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Abstract: The long-term storage of Cryptosporidium life-cycle stages is a prerequisite for in 7

vitro culture of the parasite. Cryptosporidium parvum oocysts, sporozoites and intracellular 8

forms inside infected host cells were stored for 6 to 12 mo in liquid nitrogen utilizing 9

different cryoprotectants (dimethyl sulfoxide [DMSO], glycerol and fetal calf serum [FCS]), 10

then cultured in vitro. Performance in vitro was quantified by estimating the total 11

Cryptosporidium copy number using qPCR in 3- and 7-day-old cultures.  While only few 12

parasites were recovered either from stored oocysts or from infected host cells, sporozoites 13

stored in liquid nitrogen recovered from freezing successfully. More copies of parasite DNA 14

were obtained from culturing those sporozoites than sporozoites excysted from oocysts kept 15

at 4 C for the same period. The best performance was observed for sporozoites stored in 16

RPMI with 10% FCS and 5% DMSO, which generated 240% and 330% greater number of 17

parasite DNA copies (on days 3- and 7-post-infection, respectively) compared to controls.  18

Storage of sporozoites in liquid nitrogen is more effective than oocyst storage at 4 C and 19

represents a more consistent approach for storage of viable infective Cryptosporidium20

aliquots for in vitro culture.21

 In vitro culture is an essential tool to study the apicomplexan gut parasite 22

Cryptosporidium (Karanis and Aldeyarbi, 2011), but despite recent advances in culture 23

systems (Morada et al., 2016), long-term storage of isolates continues to depend on 24

maintenance of oocysts at 4 C in a refrigerator. Production of oocysts in culture may be 25
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sparse (Karanis and Aldeyarbi, 2011) and there are no methods for long-term storage of 26

sporozoites or other short-lived stages. We present here observations on long-term (6 mo and 27

1 yr) preservation of Cryptosporidium life cycle stages in liquid nitrogen, which offer an 28

alternative approach to storage of this intractable pathogen.29

Cryptosporidium first came to attention some 35 yr ago as an important human gut 30

pathogen causing severe diarrhea (Bird and Smith, 1980), and is best known for the infection 31

of several hundred thousand individuals in the Milwaukee incident in 1993 (MacKenzie et 32

al., 1995). The huge number of oocysts produced by a diarrheic infected host, the apparent 33

long life span of oocysts and the possibly severe consequences of infection, in particular in 34

immunocompromised individuals, make this a highly significant pathogen, recognized by its 35

classification by Centers for Disease Control and prevention as a potential biowarfare agent36

(www. emergency.cdc.gov/bioterrorism).  37

Calves are the natural hosts of C. parvum, while C. hominis has no natural host apart 38

from humans and is therefore only available from clinical isolates. Neonatal or SCID mouse 39

models for these pathogens require infectious doses 10-100 times higher than their natural 40

hosts (see e.g., Fayer et al., 1991; Zambriski et al., 2013). With concerns over the validity of 41

these experimental models, and the welfare and logistic issues surrounding maintenance in 42

animal hosts, we are dependent on in vitro culture to advance our understanding of 43

Cryptosporidium biology. Long-term storage is an essential adjunct of in vitro culture, partly 44

because of the propensity for genetic drift in cultures or animal hosts, but also because oocyst45

production in culture is not yet as prolific as that from natural hosts (Karanis and Aldeyarbi, 46

2011), although long-term maintenance with substantial oocyst production has recently been 47

described (Morada et al., 2016; DeCicco RePass et al., 2017). In general, in vitro cultures are 48

initiated from oocysts stored at 4 C in PBS supplemented with antibiotics as collected from 49

animal hosts, on the assumption that these stages are resistant and can survive for many 50
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months, despite the experimental observation that oocyst survival declines sharply after 3 mo 51

in these conditions (Liang and Keeley, 2012; Paziewska-Harris et al., 2016). Other 52

apicomplexans, such as Plasmodium, are routinely cultured in vitro from isolates stored in 53

liquid nitrogen for many months or years. Here we present encouraging results on the storage 54

