. 

This chapter therefore aimed to evaluate the importance of HAVcR-1 in HGF/ c-Met 

signalling mediated cellular changes in prostate cancer cell lines. This is with the 

specific interest of identifying whether HAVcR-1 overexpression in prostate cancer 

cell lines (PC-3 and PZ-HPV-7) resulted in an increased sensitivity to HGF induced 

cellular changes. This chapter also set out to investigate whether knockdown of 

HAVcR-1 in the PC-3 prostate cancer cell line resulted in resistance to these changes 

with the hope that HAVcR-1 may be a promising molecule of interest in therapeutic 

development for prostate cancer.  
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6.2 Materials and Methods 

6.2.1 Mammalian Cell Culture 

The PC-3 and PZ-HPV-7cell lines was obtained from ATCC (LGC Standards, Middlesex, 

UK) and maintained in supplemented DMEM and Keratinocyte-SFM medium 

respectively. PC-3pEF6, PC-3HAVcR-1EXP and PC-3HAVcR-1KD were maintained in 

maintenance DMEM medium. PZ-HPV-7pEF6 and PZ-HPV-7HAVcR-1EXP were maintained 

in maintenance Keratinocyte-SFM medium. Routine cell culture was carried out as 

described in Section 2.2.1. 

6.2.2 Generation of Cell Lines 

PC3pEF6, PC-3HAVcR-1EXP and PC-3HAVcR-1KD were generated and validated in Chapter IV. 

PZ-HPV-7pEF6 and PZ-HPV-7HAVcR-1EXP were generated and validated in Chapter V. 

6.2.3 Cell Growth Assay 

Growth assays were carried out as described in 2.2.5.1. Cells were treated with 

40 ng/mL HGF or an equal amount of 0.1 % BSA in PBS when being seeded. Cells were 

stained with crystal violet as described in 2.2.5.4 

6.2.4 Cell Adhesion Assay 

Adhesion assays were carried out as described in 2.2.5.2. Cells were treated with 

40 ng/mL HGF or an equal amount of 0.1 % BSA in PBS when being seeded. Cells were 

stained with crystal violet as described in 2.2.5.4. 
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6.2.5 Cell Invasion Assay 

Invasion assays were carried out as described in 2.2.5.3Cells were treated with 

40 ng/mL HGF or an equal amount of 0.1 % BSA in PBS when being seeded. Cells were 

stained with crystal violet as described in 2.2.5.4. 

6.2.6 Cell Migration Assay 

Migration assays were performed as detailed in 2.2.5.7. At 0 hours cells were treated 

with 40 ng/mL HGF or an equal amount of 0.1 % BSA in PBS. 

6.2.7 Transepithelial Resistance (TER) 

TERs were measured as described in 2.2.5.5. At 0 hours cells were treated with 

40 ng/mL HGF or an equal amount of 0.1 % BSA in PBS. 

6.2.8 Paracellular Permeability (PCP) 

PCPs were performed as described in 2.2.5.6. At 0 hours cells were treated with 

40 ng/mL HGF or an equal amount of 0.1 % BSA in PBS. 

6.2.9 Statistical Analysis 

Cell growth, adhesion and invasion data were statistically analysed to assess for 

changes from control using the Microsoft Excel Student’s t-test. TER assays were 

assessed as  . cm2 and PCP assays were assessed as fold change from 0 hours. 

Wound area was quantified using Image J software and this data, as well as data from 

other assays whereby time points were assessed, TER and PCP, was statistically 

analysed to assess changes from control using the IBM SPSS Statistics 24 Mixed 

ANOVA.   
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6.3 Results 

6.3.1  Cell Growth Remains Constant with HGF Treatment 

Regardless HAVcR-1 Levels  

PC-3pEF6and PZ-HPV-7pEF6 cell models were utilised to assess the effect of HGF on cell 

growth. Furthermore PC-3HAVcR-1EXP, PC-3HAVcR-1KD and PZ-HPV-7HAVcR-1EXP were used to 

assess whether HAVcR-1 influenced these HGF induced changes to cell growth. To 

achieve this, an in vitro growth assay was performed whereby cells were seeded and 

treated with either 40 ng/mL HGF or an equal volume of 0.1 % BSA in PBS. Cell counts 

were analysed after 3 or 5 days of growth relative to 1 day of growth as a seeding 

control.  

This showed no significant difference in cell growth with HGF treatment of PC-3pEF6 

cells in comparison to control at day 3 (14.70±4.13 vs 10.56± 3.93; p=0.508) or at day 

5 (26.36±7.86 vs 21.65±5.55; p=0.652) (See Figure 6.1 A and D). HAVcR-1 

overexpression had no effect on this with no significant difference in cell growth with 

HGF treatment of PC-3HAVcR-1EXP cells in comparison to control cells at day 3 (8.27±1.18 

vs 9.85±2.16; p=0.567) or at day 5 (11.99±3.21 vs 20.07±9.11; p=0.476) (See Figure 

6.1 B and E). HAVcR-1 knockdown also showed no effect with no significant 

difference in cell growth with HGF treatment of PC-3HAVcR-1EXP cells in comparison to 

control cells at day 3 (7.03±1.76 vs 11.23±4.50; p=0.457 or at day 5 (10.92±4.13 vs 

17.00±5.10; p=0.409) (See Figure 6.1 C and F). 

HGF treatment also had no effect on PZ-HPV-7pEF6 cell growth in comparison to 

control cells at day 3 (3.21± 0.02 vs 3.54±0.01; p=0.214) or at day 5 (7.42±0.73 vs 

8.88±2.32; p=0.274) (See Figure 6.2A and C). HAVcR-1 overexpression in PZ-HPV-7 
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cells also had no effect on this with no significant difference in cell growth with HGF 

treatment of PZ-HPV-7HAVcR-1EXP cells in comparison to control cells at day 3 (3.04± 

0.09 vs 3.10±0.18; p=0.789) or at day 5 (6.76±1.13 vs 6.55±1.16; p=0.905) (See Figure 

6.2 B and D). 
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Figure 6.1 The Effect of HAVcR-1 in Combination with HGF on PC-3 Cell Growth.  
Cells were seeded into 24 well plates at 1x104cells per well in triplicate, treated with 
40 ng/mL HGF or an equal volume of 0.1 % BSA in PBS and incubated for 1, 3 or 5 
days. Post incubation cells were fixed, stained with crystal violet and images were 
taken at 5 X magnification. Scale bars are representative of 2 mm A-C Cells were 
counted and graphs show the means of three independent experiments as fold 
change relative to the cell count at day 1 with error bars showing SEM. Statistical 
analysis was performed at each time point via the Student’s t-test using Microsoft 
Excel and significance of p<0.05 was not reached. D-F, Images are representative of 
three independent experiments.  
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Figure 6.2 The Effect of HAVcR-1 in Combination with HGF on PZ-HPV-7 Cell Growth.  
Cells were seeded into 24 well plates at 1x104 cells per well in triplicate, treated with 
40 ng/mL HGF or an equal volume of 0.1 % BSA in PBS and incubated for 1, 3 or 5 
days. Post incubation cells were fixed, stained with crystal violet and images were 
taken at 5 X magnification. A-C Cells were counted and graphs show the means of 
three independent experiments as fold change relative to the cell count at day 1 with 
error bars showing SEM. Statistical analysis was performed at each time point via the 
Student’s t-test using Microsoft Excel and significance of p<0.05 was not reached. D-
F, Images are representative of three independent experiments and scale bars are 
representative of 2 mm.  
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6.3.2  HGF Increases PZ-HPV-7 Cell Migration With HAVcR-1 

Overexpression 

To assess the effect of HGF on cell migration PC-3pEF6and PZ-HPV-7pEF6 cell models 

were utilised. The effects of HAVcR-1 on HGF induced changes to cell migration were 

also assessed via the use of PC-3HAVcR-1EXP, PC-3HAVcR-1KD and PZ-HPV-7HAVcR-1EXP cell 

models. To investigate these effects an in vitro scratch migration assay was 

performed whereby cells were seeded and incubated until confluent monolayers 

were formed. Cells were then scratched and treated with 40 ng/mL HGF or an equal 

volume of 0.1 % BSA in PBS. The wound area was then analysed every hour as 

percentage wound closure from the 0 hour time point.  

This showed no significant difference in percentage wound closure of HGF treated 

PC-3pEF6 in comparison to control PC-3pEF6 (F(10, 40)=1.202, p=0.319). There was also 

no change in healing rates of HGF treated PC-3pEF6 (7.19±0.78 %/hour) in comparison 

to control (6.92±0.63 %/hour) (p=0.79) (See Figure 6.3 A and D). HAVcR-1 

overexpression had no effect on this with no significant difference in percentage 

wound closure of HGF treated PC-3HAVcR-1EXP and control PC-3HAVcR-1EXP 

(F(10,40)=0.528, P=0.860). Healing rates also showed no change between 

PC-3HAVcR-1EXP with HGF treatment (5.24±0.25 %/hour) cells in comparison to control 

PC-3HAVcR-1EXP (5.19±0.63 %/hour) (p=0.943) (3.33 ± 0.27 vs 3.95 ± 0.39; p=0.191) (See 

Figure 6.3 B and E). HAVcR-1 knockdown also showed no significant impact change 

in percentage wound closure with HGF treatment in PC-3HAVcR-1KD cells in comparison 

to control cells (F(10,40)=0.790, p=0.638). Healing rate also revealed no significant 
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effects between PC-3HAVcR-1KD with HGF treatment (7.20±0.59 %/hour) and control 

cells (5.08±0.63 %/hour :p=0.070) (See Figure 6.3 C and F). 

