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SUMMARY

Genome-wide association studies have identified PTPN2 as an important non-major 

histocompatibility complex gene for autoimmunity. Single nucleotide polymorphisms 

that reduce PTPN2 expression have been linked with the development of varied 

autoimmune disorders, including type 1 diabetes. The tyrosine-phosphatase PTPN2 

attenuates T cell receptor and cytokine signalling in T cells to maintain peripheral 

tolerance, but the extent to which PTPN2-deficiency in T cells might influence type 1 

diabetes onset remains unclear.  Non-Obese Diabetic (NOD) mice develop spontaneous 

autoimmune type 1 diabetes, similar to that seen in humans. T cell PTPN2-deficiency 

in NOD mice markedly accelerated the onset and increased the incidence of type 1 

diabetes, as well as that of other disorders, including colitis and Sjogren’s syndrome. 

Although PTPN2-deficiency in CD8+ T cells alone was able to drive the destruction of 

pancreatic  cells and onset of diabetes, T cell-specific PTPN2-deficiency was also 

accompanied by increased CD4+ T-helper type 1 differentiation and T follicular helper 

cell polarisation and an increased abundance of B cells in pancreatic islets as seen in 

human type 1 diabetes. These findings causally link PTPN2-deficiency in T cells with 

the development of type 1 diabetes and associated autoimmune co-morbidities.
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INTRODUCTION

Autoimmune diseases encompass a broad range of heterogenous and complex 

disorders. They include systemic disorders such as Sjogren’s syndrome, systemic lupus 

erythematosus and rheumatoid arthritis, and organ-specific diseases such as Graves’ 

disease, Hashimoto’s thyroiditis, Crohn’s disease and type 1 diabetes mellitus (1). 

Although considerable progress has been made in understanding the cellular basis of 

immune tolerance and the development of autoimmunity, the molecular mechanisms 

that underpin most autoimmune disorders remain incompletely understood. Most 

autoimmune diseases are associated with specific alleles of the major 

histocompatibility complex (MHC) locus, but genome-wide associations studies 

(GWAS) have identified more than 200 non-MHC loci for which alleles are associated 

with one or more autoimmune diseases (1). Most polymorphisms identified by GWAS 

are non-coding variants that are predicted to modulate gene expression, with several 

implicated in functional pathways that influence T- and B-cell activation (1).

GWAS have identified PTPN2, encoding protein tyrosine phosphatase (PTP) 

non-receptor type 2 (PTPN2), also known as T cell PTP, as an important non-MHC 

locus gene for autoimmunity (2-8). Non-coding PTPN2 single nucleotide 

polymorphisms (SNPs) have been associated with autoimmune disorders including 

Crohn’s disease, rheumatoid arthritis and type 1 diabetes (2-8). For example, the type 

1 diabetes-associated PTPN2 SNP rs1893217 has been linked with a 40% decrease in 

PTPN2 expression in CD4+CD25+ Treg and CD4+CD45RO+ memory T cells (9). More 

recently, coding region PTPN2 variants that affect mRNA stability or alter protein 

structure have been associated with early onset type 1 diabetes (10), whereas non-

coding PTPN2 SNPs linked with Crohn’s disease, ulcerative colitis, rheumatoid 

arthritis and type 1 diabetes, have been reported to decrease PTPN2 in colonic lamina 
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propria fibroblasts from patients with Crohn’s disease (11; 12). Thus, PTPN2 SNPs 

resulting in decreased PTPN2 expression might determine the course of autoimmunity 

through influencing both immune and non-immune cell populations.

Studies in mice lacking PTPN2 have identified critical roles for this regulatory 

enzyme in T-cell driven immunity, inflammation and metabolism (13; 14). Changes in 

these processes are also frequently seen in autoimmune and inflammatory diseases 

where PTPN2 polymorphisms are associated with disruption of T cell tolerance (15). 

PTPN2 dephosphorylates and inactivates the SRC family kinases (SFKs) LCK and 

FYN to ‘tune’ T cell receptor (TCR) signalling (15-17) and influence thymocyte 

development and peripheral T cell responses in the periphery to low affinity self-

antigens to prevent inappropriate T cell activation (15; 18; 19). In addition, PTPN2 

dephosphorylates and inactivates Janus-activated kinases (JAKs)-1 and -3 (20) and 

signal transducers and activators of transcription (STATs)-1, -3 and -5 to influence T 

cell responsiveness to various cytokines, including interferon (IFN)- and interleukins 

(IL)-2, -6, -7, -15, and -21 (15; 17-19; 21). Beyond its role in T cells, PTPN2 might 

affect the activation of innate and adaptive immune cells, including B cells, dendritic 

cells and myeloid cells (20; 22; 23) as well as stromal cells (24) to influence disease 

progression.  Consistent with this, Ptpn2–/– mice that develop wasting disease succumb 

within weeks of birth (13; 14). Similarly, the inducible deletion of PTPN2 in the 

hematopoietic compartment of adult C57BL/6 mice (Mx1-Cre;Ptpn2fl/fl) promotes 

systemic inflammation and overt autoimmunity within 4 weeks of PTPN2 deletion, 

with mice exhibiting dermatitis, glomerulonephritis, pancreatitis and overt liver disease 

(22). Beyond the effector/memory T cell phenotype, hematopoietic PTPN2-deficiency 

resulted in the accumulation of inflammatory monocytes and B cells and germinal 

centre formation linked with increased T follicular helper (TFH) cells, germinal centre 
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B cells and IgG-secreting B cells (22). Therefore, PTPN2 deficiency might not only 

impact on T cell function, but also drive the pathogenic accumulation of TFH cells and 

high-affinity antigen-specific IgG secreting B cells to promote autoimmunity.

Mice lacking PTPN2 in the hematopoietic compartment develop insulitis 

(infiltration of lymphocytes in pancreatic islets of Langerhans) (22) reminiscent of in 

early stage disease in humans with type 1 diabetes. However, this phenotype does not 

result in type 1 diabetes in C57BL/6 mice, even when PTPN2 is additionally deleted in 

pancreatic  cells (22). Similarly, these mice do not develop inflammatory bowel 

disease or inflammatory arthritis (22); diseases that are often associated with PTPN2 

loss of function SNPs (3; 5-8). Therefore, although deficiencies in T cells or the 

hematopoietic system may result in a loss of tolerance and the development of 

autoimmunity in C57BL/6 mice, the extent to which PTPN2 deficiency in T cells and/or 

other immune cells contributes to the onset, maintenance and severity of human 

autoimmunity remains unclear.

To explore the influence of PTPN2-deficiency in T cells on autoimmunity, 

especially type 1 diabetes, we backcrossed the Lck-Cre and Ptpn2fl/fl loci, originally 

generated in C57BL/6 mice, onto the Non-Obese Diabetic (NOD) background. Unlike 

other mouse models, NOD mice develop spontaneous autoimmune type 1 diabetes, 

similar to that seen in humans, sharing many of the diabetes susceptibility loci and 

autoantigens that contribute to the development of type 1 diabetes (25). PTPN2 

deficiency in T cells in NOD mice markedly accelerated the onset and increased the 

cumulative incidence of type 1 diabetes. The development of 

inflammatory/autoimmune co-morbidities was also accelerated. Disease progression 

was associated with the infiltration of cytotoxic CD8+ T cells, along with CD4+ T-

helper type 1 (TH1) and TFH polarisation, as detected in human type 1 diabetes (26).  
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These findings suggest that PTPN2-deficiency in T cells might be sufficient to promote 

the development of type 1 diabetes and autoimmunity in genetically susceptible 

individuals. 
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METHODS

Mice 

Lck-Cre;Ptpn2fl/fl.C57BL/6J mice (15) were backcrossed onto the NOD/Lt 

background for 11 generations. A genome-wide screen was performed by the 

Australian Genome Research Facility using the iPLEX GOLD chemistry and the 

Sequenom MassArray spectrometer for SNP genotyping. Data was analyzed using the 

GeneChip Targeted Genotyping System Software. Lck-Cre;Ptpn2fl/fl;NOD and 

Ptpn2fl/fl;NOD littermate mice were maintained on a 12 h light-dark cycle in a 

temperature-controlled specific-pathogen-free high barrier facility (ARL, Monash 

University) with free access to food  and water. Aged- and sex-matched littermates 

were fed a standard chow diet (8.5% fat; Barastic, Ridley, AgriProducts, Australia). 

Materials

Recombinant mouse IL-2, IL-6, IL-12, IFN- and TGF were purchased from 

Peprotech. Hamster -mouse CD3 (145-2C11) and hamster -mouse CD28 (37.51) 

were purchased from BD Biosciences. Mouse -tubulin (Ab-5) and mouse -GAPDH 

were purchased from Sigma-Aldrich. Rabbit -phospho-Stat1 (Tyr701, clone 58D6) 

and polyclonal rabbit -Stat1 were purchased from Cell Signalling. Polyclonal rabbit 

-phospho-Stat4 (Tyr693) was from Thermo Fisher Scientific.