of Cryptosporidium parvum in liquid nitrogen for 6 mo and 12 mo using an alternative 55

infectivity assay, which suggests that long-term storage in liquid nitrogen could become an 56

important tool in Cryptosporidium in vitro culture. 57

Oocysts of C. parvum IOWA strain (Waterborne Inc., New Orleans, Louisiana) were 58

stored prior to use at 4 C in PBS supplemented with 100U/ml penicillin, 100 µg/ml 59

streptomycin, 10 mg/ml gentamicin, 0.25 µg/ml Amphotericin B and 0.01% Tween 20. The 60

oocyst batch used was 4 mo old (post shedding by calves and purification) when storage 61

experiments began. The concentration of supplied oocysts was initially calculated using a 62

hemocytometer (W. Schreck,Hofheim/TS, Germany), and samples of appropriate numbers of 63

oocysts for experiments were generated by dilution. Human colon adenocarcinoma (HCT-8;64

ATCC CCL 244) cells were maintained as described previously (Paziewska-Harris et al.,65

2015), and grown in 6-well plates (Thermo Fisher Scientific, Landsmeer, The Netherlands; 66

9.6 cm2 per well) at 37 C in an atmosphere containing 5% CO2 until they reached 90% 67

confluence. Before storage or infection of host cells (in case of stored oocysts, see below),68

oocysts were excysted (Hijjawii et al., 2001) by incubation for 30 min at 37 C in a 0.25% 69

trypsin (from bovine pancreas, Sigma, cat. no. T1426, Zwijndrecht, The Netherlands) 70

solution (pH 2.5, adjusted with 1M hydrochloric acid), followed by centrifugation at 2000 × g71

for 5 min, after which the trypsin solution was replaced by Cryptosporidium maintenance 72

medium (CMM; Hijjawi et al., 2001 as modified by Paziewska-Harris et al., 2015) containing 73

200 µg/ml of bile salts (from bovine and ovine pancreas, Sigma, cat. no. B8381) and 74

incubated for a further 2.5 hr at 37 C. Released sporozoites were not separated from non-75
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excysted oocysts as dead/non-infective parasite stages were washed from cell monolayers 12 76

hr after addition to the cultures (Paziewska-Harris et al., 2015). Released sporozoites were77

used either for infection (see below) or aliquoted for storage in an excess of freezing medium 78

(sporozoites in CMM: storage medium, 1:9). Four different storage media were used: I) 79

RPMI with 20% fetal calf serum (FCS) and 12% glycerol; II) RPMI with 20% FCS and 12% 80

dimethyl sulfoxide (DMSO); III) RPMI with 10% FCS and 5% DMSO (the medium 81

normally used for long term frozen storage of HCT-8 cells); IV) RPMI with 20% FCS, 10% 82

of glycerol and 10% of DMSO. All media were supplemented with 100 U/ml penicillin and 83

100 µg/ml streptomycin (Gibco, provided by Thermo Fisher Scientific, Waltham, 84

Massachusetts).85

Oocysts, sporozoites and infected host cells were stored in each of the 4 different 86

media. Samples were cooled to -70 C at the rate of -1 C/min in a mechanical freezer (Mr. 87

Frosty Freezing Container, Thermo Fisher Scientific) before transfer to liquid nitrogen. Two 88

replicates of each combination of Cryptosporidium sample and storage medium were stored 89

for each time point (replicates A-B for 6 mo, C-D for 12 mo storage). Thawing after storage 90

in liquid nitrogen was performed at approximately 100 C/min, achieved by 1 min exposure to 91

room temperature followed by 1 min incubation in a water bath at 37 C, a rate compatible 92

with both protozoan survival (e.g., Miyake et al., 2004) and the recovery of host HCT-8 cells. 93