HGF treatment also had no effect on PZ-HPV-7pEF6 percentage wound closure in 

comparison to control cells (F(10,40)=0.079, p=1.000) or in healing rate with HGF 

treated closing 0.95±0.23 %/hour and control cells closing 0.76±0.33 %/hour 

(p=0.667) (See Figure 6.4 A and C). However, HGF treatment in PZ-HPV-7HAVcR-1EXP 

cells increased percentage wound closure in comparison to control PZ-HPV-7HAVcR-1EXP 

(F(10,40)=4.315, p=0.00041). There was however no significant difference between 

the healing rates with HGF treated closing 1.39±0.28 %/hour and control cells closing 

0.81±0.23 %/hour (p=0.181) (See Figure 6.4 B and D).   
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Figure 6.3 The Effect of HAVcR-1 in Combination with HGF on PC-3 Cell Migration 
Cells seeded into 24 well plates in quadruplicate, scratched once confluent and 
treated with 40 ng/mL or equal volume 0.1 % BSA in PBS. Images were taken 
immediately afterward and every hour thereafter at 5 X magnification. A-C Wound 
area was measured using ImageJ software and percentage wound closures were 
calculated as relative to 0 hour time point. Data shown are the means of three 
independent experiments and error bars represent SEM. Statistical analysis was 
performed using IBM SPSS Statistics 24 utilising a Mixed ANOVA significance of 
p<0.05 was not reached. D-F, Images shown are representative of three independent 
experiments and scale bars are representative for 2 mm.   
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Figure 6.4 The Effect of HAVcR-1 in Combination with HGF on PZ-HPV-7 Cell 
Migration 
Cells seeded into 24 well plates in duplicate, scratched once confluent and treated 
with 40 ng/mL or equal volume 0.1 % BSA in PBS. Images were taken immediately 
afterward and every hour thereafter at 5 X magnification. A-C Wound area was 
measured using ImageJ software and percentage wound closures were calculated as 
relative to 0 hour time point. Data shown are the means of three independent 
experiments and error bars represent SEM. Statistical analysis was performed using 
IBM SPSS Statistics 24 utilising the Mixed ANOVA p<0.05 was considered significant 
and p<0.001 is represented by ***. D-F, Images shown are representative of three 
independent experiments and scale bars are representative for 2 mm.  
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6.3.3  HGF Increases Cell Adhesion in PC-3 Cells With HAVcR-1 

Knockdown and Decreases Cell Adhesion in PZ-HPV-7 

Cells With HAVcR-1 Overexpression  

The effect of HGF on cell adhesion was investigated via the use of PC-3pEF6and 

PZ-HPV-7pEF6 cell. The effect of HAVcR-1 on HGF induced changes on cell adhesion 

was then investigated using the PC-3HAVcR-1EXP, PC-3HAVcR-1KD and PZ-HPV-7HAVcR-1EXP cell 

models. These investigations utilised the in vitro Matrigel™ adhesion assay whereby 

cells were seeded in media containing 40 ng/mL HGF or an equal volume of 0.1 % 

BSA in PBS into a 96 well plate containing a Matrigel™ layer. Plates were then 

incubated for 30 min and the number of adhered cells counted and presented as fold 

change from 0.1 % BSA in PBS treated control cells.  

There was no significant difference in cell adhesion with HGF treatment of PC-3pEF6 

in comparison to the control (1.73±0.04 fold increase; p=0.875). HAVcR-1 

overexpression in PC-3 cells had no effect on this result with no significant difference 

in cell adhesion with HGF treatment of PC-3HAVcR-1EXP resulting in a 1.28 ±0.68 fold 

increase from the control with p=0.724. However, HAVcR-1 knockdown in PC-3 

resulted in cell adhesion being significantly increased by 2.05±0.21 fold with HGF 

treatment in comparison to control with p=0.039 (See Figure 6.5). 

There was a significant decrease in cell adhesion with HGF treatment of PZ-HPV-7pEF6 

in comparison to the control (0.60±0.02 fold change; p=0.002). HAVcR-1 

overexpression also showed a significant decrease in cell adhesion with HGF 

treatment of PC-3HAVcR-1EXP resulting in a 0.45 ±0.05 fold change from the control with 

p=0.007 (See Figure 6.6).   



  Chapter VI 

275 
 

 

Figure 6.5 The Effect of HAVcR-1 in Combination with HGF on PC-3 Cell Adhesion 
Cells seeded into 96 well plates coated in 200 µl of 50 ug/mL Matrigel™ at 5x103 cells 
per well in quadruplicate, treated with 40 ng/mL HGF or an equal volume 0.1 % BSA 
in PBS and incubated for 30 min. Post incubation cells were fixed, stained with crystal 
violet and images were taken at 5 X magnification. A-C Cells were counted and graphs 
show the means of three independent experiments as fold change relative to the cell 
count of the control with error bars showing SEM. Statistical analysis was performed 
via the Student’s t-test using Microsoft Excel and significance of p<0.05 was reached. 
* represents p<0.05. D-F, Images are representative of three independent 
experiments.  Scale bars are representative of 2 mm.  
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Figure 6.6 The Effect of HAVcR-1 in Combination with HGF on PZ-HPV-7 Cell 
Adhesion 
Cells seeded into 96 well plates coated in 200 µl of 50 ug/mL Matrigel™ at 5x103 cells 
per well in quadruplicate, treated with 40 ng/mL HGF or an equal volume 0.1 % BSA 
in PBS and incubated for 30 min. Post incubation cells were fixed, stained with crystal 
violet and images were taken at 5 X magnification. A-C Cells were counted and graphs 
show the means of three independent experiments as fold change relative to the cell 
count of the control with error bars showing SEM. Statistical analysis was performed 
via the Student’s t-test using Microsoft Excel and significance of p<0.05 was reached. 
** represents p<0.01. D-F, Images are representative of three independent 
experiments. Scale bars are representative of 2 mm.  
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6.3.4  Cell Invasion Remains Constant with HGF Treatment 

Regardless of HAVcR-1 Levels. 

The effect of HGF on cell invasion was assessed via the use of PC-3pEF6 and PZ-HPV-

7pEF6 cells. To assess the influence that HAVcR-1 has on this PC-3HAVcR-1EXP, PC-3HAVcR-

1KD and PZ-HPV-7HAVcR-1EXP were utilised. An in vitro Matrigel™ invasion assay was 

therefore carried out. 

There was no significant difference in cell invasion in PC-3pEF6 with HGF treatment 

with a 0.77±0.16 fold change from control and p=0.283. HAVcR-1 overexpression had 

no significant effect on this with HGF treatment resulting in a 0.83±0.15 fold change 

from control with p=0.268 in PC-3HAVcR-1EXP cells. HAVcR-1 knockdown also had no 

significant effect on this with HGF treatment resulting in a 1.04±0.28 fold change 

(p=0.905) from control in PC-3HAVcR-1KD cells. (See Figure 6.7) 

There was also no significant change in cell invasion of PZ-HPV-7pEF6 with HGF 

treatment resulting in a 0.77±0.08 fold change from the control with p=0.101. 

HAVcR-1 overexpression in PZ-HPV-7 cells has no effect on this with HGF treatment 

of PZ-HPV-7HAVcR-1EXP resulting in a 0.95±0.09 fold change in invasion from the control 

with p=0.645. (See Figure 6.8) 
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Figure 6.7 The Effect of HAVcR-1 in Combination with HGF Overexpression on PC-3 
Cell Invasion 
Cells seeded in triplicate into 8 µm size pore inserts coated in 200 µl of 500 µg/mL 
Matrigel™ in at 24 well plate at 3x104 cells per insert, treated with 40 ng/mL HGF or 
an equal volume of 0.1 % BSA in PBS and incubated for 3 days. Post incubation cells 
were fixed, stained with crystal violet and images were taken at 5 X magnification. A-
C Cells were counted and graphs show the means of three independent experiments 
as fold change relative to controls with error bars showing SEM. Statistical analysis 
was performed via the Student’s t-test using Microsoft Excel and significance of 
p<0.05 was not reached. D-F, Images are representative of three independent 
experiments. Scales bars are representative of 2 mm.  
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Figure 6.8 The Effect of HAVcR-1 in Combination with HGF Overexpression on PZ-
HPV-7 Cell Invasion 
Cells seeded in triplicate into 8 µm size pore inserts coated in 200 µL of 500 µg/mL 
Matrigel™ in at 24 well plate at 3x104 cells per insert, treated with 40 ng/mL HGF or 
an equal volume of 0.1 % BSA in PBS and incubated for 3 days. Post incubation cells 
were fixed, stained with crystal violet and images were taken at 5 X magnification. A-
C Cells were counted and graphs show the means of three independent experiments 
as fold change relative to controls with error bars showing SEM. Statistical analysis 
was performed via the Student’s t-test using Microsoft Excel and significance of 
p<0.05 was not reached. D-F, Images are representative of three independent 
experiments. Scale bars are representative 2 mm.  
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6.3.5  TER Remains Constant with HGF Treatment Regardless 

of HAVcR-1 Levels. 

To assess whether HGF had an effect of TER, PC-3pEF6 and PZ-HPV-7pEF6 cells were 

utilised. In addition, to assess the effect HAVcR-1 has on HGF induced changes in HGF 

PC-3HAVcR-1EXP, PC-3HAVcR-1KD and PZ-HPV-7HAVcR-1EXP cell models were used. Cells were 

treated with 40 ng/mL HGF or equal volumes of 0.1 % BSA in PBS before resistance 

across a monolayer grown on a transwell insert was measured for 10 hours. Data was 

then analysed as  . cm2 and normalised to 0 hours. 

HGF had no significant effect on PC-3pEF6 TER (F(12,48)=0.456, p=0.930) (See  A). 

