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Abstract

Knowledge Infrastructure is an intellectual framework for creating, sharing, and distributing 
knowledge. In this paper, we use Knowledge Infrastructure to address common barriers to entry 
to numerical modeling in Earth sciences: computational modeling education, replicating published 
model results, and reusing published models to extend research. We outline six critical functional 
requirements: 1) workflows designed for new users; 2) a community-supported collaborative web 
platform; 3) distributed data storage; 4) a software environment; 5) a personalized cloud-based 
high-performance computing platform; and 6) a standardized open source modeling 
framework.  Our methods meet these functional requirements by providing three interactive 
computational narratives for hands-on, problem-based research demonstrating how to use Landlab 
on HydroShare. Landlab is an open-source toolkit for building, coupling, and exploring two-
dimensional numerical models. HydroShare is an online collaborative environment for the sharing 
of data and models. We describe the methods we are using to accelerate knowledge development 
by providing a suite of modular and interoperable process components that allows students, 
domain experts, collaborators, researchers, and sponsors to learn by exploring shared data and 
modeling resources.  The system is designed to support uses on the continuum from fully-
developed modelling applications to prototyping research software tools.

1 Introduction

Modeling in Earth sciences began with the use of hand-written mathematical formulas that were 
developed from observational evidence, conjecture, or hypothesis, and shared through 
conversation and correspondence. As richness and complexity of our available Earth observations 
have grown in parallel with technological advances in computational resources (supercomputing, 
high-performance computing, and cloud computing), our models now focus on couplings among 
atmospheric, hydrologic, ecologic, geomorphic and human-impacted processes (e.g., Tucker and 
Hancock, 2010; Yetemen et al., 2015a, b; Han et al., 2014, Anders et al., 2008; Pande and 
Sivapalan, 2016). Advances in internet-based cyberinfrastructure research tools and technology, 
also broadly considered as Knowledge Infrastructure (KI), have expanded our capacity for 
structured collaborations in research (Edwards et al., 2013). However, these advances often come 
at the expense of raising the technological bar for entry into numerical modeling. Here, with 
examples from Earth science, we discuss these advances as enablers that include three key features: 
1) a community platform that allows dynamic interactions among developers, researchers, and new 
users; 2) clear documentation of theoretical and mathematical details that are often lost for new 
users of complex model programs; and 3) model reproducibility.  For example, sharing the code 
and data within a community portal with computational capacity allows new users to easily find 
and test training materials, developers to easily distribute open workshop materials, and 
communities to build new research networks. Further, as technology is integrated in the research 
with greater sophistication, it is increasingly a challenge to keep the fundamental equations that 
define the driving assumptions in the model structure accessible to software users. Using methods 
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such as inclusion of equations and references in online documents, can avoid the ‘black box’ 
syndrome and improve ease of learning, transparency, and usability of the modeling code. This 
provides the Domain of Applicability (Netzeva et al., 2005), or ‘building ignorance into the system 
(Edwards et al., 2018) to be clear on the purpose and limits of the model. Experimental design is 
addressed by illustrating three different areas where model reproducibility can have an impact on 
advancing science: classroom and peer-to-peer education, replicating published results, and 
reusing models to build new research products. 

Knowledge Infrastructure (KI) is an emerging intellectual framework to understand and improve 
how people create, share, interpret observations and modeled results, and distribute knowledge, 
which has dramatically changed and is continually transformed by internet technologies. KIs are 
most simply defined as “robust networks of people, artifacts, and institutions that generate, share, 
and maintain specific knowledge about the human and natural worlds” (Borgman and Traweek, 
2012). In Earth and hydrologic sciences, interpreting observational and model simulated data is a 
fundamental task, but systematic acquisition for interpretations and machine readability is not 
common practice among environmental research infrastructures (Stocker et al., 2018). KI advances 
us beyond cyberinfrastructure, which is limited to distributed computer, information, and 
communication technologies, by including networks of groups and institutions, and the cultural 
practices of developing and sharing computational narratives (Brooks, 1997; Perez and Granger, 
2015).  Computational narratives are the algorithmic processes involved in creating and 
interpreting computed representations (Mani, 2013). In our case, the algorithmic processes are 
Earth surface models, and the computed representation is the results of the analytical research and 
how those results are summarized. Recent developments in the use of advanced cyber-
infrastructure in Earth science include tools used to support hydroinformatics, such as HydroShare 
(Tarboton et al., 2014a; Tarboton et al., 2014b; Tarboton et al., 2018) and the CUAHSI JupyterHub 
service (Castronova, 2017; Perez and Granger, 2015). Development efforts concentrate on the 
application of information and communication technologies (ICTs) targeted for geospatial 
analytics (Yin et al., 2017) and hydrologic data types and models (Horsburgh et al., 2016; Morsy 
et al., 2017, Strauch et al., 2018) by providing resources for open-source practices, including 
sharing of data and models, and providing cloud computing. With expert knowledge or user 
experience designed to support non-experts, these platforms can be effectively used for expanding 
and broadening our capacity to investigate hydrologic and Earth system processes. 

In model-based investigations, reproducibility increases confidence in results and improves 
interpretation about what results do and do not mean; lack of reproducibility limits the expansion 
and growth of knowledge (Hutton et al., 2016; Nosek et al., 2015). The advancement of knowledge 
and lowering the barriers to reproducibility can be enabled by KI that supports collaborative 
research, education, and curriculum development, and improves standards for technology practices 
for publication of research and the description of research presented in journal articles.  Web-based 
interactive computing environments, such as Jupyter Notebooks (Perez and Granger, 2015), are 
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designed to execute models and perform data analytics, and have become increasingly prevalent 
to improve reproducibility of research in the past few years (Shen, 2014), especially with early 
adopters in the biological sciences (Gross et al., 2014; Ragan-Kelley et al., 2013; Ding and Schloss, 
2014).   Francis (2018) created a reference of 36 Jupyter Notebooks currently available on the web, 
with limited examples of experiments in the Earth sciences community. One of the first interactive 
notebooks that we know of was published by Shen (2014), which provided computational 
resources for executing code snippets exploring astronomy data. This was available online as an 
interactive Notebook for three years (2014-2017), and it was replaced with a static view of an 
example execution of the Notebook in November 2017.  Luo et al. (2016) have shown that 
interacting with web-based models (through a graphical user interface) in classroom environments 
improves higher-level thinking and attitudes about complex landscape evolution models. We do 
not know of any collections of Notebooks published with the supporting infrastructure available 
for authors to maintain accessible interactive Notebooks for their readers in hydrologic sciences 
and Earth surface modeling communities, or studies on how interacting with model code improves 
educational or research outcomes.  

Recent efforts to provide online computing capacity for Earth science research and education 
included landscape evolution modeling such as the WILSIM model (Luo et al., 2004; 2016), and 
watershed hydrology and erosion modeling using WEPP (Laflen et al., 1991; Laflen et al., 1997; 
Flanagan et al., 2001). While these recent web-based modeling approaches lower the bar for model 
execution, model options and the level of interaction of the users with models are constrained by 
the limited to the set of options envisioned by the developers. These tools rely on graphical user 
interfaces (GUI) with limited user inputs (parameter values, or scenario choices), but they do not 
provide an interactive software environment for user collaboration and co-creation of 
knowledge.   To develop a persistent, collaborative environment that will have a profound 
transformational effect on our society (Newman et al., 2003), we need to identify and overcome 
the barriers that are currently preventing rapid adoption of Knowledge Infrastructure for Earth 
surface modelers.

This paper is motivated by the following questions:  Can current software infrastructure and 
research communities (1) facilitate rapid adoption and scientific advancement of complex Earth 
surface models, (2) lower the bar for entry into modeling, (3) improve collaborations among 
scientists and science partners, and (4) to develop usable science and sustainable open source 
software? In addressing these questions, our aim is to explore Knowledge Infrastructure using 
advanced data access and computational resources beyond what an individual scientist would 
normally have available (Bandaragoda et al., 2006).   Below we first describe three emerging open-
source modeling practices to lower the bar into modeling (Section 2). In our methods, (Section 3), 
we review basic elements of KI and substantiate it with specific technical details as implemented 
in HydroShare, the CI platform we use in this study.  In the results (Section 4), we focus on the 
use of the Landlab Earth surface modeling toolkit (Hobley et al., 2017), deployed on HydroShare, 
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in three use cases that employ emerging open-source modeling practices to lower barriers in 
modeling with specific workflows designed with interactive notebooks aimed at Earth science 
education, and reuse and replication of a research model.  Our discussion (Section 5) explores the 
barriers we have identified, followed by Conclusions (Section 6) on our approach to address the 
motivating questions and current limitations.