Preparation of different Cryptosporidium samples and their processing after freezing was as 94

follows (see also Table I for a summary of study design):95

(i) Oocysts (17,300 per replicate) were stored in freezing media for 6 mo. After thawing 96

they were excysted as described above, then divided and the 2 aliquots added to near-97

confluent HCT-8 cells; 98

(ii) Oocysts (17,300 per replicate) were excysted and released sporozoites divided into 99

freezing media (4 replicates per medium type). After 6 or 12 mo of storage 2 replicates 100
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stored in each medium were thawed, divided into 2 aliquots and added to fresh HCT-8 101

cells; 102

(iii) Newly excysted sporozoites from oocysts pre-treated with trypsin and bile salts as 103

described above (17,300 per replicate) were added to fresh HCT-8 monolayers in 25 cm2
104

culture flasks. Infected cells (containing intracellular parasite stages) were harvested on 105

day 3-post-infection and divided between 16 tubes with different freezing media (4 106

replicates per medium). After storage (6 or 12 mo) they were thawed and each replicate107

divided and seeded into 2 fresh culture plates containing HCT-8 medium. 108

For all samples the medium was changed after host cell infection (12 hr post infection) or 109

seeding of infected cells and prior to sampling (12 hr before first sampling). Samples were 110

then collected 3-or 7-days post infection/seeding (d.p.i/d.p.s.); these time points were chosen 111

to allow for any lag in development following freezing. Extracellular parasite stages were 112

recovered from the supernatant (centrifugation at 2,000 g for 5 min) and intracellular stages 113

from host cells following trypsin treatment and centrifugation at 2,000 g for 5 min. Following 114

centrifugation, pelleted extracellular or intracellular stages were suspended in 950 µl of lysis 115

buffer (Boom et al., 1990).116

Additionally, different types of controls were included in the experiment. At the time 117

of freezing, 3 replicates of both intact and pre-treated oocysts were kept as controls to 118

estimate the total number of viable sporozoites and oocysts frozen (control 1). Excystation119

rate was estimated as described (Paziewska-Harris et al., 2016): after standard excystation120

using trypsin and bile salts, DNA from parasites was extracted (Boom et al.,1990) and qPCR 121

performed. This method allows estimation of the number of excysted parasites, as DNA is not 122

purified from intact oocysts (Paziewska-Harris et al., 2016). To estimate the quality of 123

excystation and culturing protocols, positive controls were used at every time point (control 124

2). These were cell monolayers infected with sporozoites excysted from fresh oocysts (less 125
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than 2-mo-old with more than 75% excysting; see Paziewska-Harris et al., 2016). Negative 126

controls (HCT-8 cells without parasites, control 3) were also included. Positive and negative 127

controls were set up and harvested at the same time as experimental samples. To test the 128

differences in infectivity after standard storage in 4 C and storage in liquid nitrogen, oocysts 129

kept for 10 mo at 4 C (control 4) were used to compare with the experimental samples kept at 130

4 C for 4 mo and then 6 mo in liquid nitrogen. Sub-culturing of cells infected with 131

Cryptosporidium was also performed (control 5): HCT-8 cells were infected with sporozoites 132

and sub-cultured 3 days post infection into fresh plates. Samples were then collected on day 3 133

and day 7 post sub-culturing. To assess the excystation ability of oocysts frozen with 134

different cryoprotectants, triplicates of 1,000 4-mo-old oocysts were stored at -20 C for 1 wk, 135

and after thawing they were subjected to excystation followed by DNA isolation (control 6). 136

Three samples of unfrozen oocysts from the same batch were used as a control. 137

DNA was isolated as described by (Boom et al., 1990) and qPCR used as rapid 138

method bulk approach to estimate ‘zoites’ (Paziewska-Harris et al., 2016) rather than semi-139

quantitative slide-based methods such as immunofluorescence microscopy. This method 140

measures only DNA from living sporozoites as the 12 hr rinse of cultures effectively removes 141

dead sporozoites and DNA released from lysed stages (Paziewska-Harris et al., 2015), giving 142

confidence that only DNA from excysted sporozoites which had remained viable for at least 143