Percoll was purchased from GE Healthcare and Dnase I from Sigma-Aldrich. 

Complete T cell medium [RPMI-1640 supplemented with 10% (v/v) FBS, L-glutamine 

(2 mM), penicilin (100 units/ml)/streptomycin (100 g/ml), non-essential amino acids, 

Na-pyruvate (1 mM), HEPES (10 mM) and 2- mercaptoethanol (50 M)] was 

purchased from Thermo Fisher Scientific. Dulbecco-Phosphate Buffered Saline (D-
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PBS), Dulbecco’s Modified Eagle’s Medium (DMEM) and Hank’s Buffered Salt 

Solution (HBSS) were from Thermo Fisher Scientific and collagenase IV from 

Worthington.

Flow cytometry

Single cell suspensions from thymus, spleen, inguinal lymph nodes, pancreatic 

lymph nodes and mesenteric lymph nodes were obtained by gently pressing the tissue 

through a 40 M FALCON cell strainer (BD Biosciences). Erythrocytes were removed 

by incubating cells with Red Blood Cell Lysing Buffer Hybri-Max™ for 7 min at room 

temperature. Cells counts were determined with the Z2-Coulter Counter (Beckman 

Coulter). For surface staining, cells (1x106/10µl) were resuspended in D-PBS 

supplemented with 2% (v/v) FBS and stained in 96-well microtiter plates (BD 

Falcon™) for 20 min on ice. Cells were washed twice and resuspended in D-PBS/2% 

FBS and analysed using a LSRII, Fortessa, Symphony (BD Biosciences) or Cyan™ 

ADP (Beckman Coulter) or purified using an Influx sorter (BD Biosciences). Data was 

analysed using FlowJo v8.7, v9.4 or v10.2 (Tree Star Inc.) software. 

For detection of intracellular FoxP3, the Foxp3/Transcription Factor Staining 

Buffer set (eBioscience) was used according to the manufacturer’s instructions. For the 

detection of intracellular cytokines, the BD Cytofix/Cytoperm™ Kit according was 

used to the manufacturer’s instructions. Serum cytokines were quantified with the BD 

Cytometric Bead Array (CBA) Mouse Inflammation Kit according the to the 

manufacturer’s instructions.

Type I diabetes assessment 
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Glycosuria in was determined using Diastix Reagent Strips for Urinanalyis 

(Bayer). Mice were scored as diabetic after two positive readings (urine glucose ≥55 

mmol/l) 48 hours apart. This was confirmed by measuring blood glucose levels that 

were found to be greater that 18 mmol/l in each case. Pancreata were fixed in formalin 

and processed for histological analysis (hematoxylin and eosin: H&E) and scored for 

the degree of insulitis (grades 0-4). Grade 0 represents no infiltrate, grade 1 periductal 

accumulation of mononuclear cells, grade 2 circumferential accumulation of 

mononuclear cells, grade 3 intra-islet infiltration, and grade 4 severe structural 

derangement and complete  cell loss. 

Isolation of pancreas-infiltrating T cells 

Pancreata from 5 week old pre-diabetic Lck-Cre;Ptpn2fl/fl.NOD and 

Ptpn2fl/fl.NOD littermate mice were harvested and pancreatic lymph nodes removed. 

Pancreata were digested in DMEM containing 1 mg/ml collagenase IV (Worthington) 

at 37°C for 15 min and single cell suspensions processed for flow cytometry. 

Adoptive transfer into NOD mice 

CD8+CD44loCD62Lhi were purified from single cell suspension obtained from 

pooled splenocytes and lymph node cells from 5 week old prediabetic Lck-

Cre;Ptpn2fl/fl.NOD  and Ptpn2fl/fl.NOD  littermate control mice using the naïve CD8+ T 

cell Isolation Kit (Miltenyi Biotech) according  the manufacturer’s instructions with the 

autoMACS Separator (Miltenyi Biotech). Naïve CD8+CD44loCD62Lhi (1x107) were 

adoptively transferred into 28 day old female NOD mice and diabetes incidence 

monitored. 

Page 9 of 54

For Peer Review Only

Diabetes



10

Serum immunoglobulins 

Serum IgM was quantified with the mouse IgM ELISA Ready-SET-Go™ kit 

from eBioscience according to the manufacturer's instructions. To detect serum IgG 

subsets MaxiSorp ELISA plates (Nunc) were coated with goat -mouse IgG (625 ng/ 

ml) in ELISA coating buffer overnight at 4 ºC. Plates were washed five times and 

blocked in D-PBS supplemented with 3% (w/v) BSA for 2 h at room temperature. 

Serum (IgM 1:5 serial dilutions; IgG1, IgG2a, IgG2b and IgG3, 1:10 serial dilutions) 

was added and plates were incubated for 1 h at room temperature. Plates were washed 

five times and biotinylated -IgM, -IgG1, -IgG2a (to detect -IgG2c), -IgG2b or 

-IgG3 (1:1000) diluted in D-PBS/1% (w/v) BSA was added. Samples were incubated 

for 1 h at room temperature. Plates were washed five times and incubated with 

Streptavidin-HRP (1:10.000 in D-PBS/1% (w/v) BSA) for 30 min followed by seven 

washes. 3,3’,5,5’-tetramethylbenzidine (TMB) was added and samples were incubated 

for 15 min at room temperature in the dark. Reaction was stopped with 0.5 M sulphuric 

acid and absorbance was read at 450 nM. 

Serum insulin autoantibodies (IAA) 

ELISA plates (Costar) were coated with human insulin (10 μg/ml, Actrapid, 

Novo Nordisk) overnight at 4°C. Plates were blocked with PBS supplemented with 2% 

BSA for 2 hours at room temperature and then incubated with sera from Ptpn2fl/fl.NOD, 

Lck-Cre;Ptpn2fl/fl.NOD  and Lck-Cre;Ptpn2fl/+.NOD or C57BL/6 mice (1:10 dilution) 

for 2 hours at room temperature. Plates were washed four times and further incubated 

with biotinylated anti–mouse IgG1 (AbCam, 1:10,000 dilution) for 30 min at room 

temperature. After four washes, Streptavidin-HRP (BioLegend) was added and plates 

were incubated for 15 min at room temperature. Plates were washed five times, TMB 

was added and absorbance was measured at 450 nm using a Polarstar (BMG Labtech) 
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microplate reader. Each sample was run in duplicates, and absorbance (450 nm) of the 

negative control sample (C57BL/6 serum) was subtracted from absorbance of test 

sample to calculate the true absorbance value for each test sample.

Statistical analysis

Statistical analysis was performed using the non-parametric using 2-tailed 

Mann-Whitney U Test or the Student’s T-test. Statistical analyses on Kaplan-Meier 

estimates were performed using a Log-rank (Mantel-Cox) test with one degree of 

freedom. For all tests p<0.05 was considered as significant.

Animal ethics

All experiments were performed in accordance with the NHMRC Australian 

Code of Practice for the Care and Use of Animals. All protocols were approved by the 

Monash University School of Biomedical Sciences Animal Ethics Committee (Ethics 

number: MARP/2012/124) and the UK Home Office (project licence: PB3E4EE13). 
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RESULTS

PTPN2 deletion in T cells promotes autoimmune diabetes

To determine the extent to which PTPN2 deficiency in T cells might contribute 

to the development of type 1 diabetes we introduced the Lck-Cre and Ptpn2fl/fl loci from 

C57BL/6 mice (15) onto the NOD/Lt (NOD) genetic background by backcrossing for 

11 generations. Lck-Cre;Ptpn2fl/+.NOD mice were thereon bred with NOD wild type 

mice to produce the Ptpn2fl/+.NOD and Lck-Cre;Ptpn2fl/+.NOD offspring that were 

interbred. DNA from the 11th generation was genotyped for 597 single nucleotide 

polymorphisms (SNPs) by the Australian Genome Research Facility using iPLEX 

GOLD chemistry and the Sequenom MassArray spectrometer for SNP genotyping and 

analysed by the GeneChip Targeted Genotyping System Software. Ptpn2fl/+.NOD mice 

had a contaminating C57BL/6-derived interval between and including rs13483413 and 

rs3656892 (~2 MB) that encompasses the floxed Ptpn2 locus on chromosome 18, 

whereas Lck-Cre;Ptpn2fl/+.NOD mice had an additional contaminating C57BL/6-

derived interval on chromosome 15 between and including rs13482618 and 

rs13482719 (~28 MB) that encompasses the Lck-Cre transgene locus. These C57BL/6 

intervals are unavoidable, but previous NODxC57BL/6 outcrosses have not identified 

Idd loci within these intervals (27).