2 Methods

2.1 Emerging practices for modeling

The use of cyberinfrastructure to reproduce experiments and share data is expanding. Open source 
cyber-infrastructure platforms for research publication are designed to facilitate the use of existing 
models by making input data and model code publicly available online and providing software 
tools for pre- and post-processing data, running models, sharing data, and formally publishing with 
a digital object identifier (Freeman, 2005; Atkins, 2003).  Using recent examples in water 
monitoring (Horsburgh et al., 2017; Jones et al., 2017; Mihalevich, B.A. 2017), landslide modeling 
(Strauch et al., 2018), and data science (Freire et al., 2016), we identified three critical open-source 
technology practices supported by KI expected to scientific discoveries:

2.1.1 Code development in an open source environment
Evolving software versions, hardware requirements, numerical methods, and code quality limit the 
ability to replicate and reuse model applications. Developing models from a personal computer 
(PC) requires installing a suite of specialized software tools and access to computational hardware 
to visualize, store, and prepare model inputs and outputs. Thus, reproducing a study by others often 
depends on the ability to reproduce the software environment.  

2.1.2 Cyber-training in numerical modeling education
The use of numerical models for science education should not diminish the instruction time for 
basic science. Costs that sometimes arise from using models in the classroom include time needed 
for extensive technological instruction, and technical troubleshooting. These costs can be avoided 
by developing software infrastructure that accesses computational and data intensive models from 
a web browser, thereby avoiding the need for any software installations, enabling classroom 
experiences for students that improves understanding of existing theory, and generates curiosity to 
propose hypotheses and design further modeling, field, and laboratory experiments.  

2.1.3 Cyber-interactions in Collaboration
In most research projects, skills for code development, diagnostics, and model execution are 
limited to a few individuals (graduate students, postdocs, etc). However, most modelers would 
agree that coding errors can be more effectively identified, more user-friendly codes can be 
designed, and new research ideas can be developed when other experts have access to models for 
evaluation, experimentation, and testing.     Therefore, the use of Knowledge Infrastructure for 
research studies where scientists and stakeholders can interact with, execute, and visualize various 
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components of coupled models used in collaborative projects, can provide a research process for 
rapid development of ideas and research products, leading to more usable science (Lemos et al. 
2012).

2.2 Knowledge Infrastructure Design

Our approach includes the following six methodological, software, and hardware components that 
can address the barriers to computational modeling: 1) User Experience Design is the conceptual 
and evolving design of the CI that includes all the practices developed to efficiently accomplish 
collaborative online tasks based on personal, collaborator, and institutional cultural preferences 
(e.g. workflow practices for using software to run models and perform data analysis). The user 
experience design guides the development of the  framework, and in research software, includes 
contributions from both developers and new users; 2) a community-supported collaborative web 
platform that interacts with a high performance computing (HPC) and data storage nodes, allows 
for computationally intensive computing, and supports open source publishing and privacy 
(Section 3.2); 3) data storage that may be distributed to different locations (Section 3.3); 4) a 
software environment that provides a library of software and programming languages, supporting 
model applications, version control,  data analytics, and facilitates the execution of numerical 
models (Section 3.4); 5) a cloud-based high performance computing (CHPC) platform that hosts 
the software environment, models, and personal user space (Section 3.5); and 6) a standardized 
modeling framework (Section 3.6). The adoption, ongoing adaptation, and growth of an 
infrastructure system is fundamentally dependent on personal research choices, collaborative 
dependencies, and institutional policies (Section 3.7). 
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Figure 1. Illustration of six basic elements for a knowledge cyberinfrastructure for interactive 
community modeling and exploration.  Research software communities maintain support of 
operations between Docker Containers and software environment. Domain science communities 
maintain support for version control and user communications specific to modeling frameworks. 

2.3 Community supported collaborative web platform: HydroShare

HydroShare (www.hydroshare.org) is an online collaborative platform developed to address the 
growing computer modeling and data storage and sharing needs of the community. It supports the 
sharing of data and models, developed as HydroShare resources, and facilitates the execution of 
numerical models deployed on tools, or web apps associated with or linked to HydroShare. 
HydroShare is operated by the Consortium of Universities for the Advancement of Hydrologic 
Science, Inc. (CUAHSI; www.cuahsi.org) and in our research serves as the Community Supported 
Collaborative Web Platform (Figure 1, Box 2).  A web browser is the interface to HydroShare, 
which provides access to hydrologic and Earth surface models and data that are saved as resources 
in HydroShare. The architecture of HydroShare is designed to support: (1) resource storage, (2) 
resource exploration, and (3) actions on resources. These are implemented using system 
components that are relatively loosely coupled and interact through APIs. The loose coupling takes 
advantage of Services Oriented Architecture (SOA) that enhances robustness as components can 
be upgraded and advanced relatively independently. 
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2.3.1 Resource Storage
Content that can be shared within HydroShare is diverse, including digital objects that represent 
multiple hydrologic data types, models and model instances, documents, and other content types 
commonly used in hydrologic research (Horsburgh et al., 2016).  A “resource” is the discrete unit 
of digital content within HydroShare. Resources are cast as “social objects” that can be published, 
collaborated around, annotated, discovered, and accessed (Horsburgh et al., 2016). In this 
resource-centric approach, a resource is the granular unit used for management and access 
control.  HydroShare resources include hydrologic time series, geographic feature (vector data), 
geographic raster (gridded data), multidimensional space-time data sets (e.g., NetCDF), and 
composite resources that represent combinations of these data types, as well as collections that 
group together different resources. Model Programs and Model Instances are additional types of 
content that can be shared and manipulated within HydroShare.   Metadata is maintained that 
tracks system-level attributes of the resource, including timestamps of creation and modification, 
ownership, access control rules, etc. Persistent identifiers, access control, versioning, sharing, and 
discovery are all managed at the resource level in HydroShare. This holds metadata in a 
standardized and machine-readable way to promote interoperability with other systems. 
HydroShare’s overarching resource data model is an implementation of the Open Archives 
Initiative Object Reuse and Exchange (OAI-ORE) standard (Lagoze et al., 2008). OAI-ORE is a 
standard for the description and exchange of web resources.  HydroShare uses the Integrated Rule-
Oriented Data System (iRODS) (Moore, 2008; iRODS Consortium, 2016; Yi et al., 2018) as its 
distributed network storage back end. iRODS provides a virtual file system for physical storage 
distributed across multiple locations and enables data federation across geographically dispersed 
institutions (Yi et al., 2018). 

2.3.2 Resource exploration, discovery and management.  
The primary user interface for HydroShare is the website hosted at www.hydroshare.org, 
developed using the Django web framework (Django Project, 2018) and Mezzanine content 
management system (Mezzanine Project, 2018).  Together, these technologies are used to build a 
system for archiving data and metadata for each resource; and provides a landing page where 
metadata can be entered and edited, or content files added or removed. On the landing page users 
can specify sharing status, e.g. private or public, and manage who has access to edit or view the 
content. A resource may be permanently published in which case it is precluded from further 
editing and assigned a citable digital object identifier (DOI).  The Django website also provides a 
"My Resources" page for listing data that belong to or have been shared with each user, a 
"Discover" page that supports keyword and map based search for content based on their spatial 
coverage information using the Apaches SOLR search platform (Solr Project, 2018), and a 
"Collaborate" page for users to create or join groups aligned around specific water 
themes.   Collectively these web pages provide a system where users can discover and manage the 
content to which they have access, including changing access control settings, and creating new 

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504



Confidential manuscript submitted to Environmental Modeling & Software

10

content. The business logic of resource and content types, and access control is all managed using 
standard Python Django software packages. 

2.3.3 Actions on resources through web apps.
The HydroShare repository, broadly consisting  of iRODS middleware for managing data storage 
and a Django website for content  discovery and management, is extended by independent web 
applications that allow users to perform actions on HydroShare data.  Using a services-oriented 
software pattern, HydroShare has been designed to support this interaction with 3rd-party 
applications using a Representative State Transfer (REST) application programming interface 
(API).  The industry-standard OAuth protocol is used to manage authentication and interface with 
HydroShare’s access and control model, which is necessary to support interaction with remotely 
hosted web applications via the API.  Flexible web app launching functionality has been 
established through a HydroShare resource type that defines the URL and parameters for invoking 
the web application. These web app resources can be created by any HydroShare user to interact 
with 3rd-party web applications that are designed to act on HydroShare content. HydroShare web 
applications can be hosted anywhere and have the potential to provide users with a gateway to 
high performance computing.