HAVcR-1 overexpression in PC-3 cells had no effect on this with no significant 

difference in HGF treated PC-3HAVcR-1EXP in comparison to control PC-3HAVcR-1EXP 

(F(12,48)=0.828, p=0.621) (B). HAVcR-1 knockdown in PC-3 cells also had no effect 

with no change in TER in HGF treated PC-3HAVcR-1KD in comparison to control PC-3HAVcR-

1KD (F(12,48)=1.081, p=0.397) (See  C).  

PZ-HPV-7pEF6 TER was also not effected by HGF treatment (F(12,48)=0.367, p=0.969) 

(See Figure 6.10A). HAVcR-1 overexpression in PZ-HPV-7 cells had no effect on this 

with no change in TER in HGF treated PZ-HPV-7HAVcR-1EXP in comparison to control PZ-

HPV-7HAVcR-1EXP (F(12,48)=1.022, p=0.445) (See Figure 6.10B).   
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Figure 6.9 The Effect of HGF and HAVcR-1 on PC-3 Transepithelial Resistance 
Cells seeded in triplicate into 0.4 µm size pore inserts 5x104 cells per insert and 
incubated until confluent. Post incubation cells were treated with either of 40 ng/mL 
HGF or equal volumes of 0.1 % BSA in PBS and resistance across the membrane was 
measured every hour for 10 hours. Graphs show the means of three independent 
experiments as change relative to the resistance at 0 hour for A PC3pEF6, B PC-3HAVcR-

1EXP and C PC-3HAVcR-1KD. Error bars show SEM. Statistical analysis was performed via 
the Mixed ANOVA using IBM SPSS Statistics 24 and p<0.05 was considered significant. 
Significance was not reached. 
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Figure 6.10 The Effect of HGF and HAVcR-1 on PZ-HPV-7 Transepithelial Resistance 
Cells seeded in triplicate into 0.4 µm size pore inserts 5x104 cells per insert and 

incubated until confluent. Post incubation cells were treated with either of 40 ng/mL 

HGF or equal volumes of 0.1 % BSA in PBS and resistance across the membrane was 

measured every hour for 10 hours. Graphs show the means of three independent 

experiments as change relative to the resistance at 0 hour for A PZ-HPV-7pEF6 and B 

PZ-HPV-7HAVcR-1EXP. Error bars show SEM. Statistical analysis was performed via the 

Mixed ANOVA using IBM SPSS Statistics 24 and p<0.05 was considered significant. 

Significance was not reached  
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6.3.6  PCP Remains Constant with HGF Treatment Regardless 

of HAVcR-1 Levels  

To assess whether HGF had an effect of PCP, PC-3pEF6 and PZ-HPV-7pEF6 cells were 

utilised. To assess the effect HAVcR-1 has on HGF induced changes in PC-3HAVcR-1EXP, 

PC-3HAVcR-1KD and PZ-HPV-7HAVcR-1EXP cells were used. Cells were treated with 40 ng/mL 

HGF or equal volumes of 0.1 % BSA in PBS prior with 40 kDa TRITC dextran and 10 kDa 

FITC dextran. The amount of fluorescence as representative of paracellular 

movement was then measured every hour and data was then analysed as change 

from 0 hour time point. 

HGF has no effect on PCP of 40 kDa TRITC dextran conjugate in PC-3pEF6 in comparison 

to control (F(12,48)=0.022, p=1.000) (See A). However, HGF significantly decreased 

the PCP of 10 kDa FITC dextran conjugate in PC-3pEF6 in comparison to control 

(F(12,48)=0.379, P=0.965)(See D).  

HGF treatment in PC-3HAVcR-1EXP cells also had no effect on the PCP of 40 kDa TRITC 

dextran conjugate with no significant difference shown in HGF treated PC-3HAVcR-1EXP 

in comparison to control PC-3HAVcR-1EXP (F(12,48)=0.010, p=1.000) (See B).  

HGF treatment in PC-3HAVcR-1EXP cells had no effect PCP of 10 kDa FITC dextran 

conjugate no significant difference in HGF treated PC-3HAVcR-1EXP in comparison to 

control PC-3HAVcR-1EXP (F(12,48)=0.109, p=1.000) (See E).  

Furthermore, HGF treatment in PC-3HAVcR-1KD cells also had no effect on PCP of 40 kDa 

TRITC dextran conjugate no significant difference in HGF treated PC-3HAVcR-1KD in 

comparison to control PC-3HAVcR-1KD (F(12,48)=0.033, p=1.000) (See C). HGF treatment 

in PC-3HAVcR-1KD cells also had no effect on PCP of 10 kDa FITC dextran conjugate, no 
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significant difference shown in HGF treated PC-3HAVcR-1KD in comparison to control PC-

3HAVcR-1KD (F(12,48)=0.248, p=0.994) (See F).  

HGF has no effect on PCP of 40 kDa TRITC dextran conjugate in PZ-HPV-7pEF6 in 

comparison to control (F(12,48)=0.929, p=0.527) (See A). There was also no effect 

with HGF treatment on the PCP of 10 kDa FITC dextran conjugate in PZ-HPV-7pEF6 in 

comparison to control (F(12,48)=0.562, p=0.861) (See C).  

HGF treatment in PZ-HPV-7HAVcR-1EXP cells resulted in no change in the PCP of 40 kDa 

TRITC dextran conjugate in comparison to the control (F(12,48)=0.929, p=0.526) (See 

B). However, HGF treatment in PZ-HPV-7HAVcR-1EXP cells had no effect PCP of 10 kDa 

FITC dextran conjugate no significant difference in HGF treated PC-3HAVcR-1EXP in 

comparison to control PC-3HAVcR-1EXP (F(12,48)=0.426, p=0.945) (See D).  
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Figure 6.11 The Effect of HGF and HAVcR-1 on PC-3 Paracellular Permeability 
Cells seeded in triplicate at 5x103 cells per 0.4 µm pore ThinCerts™ 24 well plate 
insert and incubated until confluent. Once confluent, 40 ng/mL HGF or equal volumes 
of 0.1 % BSA in PBS alongside 0.2mg/mL of both TRITC-dextran (40 kDa) and FITC-
dextran (10 kDa) was added to each insert and samples were taken from outside of 
the insert to measure fluorescence immediately after and every hour thereafter for 
10 Graphs show the means of three independent experiments as fold change relative 
to fluorescence at 0 hours of A-C the 40 kDa FITC-dextan conjugate and D-F, the 
10 kDa TRITC-dextan conjugate of A and D, PC-3pEF6, B and E, PC-3HAVcR-1EXP and C and 
F, PC-3HAVcR-1KD. Error bars show SEM. Statistical analysis was performed via Mixed 
ANOVA using IBM SPSS Statistics 24 and significance of p<0.05 was not reached.  
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Figure 6.12 The Effect of HGF and HAVcR-1 on PZ-HPV-7 Paracellular Permeability 
Cells seeded in triplicate at 5x103 cells per 0.4 µm pore ThinCerts™ 24 well plate 

insert and incubated until confluent. Once confluent, 40 ng/mL HGF or equal volumes 

of 0.1 % BSA in PBS alongside 0.2mg/mL of both TRITC-dextran (40 kDa) and FITC-

dextran (10 kDa) was added to each insert and samples were taken from outside of 

the insert to measure fluorescence immediately after and every hour thereafter for 

10 Graphs show the means of three independent experiments as fold change relative 

to fluorescence at 0 hours of A-B the 40 kDa FITC-dextan conjugate and C-D, the 

10 kDa TRITC-dextan conjugate of A and C PZ-HPV-7pEF6 and B and D, PZ-HPV-7HAVcR-

1EXP. Error bars show SEM. Statistical analysis was performed via Mixed ANOVA using 

IBM SPSS Statistics 24 and significance of p<0.05 was not reached.  
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6.4 Discussion 

HGF is known to be important in cancer aetiology. It is able to enhance the 

aggressiveness of cancer cells by promoting metastatic traits, including: 

mitogenesis, motogenesis, angiogenesis and morphogenesis [341, 359]. HGF 

treatment has been shown to increase cell growth of cancer cell lines (ovarian (KGN 

and HO8910) and prostate (PC-3)), increase cell migration of cancer cell lines 

(ovarian (HO8910), gastric (MKN1, MKN7 and MKN28) and prostate (PC-3)) and 

induce changes to cell invasion [90, 93, 94, 98, 360]. However, in contrast to the 

previous, within this study HGF treatment induced no changes to PC-3 or PZ-HPV-7 

cell growth, cell migration or cell invasion. HGF has been extensively studied in 

prostate cancer and has been shown to have important roles in the progression of 

the disease [79, 279, 349]. Retrospectively, it is unlikely that these results show that 

HGF has no effect on these cell behaviours but instead that there were parts of this 

study that could have been improved. The growth assay utilised involves crystal 

violet staining of cells and relies on the detachment of dead cells prior to staining. It 

is therefore possible that the cell numbers are not accurately representing the 

number of live cells. It may be of more use to perform assays that can differentiate 

cell viability, such as MTT metabolic proliferation assays [345, 361]. Furthermore, 

HGF concentration and the HGF receptor c-Met expression were not validated in 

this study. A concentration of 40 ng/ml had been previously optimised in PC-3 cells 

and c-Met has been shown to be expressed in both PC-3 and PZ-HPV-7 cell lines 

[346, 359]. However, it may be of use to further validate this via examination of 

c-Met expression and phosphorylation post HGF treatment with varying 

concentrations to improve this study. 
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It is necessary for cancer cells to alter adhesion to a basement membrane to 

progress to invasive carcinoma, which in turn is a prerequisite of metastatic cancer 

[347]. HGF has been previously reported to increase PC-3 cell adhesion, however 

HGF had no impact on PC-3 cell adhesion in this study and decreased cell adhesion 

of PZ-HPV-7 [93]. These differences may be due to differences in cell lines PC-3 is a 

metastatic prostate cancer derived cell line whilst the PZ-HPV-7 cell line is 

immortalised normal prostate epithelia. HGF concentrations are increased in the 

prostate stroma with prostate cancer thus it is possible that these increases in HGF 

lead to changes in cell-ECM adhesion allowing for the process of dissemination of 

cancer cells from a primary tumour [48, 352]. Although c-Met expression has 

previously been shown in both PC-3 and PZ-HPV-7 cells, HGF signalling involves a 

myriad of different signalling proteins, the expression of which can explain the 

different responses to HGF of these cell lines [341, 359]. Cell to basement 

membrane interaction alterations are not solely responsible for dissemination, cell-

cell interaction alterations are also important. Previous studies had demonstrated a 

decreased TER as well as decreased TJ protein expression and membrane 

localisation with HGF treatment, which are indicative of decreased junctional 

integrity [22, 281, 358]. However, HGF treatment had no impact on TER or PCP in 

PC-3 and PZ-HPV-7 cell lines and would suggest no changes to junctional integrity. 