Diabetes pathogenesis in NOD mice is characterized by severe insulitis followed 

by the CD4+ and CD8+ T cell-mediated destruction of insulin-producing  cells in the 

pancreatic islets of Langerhans. Previous studies have reported that female NOD mice 

first develop insulitis at 5 weeks of age and diabetes at approximately 90 days after 

birth, with 46% of mice having diabetes by 150 days of age (28), although this can be 

influenced by diet and the gut microbiome (29). By contrast, male mice are significantly 

less susceptible, with a much lower frequency of diabetes (28). We monitored for 
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diabetes in female and male Ptpn2fl/fl.NOD and Lck-Cre;Ptpn2fl/fl.NOD mice (Fig. 1a-

b). The onset of diabetes (urine glucose > 55 mM; blood glucose > 18 mM) was 

markedly accelerated in both female and male Lck-Cre;Ptpn2fl/fl.NOD mice. Female 

Lck-Cre;Ptpn2fl/fl.NOD mice started to develop diabetes at 36 days of age with all 

Ptpn2-deficient mice succumbing by 87 days (Fig. 1a). Similarly, type 1 diabetes onset 

in male Lck-Cre;Ptpn2fl/fl.NOD mice occurred at 29 days with 100% of mice developing 

diabetes by 108 days (Fig. 1b). By contrast neither male nor female Ptpn2fl/fl.NOD 

littermate mice or parental NOD mice developed diabetes by 100 days of age. 

Histological analysis in 30-36 day old Lck-Cre;Ptpn2fl/fl.NOD mice prior to the 

development of diabetes revealed advanced invasive insulitis [combined histological 

grades 3 (intra-islet infiltration) and 4 (structural derangement and complete  cell 

loss)] in 91% of islets with obliterative lesions and marked immune cell infiltrates (Fig. 

1c-d). The immune infiltrates not only contained CD3+ T cells, but also B220+ B cells 

(Fig. 1e), that are thought to contribute to invasive insulitis and diabetes (30; 31). By 

contrast, invasive insulitis was only observed in ~2% of islets from 30-36 day old 

Ptpn2fl/fl.NOD littermate controls, and islets exhibited minimal peri-insulitis (grade 1) 

and immune cell infiltration (grade 0; Fig. 1c-d). Thus PTPN2-deficiency in T cells in 

NOD mice markedly accelerates pancreatic islet destruction and the onset of diabetes 

in NOD mice.

The type 1 diabetes-associated non-coding PTPN2 SNP rs1893217 is 

accompanied by a reduction in PTPN2 mRNA in human CD4+CD45RO memory T 

cells (9).  Similarly, the Crohn’s disease-associated non-coding PTPN2 SNP rs2542151 

that is also associated with early onset type 1 diabetes (4) is accompanied by a reduction 

in PTPN2 protein in primary human colonic lamina propria fibroblasts (11; 12). Thus, 

PTPN2 might be haploinsufficient in the pathogenesis of autoimmune disorders such 
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as type 1 diabetes and Crohn’s disease. We have previously shown that PTPN2-

heterozygosity in Lck-Cre;Ptpn2fl/+ mice results in an approximate 50% reduction of 

PTPN2 protein in T cells (18). We therefore monitored for the incidence of diabetes in 

Ptpn2fl/fl.NOD and Lck-Cre;Ptpn2fl/+.NOD mice (Fig. 1a-b). Although delayed relative 

to homozygous mice, the onset of diabetes was accelerated in female Lck-

Cre;Ptpn2fl/+.NOD mice when compared to their Ptpn2fl/fl.NOD littermate controls. 

Moreover, although male Ptpn2fl/fl.NOD control mice did not develop diabetes, even at 

250 days of age, male Lck-Cre;Ptpn2fl/+.NOD heterozygous mice began to develop 

diabetes by 113 days of age. Histological analysis in 84-105 day old Lck-

Cre;Ptpn2fl/+NOD mice revealed invasive insulitis in 50% of islets (Fig. 1f-g) whereas 

in Ptpn2 fl/fl.NOD mice invasive insulitis was only evident in 8% of islets. These results 

emphasise the importance of PTPN2 in T cell tolerance and suggest that even partial 

PTPN2 deficiency in T cells might be sufficient to accelerate the onset of diabetes in 

autoimmune-prone individuals.

 

Increased T helper type 1 and cytotoxic T cells in pancreata.

T cell responses to pro-insulin occur early in the pathogenesis of type 1 diabetes 

in NOD mice and are required for the development of immune responses to other 

antigens (32). Dendritic cells and insulin-specific CD4+ T cells cross-prime CD8+ T 

cells to elicit cytotoxic responses and the destruction of  cells (33). We have shown 

previously that PTPN2-deficiency in CD8+ T cells negates the need for cross-priming 

and drives the differentiation and activation of effector T cells and overt responses to 

self-antigen (15; 18; 19). C57BL/6 mice deficient for PTPN2 in T cells progressively 

develop an effector/memory (CD44hiCD62Llo) T cell phenotype and autoimmunity 

with age (15). In Lck-Cre;Ptpn2fl/fl.NOD mice, we noted a significant increase in 
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effector/memory (CD44hiCD62Llo) CD4+ and CD8+ T cells in the spleens and lymph 

nodes of 36 day old Lck-Cre;Ptpn2fl/fl.NOD mice prior to the development of diabetes 

(Fig. 2a-b). We also noted a significant increase in effector/memory CD4+ and CD8+ 

T cells in the pancreatic draining lymph nodes of pre-diabetic Lck-Cre;Ptpn2fl/fl.NOD 

mice (Fig. 2c). Notably, although hardly any CD4+ or CD8+ T cells were in the 

pancreata of age-matched Ptpn2fl/fl.NOD littermates, the early onset diabetes in Lck-

Cre;Ptpn2fl/fl.NOD mice was preceded by the marked infiltration of CD44hiCD62Llo  

CD4+ and CD8+ T cells (Fig. 2d). Previous studies have established that the initiation 

of diabetes in NOD mice is reliant on the presence of activated insulin-specific CD4+ 

TH1 cells that produce IFN and allow for the licensing of antigen-specific CD8+ T cells 

(34; 35). We found that the CD44hiCD62Llo CD4+ T cells infiltrating the pancreata of 

Lck-Cre;Ptpn2fl/fl.NOD mice were enriched for CD4+ TH1 (IFNhi) cells (Fig. 2e). 

Consistent with previous studies (36) we found that PTPN2-deficient naive CD4+ T 

cells differentiated more efficiently into TH1 cells ex vivo, even in the absence of IL-12, 

consistent with this being a cell intrinsic effect (Fig. S1a). At least in part the enhanced 

TH1 differentiation may be due to the promotion STAT-1 signalling, which is required 

for TH1 commitment and differentiation (37). STAT-1 is a bona fide PTPN2 substrate 

(38) and PTPN2-deficiency was accompanied by heightened basal and IFN--induced 

STAT-1 Y701 phosphorylation (Fig. S1b). By contrast IL-12-induced STAT-4 Y693 

phosphorylation in activated CD4+ T cells was unaltered by PTPN2-deficiency (Fig. 

S1c). In addition to the increased presence of TH1 cells we found that infiltrating 

CD44hiCD62Llo CD8+ T cells exhibited a terminally-differentiated and antigen-

experienced CD49dhiKLRG1hiCD127– effector phenotype and expressed high levels of 

IFN-, a marker of cytotoxic CD8+ T cells (Fig. 2f).  Taken together, these results are 

consistent with PTPN2 deficiency increasing the activation and pathogenic conversion 
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of CD4+ and CD8+ T cells into TH1 and cytotoxic CD8+ T cells respectively to mediate 

of destruction of pancreatic  cells.

To explore directly whether PTPN2 deficiency in CD8+ T cells might subvert T 

cell tolerance to promote the CD8+ T cell-mediated destruction of  cells, we adoptively 

transferred CD8+ naïve (CD44loCD62Lhi) T cells from pre-diabetic Ptpn2fl/fl.NOD 

versus Lck-Cre;Ptpn2fl/fl.NOD mice into immunoreplete NOD hosts and monitored for 

diabetes (Fig. 3). Albeit delayed, diabetes was evident by 44 days in mice receiving 

PTPN2 deficient T cells with 86% of mice succumbing by 172 days post-adoptive 

transfer (Fig. 3a). By contrast the onset of diabetes was not altered in control mice and 

diabetes was not evident until 117 days of age (Fig. 3a). Histological analysis at 120 

days post-adoptive transfer revealed that Lck-Cre;Ptpn2fl/fl CD8+ T cell recipients 

exhibited increased invasive insulitis accompanied by marked lymphocytic infiltrates 

in islets (Fig. 3b-c). These results are consistent with the accelerated onset of diabetes 

in Lck-Cre;Ptpn2fl/fl.NOD mice being largely, albeit not completely, due to 

perturbations in peripheral CD8+ T cell tolerance to self-antigens.