2.4  Software Environment: CUAHSI JupyterHub 

This paper makes use of a JupyterHub web application developed and maintained by CUAHSI 
(https://jupyter.cuahsi.org) that leverages Jupyter notebook technology. Jupyter notebooks are an 
effective way to document research analysis, workflows, and modeling procedures in a 
reproducible manner (Kluyver et al., 2016). The CUAHSI-JupyterHub service is under active 
development to support (1) computationally intensive research, (2) data intensive research, (3) 
education and the dissemination of knowledge, and (4) reproducible science. These goals are made 
possible through the development of data transfer mechanisms to move data between HydroShare 
and the JupyterHub environment as seamlessly as possible. Moreover, HydroShare provides a 
mechanism for users to launch notebook workflows and their associated datasets into a pre-
configured, isolated, remote compute environment. Each compute environment is created on-the-
fly and contains a persistent data store for performing hydrologic analysis in a manner that is 
insulated from all other users. This is possible by leveraging operating-system-level virtualization 
software such as Docker (Merkel, 2014). Each user instance runs the Ubuntu Linux operating 
system and is pre-configured with scientific Python and R libraries, software for interacting with 
the HydroShare REST API, and various physical models including as Landlab. A typical workflow 
is to launch the CUAHSI-JupyterHub web application from a HydroShare resource, 
programmatically collect any necessary data using the HydroShare REST API, perform modeling 
and analysis, and finally save results back to HydroShare. After these data, i.e. Jupyter notebook 
and data files, are saved back to the HydroShare repository, they can be shared with other users 
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and groups who can further analyze them in a similar way. This back and forth sharing enables 
collaboration in the development and analysis of Landlab models using the HydroShare repository 
and linked JupyterHub web app.

2.4.1  Community supported development and operation
CUAHSI supports the development and operation of CUAHSI JupyterHub as part of the 
HydroShare project (Idaszak et al., 2017) as well as through their cooperative agreement with NSF 
(see Acknowledgements). Development and operation efforts are divided into two categories, (1) 
system maintenance and user support, and (2) hydrologic research and modeling. The first category 
focuses primarily on maintaining existing capabilities, updating libraries, and performing system-
level maintenance and upgrades. This includes overseeing the installation and compiling of Python 
(versions 2.7 and 3.6), R (version 3.4), scientific libraries such as Pandas, Dakota (Adams et al., 
2015), SpotPy, NumPy, etc., and modeling applications, e.g. MODFLOW 6, Landlab, TauDEM. 
The latter category consists of collaborative research to lower the barrier of entry to modern 
modeling applications such as the Structure for Unifying Multiple Modeling Alternatives 
(SUMMA) and the National Water Model (NWM) configuration of WRF-Hydro. These efforts 
are coordinated using an open source codebase in which code contributions undergo a review 
process and formal release schedule. Users provide feedback and requests via GitHub “bug” 
and “enhancement” tickets.

2.4.2 Tools and Models
One of the goals of CUAHSI Jupyterhub is to make it simple for users to access the software they 
need without some of the challenges associated with library dependencies, computer operating 
system or platform compatibility and installation challenges.  As such CUAHSI JupyterHub has 
installed and supports a range of software and tools commonly used for hydrologic analyses to 
help users get going quickly in their work; and, make their work more reproducible. It is intended 
for this set of software and models to grow as the platform is further developed.  Currently 
CUAHSI JupyterHub includes the following

 Landlab, an Earth surface modeling toolkit that this paper focuses on as an example of the 
approach (Hobley et al., 2017)

 TauDEM, a set of GIS tools for terrain analysis and watershed delineation (Tarboton, 2018; 
Tesfa et al., 2011)

 MODFLOW Groundwater Model
 The Structure for Unifying Multiple Modeling Alternatives (SUMMA) (Clark et al., 2008; 

2011; 2015b; 2015a) model framework that allows for formal evaluation of multiple 
working hypotheses on model representations of physical processes.

 iRODS iCommands component for accessing large files efficiently from the HydroShare 
repository using iRODS
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 Python tools for working with HydroShare Observation Data Model 2 (ODM2) time series 
content types (Horsburgh et al., 2016)

 The WaterML R package (Kadlec et al., 2015)

2.4.3 Landlab Community
Landlab has four main release per year (February, May, August, November) which accompany 
Landlab's quarterly newsletter "The Landlab Lookout". The newsletter alerts users that a new 
version is available, describes what's new in the release, and gives a summary of Landlab-related 
news (such as Landlab-themed clinics, publications using Landlab, etc.). Occasionally, 
intermediate releases will happen in conjunction with annual community meetings that include 
presentations or workshops that feature Landlab (for instance, American Geophysical Union 
Annual Meeting (December recurring), Geological Society of America (July recurring), 
Community Surface Dynamics Modeling System (May recurring)). This ensures that participants 
of these meetings can use the latest version of Landlab.  In addition to announcing new releases 
via the newsletter, Landlab developers also contact directly other researchers that use Landlab. For 
HydroShare, this means either submitting issues on the HydroShare JupyterHub Github repository 
or sending email directly to CUAHSI JupyterHub developers. This ensures that these projects 
provide their users with the most up-to-date Landlab versions. The role of version control is 
highlighted in Figure 1, as Domain science community support of research. 

2.5 Advanced Cyberinfrastructure and CyberGIS-Jupyter

HydroShare has recently been developed to exploit cyberGIS (that is, geospatial information 
science and systems based on advanced computing and cyberinfrastructure) and high-performance 
computing (HPC) (Wang 2010; Wang and Goodchild 2018). CyberGIS-Jupyter allows 
HydroShare Jupyter notebooks to harness HPC resources such as those provided by the NSF 
Extreme Science and Engineering Discovery Environment (XSEDE) and Resourcing Open 
Geospatial Education and Research (ROGER) supercomputer (Wang 2016). Specifically, 
CyberGIS-Jupyter encompasses the following three major functional components (Yin et al. 
2017):

 JupyterHub is used to handle authentication and schedule standalone Jupyter 
servers.  After authentication, dedicated containers are sent to the Docker Swarm. 

 Docker Swarm is responsible for spawning and managing all Docker containers across a 
specific group of virtual machines (the swarm). The containerization provides fine-grain 
on-demand provisioning of cloud infrastructure as a service when a user launches a 
notebook.

 Batch HPC is adapted to harness distributed parallel computing resources, high-
performance storage systems, and cyberGIS software to greatly expand the capabilities of 
a typical Jupyter notebook environment. 
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2.6 Modeling framework:  Landlab and its application on HydroShare

A new paradigm in hydrologic and Earth system modeling is emerging where complex systems 
once coded in Fortran, C++ and cryptic scripts developed for research are being reconfigured in 
open-source Python, component-based systems.   Landlab is one such system based on a Python-
language programming library that supports efficient creation and/or coupling of 2D numerical 
models (Hobley et al., 2017).  It is a framework geared towards (but not limited to) Earth-surface 
dynamics. Landlab is composed of three main divisions of code: grid, components, and supporting 
utilities. The spatial template for modeling is created by the Landlab ModelGrid class. ModelGrid 
provides common structured and unstructured (e.g., Voronoi polygons) data structures where data 
fields can be attached to grid elements, and grid elements can be built as a structured or 
unstructured grid in a single line of code. Each physical process is coded into individual Landlab 
class, and added to the Landlab library as a Component, providing an ecosystem of hypothesized 
behavior of Earth system processes. Supporting utilities and driver scripts were developed to pre-
process, post-process, and improve workflow efficiencies for coupling multiple components. Most 
components operate on, interact with and update grid fields. Components can be coupled via data 
exchange over the grid. A model driver is a Python script developed to import, instantiate, and run 
a single or multiple coupled Landlab components. Landlab utilities provide tools for input/output 
management and visualization.  In this paper we use models for coupled ecohydrology and spatial 
vegetation dynamics, flow routing (Adams et al., 2017), and landslide probability (Strauch et al., 
2018) along with a recently developed climate data handling utility. As with the open-source nature 
of Landlab, a growing community of developers contribute numerical functions, process-based 
components, and utilities. 

A Landlab model developer who is interested to share a Landlab model application can develop 
their model drivers using a Jupyter notebook. This Jupyter notebook is then deployed on 
HydroShare, by “publishing” as a resource. Through this process the user obtains a DOI for their 
resource and the resource becomes available for others to use. Jupyter notebook interacts with the 
CUAHSI JupyterHub server and executes the model. In preparation of a Landlab JN there are few 
must-complete steps. These are listed in the pseudo code below, using an example that couples a 
storm driver, soil moisture, and vegetation dynamics components. 

2.7 User experience design for multiple learning pathways
In this section, we describe how the Knowledge Infrastructure can be viewed from the lens of a 
research workflow presented in Appendix A: using Landlab on HydroShare.  Upon publication of 
a resource and its deployment to users, simply by sharing the location of the resource on 
HydroShare. Users may be composed of collaborators in a research project, stakeholders of 
watershed resources, and students, the users begin learning and exploring the code. In the figure 
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the user interactions with the model depicted in two levels. The user explores Landlab on 
HydroShare using the deployed model driver by changing parameter values of the process 
components and perhaps explores other components by adding them to the driver (lower curved-
arrow).  In the process of exploring the model the user may develop new ideas to develop new 
process representations presented as new components in Landlab or develop new ways of data 
visualization. These new developments on Landlab components will require the users to contribute 
their work to the Landlab repository and Landlab version updates and its further deployment on to 
HydroShare. These model developments can continue offline by installing and using Landlab on 
a personal computer, or other JupyterHub servers. 