This may further illustrate that HGF concentration requires optimisation. 

The main focus of this study was to investigate the effect of HGF and HAVcR-1 on 

prostate cell line behaviour. It has previously been suggested that there may be a 

link between HAVcR-1 and HGF signalling in endothelial cells, with knockdown of 

HAVcR-1 in HECV cells impeding HGF induced decreased TER [340]. However, HGF 
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treatment of HAVcR-1 overexpression and knockdown cell models resulted in no 

change to cell growth, cell invasion, TER or PCP. Thus, either suggesting that 

HAVcR-1 is not linked to the HGF signalling pathways that influence these changes 

within prostate cancer, or that HGF optimization and different assay selection is 

required. This includes the utilisation of different growth assays as well as the 

calculation of apparent permeability coefficient (Papp) in PCP. Furthermore, there 

is a possibility that investigating cell models separately conceals overall changes 

thus it may be of benefit to compare HAVcR-1 overexpression and knockdown cell 

models with the control pEF6 cell models with and without HGF treatment. HGF 

treatment did however result in increased PZ-HPV-7 cell migration when HAVcR-1 

was overexpressed and may support previous literature which propose the 

expression of HAVcR-1 as important for HGF signalling to occur. HGF treatment 

having no impact of HAVcR-1 overexpression and knockdown PC-3 cell models 

further highlights the differences in HGF signalling of PZ-HPV- 7 and PC-3 cells. 

Furthermore, HGF resulted in increased cell adhesion in the HAVcR-1 knockdown 

PC-3 cell model and decreased cell adhesion in the HAVcR-1 overexpression PZ-

HPV-7 cell model. It is therefore possible that HAVcR-1 has a role in HGF signalling, 

however it is unclear to the extent of this role or how important this interaction is 

in prostate cancer development or progression. There is an increase of HGF in the 

serum and tumour tissues of patients with clinical prostate cancer. This as well as 

the association of HGF with advanced stage and decreased survival emphasize the 

importance of HGF in prostate cancer aetiology [342, 343]. Results from this 

preliminary study have potential shown an involvement of HAVcR-1 in HGF 

signalling, however, have not provided conclusive evidence of this. Nevertheless, it 
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would appear that future study into the role HAVcR-1 has in HGF signalling within 

the context of prostate cancer is worth pursuing. This may provide further insight 

into disease progression to the lethal metastatic stage and more importantly a 

potential novel therapeutic target. 
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7 Chapter VII: 

Final Discussion 
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7.1 Thesis Aims 

Prostate cancer is a significant problem in the UK and due to the high incidence rates 

can result in a large proportion of people burdened with the disease. Diagnostic 

testing fails to meet the requirements for effective screening. The lack of 

understating into disease progression to metastatic disease and the lack of accurate 

prognostics are major problems, especially when mortality rates significantly worsen 

in the case of metastatic prostate cancer. Therefore, there is a requirement for novel 

biomarkers to improve diagnosis and monitoring, prognostic indicators and 

increased understanding of progression with the hopes of developing therapeutic 

targets for the treatment or prevention of metastatic prostate cancer. 

Therefore, this thesis aimed to assess the expression of HAVcR-1 in prostate cancer 

and the levels of HAVcR-1 ectodomain with patient serum samples. This thesis 

utilised overexpression and knockdown prostate cancer cell models to begin to 

examine understand the role of HAVcR-1 in prostate cancer aetiology. Initial steps 

have been taken towards investigating HAVcR-1 in the context of prostate cancer 

however, there are a myriad of unanswered questions that require further 

investigation and novel research areas that have been identified. The main findings 

of this study and areas of future study are summarised within the subsequent 

section.  
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7.2 The Potential Use of HAVcR-1 in a Clinical 

Setting for Human Prostate Cancer 

7.2.1 HAVcR-1 In Prostate Cancer Diagnostics 

Despite innovations and changes in practice, there is still no definitive test for 

detecting early prostate cancer. This thesis examined the expression profile and 

potential function of HAVcR-1 in human prostate cancer and demonstrated that the 

levels of the HAVcR-1 ectodomain in patient serum samples are diminished with 

prostate cancer. There is therefore an exciting potential for the use of HAVcR-1 in 

prostate cancer diagnostics and coincides with the current drive towards diagnostic 

techniques that are accurate but are minimally invasive. The current problems with 

prostate cancer diagnostic techniques are that they fail to meet both of these 

requirements. The DRE physical examination and the PSA blood test are minimally 

invasive however are inherently unreliable. DREs are unreliable due to results being 

dependent on the experience of the examiner as well as the location of the tumour 

[89, 91]. The PSA blood test has poor specificity due to PSA being prostate specific 

and not prostate cancer specific and therefore resulting in 67 % of false positive and 

15 % false negatives [32, 33, 89]. Biopsies have numerous potential side effects, some 

of which are potentially debilitating or life threatening, and can also result in false 

negatives if the cancer is missed and false positive due to the ambiguity of prostate 

cells [362-364]. A blood test to identify levels of HAVcR-1 could therefore be used to 

improve the accuracy of diagnosis whilst enabling low invasive testing and reducing 

unwanted side effects. However, further research would have to be undertaken to 

prove the benefit of using HAVcR-1 ectodomain levels in this manner. Firstly, 
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improved control samples are required with larger n-numbers and that are age 

matched. Also, this study was retrospective and therefore a prospective study would 

have to be performed, such as a randomised control trial, to assess the reliability of 

HAVcR-1 ectodomain levels as a detection method for prostate cancer. Results from 

which would also have to be compared to the current standards to determine 

whether using HAVcR-1 ectodomain levels in this manner would be of clinical benefit. 

This study also didn’t assess whether HAVcR-1 ectodomain levels were prostate 

cancer specific. Serum HAVcR-1 levels have not been assessed in other cancers or 

diseases thus there is the possibility that HAVcR-1 alone could not be used in the 

diagnosis of prostate cancer. However, if this is the case there would still be the 

potential to use HAVcR-1 alongside PSA to improve accuracy.  

7.2.2 HAVcR-1 in Prostate Cancer Monitoring 

Staging of prostate cancer is currently an issue with Gleason grading of a biopsy often 

not agreeing with the Gleason grading of the specimen removed via surgery [365]. 

Thus, this study set out to assess potential correlations in serum HAVcR-1 

ectodomain levels and Gleason score, however this revealed that there was no 

correlation between HAVcR-1 ectodomain levels and prostate cancer Gleason score. 

Therefore, it is unlikely that HAVcR-1 ectodomain levels could be used to improve 

prostate cancer staging after diagnosis. However, it is important to note that Gleason 

grading system is based on the biopsy tissue architecture. Due to the importance of 

TNM staging in the indication of prognosis, it may be of use to investigate correlations 

between HAVcR-1 ectodomain levels and anatomic extent of the disease [348]. TNM 

staging information of serum samples obtained for this study were incomplete and 
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thus future study would be required to investigate this. It is important to improve 

prostate cancer staging and prognosis indication, with current studies are 

highlighting the current over treatment of prostate cancer and this over treatment is 

resulting in a worse quality of life of men suffering from the disease [82, 86, 88]. 

Watchful waiting and active surveillance are options to combat this problem 

whereby prostate cancer is monitored and treatment is given when the disease 

progresses [332-334]. Further study would assess whether serum HAVcR-1 

ectodomain levels could be utilised to identify disease progression and be used to aid 

in the reduction of unnecessary treatment.  

7.3 HAVcR-1 in Prostate Cancer Aetiology 

7.3.1 HAVcR-1 and Cancer Cellular behaviour 

Cancer development and progression can be characterised by certain hallmarks. 

These hallmarks include decreased apoptosis, increased proliferation, increased 

invasion and the alterations in cellular architecture [50]. Cellular architecture is 

controlled in part by junctional complexes and this study revealed HAVcR-1 

potentially regulates AJ integrity. The effect of HAVcR-1 on other cancer hallmarks 

was also assessed within this study.  

This study explored the importance of HAVcR-1 as a regulator of prostate cancer 

aetiology and cell behaviour and has added to the growing body of research that 

highlights HAVcR-1 as an important molecule in cell functions in a range of contexts. 

The involvement of HAVcR-1 on some cancer hallmarks (invasion, adhesion, cellular 

junctions) within the normal prostate epithelial cell lines (PZ-HPV-7) implicates 

HAVcR-1 in prostate cancer development. This provides a molecule of interest for 
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future study and a potential novel target for prostate cancer therapeutics. However, 

these changes were not replicated in the HAVcR-1 overexpression PC-3 cell model. 