Increased FoxP3+ regulatory T cells in PTPN2-deficient mice

CD4+FoxP3+ regulatory T cells (Treg) prevent autoimmunity by suppressing the 

activity of autoreactive CD8+ T cells that escape negative selection in the thymus (39). 

SNPs in genes encoding IL-2 and the IL-2 receptor (CD25) that are required for Treg 

generation have been linked with various autoimmune diseases, including type 1 

diabetes (2). We therefore assessed whether the accelerated onset of type 1 diabetes 

evident in Lck-Cre;Ptpn2fl/fl.NOD mice might arise through the suppression of Treg 

development or function (Fig. 4). Consistent with our previous studies in C57BL/6 

mice (15; 17), we found that PTPN2-deficiency in pre-diabetic 5-week old Lck-
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Cre;Ptpn2fl/fl.NOD mice was accompanied by increased thymic (CD25–FoxP3+ and 

CD25+FoxP3+) Tregs (Fig. 4a). Moreover, PTPN2 deficiency was accompanied by 

increased proportion of total (Fig. 4b), resting (CD44hiCD62Lhi) and effector 

(CD44hiCD62Llo) CD25+FoxP3+ Tregs in the pancreata and corresponding draining 

lymph nodes (panLN) (Fig. 4c-d) with the increase in Tregs in pancreata approximating 

the increase in effector/memory CD4+ T cells (Fig. 4e); total and effector Tregs trended 

higher also in the spleen and inguinal lymphoid tissues (Fig. S2a). Tregs expand and 

acquire an activated effector phenotype in response to cognate antigens in the context 

of infection and autoimmunity (40). PTPN2-deficiency not only increased the 

proportion of effector Tregs, but also increased the number of resting and effector Tregs 

in pancreata and panLNs. By contrast antigen-independent TGF/IL-2-induced 

CD25+FoxP3+ Treg generation ex vivo was not altered by PTPN2-deficiency (Fig. S2b). 

These findings are consistent with PTPN2 deficiency increasing the antigen-induced 

expansion and differentiation of Tregs in vivo.  To determine whether PTPN2 deficiency 

might abrogate Treg function we isolated splenic CD25hi Tregs from Ptpn2fl/fl.NOD 

versus Lck-Cre;Ptpn2fl/fl.NOD mice and assessed their capacity to repress the TCR-

mediated expansion of CD25lo CD4+ T cells ex vivo (Fig. 4f).  We found that Lck-

Cre;Ptpn2fl/fl Tregs were just as efficient as Ptpn2fl/fl Tregs in repressing the -CD3-

induced expansion of CD4+ T cells. Therefore, the accelerated onset of diabetes in Lck-

Cre;Ptpn2fl/fl.NOD mice cannot be attributed to diminished Treg development or 

function. 

Increased CD4+ T follicular helper cells and B cells in PTPN2-deficient mice

Our studies indicate that PTPN2 deficiency in T cells not only promotes the 

infiltration of cytotoxic CD8+ and CD4+ T cells into the pancreata of NOD mice, but 
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also the recruitment of B220+ B cells, which promote the expansion and activation of 

T cells targeting  cell antigens (41). Therefore, another mechanism by which PTPN2 

deficiency might influence disease progression in NOD mice is through effects on the 

B cell compartment.  CD4+ TFH cells are required for the promotion of B cell maturation 

and the production of antigen-specific antibodies (42). Previously, we reported that the 

inducible deletion of Ptpn2 in the hematopoietic compartment of adult C57BL/6 mice 

was accompanied by the marked expansion of TFH cells ex vivo (22). To explore the 

mechanisms by which PTPN2 deficiency in T cells might result in increased B cell 

pancreatic infiltrates, we investigated the presence of TFH cells and germinal centre B 

cells in the pancreatic draining lymph nodes of 5 week old Lck-Cre;Ptpn2fl/fl.NOD mice. 

T cell PTPN2 deficiency in NOD mice resulted in a striking increase in 

CD4+CD44hiCXCR5hiPD-1hi TFH cells in the spleens, inguinal lymph nodes and 

pancreatic draining lymph nodes (Fig. 5a).  In keeping with TFH cell expansion we 

found that B220+GL-7hiFashi germinal centre B cells were also markedly increased in 

spleens, inguinal lymph nodes and pancreatic draining lymph nodes (Fig. 5b). Germinal 

centre B cell expansion and class switching from IgM to IgG are reliant on interactions 

with germinal centre TFH cells.  Consistent with this we found that circulating IgM and 

IgG (IgG1, IgG2c, IgG2b, IgG3) were increased in pre-diabetic Lck-Cre;Ptpn2fl/fl.NOD 

mice (Fig. 5c). Importantly we found that circulating insulin autoantibodies (IAA) were 

elevated in 5 week old Lck-Cre;Ptpn2fl/fl.NOD mice as well as in 12-15 week old Lck-

Cre;Ptpn2fl/+.NOD mice (Fig. 5d). These results indicate that T cell PTPN2 deficiency 

in NOD mice might influence disease progression, not only through effects on CD8+ T 

cell tolerance, but also through the CD4+ TFH-mediated expansion and maturation of B 

cells and the production of autoantibodies.
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Autoimmune co-morbidities in PTPN2-deficient mice

In addition to type 1 diabetes, NOD mice spontaneously develop autoimmune 

co-morbidities, including sporadic lymphoid infiltrates in the thyroid gland, mimicking 

Hashimoto's thyroiditis (43) and sporadic lymphoid infiltrates in the salivary and 

lacrimal glands, resembling the human autoimmune disorder known as Sjögren’s 

Syndrome (44).  Moreover, young NOD mice can develop subclinical colitis after 

weaning due to defective tolerance to commensal gut bacteria (45). Such autoimmune 

co-morbidities are also seen in a subset of patients with type 1 diabetes (46). Previous 

studies have shown that PTPN2-deficiency in T cells or the haematopoietic 

compartment of C57BL/6 mice promotes systemic inflammation and autoimmunity 

accompanied by lymphocytic infiltrates in non-lymphoid tissues such as liver, lung, 

skin and kidney (15; 22). We therefore assessed the impact of PTPN2 deficiency on the 

development of systemic inflammation and autoimmunity in pre-diabetic 5-6 week old 

Lck-Cre;Ptpn2fl/fl.NOD mice. PTPN2 deficiency in T cells was accompanied by 

systemic inflammation as reflected by the increase in circulating pro-inflammatory 

cytokines TNF and IL-6 (Fig. 6a) and the infiltration of lymphocytes, including 

B220+ B cells and CD3+ T cells into the submandibular salivary glands (Fig. 6b). In 

these young pre-diabetic mice, lymphocytic infiltrates were not evident in liver, lung, 

kidney or joints and there was no evidence of inflammatory arthritis (Fig. S3a-b). 

Strikingly however, we found marked lymphocytic infiltrates in the colons of pre-

diabetic Lck-Cre;Ptpn2fl/fl.NOD mice and the development of overt colitis as reflected 

by colon shortening (Fig. 6c). The development of colitis was accompanied by an 

increased number of CD4+ and CD8+ effector/memory (CD44hiCD62Llo) T cells, TFH 

cells (CD4+CD44hiCXCR5hiPD-1hi) and germinal centre B cells (B220+GL-7hiFashi) in 

the mesenteric lymph nodes; no alterations were evident in CD4+FoxP3+ Treg cells (Fig. 
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7a). Moreover, colitis was accompanied by the accumulation of lamina propria CD4+ 

and CD8+ effector/memory T cells with TH1 and cytotoxic phenotypes respectively 

(Fig. 7b-c), as assessed by their ability to produce IFN ex vivo (Fig. 7c). No significant 

differences were evident in the proportion of lamina propria CD4+ TH17 cells (Fig. 7c) 

and TH17 generation ex vivo was not affected by PTPN2-deficiency (Fig. S4a). 

Similarly, intraepithelial and lamina propria TCR+ T cells in the colons of Lck-

Cre;Ptpn2fl/fl.NOD mice were not altered (Fig. S4b). These results are consistent with 

T cell PTPN2 deficiency in NOD mice driving the development of not only type 1 

diabetes, but also other autoimmune/inflammatory disorders.
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DISCUSSION

Many overlapping tolerance mechanisms exist that normally prevent self-

reactive B and T cells from attacking the body during homeostatic processes and 

antimicrobial defence.  Molecules that negatively regulate T cell and B cell signalling 

are fundamentally important for tuning T cell and B cell responses to prevent overt 

autoreactivity. PTPN2 negatively regulates TCR signalling to prevent overt 

autoreactivity to low-affinity self-peptide-MHC complexes (15; 18; 19). Here, we 

demonstrate that PTPN2 deficiency in T cells alone is sufficient to markedly exacerbate 

disease onset and severity of diabetes in autoimmune-prone NOD mice.