2.8 Data and Models for Three Computational Narratives 

To illustrate our methods for lowering the barriers to computational modeling, we have developed 
three computational narratives for user experience (UX) (Table 1). A computational narrative can 
be considered a story that can be told about the data by executing scripts that generate data analysis 
and visualization in the provided workflow.   Recognizing that every experience is made of many 
parts that contribute to the adoption and evolution of tool development, and the narrative (see 
Section 5, Inductive and/or Deductive) can provide a framework for a user to generate their own 
story by exploring the science topic with interactive tools. A UX can be described as a computer-
human interaction.  The importance of UX design is becoming more widely recognized in science 
and technology development to achieve the desired outcome of the UX such as improving the 
knowledge-base and cognitive capabilities of users (Baldwin, 2013; Glassdoor, 2017).    Given 
that an experience may be generated by any interaction, we designed three example computational 
narratives to generate individual experiences, share understanding on existing theory, and to open 
doors for future developments (Forlizzi and Ford, 2000).   In the first case, we give an example of 
how to use this infrastructure (Figure 1) to develop training and educational materials for 
classroom curriculum. This example focuses on the use of flexible components in a modeling 
framework to demonstrate two approaches for flow routing, from simple to more complex solution 
of the same shallow water equation, with inductive narrative workflows designed to orient new 
users to a focused set of theoretical concepts that can be explored with minimum background in 
the computational infrastructure or coding.   

In the second case, we illustrate how a researcher may execute a model to replicate reported 
findings in a published study on annual landslide probability. We particularly focus on how the 
use of a controlled software environment provides easy access to new users of the tool and 
facilitates the exploration of other questions associated with the processes investigated using the 
same tool and data. This is an example of a deductive workflow, where new hypotheses are tested 
using a published set of tools and data.  In the third computational narrative, we present a more 
sophisticated example for executing a published ecohydrology model, enhanced and applied in a 
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new location. It uses a component bundling idea for efficient scenario building to explore eco-
hydrologic response to a climatic gradient mediated by elevation. This example illustrates a 
research cycle that includes both inductive and deductive workflows to generate new 
understanding. Computational narratives demonstrate how to use Knowledge Infrastructure to 
educate, replicate, and reuse Earth surface models where the user interacts with the infrastructure 
to develop their own story.

Table 1.  Three study problems were designed with a focus to 1) explore, 2) replication, and 3) 
reuse research.  Computational narratives demonstrate how to use Knowledge Infrastructure for 
computation and visualization of Earth surface models where the user interacts with the 
infrastructure to develop their own story.  
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Notebooks are designed with up to 10 sections. For example, for the example (see 4.1), Section 1 
introduces the theory and the conceptual design of the models. For example, in the first notebook 
we begin with the theory of the 1-D Saint Venant equation for transient shallow water flow, which 
is at the core of many hydrodynamic models.  Data Science and Cyberinfrastructure methods are 
provided in Section 2.0, followed by Landlab Methods (Section 3.0). Sections 1 to 3 are designed 
to function as an interactive textbook or reference. In the section labeled ‘Make Model Decisions’ 
(Section 4.0), our aim is to clearly distinguish the component-based options for designing a model 
experiment. For example, in the first notebook we provide options for designing a storm 
hydrograph based on the choice of basin, storm intensity, and routing method.  Model 
Computations (Section 5.0) and Results (Section 6.0) provide code to execute the model, visualize 
results, and export data. Discussion (7.0), Conclusions (8.0), and Saving results to HydroShare 
(Section 9.0) are designed to support graduate level coursework in Hydrologic Processes and 
Modeling. Finally, users are provided shell script prompts that can be executed in the Jupyter 
Notebook to remove data from the JupyterHub server after completing their work (Section 10).

3 Results

In our results we describe three computational narratives we designed to lower barriers to 
computational modeling using the CI described in Section 2.  We relied on Juptyer notebooks for 
sharing the following computational narratives and designed the sequence of commentary text and 
code blocks to be generally useful to Earth surface modeling research communities. Hanney and 
Savin-Badem (2013) suggest that combining project and problem-based learning may be the best 
practice for generating engagement, critical thinking, and creativity, with the use of problem-based 
learning as an important tool for providing authentic experiences, highly valued by all learners 
(Kokotsaki et al., 2016).   

3.1 Notebook 1: Exploring runoff hydrographs with Landlab
 

3.1.1. Notebook 1 Overview
This notebook provides resources to compare two different flow routing schemes, kinematic wave 
and overland flow (2D de’Almeida (2012) solution of the Saint Venant equation), as explained on 
the notebook in detail, in two different landscapes for a given rate of rainfall excess (rainfall in 
excess of infiltration). The notebook can be used to investigate process-based questions on the 
generation of overland flow hydrographs across the landscape in relation to the role of runoff rate, 
watershed topography, network structure, and surface roughness, and it allows to compare and 
contrast the properties of streamflow hydrographs generated by the two different flow routing 
algorithms.  To provide a contrast between different landscape shapes, this notebook uses two 
domains: a watershed from central Arizona, Spring Creek and a modeled rectangular landscape 
obtained by running an existing fluvial landscape evolution model driver in Landlab (Adams et 
al., 2017). Both landscapes have a drainage area of 36 km2 and a cell size of 30 m.   Rain falls on 
the landscape and flows downhill, driving overland flow and a hydrograph at every location on the 
landscape. In this notebook, we track the hydrograph at three points in the watershed.  We 
recommend that the users review introductory concepts of overland flow and hydrographs before 
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using this notebook and develop familiarity with the term’s rainfall intensity and duration, as well 
as peak discharge, hydrograph time to peak, rising limb and falling limb. our aim is to clearly 
distinguish the component-based options for designing a storm hydrograph based on the choice of 
basin, storm intensity, and routing method. 
 
 3.1.2 Notebook 1 Interactive Steps

The notebook is designed to run the model several times, each time changing the rainfall 
characteristics, routing methods or watershed on which flow is routed. Different combinations of 
model components (or ‘model instance’) will generate different hydrographs through which the 
user can explore how different parameters affect hydrograph characteristics. We have provided 
code to import spatial data linked to the original source of the use of this notebook (Adams et al., 
2017) published on HydroShare, so that code can be reproducibly executed with the original ascii 
text files on a personal computer. In initial runs, the user does not need to change any code, but 
different scenarios can be developed by switching between test watersheds by changing model 
parameters such as basin_flag to equal “Spring Creek” or to “Square”. Table 2 lists the parameters 
used to obtain the results shown in Figure 2. To generate a storm hydrograph over a modeled time 
period; approximately 50,000 model timesteps (seconds) could take up to ten minutes of 
computational run-time (Section 5.0) on existing computer infrastructure (in development for 
XSEDE; also possible on commercial cloud platforms). We illustrated outputs from the flow 
routing notebook in Figure 2. The user selects which Landlab component to run: 
KinwaveImplicitOverlandflow or Overlandflow components. 

Table 2. Parameters used to obtain Spring Creek High Intensity model comparisons between 
kinematic wave and overland flow model. 
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Figure 2. Illustration of flow routing outputs. (a) Elevation map of Spring Creek, central CO with 
locations (outlet, midstream, upstream) where hydrographs are plotted. (b, d) Hydrographs plotted 
at three locations shown in (a) driven by the high intensity rainfall option using 
KinwaveImplicitOverlandflow and Overlandflow components, respectively. (c, e) Flow depth 
maps during peak flow for KinwaveImplicitOverlandflow and Overlandflow components, 
respectively. Results were produced on HydroShare using the Landlab modeling framework. 
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3.1.3 Impacts on Numerical Modeling Education.  

Using an interactive notebook as a component of the science and engineering curriculum is 
expected to increase student and faculty access to modeling tools. Rather than relying on 
software in a computer laboratory or asking students to install new software on their computers, 
the code can be used in any classroom by every student with access to any computer with a web 
browser.  The example illustrates how model methods and output options can be developed to 
enhance multifaceted learning experience of the process of interest. In the first notebook there 
are three main components and various scenarios to explore: two different watersheds, two 
routing methods and three different storms. Students can simultaneously run scenarios by 
systematically changing the flags (e.g. routing_method, basin_flag and storm_flag), re-running 
all code blocks sequentially, and saving the resulting hydrograph plots for each scenario to use in 
project reporting or homework. The two different flow routing methods show the outcome of 
including the gradients of fluid pressure and bed elevation, and friction terms of the shallow 
water equation with different assumptions on hydrographs. Multiple locations for plotting 
hydrographs in two watersheds will show the role of catchment size and properties. Different 
excess rainfall intensities are for exploring how increased runoff depth change the hydrograph 
properties. Advanced students may use the code to build their own visualization, Landlab 
components, or model optimizations.  Because all students can gain hands on experience with the 
model and code during the classroom instruction, it increases the opportunity and depth of 
discussions between classmates by providing peer-to-peer learning environment. 