This may be due to the vast differences between the two cell lines, with PZ-HPV-7 

being immortalised normal prostate epithelial and PC-3 being metastatic prostate 

cancer derived. It is therefore possible that signalling pathways that HAVcR-1 are 

involved in differ in these cell lines. It is therefore important to identify these 

pathways to fully understand the differences between these cell lines and provide 

insight into the impact of HAVcR-1 in clinical prostate cancer. 

The effect of HAVcR-1 on junctional complexes in prostate cancer was a major focus 

of this study. This was due to the importance of intercellular junctions in the process 

of metastasis in prostate cancer and the cancer specific mortality of metastatic 

disease. To metastasise epithelial derived cancers most overcome their restricted 

migratory capability and this is achieved with the loss of cell-cell junctions but also 

the increase in cell-ECM adhesion molecules [48, 53, 61, 62]. This study provides 

some evidence that HAVcR-1 has a role in junctional regulation. However, results 

were conflicting, during attachment and spreading barrier resistance decreased with 

both HAVcR-1 overexpression and knockdown in PC-3 cells suggesting decreased 

junctional integrity however other assays suggesting no change in PC-3 junctional 

integrity. Preliminary investigation suggest HAVcR-1 overexpression decreases 

PZ-HPV-7 AJ integrity but has no impact on PZ-HPV-7 TJ integrity. There is a possibility 

that HAVcR-1 is involved in the regulation of junctional integrity and in turn the 

dissemination of cancer cells from a primary tumour. HAVcR-1 has been shown 

important in the junctional regulation of endothelial cells with overexpression 

decreasing junctional integrity [340]. This also proposes the involvement of HAVcR-1 
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in cancer cell intravasation and extravasation. Due to these processes being critical 

in the metastatic process further investigations into the importance of HAVcR-1 in 

the regulation of junctional complexes as this study proposes HAVcR-1 as a potential 

novel target in the prevention of prostate cancer metastasis. Therefore, future study 

would also investigate the effect of HAVcR-1 inhibitors in prostate cancer and the 

effect of these on junctional integrity to assess the potential use of these in the 

prevention of metastasis.  

7.3.2 HAVcR-1 and EMT 

The dynamic transition between epithelial and mesenchymal states is essential 

during embryonic development. The shift towards the mesenchymal state termed 

EMT involves the loss of apico-basal polarity and the modification of cell adhesion 

resulting in migratory as well as invasive cellular behaviour [366]. These cellular 

behaviours are also important in tumorigenesis with EMT triggering dissociation of 

cancer cells from primary tumours and metastasis [366, 367]. EMT is initiated by 

multiple signalling pathways including that of HGF, EGF and Wnt [368]. These 

signalling pathways induce the expression of specific EMT transcription factor (EMT-

TF) such as Snail, Zeb and Twist, miRNAs, epigenetic regulators and post-translational 

regulators [366].  

Although the activation of EMT can differ, pathways generally converge at decreased 

E-cadherin at the plasma membrane and this is achieved by multiple mechanisms 

including the repression of transcription, promotion of endocytosis and the inhibition 

of transportation to the plasma membrane [368-370]. This loss of membranous E-

cadherin is a fundamental event in EMT [368]. E-cadherin loss from the plasma 
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membrane is frequent in human cancer and it is considered crucial in the progression 

from adenoma to carcinoma [203]. Within this study the overexpression of HAVcR-1 

in PZ-HPV-7 cells resulted in decreased membranous E-cadherin and therefore 

suggests that HAVcR-1 wasable to regulate EMT. HAVcR-1 has been shown to be 

overexpressed in numerous cancers and this could, at least in part, explain the loss 

of E-cadherin within the majority of cancer as well as proposing HAVcR-1 as an 

important protein in the switch from benign to malignant tumours [203, 283, 319, 

320, 371]. Furthermore, the loss of E-cadherin promotes metastasis and therefore 

links HAVcR-1 to the progression of prostate cancer to a metastatic state [372]. 

HAVcR-1 overexpression in PZ-HPV-7 cells was also shown to potentially induce β-

catenin Y333 phosphorylation and nuclear accumulation. Phosphorylation at this site 

is indicative of EGF signalling and membranous E-cadherin can be destabilised by 

phosphorylation of β-catenin [354, 373]. It is therefore possible that HAVcR-1 

activates the EGF pathway resulting in the phosphorylation of β-catenin and this 

destabilizes and decreases membranous E-cadherin. This would explain why there 

were no significant changes in expression of E-cadherin with HAVcR-1 overexpression 

in PZ-HPV-7. Furthermore, it has been predicted that EGFR and HAVcR-1 could 

interact and thus there is a possibility that HAVcR-1 could directly activate EGFR, 

however further study would have to be undertaken to assess this such as an 

immunoprecipitation assay [374]. Further validation of β-catenin Y333 

phosphorylation is also required via western blotting as there is a possibility of 

Kinex™ antibody microarray providing both false positives and negatives.  

Other hallmarks of EMT include the increase in mesenchymal markers including N-

cadherin and vimentin [151, 180]. Expression levels were not assessed within this 
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study and would therefore be of interest in the future. However, the Kinex™ antibody 

microarray revealed a significant decrease in vimentin s33 phosphorylation with 

HAVcR-1 overexpression. Phosphorylation and dephosphorylation of vimentin is 

crucial in its role in growth and motility and therefore there is the potential HAVcR-1 

may have a role in integrin regulation and motility [375]. This is supported by HAVcR-

1 altering adhesion of PZ-HPV-7 cells however contrary to HAVcR-1 having no impact 

on wound healing. Therefore, it may be of use to further investigation the impact of 

HAVcR-1 overexpression on vimentin phosphorylation. 

EMT enables the degradation of the underlying basement membrane and the 

formation of a mesenchymal cells that has the ability to migrate away from the 

epithelium in which it originated [376]. Therefore cells that undergo EMT are more 

motile and invasive and these cellular behaviours are vital for metastasis to occur 

[180, 366, 377]. PZ-HPV-7 cells that had forced HAVcR-1 overexpression were more 

invasive and therefore support the theory that HAVcR-1 is involved in EMT. However, 

contradictory to this HAVcR-1 decreased PZ-HPV-7 motility EMT also involves the loss 

of cell-cell junctions, including AJs and TJs [378]. E-cadherin is the main 

transmembrane adhesion protein in AJs [134]. The loss of E-cadherin from PZ-HPV-7 

cell membranes with HAVcR-1 overexpression is therefore indicative of decreased AJ 

integrity. However, there was no indication that HAVcR-1 had any impact on TJ 

stability in PZ-HPV-7 cells.  

EMT has been linked to prostate cancer metastatic progression which is important 

due to the majority of prostate cancer associated morbidity being due to metastasis 

[379]. EMT may therefore be the differentiator between low-risk and high-risk 

prostate cancer. This study has potentially linked HAVcR-1 to EMT and due to the 
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importance of EMT and prostate cancer, it would be of interest to investigate this 

further.  

7.3.3 HAVcR-1 in HGF Signalling 

HGF has been proposed to be important in prostate cancer development and 

progression with treatment decreasing TER and increasing proliferation and 

scattering [279, 281]. A preliminary study using endothelial cells revealed a potential 

link between HAVcR-1 and HGF signalling thus this study hypothesised that HAVcR-1 

expression was important for HGF induced junctional breakdown [143]. However, 

the results within this study did not confer with the literature and would therefore 

suggest problems with this study and thus validation of optimum HGF concentrations 

should be performed before further investigations of the potential links between 

HAVcR-1 and HGF signalling in prostate cancer aetiology. 

7.4 Future Work 

7.4.1 HAVcR-1 Signalling 

This study has proposed a novel link between HAVcR-1 and EGF signalling within 

prostate cancer cells and may act to regulate EMT in prostate cancer. This highlights 

a new area of research to be pursued. How HAVcR-1 activates EGF signalling is yet to 

be addressed. There is a predicted interaction between HAVcR-1 and EGFR [374]. 

Thus, it would be of interest to assess if HAVcR-1 can interact and activate EGFR. It 

would also be of interest to assess inhibitors of HAVcR-1 in relation to EGF signalling 

in prostate cancer cells. As well as assessing whether inhibitors of EGFR affect HAVcR-

1 overexpression induced changes to prostate cancer cells. These questions have not 
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been addressed in this study, however would be of interest in the future to elucidate 

a broader picture of signalling cascades that HAVcR-1 is involved in within prostate 

cancer. 

7.4.2 HAVcR-1 in the Urine 

This study investigated the levels of HAVcR-1 ectodomain within patient, however it 

would also of interest to investigate levels of the HAVcR-1 ectodomain secreted into 

the urine of prostate cancer patients. Urinary HAVcR-1 ectodomain levels have been 

showed to be increased in prostate cancer but there has at this time been no studies 

that have investigated the potential use of this is a clinical setting [315]. Furthermore, 

potential links between urinary HAVcR-1 levels and stage and prognosis have not 

been investigated. The development of the RenaStick™, a lateral flow detection 

system for urinary HAVcR-1, opens up the possibility for a non-invasive diagnostic 

and/or monitoring technique for prostate cancer [307]. 

7.4.3 HAVcR-1 as a Therapeutic Target 

Inhibitors of HAVcR-1 have been created however were not tested within this study. 

Due to cell behavioural changes induced by HAVcR-1 and the involvement of HAVcR-

1 in signalling pathways which have been linked to prostate cancer development and 

progression it is of interest to investigate HAVcR-1 as a novel target for the 

development of prostate cancer therapies. Furthermore, the identification that 

HAVcR-1 is overexpressed in prostate cancer proposes the potential use of an 

antibody-drug conjugated in the treatment of prostate cancer. This includes the CDX-

014 ADC that is in phase I and II clinical trials for advanced or metastatic renal 

carcinoma [338]. This could have significant benefit in the treatment of metastatic 
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prostate cancer with current treatment, although initially effective, result in 

resistance and disease progression within 12-18 months [28, 37, 39]. 