The development of type 1 diabetes in NOD mice is characterised by the 

infiltration of antigen-specific TH1-polarised CD4+ and cytotoxic CD8+ T cells into 

pancreatic islets, resulting in the lymphocyte driven destruction of insulin-producing -

cells (25; 47). In this study we found that the transfer of naive PTPN2-deficient CD8+ 

T cells alone into immunoreplete NOD hosts accelerated the onset and increased the 

incidence of type 1 diabetes. These findings are consistent with PTPN2-deficiency in 

CD8+ T cells enhancing TCR-instigated responses to self to promote autoimmunity. 

However, as the onset of diabetes in Lck-Cre;Ptpn2fl/fl.NOD mice exceeded that in 

which PTPN2-deficient CD8+ T cells alone had been transferred, it is probable that 

perturbations in other T cell subsets might also contribute to disease progression. We 

have shown previously that PTPN2-deficiency enhances the TCR-induced activation 

and differentiation of CD4+ T cells into effector/memory T cells (15; 19). Consistent 

with this, effector/memory CD4+ T cells were increased in the pancreatic draining 

lymph nodes and the pancreata of Lck-Cre;Ptpn2fl/fl.NOD mice. The recruitment and 

activation of CD4+ T cells can contribute to the licencing and activation of CD8+ T 

cells. However, as PTPN2-deficiency in CD8+ T cells negates the need for CD4+ T cell 
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help during antigen cross-presentation and permits the helper-independent acquisition 

of cytotoxic activity to self-antigens (19), we surmise that other CD4+ T cell-dependent 

mechanisms may be more pertinent.

Spalinger et al (36) have reported that PTPN2 deficiency in CD4+ T cells can 

enhance TH1 polarisation, but impair Treg generation in dextran sodium sulfate or T-

cell transfer colitis models. Consistent with this we also noted an overt TH1 

polarisation in pre-diabetic Lck-Cre;Ptpn2fl/fl.NOD mice. Pioneering work by Katz et 

al. (35) has shown that TH1 cells, but not TH2 cells are required for autoimmune diabetes, 

whereas a large number of studies have defined the importance of TH1 cell signature 

cytokine in promoting the development of insulitis and type 1 diabetes in NOD mice 

(48). Therefore, the enhanced TH1 polarisation in Lck-Cre;Ptpn2fl/fl.NOD mice is likely 

to be an important contributor to the accelerated onset of type 1 diabetes. However, in 

contrast to the findings of Spalinger et al. (36) we found that thymic Tregs and effector-

like Tregs in the pancreata and draining lymph nodes in Lck-Cre;Ptpn2fl/fl.NOD mice 

were increased, rather than decreased. Consistent with this, previous studies have 

shown that PTPN2 dephosphorylates JAK-1/3 and STAT-5 and attenuates IL-2-

induced STAT-5 signalling in thymocytes to suppress the generation of FoxP3+ Tregs 

(49). Moreover we have shown previously that Ptpn2 deletion in Lck-

Cre;Ptpn2fl/fl.C57BL/6 mice or Mx1-Cre;Ptpn2fl/fl.C57BL/6 mice in which Ptpn2 has 

been inducibly deleted increases the thymic generation of CD25+FoxP3+ Tregs and does 

not compromise Treg function ex vivo (15; 22). In this study we reaffirmed PTPN2-

deficiency does not compromise the suppressor properties of Tregs isolated from NOD 

mice. Therefore, defective Treg generation/function is unlikely to contribute to the 

loss of tolerance in Lck-Cre;Ptpn2fl/fl.NOD mice.

An additional mechanism by which PTPN2-deficient CD4+ T cells may 
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facilitate the development of type 1 diabetes is by promoting the role of B cells in 

progression towards invasive insulitis and diabetes.  Although B cells are not essential 

for the generation or effector function of islet-reactive T cells, they can contribute to 

the development of autoreactivity (41). Indeed anti-CD20-mediated B cell depletion 

(50), or the arrest of B cell maturation by disabling IgM production (30), protects 

against type 1 diabetes in NOD mice, whereas CD19 deletion on NOD B cells 

diminishes the expansion of  cell antigen-specific T cells (31). In humans, B cell-

depletion with anti-CD20 can delay disease progression in patients with newly 

diagnosed type 1 diabetes (51). In our studies we found a marked infiltration of 

B220+ B cells into the pancreatic islets of Lck-Cre;Ptpn2fl/fl.NOD mice. This was 

accompanied by a significant increase in the number of germinal centre B220+ B cells 

in lymphoid organs, including in the draining lymph nodes of the pancreas. The 

increase in germinal centre B cells was in turn accompanied by the expansion of CD4+ 

TFH cells in lymphoid organs. TFH cells are required for the formation of germinal 

centres, the promotion of B cell proliferation and the production of antigen-specific 

antibodies (42). In this regard, we identified an increased humoral immunity in Lck-

Cre;Ptpn2fl/fl.NOD mice that was reflected by an increase in circulating IgM and IgG 

and circulating anti-insulin autoantibodies. Recent gene expression profiling in 

DO11;RIP-mOVA mice (a model of type 1 diabetes) has identified a TFH cell gene 

signature in islet-specific T cells and has shown that transgenic DO11 T cells with a 

TFH signature from diabetic animals transfer diabetes to RIP-OVA recipients (26).  

Importantly, increased TFH cells are linked with the development of autoimmunity and 

TFH cells are over-represented in patients with type 1 diabetes (26; 52). The production 

of TFH cells and their homing to germinal centres is dependent on autocrine IL-21 that 

signals via JAK-1/3 and STAT-3 (53). STAT-3 is required for both TFH and germinal 

Page 23 of 54

For Peer Review Only

Diabetes



24

centre B cell differentiation and STAT-3 gain-of-function mutations that increase TFH 

cells and autoantibody production may be associated with type 1 diabetes in humans 

(42; 54). Moreover, along with Il2, Il21 is a candidate gene for the diabetes 

susceptibility locus Idd3 and IL-21 signaling is required for diabetes development in 

NOD mice (55). JAK-1/3 and STAT-3 are bona fide substrates of PTPN2 (21) and the 

inducible hematopoietic deletion of Ptpn2 in adult C57BL/6 mice is accompanied by 

heightened IL-21-induced STAT-3 signalling in TFH cells ex vivo (22). Therefore, in 

addition to lowering the threshold for TCR-instigated responses to self-antigen by 

enhancing LCK signalling, PTPN2-deficiency may drive STAT-3 signalling in CD4+ 

T cells to enhance the formation of TFH cells and the maturation of B cells to facilitate 

disease progression in Lck-Cre;Ptpn2fl/fl.NOD mice. 

Beyond spontaneously developing type 1 diabetes, NOD mice also exhibit T 

cell-mediated autoimmunity against other tissues, including the thyroid gland and 

especially the lacrimal and salivary glands, mimicking Sjogren’s syndrome (43; 44). 

Moreover, young NOD mice also develop low levels of colitis due to disturbed 

tolerance towards autologous commensal gut antigens (45). This is accompanied by an 

increase in activated CD4+ T cells and TH17 cells in the colonic lamina propria (45). In 

addition to promoting type 1 diabetes, T cell-specific PTPN2 deficiency in NOD mice 

was accompanied by marked lymphocytic infiltrates in salivary glands and the 

formation of what resembled ectopic lymphoid-like structures that included T cells and 

B cells.  Ectopic lymphoid-like structures develop at sites of inflammation, can form 

functional germinal centres and contribute to disease pathogenesis. Importantly ectopic 

lymphoid-like structures are seen in the salivary glands of patients with Sjogren’s 

syndrome (56).  Similarly, PTPN2 deficiency resulted in widespread immune infiltrates 

and the formation of lymphoid clusters, probably ectopic lymphoid-like structures that 
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are a pathologic hallmark of inflammatory bowel disease, including Crohn’s disease 

(57). Consistent with this, lymphocytic infiltrates in mesenteric lymph nodes included 

not only CD44hiCD62Llo CD4+ T cells, but also TFH cells and germinal centre B cells. 

In addition, there was a marked infiltration of activated/cytotoxic CD8+ T cells and 

CD4+ T cells with a predominant TH1 phenotype in the lamina propria of Lck-

Cre;Ptpn2fl/fl.NOD mice.  Although previous studies have found that in dextran sodium 

sulfate or T-cell transfer-induced colitis models PTPN2 deficiency resulted in the 

induction of both TH1 and TH17 cells and the impaired induction of Treg cells (36), we 

found that TH17 and Treg cells were unaltered in the colons of 5 week-old pre-diabetic 

mice and the generation of TH17 and Treg cells ex vivo was not affected by PTPN2-

deficiency. Nonetheless, we cannot exclude the possibility that such alterations may 

occur as disease progresses.