12 hr was being measured. A standard curve was constructed using a 10-fold dilution series 144

of sporozoites from 20,000 fresh oocysts/µl, which excysted with an efficiency of between 90 145

to 100% (estimated as in Paziewska-Harris et al., 2016). The highest concentration was146

therefore assumed to represent 80,000 DNA parasite copies/µl (as each oocyst contains 4 147

haploid sporozoites). PCR sensitivity was estimated as 0.2 oocyst/µl, which translates to 4 148

copies of 18S rDNA (as each sporozoite has 5 copies of 18S rDNA gene in the genome; 149

Abrahamsen et al., 2005). At each time point only 2 or 3 samples of each replicate (recovered 150
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from different media or controls) were analyzed, precluding statistical analysis and the results 151

are therefore shown as arithmetic means.152

The mean number of excysting oocysts estimated by qPCR for the 4-mo-old pre-153

treated input controls (control 1) was 1,540 (of a total of 17,300) per replicate, suggesting a 154

maximum viability for sporozoites of 9%. Positive controls (cells infected with sporozoites 155

from 2 mo-old oocysts with greater than 75% excystation) contained a mean of about 25,000 156

parasite stages after 3 d.p.i. and 18,000 after 7 d.p.i. (control 2). None of the negative controls 157

gave a signal using PCR targeting Cryptosporidium DNA (control 3). In all experimental 158

samples and controls the majority of parasite DNA was present in the extracellular phase159

(data not shown), as also noted by Paziewska-Harris et al. (2015). The results are presented as 160

the total number of parasites recovered, combining both extracellular and intracellular stages. 161

We also confirmed that parasites could be recovered from infected cells harvested on day 3 162

p.i. and sub-cultured to new culture plates (average number of parasites in infected cells 163

while sub-culturing: 275 per sample) (control 5). After 3 days of sub-culturing the mean 164

number of recovered parasites was 320, while after 7 days 310 parasites were recovered.165

Oocysts stored in liquid nitrogen for 6 mo lost their infectivity regardless of the 166

medium used for storage (see Table II). The total number of Cryptosporidium stages 167

recovered from cell cultures infected with sporozoites from 10 mo old oocysts which had 168

been kept in liquid nitrogen for 6 mo did not exceed 50, only 7% and 22% (3 d.p.i. and 7 169

d.p.i., respectively) of the number released from oocysts kept throughout at 4 C (control 4). 170

Previous attempts to freeze oocysts had shown that there is no apparent increase in survival 171

of oocysts frozen with cryoprotectants at -20 C, -80 C or in liquid nitrogen (Fayer et al.,172

1991; Kim and Healey, 2001). Short-term freezing was more successful (control 6): oocysts 173

frozen for a week in -20 C using different storage media (I-IV) showed viability of 2%-74% 174

as compared to refrigerated controls (maximum of 927 live sporozoites estimated from 175
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oocysts stored in medium II vs. 1,246 from the control samples) (Table II).  It appears that the 176

thick oocyst wall prevents cryoprotectants from penetrating the cells, leading to a loss of 177

viability over longer periods at lower temperatures. Parasites stored within host cells also lost 178

viability and only very small numbers (or none) were recovered after 6 and 12 mo storage in 179

liquid nitrogen. Only 1 replicate (cells stored in medium IV for 6 mo and cultured for 7 days) 180

with better parasite recovery from cells than from frozen oocysts (Table II) was noted. This 181

may relate to the small proportion of human cells that recover after freezing.182

Excysted sporozoites stored in liquid nitrogen retained viability much better than 183

either oocysts or parasites in host cells; after 6 mo storage those sporozoites could be 184

recovered from all storage media. The highest signal on day 3 p.i. was observed for parasites 185

stored in medium IV, and on day 7 p.i. for those kept in medium III (Fig. 1). The infectivity 186

of sporozoites from oocysts stored at 4 C for 4 mo and then in liquid nitrogen for 6 mo was 187

greater than that of sporozoites from oocysts kept at 4 C for the full 10 mo (control 4). The 188

number of Cryptosporidium stages recovered after combination of storage at 4 C and in liquid 189