7.4.4 HAVcR-1 as a Prognostic Indicator 

This study did not assess HAVcR-1 levels or HAVcR-1 ectodomain levels and prostate 

cancer prognosis. However, did show that HAVcR-1 expression is increased in 

prostate cancer and investigated the effects of HAVcR-1 overexpression in the 

immortalised normal prostate epithelial cell line, PZ-HPV-7. HAVcR-1 was shown to 

decrease membranous E-cadherin and increase nuclear β-catenin both of which are 

indicative of EMT. With more aggressive prostate cancer cell lines E-cadherin 

expression is decreased and this decrease is associated with cancer grade, cancer 

progression and cancer specific death [5, 209, 351, 352]. Furthermore, increased 

nuclear β-catenin is found in aggressive prostate cancer and has been associated with 

poorly differentiated and highly proliferative tumours with increased vascular 

invasion [6, 7, 353]. Due to cell that undergo EMT being more likely to metastasise 

and the metastatic disease being responsible for 90 % of cancer specific death there 

is a potential link between HAVcR-1 and a worse prognosis [49, 209, 349]. This link is 

strengthened by PZ-HPV-7 cells that overexpress HAVcR-1 being more invasive and 

invasion being a hallmark of malignancy and a prerequisite for cancer metastasis 

[356]. 

The use of HAVcR-1 as an indicator of prostate cancer prognosis could have a great 

clinical benefit. Currently there is no way of differentiating low-risk and high-risk 

prostate cancer. This leads to under treatment of high-risk prostate cancer and an 

overtreatment of low-risk prostate cancer. Both of which are equally significant due 
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to the under treatment of high-risk prostate cancer potentially resulting in an 

increased mortality and overtreatment of low-risk prostate cancer potentially 

resulting in an increased morbidity [86]. Therefore, there may be benefit in further 

research to investigate the use of HAVcR-1 as a prognostic factor. 

7.5  Final Conclusions  

In summary, this study has shown that serum levels of the HAVcR-1 ectodomain are 

varied in prostate cancer and therefore identifies a novel area of study in prostate 

cancer diagnosis. Future study would assess the potential benefits of using serum 

levels in blood tests in a clinical setting as well as evaluating the variations in 

signalling pathways resulting in the release in HAVcR-1 from prostate cancer cells.  

This work has also demonstrated that HAVcR-1 has the capacity to alter cell 

behaviour to promote phenotypes associated with cancer and cancer metastasis. 

Potential signalling pathways affected by HAVcR-1 have been identified. Future study 

is necessary to investigate the effect of HAVcR-1 inhibitors on HAVcR-1 induced cell 

behavioural changes and signalling pathways activity. Subsequently, this would 

assess the potential of HAVcR-1 inhibition as a treatment of prostate cancer and/or 

prevention of metastatic disease.  
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Table 8.1 Prostate Cancer Serum Sample Patient Information 
WCB Number Gleason Score Tissue Operation 

Date 
Age at 
Collection 

PSA TNM Stage Alive Diead of 
Cancer 

RWMBV0000009 3+3=6 Prostate 23/06/2005 66 
 

T2 NX MX Yes 
 

RWMBV0000011 3+3=6 Prostate 24/06/2005 62 
 

T2 NX MX Yes 
 

RWMBV0000021 3+3=6 Prostate 20/07/2005 69 
 

T2 N0 MX Yes 
 

RWMBV0000028 3+3=6 Prostate 18/08/2005 70 
 

T2 N0 M0 Yes 
 

RWMBV0000030 3+3=6 Prostate 11/08/2005 62 
 

T2 N0 M0 No 
 

RWMBV0000035 3+3=6 Prostate 16/09/2005 66 
 

T2 
  

Yes 
 

RWMBV0000046 3+3=6 Prostate 13/10/2005 57 
 

T2 N0 M0 Yes 
 

RWMBV0000047 3+3=6 Prostate 20/10/2005 69 
 

T2 N0 M0 Yes 
 

RWMBV0000065 3+3=6 Prostate 07/12/2006 64 
 

T2 N0 M0 Yes 
 

RWMBV0000067 3+3=6 Prostate 15/12/2006 62 
 

T2b 
  

Yes 
 

RWMBV0000068 3+3=6 Prostate 22/12/2005 69 
 

T2 
  

Yes 
 

RWMBV0000081 3+3=6 Prostate 26/01/2006 60 
 

T2 N0 M0 Yes 
 

RWMBV0000083 3+3=6 Prostate 03/02/2006 67 
 

T2 NX MX Yes 
 

RWMBV0000095 3+3=6 Prostate 03/03/2006 63 
 

T3a 
  

Yes 
 

RWMBV0000097 3+3=6 Prostate 16/03/2006 60 
 

T2 
  

Yes 
 

RWMBV0000113 3+3=6 Prostate 04/05/2006 65 
 

T3a 
  

Yes 
 

RWMBV0000142 3+3=6 Prostate 11/01/2007 48 
 

T2 NX MX Yes 
 

RWMBV0000155 3+3=6 Prostate 07/12/2006 58 
 

T2 NX MX Yes 
 

RWMBV0000310 3+3=6 Prostate 22/10/2007 58 
 

T2 NX MX Yes 
 

RWMBV0000384 3+3=6 Prostate 20/03/2008 67 
 

T3a N0 MX No 
 

RWMBV0000552 3+3=6 Prostate 05/12/2008 59 
 

T2 N0 MX Yes 
 

RWMBV0000811 3+3=6 Prostate 03/03/2010 68 
 

T2 
  

Yes 
 

RWMBV0000827 3+3=6 Prostate 09/05/2010 69 
 

T2 
  

Yes 
 

RWMBV0000863 3+3=6 Prostate 13/08/2010 58 
 

T3a N0 MX Yes 
 

RWMBV0000870 3+3=6 Prostate 18/11/2010 62 
 

T2 NX 
 

Yes 
 

RWMBV0000908 3+3=6 Prostate 17/12/2010 67 
 

T1c N0 
 

Yes 
 

RWMBV0001115 3+3=6 Prostate 13/07/2011 64 
 

T2 N0 M0 Yes 
 

RWMBV0001395 3+3=6 Prostate 04/01/2012 57 
 

T1c 
  

Yes 
 

RWMBV0001607 3+3=6 Prostate 04/04/2012 66 
 

T3a NX M0 Yes 
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RWMBV0001632 3+3=6 Prostate 19/04/2012 49 
 

T2b N0 M0 Yes 
 

RWMBV0001647 3+3=6 Prostate 23/05/2012 70 
 

T2 NX MX Yes 
 

RWMBV0001689 3+3=6 Prostate 24/08/2012 47 
    

Yes 
 

RWMBV0002081 3+3=6 Prostate 22/01/2013 73 
 

T3a N0 M0 Yes 
 

RWMBV0002095 3+3=6 Prostate 01/02/2013 64 
 

T2a N0 M0 Yes 
 

RWMBV0002520 3+3=6 Prostate 01/03/2013 51 
    

Yes 
 

RWMBV0002585 3+3=6 Prostate 24/10/2013 57 
    

Yes 
 

RWMBV0003339 3+3=6 Prostate 26/03/2014 61 
    

Yes 
 

RWMBV0003370 3+3=6 Prostate 14/05/2014 73 
    

Yes 
 

RWMBV0003392 3+3=6 Prostate 02/10/2014 59 
    

Yes 
 

RWMBV0003397 3+3=6 Prostate 02/10/2014 65 
    

Yes 
 

RWMBV0003398 3+3=6 Prostate 09/10/2014 58 
    

Yes 
 

RWMBV0003399 3+3=6 Prostate 08/10/2014 71 
    

Yes 
 

RWMBV0004204 3+3=6 Prostate 16/10/2014 67 
      

RWMBV0004236 3+3=6 Prostate 07/01/2015 71 
      

RWMBV0004247 3+3=6 Prostate 25/02/2015 67 
      

RWMBV0000017 4+3=7 Prostate 08/07/2005 66 
 

T2 NX MX Yes 
 

RWMBV0000022 3+4=7 Prostate 20/07/2005 64 
 

T3b N0 M0 Yes 
 

RWMBV0000034 3+4=7 Prostate 15/09/2005 70 
 

T3a N0 M0 No 
 

RWMBV0000036 4+3=7 Prostate 16/09/2005 67 
    

Yes 
 

RWMBV0000038 3+4=7 Prostate 22/09/2005 50 
 

T3a N0 MX Yes 
 

RWMBV0000041 4+3=7 Prostate 29/09/2005 65 
 

T2 
  

Yes 
 

RWMBV0000043 3+4=7 Prostate 06/10/2005 63 
 

T1 
  

Yes 
 

RWMBV0000045 4+3=7 Prostate 13/10/2005 63 
 

T3a N0 M0 Yes 
 

RWMBV0000061 3+4=7 Prostate 10/11/2005 73 
 

T2 N0 M0 Yes 
 

RWMBV0000080 3+4=7 Prostate 19/01/2006 57 
 

T3a 
  

Yes 
 

RWMBV0000093 3+4=7 Prostate 03/03/2006 70 
 

T3 NX M0 Yes 
 

RWMBV0000112 3+4=7 Prostate 27/04/2006 71 
 

T3a 
    

RWMBV0000119 3+4=7 Prostate 08/06/2006 58 
 

T3b N0 
 

Yes 
 

RWMBV0000121 3+4=7 Prostate 23/06/2006 61 
 

T3a N0 MX Yes 
 

RWMBV0000248 3+4=7 Prostate 27/04/2007 51 
 

T3b 
  

Yes 
 

RWMBV0000348 3+4=7 Prostate 12/12/2007 68 
 

T3b N0 MX Yes 
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RWMBV0000363 7 Prostate 19/12/2007 67 
 