3.1.4. Notebook 1 Access
To run this notebook, go to this HydroShare resource (Bandaragoda et al., 2018), click on the 
blue “Open With” button, select JupyterHub (conceptually this will bring you to block 4 in 
Figure 1), and execute the first three code blocks of the Welcome page to connect with the cloud 
computing environment.  These steps will certify you are a HydroShare user, download the data 
and Notebooks from this HydroShare resource to a personal user space in the HydroShare cloud, 
and print a report of the data that has been downloaded.  Click on the hyperlink for 
explore_routing_tutorial.ipynb below the third code block to launch the Notebook described in 
this section.  Alternatively, advanced users (edits are required to remove HydroShare 
dependencies) can download the Notebook to run on a personal computer with an installed 
version of Landlab. The Notebook can be directly downloaded (no requirement to become a 
HydroShare User) at this link: explore_routing_tutorial.ipynb, or viewed on Github in the 
Landlab organization, tutorials repository, see the explore_flow_routing folder. 

3.2 Notebook 2: Replicate a landslide model to explore fire impacts on slope instability in 
a watershed within a regional study

3.2.1. Notebook 2 Overview
Landslides are notoriously challenging to predict (van Westen et al. 2006).  A new model 
developed as a component in Landlab (LandslideProbability) offers the ability to predict the 
probability of shallow landslide initiation at regional scales. Probability of landsliding is calculated 
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by the infinite-slope stability equation using a Monte Carlo approach by introducing uncertainty 
to soil, vegetation, and recharge variables. This model was first implemented in a 2,700 km2 area 
in the North Cascades National Park Complex (NOCA) of Washington State (Figure 3), where 
annual probability and return period for shallow landslide initiation was mapped for different soil 
depth products (Figure 4) (Strauch et al. 2018).  Considering the uncertainty of soil depth, root 
cohesion, and mechanical soil properties, the model predicts 20% to 40% of the area with a 
landslide return period of 1 in 100 years or less (Figure 4). In comparison to Notebook 1 designed 
for classroom use, this notebook is designed to replicate model results from Strauch et al. (2018) 
in Thunder Creek watershed, located within  NOCA. It calculates the probability of shallow 
landslide initiation at a 30-m rectangular grid resolution across the watershed using gridded 
datasets of landscape characteristics for topography (slope and upslope catchment area), land use 
and land cover (vegetation type, root cohesion), soil (internal friction angle and transmissivity) 
and annual maximum daily subsurface flow recharge rate derived from a previously run hydrologic 
model. All the resources needed for model application are obtained from the existing HydroShare 
resource from Strauch et al. (2018). Code is provided to import data from the regional NOCA area 
and create a subset of this data covering Thunder Creek watershed through import of a watershed 
boundary shapefile.  The mean relative wetness and probability of saturated conditions at each grid 
cell are also calculated in the process of calculating the probability of landsliding. The notebook 
is designed for exploring the sensitivity of landsliding to environmental conditions that lead to loss 
of root cohesion, such as a wildfire or timber harvest.

Figure 3. (a) Example debris avalanches (cyan) mapped in three areas within NOCA. Contours 
are in 100- m intervals. Aerial image source from World Imagery, Esri Inc.; (b) elevation 
distribution of the relative frequency of mapped debris avalanche source areas ; and (c) High 
elevation rock and glacier surrounding Spiral Glacier in North Cascades showing a bedrock glacier 
cirque with thin barren soils and moraine deposits (photo by John Scurlock with permission), (d) 
elevation (ft) for NOCA model extent from Strauch et al. (2018), and (e) for the subset for the 
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Thunder Creek extent. (Figures a-c adapted in entirety from Strauch et al., 2018 under CC BY 
4.0).
 

Figure 4. Maps show modeled landslide return periods using Landlab for NOCA overlain with 
mapped debris avalanches, including zoomed in areas at top for greater detail.  The uncertainty of 
soil depth was characterized from a long-term soil evolution model (M-SD LT). Cumulative 
distribution of return periods for SSURGO soil depth (SSURGO-SD), modeled soil depth (M-SD), 
and modeled soil depth considering long-term dynamics (M-SD LT) scenarios, plotted on a log-
log scale using the Weibull plotting position.  (Figure adapted in entirety from Strauch et al., 2018 
under CC BY 4.0).
 

3.2.2. Notebook 2 Interactive Steps
The Notebook is organized with an introduction (Section 1.0) to the Infinite Slope Factor of Safety 
Equation, which predicts the ratio of stabilizing to destabilizing forces on a hillslope plane, and 
the Monte Carlo solution developed to compute probability of landslide initiation.  Data Science 
and Cyberinfrastructure methods are provided in Section 2.0 that describe specifics of accessing 
existing spatial data, extracting information for the watershed of interest, followed by Landlab 
Methods for setting model parameters. In the subsection labeled ‘Specify Recharge’’ our aim is to 
clearly distinguish the component-based options for studying the impact of assumptions related to 
recharge and hydrologic forcing on landslide probability.  At the end of this section, the number 
of Monte Carlo iterations is assigned. In Section 3.0 (Results), the model is executed for Thunder 
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Creek and the results are visualized. Steps for saving results back to HydroShare are listed in 
Section 4.0. 
 
To support graduate level coursework in hydrologic processes and modeling, we include code 
blocks that print more explanatory variables and numerical values to verify results are as reported 
in Strauch et al. (2018).  In this demonstration notebook, the user imports necessary Python utilities 
and libraries and reviews the data needed to execute the landslide model. Code is provided to 
import data from the regional NOCA area and create a subset of this data covering Thunder Creek 
watershed through import of a watershed boundary shapefile. One of four recharge options 
is  specified, and the user loads existing mapped landslides to overlay on the landscape to compare 
with the probabilistic landslide hazard map. The user specifies the number of iterations to use in a 
Monte Carlo simulation, then runs the LandslideProbability component with two cohesion 
assumptions. The first cohesion assumption is based on existing conditions as described in Strauch 
et al., (2018). The second cohesion assumption (generating a second model instance) approximates 
post-fire conditions where root cohesion is reduced by 70%. This represents the reduced root 
cohesion following a wildfire as existing roots decay following wildfire while new roots begin to 
regenerate (Sidle, 1992; Istanbulluoglu et al., 2004).  Finally, maps are generated to compare the 
results of the stability analyses and results can be saved back to HydroShare (Figure 5). 
 

Figure 5.  Landslide probability estimates in the Thunder Creek watershed (photo) increase given 
post-fire root cohesion assumptions (70% less), as compared to the original cohesion assumptions 
in Strauch et al. (2018).  As an example of cyberinfrastructure functionality, the notebook 
replicates published findings, as well as tests the parameter function described in the peer-reviewed 
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publication. Inset maps and cumulative distribution plots of the spatial probability of landsliding 
for pre-fire and post-fire conditions. 
 
Replication of the Strauch et al. (2018) model in Thunder Creek for potential postfire conditions 
clearly show an increase in annual probability of failure (PF) during when the root cohesion is 
reduced following wildfire. In the pre-fire simulation, 25% of the landslide is unconditionally 
unstable PF=1.0, meaning that the soil cannot stand on these slopes. This high annual probability 
is a conservative estimate and it is largely due to the use of the SSURGO soil depth product in this 
application. Strauch et al. (2018) discussed how more processed based modeling of soil depth 
reduce PF to more realistic ranges. With wildfire impact unconditionally unstable regions grew to 
>40% of the watershed. Before fires, ~40% of the watershed is unconditionally stable PF=0.0. 
These regions are located in the lower portions of U-shaped pro-glacial valleys (Figure 5). With a 
vegetation disturbance such as wildfire, this fraction is reduced to <5%, which could lead increased 
sediment input from the sides of U-shaped valley directly to the valley floor, and result in decline 
of aquatic habitat quality. 
 
    3.2.3. Impacts on replicating scientific findings 
This notebook is designed for Earth scientists and stakeholders who are interested in understanding 
the landslide hazard risk as a probability in space and time.  Running this notebook using Landlab 
leverages the software infrastructure of the Landlab Python toolkit, which standardizes the 
handling of spatial-temporal data. Executing the notebook on HydroShare allows the ability to 
store necessary data, deploy the model via a super computer, and see the results, which can be 
evaluated and shared.  Thus, the notebook becomes a one-stop online platform for demonstrating 
the landslide model and facilitating ease of model augmentation. Current barriers to conducting 
landslide hazard analysis includes the ability to consider landscape variability, data uncertainty, 
and hydrological triggering mechanisms over a large spatial scale. This narrative helps reduce the 
barrier of significant time investment to implementing a complex model by providing the 
necessary data and code for implementing the Landlab LandslideProbability component.  As a 
result, the researcher can see what the model requires and how it runs to produce the results 
presented in a publication. The notebook can provide an example that can be modified to use in a 
new study effectively across the nation.   Additionally, the barrier to accessing compiled 
observations and research products is overcome with this notebook, including compiled spatial-
temporal visualizations that can be used to communicate results. 