The findings of our study underscore the importance of PTPN2 in tuning T cell 

responses for the maintenance of T cell tolerance and prevention of autoimmunity. 

Moreover, as PTPN2 deficiency in T cells alone exacerbated the development of both 

type 1 diabetes and colitis in NOD mice, our results argue for perturbations in T cell 

function being causally involved in the early onset type 1 diabetes and Crohn’s 

associated with PTPN2 loss of function SNPs in humans. Importantly, the findings of 

this study suggest that beyond driving type 1 diabetes or Crohn’s disease, PTPN2 loss 

of function SNPs in humans might also contribute to the development of associated co-

morbidities.
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FIGURE LEGENDS

Figure 1. PTPN2-deficiency in T cells promotes the early onset of type I diabetes in 

Lck-Cre;Ptpn2fl/fl.NOD mice. a-b) Female and male Ptpn2fl/fl.NOD, Lck-

Cre;Ptpn2fl/fl.NOD,  Lck-Cre;Ptpn2fl/+.NOD and NOD/Lt mice were monitored for 

survival and diabetes incidence (urine glucose ≥ 55 mmol/l; blood glucose > 18 

mmol/l). c) Pancreata from 5 week old female prediabetic Ptpn2fl/fl.NOD and Lck-

Cre;Ptpn2fl/fl.NOD mice were fixed in formalin and processed for histological 

assessment (hematoxylin and eosin: H&E) and d) the severity of insulitis was 

determined histologically. e) Formalin fixed pancreata were processed for 

immunohistochemistry staining for B220 and CD3. f) Pancreata from 12-15 week old 

female prediabetic Ptpn2fl/fl.NOD and Lck-Cre;Ptpn2fl/+.NOD mice were fixed in 

formalin and processed for histological assessment and g) the severity of insulitis was 

determined histologically. Results in (a-e) are representative of two independent 

experiments. The percent of islets graded 0-4 and those with invasive insulitis (grades 

3 and 4) in (d) and (g) were determined for the indicated number of mice. Significant 

differences in invasive insulitis (means ± SEM) were determined using -tailed Mann-

Whitney U test (non-parametric); **p < 0.01. Statistical analyses on Kaplan-Meier 

estimates in (a-b) (*p < 0.05, **p < 0.01, ****p  0.0001) were performed using a Log-

rank (Mantel-Cox) test with one degree of freedom.

Figure 2. Increased effector/memory T cells and TH1 cells in Lck-Cre;Ptpn2fl/fl.NOD 

mice. Lymphocytes from 5 week old female prediabetic Ptpn2fl/fl.NOD and Lck-

Cre;Ptpn2fl/fl.NOD mice were harvested from a) spleen, b) inguinal lymph nodes (LN), 

c) pancreatic lymph nodes (panLN) and d-f) pancreata and a-d) stained for CD4, CD8, 

CD62L and CD44 or e) were stimulated with 20 ng/ml PMA/ 1 g/ml Ionomycin (4 h) 
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in the presence of Brefeldin A/Monensin, fixed and then permeabilised and stained for 

CD4, CD8, IL-4, IFN- and analysed by flow cytometry. f) Pancreatic lymphocytes 

were stained for CD8, CD62L, CD44, CD49d, KLRG1 and CD127 and analysed by 

flow cytometry. Representative contour-plots in (a, e, f) are shown. Quantified results 

are means ± SEM for the indicated number of mice and are representative of two 

independent experiments. In (a-f) significance was determined using 2-tailed Mann-

Whitney U Test; *p < 0.05, **p < 0.01, ***p < 0.001.

Figure 3. Adoptive transfer of PTPN2-deficient naive CD8+ T cells promotes type 1 

diabetes in NOD mice. a) 1x107 naïve CD8+ T cells (CD44loCD62Lhi) from 5 week 

old female prediabetic Ptpn2fl/fl.NOD and Lck-Cre;Ptpn2fl/fl.NOD mice were 

adoptively transferred into replete female NOD hosts, which were monitored for 

survival and diabetes incidence (urine glucose ≥55 mmol/l). b) Pancreata were fixed in 

formalin and processed for histological assessment and the severity of insulitis 

determined for the indicated number of mice. c) Pancreata from naïve CD8+ T cell 

recipient NOD mice from (b) were fixed in formalin and processed for histological 

assessment. 

Figure 4. Increased regulatory T cells in Lck-Cre;Ptpn2fl/fl.NOD mice. a) 

Thymocytes from 5 week old female prediabetic Ptpn2fl/fl.NOD and Lck-

Cre;Ptpn2fl/fl.NOD mice were stained for CD4, CD25 and intracellular FoxP3 and the 

numbers of CD4+FoxP3+CD25hi/lo T cells were quantified by flow cytometry. b) 

PanLN cells and pancreatic lymphocytes from 5 week old female prediabetic 

Ptpn2fl/fl.NOD and Lck-Cre;Ptpn2fl/fl.NOD mice were stained for CD4 and intracellular 

FoxP3 and the numbers of CD4+FoxP3+ T cells were quantified by flow cytometry. c-

Page 32 of 54

For Peer Review Only

Diabetes



33

d) PanLN cells and pancreatic lymphocytes from 5 week old female prediabetic 

Ptpn2fl/fl.NOD and Lck-Cre;Ptpn2fl/fl.NOD mice were stained for CD4, CD25, CD62L, 

CD44 and intracellular FoxP3 and the numbers of central-resting (CD44hiCD62Lhi) and 

effector-like (CD44hiCD62Llo) T cells were quantified by flow cytometry. e) Ratios of 

pancreatic CD4+FoxP3+ Tregs
 and CD4+CD44hiCD62Llo effector/memory (Eff/mem) T 

cells were determined by flow cytometry. f) FACS-purified naïve CD4+CD25lo lymph 

node T cells (5x104) from 5 week old female pre-diabetic NOD mice were stained with 

CTV (Cell Tracker Violet) and incubated with -CD3 (1 g/ml) in the presence of 

irradiated accessory splenocytes and FACS-purified CD4+CD25hi Tregs (5x104-

0.625x104) from 5 week old female pre-diabetic Ptpn2fl/fl.NOD and Lck-

Cre;Ptpn2fl/fl.NOD mice. After 72 h proliferation was assessed by flow cytometry 

monitoring for CTV dilution. Representative contour-plots in and representative 

histograms in are shown. Quantified results are means ± SEM for the indicated number 

of mice and are representative of two independent experiments. In (a-d) significance 

was determined using 2-tailed Mann-Whitney U Test; *p < 0.05; **p < 0.01.

Figure 5. Enhanced TFH and GC B cells in Lck-Cre;Ptpn2fl/fl.NOD mice. a-b) 

Lymphocytes were harvested from spleen, inguinal lymph nodes and panLNs from 5 

week old female prediabetic Ptpn2fl/fl.NOD and Lck-Cre;Ptpn2fl/fl.NOD mice were 

stained for a) CD4, CD44, CXCR5 and CD274 (PD-1) mice to identify 

CD4+CD44hiCXCR5hiPD-1hi follicular helper (Tfh) T cells or b) B220, GL-7 and CD95 

(Fas) to identify B220+GL-7hiFashi germinal centre (GC) B cells and analysed by flow 

cytometry. c) Serum immunoglobulins from 5 week old female prediabetic 

Ptpn2fl/fl.NOD and Lck-Cre;Ptpn2fl/fl.NOD mice and d) serum IAA (insulin 

autoantibodies) from 5 week old female prediabetic Ptpn2fl/fl.NOD and Lck-

Page 33 of 54

For Peer Review Only

Diabetes



34

Cre;Ptpn2fl/fl.NOD mice and 12 week old female prediabetic Ptpn2fl/fl.NOD and Lck-

Cre;Ptpn2fl/+.NOD mice were determined by ELISA. Representative contour-plots in 

(a, b) are shown. Quantified results are means ± SEM for the indicated number of mice 

and are representative of two independent experiments. In (a-d) significance was 

determined using 2-tailed Mann-Whitney U Test; **p < 0.01, ***p < 0.001.

Figure 6. Type 1 diabetes in Lck-Cre;Ptpn2fl/fl.NOD mice is accompanied by systemic 

inflammation and autoimmunity. a) Serum cytokines in 5 week old female prediabetic 

Ptpn2fl/fl.NOD and Lck-Cre;Ptpn2fl/fl.NOD mice were determined by flow cytometry 

using a BD Cytokine Bead Array (BD Biosciences). b) Salivary glands from 5 week 

old female prediabetic Ptpn2fl/fl.NOD and Lck-Cre;Ptpn2fl/fl.NOD mice were fixed in 

formalin and processed for histological assessment (H&E and immunohistochemistry 

staining for B220 and CD3). c) Colons from 5 week old female prediabetic 

Ptpn2fl/fl.NOD and Lck-Cre;Ptpn2fl/fl.NOD mice were assessed  for length and 

processed for histology. Quantified results are means ± SEM for the indicated number 

of mice and are representative of two independent experiments. In (a, c) significance 

was determined using 2-tailed Mann-Whitney U Test; **p < 0.01.