T3 NX M0 Yes 
 

RWMBV0000374 4+3=7 Prostate 31/01/2008 61 
 

T2 N0 M0 Yes 
 

RWMBV0000376 4+3=7 Prostate 13/02/2008 66 
 

T3a N0 MX Yes 
 

RWMBV0000412 3+4=7 Prostate 11/04/2008 61 
 

T3 N0 M0 Yes 
 

RWMBV0000502 4+3=7 Prostate 15/10/2008 65 
 

T3a N0 
 

Yes 
 

RWMBV0000792 3+4=7 Prostate 21/01/2010 46 
 

T3a N0 M0 Yes 
 

RWMBV0000815 4+3=7 Prostate 04/03/2010 69 
 

T3a 
  

Yes 
 

RWMBV0000829 3+4=7 Prostate 07/04/2010 65 
 

T3a N0 
 

Yes 
 

RWMBV0000837 3+4=7 Prostate 21/04/2010 54 
 

T2 N0 
 

Yes 
 

RWMBV0000838 4+3=7 Prostate 28/04/2010 56 
 

T3a 
 

MX Yes 
 

RWMBV0000862 4+3=7 Prostate 11/08/2010 65 
 

T2 N0 
 

Yes 
 

RWMBV0000874 3+4=7 Prostate 10/09/2010 50 
 

T2 
  

Yes 
 

RWMBV0000875 3+4=7 Prostate 29/09/2010 67 
 

T3a N0 M0 
  

RWMBV0000890 4+3=7 Prostate 20/10/2010 74 
 

T3a N0 
   

RWMBV0000892 4+3=7 Prostate 20/10/2010 65 
 

T3b N0 
 

Yes 
 

RWMBV0000907 4+3=7 Prostate 06/01/2011 67 
 

T3a 
  

Yes 
 

RWMBV0000949 3+4=7 Prostate 07/04/2011 66 
 

T3a 
  

Yes 
 

RWMBV0001035 3+4=7 Prostate 05/05/2011 67 
 

T2 N0 
 

Yes 
 

RWMBV0001042 3+4=7 Prostate 12/05/2011 64 
 

T3a N0 M0 Yes 
 

RWMBV0001133 3+4=7 Prostate 07/07/2011 59 
 

T3a N0 MX Yes 
 

RWMBV0001154 3+4=7 Prostate 18/08/2011 55 
 

T2 N0 M0 
  

RWMBV0001161 4+3=7 Prostate 28/09/2011 53 
 

T2 NX MX Yes 
 

RWMBV0001174 3+4=7 Prostate 30/09/2011 54 
    

Yes 
 

RWMBV0001359 4+3=7 Prostate 19/10/2011 61 
 

T3a 
 

MX Yes 
 

RWMBV0001366 4+3=7 Prostate 21/11/2011 65 
 

T3a NX MX Yes 
 

RWMBV0001377 4+3=7 Prostate 24/11/2011 68 
 

T2 N0 M0 Yes 
 

RWMBV0001388 3+4=7 Prostate 02/02/2012 64 
 

T2 N0 M0 Yes 
 

RWMBV0001610 4+3=7 Prostate 04/04/2012 68 
 

T2a NX MX Yes 
 

RWMBV0001616 3+4=7 Prostate 21/03/2012 63 
 

T3a NX MX Yes 
 

RWMBV0001618 3+4=7 Prostate 13/06/2012 54 
 

T3b N0 M0 Yes 
 

RWMBV0001626 3+4=7 Prostate 16/03/2012 63 
 

T2 N0 M0 Yes 
 

RWMBV0001628 3+4=7 Prostate 29/02/2012 60 
    

Yes 
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RWMBV0001634 3+4=7 Prostate 19/07/2012 60 
    

Yes 
 

RWMBV0001645 3+4=7 Prostate 21/06/2012 54 
    

Yes 
 

RWMBV0001648 4+3=7 Prostate 30/05/2012 70 
    

Yes 
 

RWMBV0001664 3+4=7 Prostate 19/07/2012 72 
    

Yes 
 

RWMBV0002061 3+4=7 Prostate 17/10/2012 72 
    

Yes 
 

RWMBV0002062 3+4=7 Prostate 08/11/2012 71 
 

T2 N0 M0 Yes 
 

RWMBV0002080 3+4=7 Prostate 31/10/2012 65 
    

Yes 
 

RWMBV0002084 4+3=7 Prostate 07/12/2012 66 
    

Yes 
 

RWMBV0002097 4+3=7 Prostate 06/02/2013 55 
 

T3a N0 M0 Yes 
 

RWMBV0002512 3+4=7 Prostate 15/02/2013 59 
 

T3b N0 M0 Yes 
 

RWMBV0002516 3+4=7 Prostate 07/03/2013 60 
    

Yes 
 

RWMBV0002535 3+4=7 Prostate 03/04/2013 68 
    

Yes 
 

RWMBV0002537 3+4=7 Prostate 03/04/2013 60 
    

Yes 
 

RWMBV0002560 3+4=7 Prostate 15/05/2013 71 
 

T3a N0 MX Yes 
 

RWMBV0002570 3+4=7 Prostate 20/06/2013 70 
 

T3a N0 MX Yes 
 

RWMBV0002586 4+3=7 Prostate 28/08/2013 67 
 

T3a 
 

MX Yes 
 

RWMBV0002596 3+4=7 Prostate 15/07/2013 53 
 

T2 N0 M0 Yes 
 

RWMBV0003303 4+3=7 Prostate 30/10/2013 58 
    

Yes 
 

RWMBV0003330 3+4=7 Prostate 22/01/2014 59 
    

Yes 
 

RWMBV0003335 3+4=7 Prostate 13/03/2014 75 
    

Yes 
 

RWMBV0003337 3+4=7 Prostate 21/03/2014 62 
    

Yes 
 

RWMBV0003340 3+4=7 Prostate 27/03/2014 63 
    

Yes 
 

RWMBV0003344 3+4=7 Prostate 27/03/2014 70 
    

Yes 
 

RWMBV0003348 3+4=7 Prostate 09/04/2014 55 
    

Yes 
 

RWMBV0003352 3+4=7 Prostate 09/04/2014 70 
    

Yes 
 

RWMBV0003359 3+4=7 Prostate 17/07/2014 72 
    

Yes 
 

RWMBV0003361 3+4=7 Prostate 17/07/2014 62 
    

Yes 
 

RWMBV0003365 3+4=7 Prostate 11/06/2014 69 
    

Yes 
 

RWMBV0003367 3+4=7 Prostate 23/05/2014 62 
    

Yes 
 

RWMBV0003371 3+4=7 Prostate 11/07/2014 69 
    

Yes 
 

RWMBV0003372 3+4=7 Prostate 03/07/2014 62 
    

Yes 
 

RWMBV0003377 3+4=7 Prostate 23/07/2014 64 
    

Yes 
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RWMBV0003379 3+4=7 Prostate 20/08/2014 71 
    

Yes 
 

RWMBV0003384 3+4=7 Prostate 28/08/2014 75 
    

Yes 
 

RWMBV0003385 3+4=7 Prostate 28/08/2014 64 
    

Yes 
 

RWMBV0003395 3+4=7 Prostate 25/09/2014 55 
    

Yes 
 

RWMBV0004200 3+4=7 Prostate 09/10/2014 63 
    

Yes 
 

RWMBV0004221 4+3=7 Prostate 10/12/2014 67 
      

RWMBV0004222 3+4=7 Prostate 04/12/2014 69 
      

RWMBV0004225 3+4=7 Prostate 02/01/2015 65 
      

RWMBV0004235 3+4=7 Prostate 09/01/2015 67 
      

RWMBV0004241 3+4=7 Prostate 28/01/2015 61 
      

RWMBV0004251 3+4=7 Prostate 11/03/2015 58 
      

RT7AU0000397 3+5=8 Prostate 08/03/2010 66 6.7 T2b NX 
 

Yes 
 

RT7AU0000415 3+5=8 Prostate 10/05/2010 71 11.7 
 

NX MX Yes 
 

RT7AU0000471 4+4=8 Prostate 13/09/2010 66 0.5 T2c NX MX Yes 
 

RT7AU0000600 4+4=8 Prostate 12/03/2012 62 7.9 T3a NX MX Yes 
 

RT7AU0000634 4+4=8 Prostate 23/04/2012 78 12.8 T3a NX MX Yes 
 

RT7AU0000648 3+5=8 Prostate 21/05/2012 61 24 T2c NX MX Yes 
 

RVCC40000278 8 Prostate 24/04/2006 65 7.1 T3a N0 MX Yes 
 

RVCC40000361 4+4=8 Prostate 11/07/2006 48 3.4 T2c N0 MX Yes 
 

RVCC40000377 3+5=8 Prostate 07/08/2006 59 4.7 T3 
  

Yes 
 

RVCC40000564 4+4=8 Prostate 26/02/2007 67 8.5 
   

Yes 
 

RVCC40000607 4+4=8 Prostate 27/03/2007 66 8.9 T3 N0 MX Yes 
 

RVCC40000746 4+4=8 Prostate 06/08/2007 67 12 T2a N0 MX Yes 
 

RVCC40001023 8 Prostate 19/05/2008 71 6 
   

Yes 
 

RVCC40001153 3+5=8 Prostate 11/11/2008 58 8.2 
   

No Unknown 

RVCC40001319 4+4=8 Prostate 26/05/2009 63 7 T2c N0 MX Yes 
 

RVCC40001535 4+4=8 Prostate 23/02/2010 60 1.5 T3b NX MX Yes 
 

RVCC40002387 4+4=8 Prostate 09/01/2012 69 10.1 T3a N0 MX Yes 
 

RVCC40002576 4+4=8 Prostate 24/07/2012 68 9 T3b N0 MX Yes 
 

RVCC40002590 4+4=8 Prostate 21/08/2012 64 6.9 T3a N0 MX Yes 
 

RVCC40002711 4+4=8 Prostate 10/09/2012 55 10.9 T3a N0 M0 Yes 
 

RVCC40002723 4+4=8 Prostate 16/10/2012 69 10.3 T3b N0 MX Yes 
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RVFAR0000124 3+5=8 Prostate 19/02/2008 61 14.2 T2a N0 MX Yes 
 