3.2.4. Notebook 2 Access
To replicate a published regional Landlab shallow landslide model to explore changes in forest 
cover at a subcatchment scale, within the NOCA study area, using the Jupyter notebook 
replicate_landslide_model_for_fire.ipynb available on HydroShare, see Bandaragoda et al., 
(2018).
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3.3  Notebook 3. Reuse an Ecohydrology Model with Gridded Hydrometeorology 
Forcing

3.3.1. Notebook 3 Overview
In semiarid regions climate change and human impact can lead to dramatic changes in the 
composition and organization of Plant Functional Types (PFTs), such as trees and shrubs, and thus 
the biomass production of the ecosystem. Ecohydrologic vegetation dynamics models are tools 
that can be used to explore the role of climatology on the spatial organization of PFTs (Fatichi et 
al., 2016). In this notebook, we adapt Landlab’s ecohydrologic vegetation dynamics model to 
illustrate how an existing model can be reused by enhancing and developing a workflow at a new 
location, in our case for studying the role of elevation-dependent precipitation and temperature 
gradients on PFTs using historical gridded daily weather data from Livneh et al. (2015). Broad 
elevation bands, low (1200-1700 m), medium (1700-2000 m)  and high (2000-2500 m) are 
developed and the ecohydrology model in Landlab is implemented to simulate the resultant 
organization of PFTs at each elevation band in the state of New Mexico on hypothetical flat 
surfaces with a spatially homogenous soil textural properties (Figure 6). 
 
The Landlab ecohydrology mode we used, is based on  CATGraSS (Cellular Automaton Tree 
Grass Shrub Simulator), a discrete time Cellular Automaton (CA) model for spatial evolution of 
PFTs (Zhou et al., 2013). In CATGraSS each cell in the domain can be occupied by a single PFT: 
Tree, Shrub, Grass or left unoccupied as bare soil. The model couples local ecohydrologic 
vegetation dynamics, which simulate biomass production based on local soil moisture and actual 
evapotranspiration, with spatial processes for plant establishment and mortality controlled by seed 
dispersal rules, water stress tolerance, and space availability. Trees and shrubs disperse seeds to 
their neighbors. Grass seeds are assumed to be available everywhere. Establishment of plants in 
bare cells is determined probabilistically based on water stress of PFTs neighboring the bare cells. 
Plants with lower water stress have higher probability of establishment. Plant mortality is 
simulated probabilistically as a result of aging and drought stress. The model is driven by rainfall 
pulses (observed or generated), solar radiation and temperature. The latter two variables can also 
be used to prescribe a seasonal potential evapotranspiration input. In Landlab, the model is 
implemented as a set of interacting components, each describing a different element of the coupled 
system: PrecipitationDistribution, Radiation, PotentialEvapotranspiration, SoilMoisture, 
Vegetation (component for local growth), and VegCA (component for cellular automaton rules).  
 
 

1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344



Confidential manuscript submitted to Environmental Modeling & Software

25

a) b) 

Figure 6. Map of elevation bands in New Mexico State (a) used to extract gridded 
Hydrometeorological forcing data Elevation bins are referred to as: Low elevation (1200-1700 
m), mid elevation (1700-2000 m), and high elevation (2000-2500 m).  The vegetation patterns 
from aerial imagery of New Mexico are distinct within these bands (b). 

3.3.2. Notebook 3 Interactive Steps and model results

In this notebook, we define the geographic subset (New Mexico) within North America and 
download gridded hydrometeorologic data from Livneh et al. (2015) for this region. Then, we bin 
this data into three elevation ranges by considering elevation of centroids of the cells in the gridded 
dataset and calculate the spatial means of daily precipitation, maximum and minimum temperature 
for each bin. These data are used to force the ecohydrology model at each elevation bin. The 
hydrometeorological data handling steps are executed in a separate notebook  named 
observatory_gridmet_newmexico.ipynb,located in the folder ogh_newmexico, which runs a 
recently developed Python package for automated retrieval, preprocessing, and visualization of 
gridded hydrometeorology data products (Phuong et al., 2018). As we described in the Jupyter 
notebook for this example, we found that the Livneh et al (2015) data had a wet bias in 
precipitation. This bias is corrected by gathering weather station data (Moore (2011)) that span the 
range of the elevation bins we used from the Livneh et al. (2015) data. Time series of bias corrected 
annual precipitation and mean monthly temperature show wetter and cooler conditions as elevation 
grows  (Figure 7). There is a positive trend in annual precipitation from 1950 to 1990, followed by 
a slight negative trend. In the application of this notebook we suggest the users to explore the 
model outputs to see if this precipitation trend had any impact on the spatial cover fractions of 
PFTs. Following the bias correction, the three elevation bins resulted in climatology’s from arid, 
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in the low elevation bin, to semiarid conditions in the high elevation bin according to the aridity 
index classification (Nash et al., 1999), discussed in relation to model results below. Since the 
historical data extends only for 64 years (Figure 7), we extended the record to by tiling the daily 
historical data to facilitate longer vegetation development simulations. The limitation of this 
approach is that the same climate repeats itself in every 64 years.  

Figure 7. Climate data downloaded and processed from Livneh et al. (2015). a)  Annual 
precipitation plotted with respect to time for each elevation band. b) Mean monthly daily minimum 
and maximum temperatures for each elevation band. 

The notebook presents three model runs to explore the role of elevation-dependent changes in the 
regional climatology on modeled spatial patterns of PFTs (shrub, grass, tree), and plots the time 
series of annual areal cover fraction of each PFT that emerge in the domain for a model run time 
of 1500 years.   The Notebook begins with an introduction (Section 1.0) to the Landlab 
Ecohydrology model, and the Landlab components used to build this model. Data Science and 
Cyberinfrastructure methods are provided (Section 2.0), followed by Climate Methods (Section 
3.0) and Ecohydrology Modeling using Landlab Methods (Section 4.0).  Finally, instructions to 
Save the results back into HydroShare (Section 5.0) are given.   
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Figure 8.  Spatial Organization of PFTs at year 1503 (left column)  and Annual areal cover fraction 
of each PFT plotted with respect to time (right column) for; a) low elevation landscapes (1200 m 
to 1700 m), b) mid elevation landscapes (1700 m to 2000 m), and c) high elevation landscapes 
(2000 m to 2500 m).

Starting with a randomly distributed equal fractions of tree, grass, shrub vegetation and bare soil, 
the model organizes the spatial distribution of PFTs through time. In the low elevation band (MAP 
= 217mm, PET = 1601mm/y, Aridity Index (AI) = 7.34) the local climate can be considered arid, 
AI>5 (Nash et al., 1999).  Drought-tolerant shrub vegetation outcompetes trees, leaving a few trees 
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behind, while grass gradually retreats, leading to an ecosystem where shrubs dominate but co-exist 
with grass as a secondary PFT. The modeled PFT map (Figure 8 a, left) shows pockets of grass 
clusters within the shrub domain. A few small clusters of trees still exist in very low fraction of 
the domain.  It would be interesting to explore how the grass-shrub interplay shape over longer 
time using this model. Note that the bell-shaped response of grass, and to an extent, shrubs in this 
simulation can be attributed to the trends in the precipitation data in the historical period, giving 
5% to 10% boost to the areal grass coverage and ~ 5% for shrubs. The repetition of the bell-shaped 
response is due to the tiling of the historical precipitation and temperature data.

In the mid elevations (MAP = 285mm, PET = 1427mm/y, AI = 5) in the arid to semiarid climate 
transition (Nash et al., 1999), the conditions are cooler and wetter compared to low elevation band 
in this example. These conditions provide moisture to sustain enough healthy trees allowing them 
to outcompete shrubs, as trees can spread seeds to longer distances than shrubs for establishment, 
to become the primary PFT. Grass grows in empty spaces that are not surrounded by healthy trees 
or shrubs due to two reasons; 1) the availability of seeds everywhere, 2) lack of PFTs that 
outcompete them for establishment, as trees and shrubs are competing. This leads to an ecosystem 
dominated by trees but co-existing with grass as secondary PFT and shrubs as the tertiary PFT 
(Figure 8 b, right). It will be worthwhile to check whether this ecosystem can sustain the co-
existence of the three PFTs for longer periods of time.  

At high elevations (MAP = 353mm, PET = 1293mm/y, AI = 3.66), climate is the coolest and 
wettest among the three elevation bands and fall in the semi-arid category (Nash et al., 1999). 
Trees dominate shrubs gradually, leading to an ecosystem dominated by trees, while grass retreats 
gradually and stabilize. Only few small shrub clusters remain after 1500 year. Users can run this 
model longer to see if shrubs will completely disappear from the ecosystem.    In addition to 
running the notebooks for a longer period of time as discussed above, one can also edit the model 
inputs by modifying the file ecohyd_inputs.yaml (located in the folder supporting_files) and 
explore various hypotheses, for example by changing the soil texture or modifying vegetation 
parameters to explore how local vegetation dynamics can impact the spatial organization of plants. 