nitrogen ranged from 1.15× (3 d.p.i.) to 3.3× (7 d.p.i.) the number recovered from cultures 190

using 10-mo-old oocysts stored at 4 C (control 4) (Fig. 2). After 12 mo of storage in liquid 191

nitrogen, the best recovery of parasites 3 and 7 days p.i. came from medium III (Fig. 3), with 192

only few parasites recovered after 12-mo-storage in media I and II. The potential for 193

successful infection by sporozoites stored in liquid nitrogen decreased with time (Fig. 4), but 194

this decline was smallest using medium III; between 45% (7 d.p.i.) and 65% (3 d.p.i.) of 195

sporozoites retained infectivity after 12 mo storage relative to 6 mo storage in this medium.196

Frozen storage of sporozoites has been tried previously with Cryptosporidium (Sherwood et 197

al., 1982; Rossi, 1990; Fayer et al., 1991; Rhee and Park, 1996; Kim and Healey, 2001), but 198

as oocysts did not retain infectivity for neonatal or immunosuppressed mice, the approach 199

was dropped, and it is clear that freezing kills oocysts. Fayer et al. (1991) also observed a 200
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lack of infectivity of rectally-intubated C. parvum sporozoites for neonatal BALB/c mice 201

following frozen storage.  However, mice are a poor host for C. parvum, requiring a much 202

higher inoculum than the 10 oocysts needed to infect calves (Zambriski et al., 2013), and 203

there is no doubt that frozen storage does reduce viability of sporozoites. It may therefore be 204

that in these experiments viability may have been reduced to below the level at which 205

infections could take place. Cryopreservation with simple cryoprotectants may also render 206

sporozoites uninfective in animal models, since the presence of FCS in frozen storage media 207

can potentially trigger the sporozoite-trophozoite transition (Edwinson et al., 2016)208

prematurely. Nevertheless, we would argue that cryopreservation can provide effective long-209

term storage medium for sporozoites which is then more consistent than storage of oocysts 210

for equivalent periods at 4 C. Given the overwhelming importance of in vitro studies (e.g.,211

Vinayak et al., 2015; Edwinson et al., 2016; Morada et al., 2016; DeCicco RePass et al.,212

2017) for understanding the biology of Cryptosporidium, and for large scale drug-screening, 213

a potential lack of infectivity of frozen sporozoites in animal models is less significant. 214

Further experiments will certainly fine-tune the method and adapt it for particular 215

experimental needs, but even based on the experimental data provided here it can be 216

concluded that cryopreservation of sporozoites is a viable approach to long-term storage of 217

Cryptosporidium. Indeed, even using the methodologies described here, freezing of excysted 218

aliquoted sporozoites is likely to represent a more consistent and possibly more efficient 219

means of keeping isolates than the recommended storage of oocysts at 4 C.220
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Figure 1. Number of parasites (mean of 2 replicates) recovered from host cell cultures 278

infected with sporozoites stored in different media for 6 mo. Parasites were harvested 3 days279

post infection (d.p.i.) (black bars) and 7 d.p.i. (white bars). Storage media used: I) RPMI with 280

20% FCS and 12% glycerol; II) RPMI with 20% FCS and 12% DMSO; III) RPMI with 10% 281

FCS and 5% DMSO; IV) RPMI with 20% FCS, 10% of glycerol and 10% of DMSO.282

Figure 2. Differences in proportion of parasites recovered from cultures after storage in liquid 283

nitrogen in different media for 6 mo as compared to controls kept at 4 C. Parasites were 284

harvested 3 days post infection (d.p.i.) (back bars) and 7 d.p.i. (white bars). All the 285

calculations are based on 2 replicates of each condition. Storage media used: I) RPMI with 286

20% FCS and 12% glycerol; II) RPMI with 20% FCS and 12% DMSO; III) RPMI with 10% 287

FCS and 5% DMSO; IV) RPMI with 20% FCS, 10% of glycerol and 10% of DMSO.288

Figure 3. Number of parasites (mean of 2 replicates) recovered from host cell cultures 289

infected with sporozoites stored in different media for 12 mo. Parasites were harvested 3 days 290

post infection (d.p.i.) (black bars) and 7 d.p.i. (white bars). Storage media used: I) RPMI with 291