Figure 7. Colitis in Lck-Cre;Ptpn2fl/fl.NOD mice. Lymphocytes from 5 week old 

female prediabetic Ptpn2fl/fl.NOD and Lck-Cre;Ptpn2fl/fl.NOD mice harvested from a) 

mesenteric lymph nodes and b-c) lamina propia and were stained for a, b) CD4, CD8, 

CD62L and CD44 or a) CD4, CD44, CXCR5 and CD274 (PD-1) and B220, GL-7 and 

CD95 (Fas) and analysed by flow cytometry. c) Lamina propria lymphocytes were 

stimulated with 20 ng/ml PMA/1 g/ml Ionomycin (4 h) in the presence of Brefeldin 

A/Monensin, fixed and then permeabilised and stained for CD4, CD8, IFN- and IL-
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17A and analysed by flow cytometry. Representative contour-plots or dot-plots in (b, 

c) are shown. Quantified results are means ± SEM for the indicated number of mice 

and are representative of two independent experiments. In (a-c) significance was 

determined using 2-tailed Mann-Whitney U Test; *p < 0.05, **p < 0.01.
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SUPPLEMENTAL MATERIALS 

 

T cell-specific PTPN2-deficiency in NOD mice accelerates the development of type 1 

diabetes and autoimmune co-morbidities. 
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Generation of Lck-Cre;Ptpn2fl/fl.NOD mice 

 Lck-Cre;Ptpn2fl/fl.C57BL/6J mice (1; 2) were backcrossed onto the NOD/Lt genetic 

background (3) for 11 generations. DNA samples were extracted from tail biopsies and 

genotyped by standard PCR using oligos specific for the Ptpn2 floxed allele (forward primer: 

5’ GAA TTC CAG GAC AGC CAA GG 3’; reverse primer: 5’ CTG CTC TTA AAG GGG ATC 

AGG 3’) and the Cre transgene (forward primer: 5’ ATG TCC AAT TTA CTG ACC 3’; reverse 

primer: 5’ CGC CGC ATA ACC AGT GAA AC 3’). Amplified products were visualized by gel 

electrophoresis to distinguish the Ptpn2 floxed allele (size = 1300 bp) and wild-type allele 

(1100 bp) or the Lck-Cre transgene (350 bp). A genome-wide screen was performed by the 

Australian Genome Research Facility using the iPLEX GOLD chemistry and the Sequenom 

MassArray spectrometer for SNP genotyping. Data was analyzed using the GeneChip Targeted 

Genotyping System Software. 11th generation backcrossed NOD mice heterozygous for the 

Ptpn2 floxed allele and positive for the Lck-Cre transgene were of the NOD genotype across 

the whole genome except for those markers encompassing the C57BL/6-derived Ptpn2 floxed 

allele (chromosome 18) and the C57BL/6-derived Lck-Cre transgene (chromosome 15). 

 

Flow cytometry 

The following antibodies from BD Biosciences, eBioscience or BioLegend were used 

for flow cytometry: Phycoerythrin (PE) or peridinin-chlorophyll cyanine 5.5 (PerCP-Cy5.5)-

conjugated CD3 (145-2C11); PerCP-Cy5.5 or phycoerythrin-cyanine 7 (PE-Cy7)-conjugated 

CD4 (RM4-5); Pacific Blue-conjugated (PB) or allophycocyanin-cyanine 7 (APC-Cy7)-

conjugated CD8 (53-6.7); PE or APC-Cy7-conjugated CD25 (PC61); Fluorescein 

isothiocyanate (FITC) or V450-conjugated CD44 (IM7); APC-Cy7-conjugated CD45 (30-

F11); APC or APC-Cy7-conjugated CD45R (B220; RA3-6B2); biotin-conjugated CD49d 

(9C10; MFR4.B); PE–cyanine 5 (PE-Cy5)–conjugated TCR-δ (GL3); PE-Cy7 or APC-
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conjugated CD62L (MEL-14); PE-conjugated CD127 (SB/199); biotin-conjugated CD185 

(CXCR5; 2G8); PE-Cy7-conjugated CD279 (PD-1, RMP1-14); APC-conjugated KLRG1 

(2F1), PE or FITC-conjugated GL-7 (GL-7); PE-Cy7 or PE-conjugated IFNg (XMG1.2); PE 

or V421-conjugated IL-17A (TC11-18H10.1) FITC-conjugated IL-4 (11B11), V450-

conjugated FoxP3 (clone MF23). APC- or PE-Cy7-conjugated streptavidin were used to detect 

cells stained with biotinylated antibodies.  

 

Histological assessment of pancreas and salivary glands infiltrating lymphocytes 

To detect CD45R+ (B220+) B cells and CD3+ T cells, sections were deparaffinized and 

rehydrated.  Antigen retrieval was performed in citrate acid buffer (pH 6.0) at 95oC for 20 min. 

Sections were blocked with 20% (v/v) normal goat serum in 0.1 M phosphate buffer and 0.2% 

(v/v) Triton X-100 for 1 h at room temperature. Sections were incubated overnight at 4°C with 

a-CD3e (1:500; RAM 34 clone, 14-0341, eBioscience) or a-CD45R (1:400; RA3-6B2, BD 

Biosciences). CD45R+ (B220+) B cells and CD3+ T cells were visualized using rabbit or rat 

IgG VECTORSTAIN ABC Elite and DAB (3,3’-diaminobenzidine) Peroxidase Substrate Kits 

(Vector Laboratories) and counterstained with hematoxylin. Sections were visualized on a 

Zeiss Axioskop 2 mot plus microscope (Carl Zeiss) and Aperio imaging software.  

 

Isolation of intraepithelial and lamina propria lymphocytes 

For the isolation of intraepithelial (IEL) and lamina propria (4) lymphocytes colons 

excised from 5 week old prediabetic Lck-Cre;Ptpn2fl/fl.NOD and Ptpn2fl/fl.NOD  littermate 

control mice was cut into 0.5–1 cm pieces and incubated twice with Ca2+ and Mg2+-free HBSS 

supplemented with 5% (v/v) FBS, 2 mM EDTA, 0.15 mg/ml DTT (dithiothreitol) and 10mM 

HEPES shaking at 250 rpm for 15 min at 37°C to isolate intraepithelial lymphocytes. Intestine 

pieces were further digested in Ca2+ and Mg2+-containing HBSS supplemented with 5% (v/v) 
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FBS, 1.5 mg/ml Collagenase D, 0.02 mg/ml Dnase I shaking at 250 rpm for 1h at 37 °C. 

Lymphocytes from digested colon pieces were enriched using a two-layer Percoll gradient at 

40 and 80% (v/v) in DMEM supplemented with 10% (v/v) FBS.  

 

Antigen-induced arthritis (AIA) 

8-12 week-old C57BL/6J male mice were immunized subcutaneously with 100 µl mBSA 

(1 mg/ml; Sigma-Aldrich) emulsified in an equal volume of Complete Freund’s Adjuvant 

(CFA). Mice also received 160 ng of heat-inactivated Bordetella pertussis toxin as a single 

intraperitoneal injection (Sigma-Aldrich). One week later, mice received an identical 

subcutaneous booster immunization of methylated BSA (mBSA) in CFA. 21 days after the 

initial immunization, inflammatory arthritis was induced by intraarticular administration of 10 

µl mBSA (10 mg/ml) into the right knee joint. Arthritis development by measuring knee joint 

diameters using a POCO 2T micrometer (Kroeplin).  

 

Histological assessment of joint inflammation 

Knee joints were fixed in 10% (v/v) neutral buffered formal saline (Sigma-Aldrich) and 

decalcified in 10% (v/v) formic acid at 4°C before embedding in paraffin. Parasagittal serial 

sections (7 µm) were stained with haematoxylin (VWR International), fast green and safranin 

O (both from Sigma-Aldrich) for histological evaluation of joint pathology. Two observers 

blinded to the experimental groups scored the sections for sub-synovial inflammation (0 = 

normal to 5 = ablation of adipose tissue due to leukocyte infiltrate), synovial exudate (0 = 

normal to 3 = substantial number of cells with large fibrin deposits), synovial hyperplasia (0 = 

normal with 1-3 cells thick to 3 = over 3 layers thick with overgrowth onto joint surfaces with 

evidence of cartilage/bone erosion), and cartilage/bone erosion (0 = normal to 3 = destruction 

of a significant part of the bone). Joint histopathology in pre-diabetic 5 week old Lck-
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Cre;Ptpn2fl/fl.NOD and Ptpn2fl/fl.NOD littermate control mice was compared to C57BL/6J mice 

with antigen-induced arthritis.  