3.3.3 Impacts on use and reuse of research models
This notebook is designed for Earth scientists who are interested in understanding the influence of 
climate on long-term climate-driven changes the spatial vegetation patterns in semi-arid 
landscapes. The ecohydrologic vegetation dynamics model built in Landlab leverages the 
framework’s flexibility for building numerical models from components and utilities available in 
its library. In this example, we have demonstrated how to use a Landlab model multiple times on 
HydroShare using downloaded gridded meteorological datasets with the OGH library (Phuong et 
al., 2018). 
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3.3.4 Notebook 3 Access

To reuse this ecohydrology model using Landlab and HydroShare in our New Mexico example or 
for another location in the continental United States, use the Jupyter notebook 
reuse_ecohydrology_gridhydromet.ipynb available on HydroShare, see Bandaragoda et al., (2018) 
or  this link. 

4 Discussion

Broadly speaking, cyberinfrastructure can be considered a social construct -- components of 
hardware and software are built by a community of developers based on a perceived need, or by 
employing user experience research to guide design decisions.  When the design of the CI system 
is a creative and problem-solving endeavor developed with a community committed to using it for 
their research and education, with feedback and investments of resources -- in which case, the CI 
be considered Knowledge Infrastructure. We define Knowledge Infrastructure as a web-based 
system of tools that can be adapted and co-opted to develop technological and sociological 
solutions to emerging problems of complex systems by efficiently connecting researchers, their 
data and models, private and public users, and investors committed to long-term maintenance and 
operations of distributed computing resources.  Through the work of developing a description of 
how others can interact with our Earth surface model results, we learned that the CI outlined in 
Figure 1 is just one realization of how to synthesize CI components to run Landlab models on 
HydroShare. We expect that this model will evolve with each research application, model, and 
user, especially as technology advances and user input improves usability. All users benefit when 
systematic processes support training for learning new tools and incorporating emerging 
technology into scientific methods. 

There are two main challenges to conducting sophisticated Earth surface model applications, 1) 
they are computationally and data intensive, and 2) communication of methods and results 
through traditional peer reviewed journal publications, conference presentations, as well as 
student-mentor and peer-peer relationships, may not be efficient at ensuring reproducible results. 
Here we consider “reproducible” to include both the ability to replicate published results (e.g. 
testable by editors, reviewers, or readers), and to reuse the research products as a baseline for 
future studies (e.g. accessible code and data).  Reproducibility in Earth surface modeling is time 
and resources expensive; and addressing the challenges above is common across most of 
computationally intensive sciences requiring research software development. For example, a 
spatially distributed numerical model application for landslide risk should be reproducible both 
at the site where model is calibrated and applied in a paper, and the cyberinfrastructure should 
provide the flexibility for the same model to be applied at another site just by changing several 
spatial inputs on the same platform. For another example, an individual researcher may choose a 
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personal cyberinfrastructure system (Horsburgh et al., 2016) that they design, develop, and/or 
inherit from colleagues.  Whereas a research collaboration, such as a study by multiple domain 
scientists and institutions, may require co-design of Knowledge Infrastructure to address a broad 
range of formal and informal processes that support the ongoing development of research 
products.  

We submit for consideration by the Earth surface research community that more attention on 
designing both personal cyberinfrastructure and shared Knowledge Infrastructure will accelerate 
our research productivity.  The aim is to deploy the latest technologies in such a way as to 
minimize the researchers’ effort to acquire expertise in technologies outside their domain, and to 
better enable domain scientists to focus their attention on the theoretical underpinnings and 
development of new process-based understanding of the Earth system.  In the current rapidly 
evolving environment of computer technologies, the community of researchers often needs to 
keep pace with technological advancements, such as new computational platforms (high 
performance and cloud computing), open source modeling frameworks, and software paradigms, 
libraries and tools. We identified five barriers that can be addressed with Knowledge 
Infrastructure design in research (Section 5.1).  We found that these barriers can be lowered by 
including user input in the system development process (Section 5.2), which we expect to 
advance science through simultaneously supporting both inductive and deductive learning 
processes (Section 5.3). 

4.1 Defining five common barriers 
During our work we notices five common barriers, and sought to lower these for more students 
and researchers to utilize community resources for numerical modeling: 

1. Unclear processes in conducting open research. Vocabulary, workflow, and metrics for 
success are not well understood and standards of practice are at the early stages of 
development.  

2. Technological requirements for hands-on learning. Training and workforce 
development using large datasets and high-performance computing requires expertise 
beyond the experience of most domain scientists.  

3. Hardware and software requirements for using online infrastructure in workshops 
and classrooms. Software installations and model run time on local computers limits the 
time available to introduce new concepts and tools.  

4. Compiled observations and research products (e.g. model results) are difficult to 
access. Data-driven introduction to science concepts is time intensive and there are no best 
practices for classroom interaction with large datasets and coupled spatial-temporal 
visualizations of published model results. 

5. Time investment and expertise required to begin using a complex model is too 
high.  In many collaborations, only one model expert can execute, interact and manipulate 
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the model, which limits building deeper understanding and communicating about 
implementing new ideas.

4.2 Development based on user input
Cyberinfrastructure can be effective at lowering common barriers if it is designed based on input 
of users.  User information may include cultural, formal, and informal preferences for conducting 
research and sharing data.  Inclusion of user practices to support transfer of knowledge between 
users, extends cyber-infrastructure to knowledge-infrastructure (KI). For example, design of KI to 
support the use of the infrastructure to improve communications among users is generally 
perceived to have the potential to lead to rapid advancements in process and system-level 
understanding through data analysis and modeling.  Scientists and users from multiple research 
and decision-making communities have shared needs to expand their understanding of processes 
at specific locations on the Earth surface. For research communities, the focus is always on 
advancing scientific understanding. For other user communities, such as those applying the latest 
research to improve data collection, or operating resources based on observational and modeled 
data, the focus may be on incrementally developing systems to use the gained knowledge to adapt 
to changing conditions (Mees, 2017; Dilling et al., 2017; Hughes S.A., 2014; Nalau et al., 2015; 
Baker et al, 2012).    Regardless of the academic labeling of the system (CI or KI), users and 
developers want a simple work experience where they launch a web browser and quickly get to 
work -- in plain language, using online infrastructure (OI). Regardless of what the purposes of 
modeling and the background of users might be, the OI should give enough confidence to users to 
run models, reproduce and reuse model applications, analyze results, and communicate their 
findings and unique perspectives on the complex system behavior they are investigating. 

4.3 Development to advance science

To encourage continuous scientific advancement in the Earth science domain, we advocate that 
researchers develop their data and models using cyberinfrastructure that enables replication and 
reuse and consider leveraging open source data and models wherever possible. This approach is 
ideal for doctoral students such that their data and models would be developed with certain 
standards and shared in an open source system, that can be replicated, reused and advanced by 
other investigators.  Additionally, code reproducibility rapidly builds the knowledge and skills of 
other students, thus, shortening the learning curve for modeling, allowing more time to progress 
research in a domain of science that is supported by using the model, and not distracting from work 
on a primary research question with data and modeling technical issues.   If a user follows an 
inductive learning narrative, they may use a workflow (Figure 9, top to bottom workflow) that 
starts with a new idea, and ends with testing a hypothesis, or an inductive learning approach 
(Section 5.3.1).  If a user follows a deductive learning narrative, they may begin with a pre-existing 
experiment or toolset, test a hypothesis, and then develop new ideas from what they learn during 
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the tests (Fig.10, bottom to top workflow). Next, we describe how both inductive and deductive 
narratives are supported. 

Figure 9. Illustration of community learning and discovery process by code access and utilization 
among scientists. Key: Triangle = Synthesis/Merge, Circle = Connector, Square = Process, 
Quadrilateral = Manual or Machine Operation, Cylinder = Database.   Inductive processes are 
supported when, for example, a Landlab user has a new idea for a component, develops the 
Landlab application, and publishes it on HydroShare (formally with DOI or get a publicly 
accessible URL), and reviewers can test the experiment with cloud resources.  Deductive processes 
are supported when new Earth observations are published on HydroShare, used to test hypotheses 
or principals using published models, and results shown to lead to scientific advancements or the 
development of new ideas. 
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4.3.1 Inductive learning approach

An inductive learning approach develops evidence and inference by selecting a hypothesized 
process representation within a system (e.g., landscape), testing that hypothesis, and depending on 
the outcome develop a refined hypothesis of the process and further design testable numerical and 
field experiments. This approach is crucial for advancing theoretical concepts for each process and 
identifying process couplings. Most Earth science models require laborious work to make them 
suitable for inductive learning. Recent component-based frameworks like Landlab (Hobley et al., 
2017) and SUMMA (Clarke et al., 2016)) are developed with the perspective that they can be used 
for inductive learning and research centered on developing a new idea and making use of other 
published and tested components in the complex system to test one new idea at a time. 