20% FCS and 12% glycerol; II) RPMI with 20% FCS and 12% DMSO; III) RPMI with 10% 292

FCS and 5% DMSO; IV) RPMI with 20% FCS, 10% of glycerol and 10% of DMSO.293

Figure 4. Differences in proportion of parasites recovered from host cell cultures infected 294

with sporozoites stored in liquid nitrogen in different media for 12 mo as compared to 6 mo. 295

Parasites were harvested 3 days post infection (d.p.i.) (back bars) and 7 d.p.i. (white bars). All 296

the calculations are based on 2 replicates of each condition. Storage media used: I) RPMI 297

with 20% FCS and 12% glycerol; II) RPMI with 20% FCS and 12% DMSO; III) RPMI with 298

10% FCS and 5% DMSO; IV) RPMI with 20% FCS, 10% of glycerol and 10% of DMSO.299
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Table I. Experimental design: all samples stored in liquid nitrogen for every freezing medium 

for each time period; d.p.i.- day post infection, d.p.s.- day post seeding. 

Oocysts Sporozoites Infected cells

Treatment 

before storage

None Excystation Excystation, host cell 

infection, harvesting 

on 3 d.p.i.

Oocysts used 

per replicate

17300 17300 17300

Total 

number* of 

stored 

parasites per 

replicate

69200 69200 6920†

Number of 

replicates

2 4 4

Storage time 6 months (replicates A, 

B)

6 months (replicates A, 

B) and 12 months 

(replicates C, D)

6 months (replicates A, 

B) and 12 months 

(replicates C, D)

Treatment 

after storage

Each replicate 

excysted, aliquoted 

(aliquots 1-2) 

Each replicate 

aliquoted (aliquots 1-2) 

Each replicate 

aliquoted (aliquots 1-2) 

Culturing Each aliquot added to 

fresh HCT-8 

monolayer, harvested 

on 3 d.p.i. (1) or 7 

d.p.i. (2)

Each aliquot added to 

fresh HCT-8 

monolayer, harvested 

on 3 d.p.i. (1) or 7 

d.p.i. (2)

Each aliquot seeded on 

the plate, harvested on 

3 d.p.s. (1) or 7 d.p.s. 

(2)

*Based on 4 sporozoites per oocyst. 

†Based on 1% recovery at the time of harvesting infected cells on 3 d.p.i. estimated based on 

experiments using oocysts of the same age as in the study (data not published). 

Table 1 Click here to download Table 16-22R2 Table 1 marked.docx 



Table II. Numbers of parasites recovered from cultures after 3 or 7 days post 

infection/seeding. Oocysts used in the experiments were stored for 4 mo at 4 C. Then either 

oocysts or HCT-8 cells infected with parasites derived from these oocysts were stored in 

different freezing media (I-IV, see text for details) in liquid nitrogen (LN; for input numbers 

see text and Table 1) or at -20 C (1,000 oocysts) for different time periods; d.p.i. - day post 

infection, d.p.s. - day post seeding; NA- not applicable- only viability was tested. 

Oocysts Infected cells

Storage 

conditions

1 wk at      

-20 C

6 mo in LN 6 mo in LN 12 mo in LN

D.p.i./d.p.s. NA 3 7 3 7 3 7

Medium I 493 16 0 0 0 0 0

Medium II 927 0 29 0 0 6 0

Medium III 147 7 47 0 0 0 0

Medium IV 27 20 8 0 256 42 0

Table 2 Click here to download Table 16-22R2 Table 2 marked.docx 



Figure 1 Click here to download Figure Figure 1 corrected JP.tif 



Figure 2 Click here to download Figure Figure 2 corrected JP.tif 



Figure 3 Click here to download Figure Figure 3 corrected JP.tif 



Figure 4 Click here to download Figure Figure 4 corrected JP.tif 