 

In vitro generation of TH1, Treg and TH17 cells 

FACS-purified naïve CD4+CD44loCD62LhiCD25lo lymph node T cells (5x104) isolated 

from 6-8 week old Lck-Cre;Ptpn2fl/fl and Ptpn2fl/fl littermate control mice were stimulated with 

plate-bound a-CD3e (1 µg/ml) in the presence of soluble a-CD28 (10 µg/ml) in complete T 

cell medium overnight in 96-well round bottom plates. For the generation of TH1 cells 10 µg/ml 

soluble a-IL-4 (clone BVD4-1D11, WEHI) was added and for the generation of TH17 cells 10 

µg/ml soluble a-IL-4 (clone BVD4-1D11, WEHI) and 10 µg/ml soluble a-IFNg (clone 

XMG1.2, WEHI) were added. Cells were harvested and transferred to new 96-well round 

bottom plates and incubated with IL-2 (10 ng/ml) alone or various concentrations of IL-12 to 

generate TH1 cells or TGFb (5 ng/ml) to generate Treg cells. To generate TH17 cells, cells were 

incubated in IL-6 (50 ng/ml) and TGFb (1 ng/ml) in the absence of IL-2. Cells were harvested 

at day 4 and 5 and processed for flow cytometry. 

 

Treg suppression assay 

FACS-purified naïve CD4+CD25lo responder T cells (5x104) were labelled with CTV (Cell 

Tracker Violet, Molecular Probes) and cultured for 72 h with X-ray irradiated (4,000 rad) 

splenocytes (5x104) and 1 µg/ml a-CD3e (145-2C11) in the presence of the indicated ratio of 

FACS-purified CD4+CD25hi suppressor T cells. 
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SUPPLEMENTARY FIGURE LEGENDS 

 

Supplementary figure 1. PTPN2 deficiency enhances the in vitro generation of TH1 cells. a) 

FACS-purified naïve CD4+CD44loCD62LhiCD25lo lymph node T cells from Ptpn2fl/fl and Lck-

Cre;Ptpn2fl/fl mice were cultured under TH1 polarising conditions in the presence of IL-2 (10 

ng/ml) and various concentrations of IL-12. At day 4 cells were harvested and stained for 

intracellular IFNg and the percentage of IFNg+ TH1 cells was determined by flow cytometry. 

b-c) FACS-purified naïve CD4+ CD44loCD62LhiCD25lo lymph node T cells from Ptpn2fl/fl and 

Lck-Cre;Ptpn2fl/fl mice were incubated with plate-bound a-CD3e (5 µg/ml)/CD28 (5 µg/ml) 

for 48 h and then stimulated with b) 50 U/ml IFNg or c) 10 ng/ml IL-12 for the indicated times 

and processed for immunoblotting. Quantified results are means ± SEM for the indicated 

number of mice and are representative of two independent experiments. Significance was 

determined using Student’s T-test; *p < 0.05, **p < 0.01, ***p < 0.001. 

 

Supplementary figure 2. Regulatory T cell development in vivo and ex vivo. a) Inguinal 

lymph node cells and splenocytes from 5 week old female prediabetic Ptpn2fl/fl.NOD and Lck-

Cre;Ptpn2fl/fl.NOD mice were stained for CD4, CD25, CD62L, CD44 and intracellular FoxP3 
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 7 

and the numbers of central-resting (CD44hiCD62Lhi), and effector-like (CD44hiCD62Llo) Treg 

cells were quantified by flow cytometry. b) FACS-purified naïve CD4+CD44loCD62LhiCD25lo 

lymph node T cells were cultured under Treg polarising conditions in the presence of IL-2 (10 

ng/ml) and TGFb (5 ng/ml). At day 4 and 5 cells were harvested and stained for CD25 and 

intracellular FoxP3 and the percentage of FoxP3+CD25hi Tregs were determined by flow 

cytometry. Quantified results are means ± SEM for the indicated number of mice and are 

representative of two independent experiments.  

 

Supplementary figure 3. Histological assessment of liver, lung, kidney and knee-joints. a) 

Liver, lung and kidneys from 5 week old female prediabetic Ptpn2fl/fl.NOD and Lck-

Cre;Ptpn2fl/fl.NOD mice were fixed in formalin and processed for histological assessment 

(hematoxylin and eosin: H&E). b) Knee joints from 5 week old female prediabetic 

Ptpn2fl/fl.NOD and Lck-Cre;Ptpn2fl/fl.NOD mice fixed in formalin and decalcified in formic 

acid. Parasagittal serial sections were processed for histological assessment (H&E, fast green 

and safranin O). Joint histopathology in Lck-Cre;Ptpn2fl/fl and Ptpn2fl/fl mice was compared to 

C57Bl/6 mice with antigen-induced arthritis (AIA). 

 

Supplementary figure 4. Colon resident intraepithelial and lamina propria	gd-T cells in Lck-

Cre;Ptpn2fl/fl.NOD mice. a) FACS-purified naïve CD4+CD44loCD62LhiCD25lo lymph node T 

cells from Ptpn2fl/fl and Lck-Cre;Ptpn2fl/fl mice were cultured under TH1 polarising conditions 

in the presence of IL-6 (50 ng/ml) and TGFb (1 ng/ml). At day 4 cells were harvested and 

stained for intracellular IL-17A and the percentage of IL-17A+ TH17 cells was determined by 

flow cytometry. b) Lymphocytes from were isolated from the colon of 5 week old female 

prediabetic Ptpn2fl/fl.NOD and Lck-Cre;Ptpn2fl/fl.NOD mice and  intraepithelial versus lamina 

propria lymphocytes were stained for CD3 and TCR-d and analysed by flow cytometry.	
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Representative contour-plots are shown. Quantified results are means ± SEM for the indicated 

number of mice and are representative of two independent experiments.  

 

Page 50 of 54

For Peer Review Only

Diabetes



In vitro generated TH1

Supplementary figure 1

0

20

40

60

80

100

1 0.1 0.01 0.001
IL-12 (ng/ml)

***

**

*** *%
 IF

N
g

Ptpn2fl/fl

n=3

Lck-Cre; 
Ptpn2fl/fl

n=3 

0

p-STAT1 
(pY701)

STAT1

GAPDH

C
D

4+
ac

tiv
at

ed
 L

N
 T

 c
el

ls

Time 
(min):

Lck-Cre;Ptpn2fl/flPtpn2fl/fl

0 5 15 30 0 5 15 30

+IFNg +IFNg

75 kDa

75 kDa

37 kDa

Time 
(min):

Lck-Cre;Ptpn2fl/flPtpn2fl/fl

0 5 15 30 0 5 15 30

+IL-12 +IL-12

p-STAT4 
(pY693)

Tubulin

C
D

4+
ac

tiv
at

ed
 

LN
 T

 c
el

ls

75 kDa

50kDa

A B

C

Page 51 of 54

For Peer Review Only

Diabetes



C
el

l n
um

be
r 

(x
10

5 )

Inguinal lymph node

CD4+CD25hi 

FoxP3+ Treg cells

C
el

l n
um

be
r 

(x
10

4 )

0

5

10

15

20

0

1

2

3

C
el

l n
um

be
r 

(x
10

5 )

C
el

l n
um

be
r 

(x
10

5 )
CD4+FoxP3+

Treg cells

Spleen

CD4+CD25hi 

FoxP3+ Treg cells
CD4+FoxP3+

Treg cells
Ptpn2fl/fl

NOD
n=5
Lck-Cre; 
Ptpn2fl/fl

NOD
n=5 

Ptpn2fl/fl

NOD 
n=5
Lck-Cre; 
Ptpn2fl/fl

NOD
n=5 

Supplementary figure 2

0

4

8

12

Central-
resting

Effector-
like 

0

2

4

6

8

Central-
resting

Effector-
like 

In vitro generated Tregs

0

20

40

60

80

100

%
F

ox
P

3+
C

D
25

hi

day 4 day 5
Tregs

Ptpn2fl/fl

n=3-4

Lck-Cre; 
Ptpn2fl/fl

n=3-4 

A

B

Page 52 of 54

For Peer Review Only

Diabetes



Ptpn2fl/fl.NOD Lck-Cre;Ptpn2fl/fl.NOD

H&E

LI
V

E
R

LU
N

G
K

ID
N

E
Y

Supplementary figure 3

A

B

F T

Lck-Cre;Ptpn2fl/fl.NODPtpn2fl/fl.NOD

F T

C57BL/6 AIA

F T

F

T

F

T

C57BL/6 AIA

F

T

Lck-Cre;Ptpn2fl/fl.NODPtpn2fl/fl.NOD

Page 53 of 54

For Peer Review Only

Diabetes



Supplementary figure 4
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