4.3.2  Deductive learning approach

A deductive approach is useful when given a precompiled set of model inputs, outputs, and coupled 
system of process models; the user or cooperative research group can develop new hypotheses to 
test given emerging research and new observations.  This is a common workflow in science and 
engineering where a model in published, and the code and data are shared such that when new 
observations or tools are added onto a published package during continuing research, these 
addenda are added to an existing library and new ideas for tools, experiments, and data collection 
emerge.   

The preliminary development of Landlab focused on workflow designs where users would begin 
code development by testing new ideas using published Python scripts to develop process 
representations of individual Earth system processes.  The result is a Landlab environment (Figure 
9) with an ecosystem of process components, where users can test new ideas resulting in the 
development of new components that contribute to a shared and expanding library. While it is 
common in Earth surface numerical modeling communities to build on and contribute to existing 
models, the Landlab approach provides a way for new users to begin learning and contributing by 
developing simple Python scripts that could be executed from a terminal command line.   Landlab 
provides a means for new users to use an inductive learning approach to study one Earth surface 
process at a time, without having to first master the use of pre-existing complex model and to 
contribute code to expand processes represented in the model. Running Landlab on HydroShare 
(Figure 1) provides new users the opportunity to quickly begin exploring Landlab models with 
minimal software requirements (a web browser and internet connection). Landlab and HydroShare 
development and research community can continuously improve and evolve, for example, by 
implementing an automated updating system that would maintain Landlab version on HydroShare 
with automated tests the ensure new versions of Landlab continue working with all HydroShare 
resources that use Landlab.  
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5 Conclusions

To illustrate how common barriers to Earth surface modeling can be lowered using Knowledge 
Infrastructure, we have developed three interactive computational narratives using Landlab on 
HydroShare. Landlab is a recently developed Python-based Earth surface modeling toolkit 
(Hobley et al., 2017). HydroShare is an hydroinformatics cyberinfrastructure that can be used to 
store and share hydrologic data and models (Idaszak et al., 2017; www.hydroshare.org).  The 
infrastructure design and methods are illustrated as an interchangeable set of hardware and 
software components. For our case study we combine an online community repository 
(HydroShare), modeling framework (Landlab), software environment (dockerized JupyterHub 
server), and storage (iRODS), with a community approach to advancing scientific progress using 
Earth surface models.  We demonstrate how to use this system in a classroom setting to explore 
spatio-temporal data, network processes (e.g. hydrologic routing), replicate published results from 
a complex model in a controlled software environment (e.g. landslide model sensitivity to fire-
related parameters), and how to use the same system to reuse flexible components to design a 
model experiment (e.g. ecohydrology model sensitivity to elevation and climate) that can be used 
generate new results in any location in the continental United States.  

These use cases we present have been designed to illustrate a range of functions and show the 
benefits of using Knowledge Infrastructure given a range of science topics to address common 
challenges to using online systems for collaborative numerical modeling.  In the past, running 
distributed hydrology, landslide and ecohydrologic vegetation dynamics Landlab model 
components required access to a powerful computer, an installation of Python, and an installation 
of Landlab. Now, any user can log into HydroShare through a live internet browser from any 
computer/tablet/mobile and run this model, without having to install any software. The user can 
explore the models further by changing the model parameters, climate forcings, or building their 
own model with community support. The demonstrated Knowledge Infrastructure, enabled by 
advanced cyberinfrastructure, is designed to support researchers in more efficiently advancing 
Earth system sciences. 
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6 Abbreviations

 Knowledge Infrastructure (KI)
 Cyberinfrastructure (CI)
 Consortium of Universities for the Advancement of Hydrologic Science, Inc. 

(CUAHSI)
 Community Surface Dynamics Modeling System (CSDMS)
 Information and communication technologies (ICTs)
 Graphical user interfaces (GUI)
 Personal computer (PC)
 High performance computing (HPC)
 Cloud-based high-performance computing (CHPC)
 Services Oriented Architecture (SOA)
 Open Archives Initiative Object Reuse and Exchange (OAI-ORE) standard
 Digital object identifier (DOI)
 Representative State Transfer (REST)
 Application programming interface (API)
 Structure for Unifying Multiple Modeling Alternatives (SUMMA)
 National Water Model (NWM)
 Observation Data Model 2 (ODM2)
 Extreme Science and Engineering Discovery Environment (XSEDE)
 Resourcing Open Geospatial Education and Research (ROGER) supercomputer
 User experience (UX)
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9 Figures and Tables

1. Figure 1. Illustration of six basic elements for a knowledge cyberinfrastructure for 
interactive community modeling and exploration.  Research software communities 
maintain support of operations between Docker Containers and software environment. 
Domain science communities maintain support for version control and user 
communications specific to modeling frameworks. 

2. Table 1.  Three study problems were designed with a focus to 1) explore, 2) replication, 
and 3) reuse research.  Computational narratives demonstrate how to use Knowledge 
Infrastructure for computation and visualization of Earth surface models where the user 
interacts with the infrastructure to develop their own story.  

3. Table 2. Parameters used to obtain Spring Creek High Intensity model comparisons 
between kinematic wave and overland flow model. 

4. Figure 2. Illustration of flow routing outputs. (a) Elevation map of Spring Creek, 
central CO with locations (outlet, midstream, upstream) where hydrographs are plotted. 
(b, d) Hydrographs plotted at three locations shown in (a) driven by the high intensity 
rainfall option using KinwaveImplicitOverlandflow and Overlandflow components, 
respectively. (c, e) Flow depth maps during peak flow for 
KinwaveImplicitOverlandflow and Overlandflow components, respectively. Results 
were produced on HydroShare using the Landlab modeling framework. 

5. Figure 3. (a) Example debris avalanches (cyan) mapped in three areas within NOCA. 
Contours are in 100- m intervals. Aerial image source from World Imagery, Esri Inc.; 
(b) elevation distribution of the relative frequency of mapped debris avalanche source 
areas ; and (c) High elevation rock and glacier surrounding Spiral Glacier in North 
Cascades showing a bedrock glacier cirque with thin barren soils and moraine deposits 
(photo by John Scurlock with permission), (d) elevation (ft) for NOCA model extent 
from Strauch et al. (2018), and (e) for the subset for the Thunder Creek extent. (Figures 
a-c adapted in entirety from Strauch et al., 2018 under CC BY 4.0).

6. Figure 4. Maps show modeled landslide return periods using Landlab for NOCA 
overlain with mapped debris avalanches, including zoomed in areas at top for greater 
detail.  The uncertainty of soil depth was characterized from a long-term soil evolution 
model (M-SD LT). Cumulative distribution of return periods for SSURGO soil depth 
(SSURGO-SD), modeled soil depth (M-SD), and modeled soil depth considering long-
term dynamics (M-SD LT) scenarios, plotted on a log-log scale using the Weibull 
plotting position.  (Figure adapted in entirety from Strauch et al., 2018 under CC BY 
4.0).

7. Figure 5.  Landslide probability estimates in the Thunder Creek watershed (photo) 
increase given post-fire root cohesion assumptions (70% less), as compared to the 
original cohesion assumptions in Strauch et al. (2018).  As an example of 
cyberinfrastructure functionality, the notebook replicates published findings, as well as 
tests the parameter function described in the peer-reviewed publication. Inset maps and 
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cumulative distribution plots of the spatial probability of landsliding for pre-fire and 
post-fire conditions. 

8. Figure 6. Map of elevation bands in New Mexico State (a) used to extract gridded 
Hydrometeorological forcing data Elevation bins are referred to as: Low elevation 
(1200-1700 m), mid elevation (1700-2000 m), and high elevation (2000-2500 
m).  The vegetation patterns from aerial imagery of New Mexico are distinct within 
these bands (b). 

9. Figure 7. Climate data downloaded and processed from Livneh et al. (2015). a)  Annual 
precipitation plotted with respect to time for each elevation band. b) Mean monthly 
daily minimum and maximum temperatures for each elevation band. 

10. Figure 8.  Spatial Organization of PFTs at year 1503 (left column)  and Annual areal 
cover fraction of each PFT plotted with respect to time (right column) for; a) low 
elevation landscapes (1200 m to 1700 m), b) mid elevation landscapes (1700 m to 2000 
m), and c) high elevation landscapes (2000 m to 2500 m).

11. Figure 9. Illustration of community learning and discovery process by code access and 
utilization among scientists. Key: Triangle = Synthesis/Merge, Circle = Connector, 
Square = Process, Quadrilateral = Manual or Machine Operation, Cylinder = 
Database.   Inductive processes are supported when, for example, a Landlab user has 
a new idea for a component, develops the Landlab application, and publishes it on 
HydroShare (formally with DOI or get a publicly accessible URL), and reviewers can 
test the experiment with cloud resources.  Deductive processes are supported when 
new Earth observations are published on HydroShare, used to test hypotheses or 
principals using published models, and results shown to lead to scientific 
advancements or the development of new ideas. 
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