RVFAR0000234 8 Prostate 15/09/2009 57 7.4 T3a N0 MX Yes 
 

RVFAR0000294 3+5=8 Prostate 14/04/2010 54 3.9 T3 N0 MX Yes 
 

RVFAR0000325 4+4=8 Prostate 29/07/2010 68 17.9 T3b N0 MX Yes 
 

RVFAR0000337 5+3=8 Prostate 15/09/2010 61 34.8 T3b N0 MX Yes 
 

RVFAR0000350 4+4=8 Prostate 14/10/2010 59 10.4 T3b N0 MX Yes 
 

RVFAR0000365 3+5=8 Prostate 04/11/2010 55 14 T3b N0 MX No Yes 

RVFAR0000393 4+4=8 Prostate 06/01/2011 61 6 T3b N0 MX Yes 
 

RVFAR0000399 5+3=8 Prostate 26/01/2011 60 11.3 T2 N0 MX Yes 
 

RVFAR0000456 4+4=8 Prostate 18/05/2011 68 8.2 T2 N0 MX Yes 
 

RVFAR0000474 5+3=8 Prostate 21/06/2011 65 6.4 T3b N0 MX Yes 
 

RVFAR0000476 3+5=8 Prostate 14/07/2011 52 9.7 T2 NX MX Yes 
 

RVFAR0000629 3+5=8 Prostate 09/05/2012 68 8.5 T2 N0 MX Yes 
 

RVFAR0000645 5+3=8 Prostate 06/06/2012 57 9.1 T3 N0 MX Yes 
 

RVFAR0000692 4+4=8 Prostate 15/08/2012 63 5.7 T3 N0 M0 Yes 
 

RVFAR0000728 4+4=8 Prostate 03/10/2012 65 17.7 T3 N0 M0 Yes 
 

RVFAR0000801 3+5=8 Prostate 17/01/2013 71 19.5 T2 N0 MX Yes 
 

RWMBV0000062 3+5=8 Prostate 08/11/2005 78 96.3 T3 NX M1 No Yes 

RWMBV0000120 3+5=8 Prostate 21/06/2006 68 8.2 T3a N0 MX Yes 
 

RWMBV0000272 4+4=8 Prostate 13/09/2007 61 8.5 T2 N0 MX Yes 
 

RWMBV0000311 4+4=8 Prostate 19/10/2007 88 56.1 T4 NX M0 No Yes 

RWMBV0000387 4+4=8 Prostate 15/07/2008 82 48.2 T4 NX M0 No No 

RWMBV0001163 4+4=8 Prostate 15/09/2011 65 
 

T2 N0 MX Yes 
 

RWMBV0001370 4+4=8 Prostate 29/12/2011 61 3.6 T3b N1  M0 Yes 
 

RWMBV0003331 3+5=8 Prostate 24/02/2014 66 
    

Yes 
 

RWMBV0003336 4+4=8 Prostate 21/03/2014 52 
    

Yes 
 

RT7AU0000417 5+4=9 Prostate 27/09/2010 76 35.9 T3b NX MX No Yes 

RT7AU0000461 4+5=9 Prostate 06/09/2010 43 23.1 T3b N1 MX Yes 
 

RVCC40000650 4+5=9 Prostate 17/07/2007 56 18 T3a N0 MX Yes 
 

RVCC40001030 9 Prostate 11/06/2008 63 13.4 
   

Yes 
 

RVCC40001180 4+5=9 Prostate 10/11/2008 53 5.1 T3a N0 MX Yes 
 

RVCC40001644 4+5=9 Prostate 08/06/2010 67 0.5 T3a N0 MX No Yes 
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RVCC40002286 4+5=9 Prostate 29/10/2011 67 19 T3a N0 MX Yes 
 

RVFAR0000139 4+5=9 Prostate 21/05/2008 62 8.2 TX NX MX No Yes 

RVFAR0000146 9 Prostate 11/06/2008 64 5.8 T3b N0 MX No 
 

RVFAR0000156 4+5=9 Prostate 29/07/2008 61 14.7 T2c N0 MX Yes 
 

RVFAR0000158 4+5=9 Prostate 05/08/2008 65 12.3 T3a N0 MX Yes 
 

RVFAR0000191 5+4=9 Prostate 03/03/2009 58 20.9 TX NX MX Yes 
 

RVFAR0000209 5+4=9 Prostate 09/06/2009 57 8 T3b N1 MX Yes 
 

RVFAR0000210 4+5=9 Prostate 17/06/2009 61 8.9 T3b N0 MX Yes 
 

RVFAR0000305 4+5=9 Prostate 19/05/2010 67 7.9 T3 N0 MX Yes 
 

RVFAR0000308 4+5=9 Prostate 26/05/2010 51 4.5 T2 N0 MX Yes 
 

RVFAR0000309 4+5=9 Prostate 25/05/2010 61 24.7 T3b N1 MX Yes 
 

RVFAR0000318 4+5=9 Prostate 08/07/2010 65 7.9 T3b N0 MX Yes 
 

RVFAR0000427 4+5=9 Prostate 10/03/2011 59 14 T3a N0 MX Yes 
 

RVFAR0000451 5+4=9 Prostate 05/05/2011 70 5.2 T3 N0 M0 No No 

RVFAR0000468 4+5=9 Prostate 02/06/2011 67 20 T3b N0 MX Yes 
 

RVFAR0000509 4+5=9 Prostate 06/10/2011 69 8.6 T3 N0 MX Yes 
 

RVFAR0000513 4+5=9 Prostate 26/10/2011 64 18.1 T3a N1 MX Yes 
 

RVFAR0000517 4+5=9 Prostate 20/10/2011 65 13.8 T3 N0 MX Yes 
 

RVFAR0000523 4+5=9 Prostate 22/11/2011 66 2.9 T2 N1 MX Yes 
 

RVFAR0000610 4+5=9 Prostate 04/04/2012 66 6.3 T3 N0 MX Yes 
 

RVFAR0000640 4+5=9 Prostate 31/05/2012 68 6.5 T3 N0 M0 Yes 
 

RVFAR0000650 4+5=9 Prostate 21/06/2012 66 12.5 T3 N1 M0 Yes 
 

RVFAR0000712 4+5=9 Prostate 05/09/2012 68 9.3 T3a N0 MX Yes 
 

RVFAR0000752 4+5=9 Prostate 28/11/2012 61 12.8 T3a N0 M0 Yes 
 

RVFAR0000809 4+5=9 Prostate 16/01/2013 58 18.5 T3b N0 M0 Yes 
 

RVFAR0000822 5+4=9 Prostate 12/02/2013 54 11.5 T3 N1 MX Yes 
 

RWMBV0000312 9 Prostate 23/03/2010 69 86 T4 NX M1 
 

Yes 

RWMBV0000472 4+5=9 Prostate 17/07/2008 55 9.7 T3a N0 MX Yes 
 

RWMBV0000774 4+5=9 Prostate 03/12/2009 73 
 

T2 
  

Yes 
 

RWMBV0000844 4+5=9 Prostate 03/02/2011 73 8.5 T2b N0 MX No Yes 

RWMBV0000944 4+5=9 Prostate 29/03/2011 80 
 

T3b N0 M0 No 
 

RWMBV0001074 4+5=9 Prostate 19/05/2011 86 66.4 T2b N0 M0 Yes 
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RWMBV0001617 4+5=9 Prostate 23/03/2012 75 48.5 T3b N1 M1 Yes 
 

RWMBV0001644 4+5=9 Prostate 16/05/2012 67 221.5 T4 NX M1 Yes 
 

RWMBV0001659 5+4=9 Prostate 11/05/2012 67 23 T3b N0 M0 Yes 
 

RWMBV0001674 5+4=9 Prostate 04/07/2012 73 50 T3b N0 M0 Yes 
 

RWMBV0001694 4+5=9 Prostate 13/09/2012 53 
 

T2a N0 M0 Yes 
 

RWMBV0001699 4+5=9 Prostate 07/09/2012 83 20.6 T4 N1 M1 Yes 
 

RWMBV0002065 4+5=9 Prostate 07/09/2012 80 50.2 T3b NX M1 No Yes 

RWMBV0003356 4+5=9 Prostate 30/04/2014 51 
    

Yes 
 

RWMBV0003357 4+5=9 Prostate 24/04/2014 68 
    

Yes 
 

RVFAR0000303 5+5=10 Prostate 12/05/2010 55 9.8 T4 N1 MX Yes 
 

RVFAR0000347 5+5=10 Prostate 30/09/2010 57 13.4 T3 N1 MX No Yes 

RWMBV0000853 5+5=10 Prostate 08/07/2010 84 
 

T3 N0 M0 No 
 

RWMBV0002551 5+5=10 Prostate 18/03/2013 85 74.6 T4 N0 MX No Yes 

RWMBV0004284 3+7=10 Prostate 17/06/2015 66 4.7 T2 N0 MX 
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