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Multiscale patterns of rarity in fungi, inferred from fruiting records 3 

Running title: Rarity in European fungi 4 

 5 

Abstract 6 

Aim: Characterising the distribution and abundance of organisms is a fundamental part of 7 

understanding their population dynamics and development of conservation policies for rare 8 

species.  It is unknown whether fungi show similar trends to other organisms in their 9 

macroecological patterns of abundance and spatial distribution.  Here, we investigated fungal 10 

abundance-occupancy relationships to determine whether fungi that are common at a local 11 

scale tend to be more widely distributed. 12 

Location: UK and Switzerland 13 

Time period:  1950 - 2014 14 

Major taxa studied:  Fungi 15 

Methods:  We used a local dataset of fruiting records of 2,319 species in the UK, 16 

accumulated over 65 years, and one from Switzerland of 319 species, spanning 32 years.  17 

Using record number and occurrence as proxies for abundance, in each case we examined the 18 

form of species and rank abundance distributions, and compared these with distributions of 19 

records in the national databases over the same time.  We plotted relationships of local 20 

number of records and regional occupancy, and calculated multi-scale indices of rarity for all 21 

fungal species. 22 
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Results:  There was a remarkable congruence in the patterns found in the UK and 23 

Switzerland.  Regional assemblages are characterised by many rare species, while few are 24 

common (fitting the lognormal distribution).  However, at local scales, distributions best 25 

fitted a power law, suggesting that habitat availability or dispersal processes may play 26 

important roles.  Fungi with high local record number are densely distributed nationally, but 27 

unlike other organisms, locally rare fungi may also be densely distributed at a wider scale. 28 

Main conclusions:  Fungal fruiting records can be used to infer patterns in fungal 29 

distributions.   Abundances in local assemblages may be determined by the position of the 30 

assemblage in the overall geographic range of each species, dispersal ability and 31 

environmental filtering.  We advocate the use of multiscale approaches to rarity in future 32 

fungal sampling programmes, to provide more reliable information for future conservation 33 

policy decisions and fungal biogeography. 34 

 35 

KEYWORDS  36 

abundance-occupancy, conservation, lognormal, models, mushrooms, rank abundance, fruit 37 

bodies 38 

 39 

1 | INTRODUCTION 40 

Understanding why some species are rarer than others is a fundamental part of community 41 

ecology with ramifications in conservation biology, including the management of habitats 42 

and natural resources.  However, ‘rarity’ itself is a relative concept, in which the abundance 43 

or extent of occurrence of a species is defined in relation to that of others (Gaston, 1994).  44 

Furthermore, the rarity of a species depends upon the ecological scale at which the taxon is 45 

recorded; species may be considered rare at one scale, but common at another (Hartley & 46 
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Kunin, 2003).  Thus, rare species should never be considered in isolation, but as important 47 

components of assemblages and ‘hotspots’ of species diversity (Heegaard, Gjerde, & 48 

Saetersdal, 2013). 49 

The species abundance distribution (SAD) is one of the simplest ways of describing the 50 

pattern of relative abundance across the species detected in an assemblage.  Fisher, Corbet, & 51 

Williams (1943) realised that histograms depicting the frequencies of species abundance 52 

show a hollow curve, in which many species consist of a few individuals, while only a few 53 

species are abundant.  This pattern appears to be universal and thus, in alternative parlance, 54 

most species are rare, while only a few are common (McGill et al., 2007).  A useful 55 

complementary method of describing community assemblies is the rank abundance 56 

distribution (RAD), in which species’ abundance is plotted against their rank in abundance 57 

(Foster & Dunstan, 2010).  RADs can be informative, as they display all the data rather than 58 

grouping abundance into ‘bins’, resulting in the masking of some information (McGill et al., 59 

2007). 60 

A large body of work exists on fitting models to the hollow curve.  However, few models 61 

are ever rejected since their prediction ends with stating the nature of the curve, and little 62 

attempt has been made to go beyond this and provide explanations for it (McGill et al., 2007).  63 

Nevertheless, SADs remain one of the most important tools for describing and understanding 64 

community assembly and its management.  In particular, they can be useful in informing 65 

conservation decisions and determining extinction risk (Matthews & Whittaker, 2015). 66 

It is evident that while SADs have been produced for virtually all groups of organisms, 67 

their use in fungal ecology is extremely restricted.  In a meta-analysis of SADs, only two (of 68 

558 distributions) were of fungi, both involving lichens (Ulrich, Ollik, & Ugland, 2010). 69 

Lichenised fungi, which are macroscopic organisms, are often treated like plants in ecological 70 

studies, but non-lichenised fungi are often studied completely separately. This is at least 71 
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partly because non-lichenised fungi are invisible for most of their lives as mycelium within 72 

soil, wood or some other solid substrate, making enumeration almost impossible (Watkinson, 73 

Boddy, & Money, 2015).  However, Ascomycetes and Basidiomycetes periodically produce 74 

macroscopic fruit bodies which can be enumerated. 75 

The development of molecular techniques to detect hidden mycelia is revolutionizing the 76 

study of fungal communities, and has provided indications of patterns in global fungal 77 

biogeography (Tedersoo et al., 2014).  However, SADs and RADs depend on recording the 78 

numbers of individuals of each species, which is still not practicable on a large scale using 79 

molecular approaches. 80 

Based on the meta-analysis of macro-organisms other than fungi, Ulrich et al. (2010) 81 

concluded that fully-censused assemblages tend to show SADs that are best described by a 82 

lognormal distribution, while assemblages that are incompletely sampled tend to show 83 

distributions that are best described by the log series model or a type of power law.  These 84 

latter distributions still show extreme skew (very many rare species), even when plotted on a 85 

log scale. More recently, Dumbrell, Nelson, Helgason, Dytham, & Fitter (2010a) examined 86 

the abundance of arbuscular mycorrhizal fungi (AMF) in 33 different communities, testing 87 

three different models: the lognormal fitted in 73% of cases, while 27% were described by 88 

the broken stick model and none by the geometric series.  Unterseher et al. (2011) also found 89 

that the lognormal model best described AMF abundance, while Dumbrell et al. (2010b) 90 

showed that the lognormal also described AMF abundance well, but the best model fit was a 91 

neutral model, the zero sum multinomial.  This led to the conclusion that niche differentiation 92 

processes are important in structuring the community, as well as neutral processes such as 93 

dispersal limitation.  These findings contrast with small-scale studies of fungi on leaves, 94 

where log series models (indicating incomplete sampling) predominate (Thomas & Shattock, 95 
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1986; Unterseher et al., 2011), though neutral models have also provided a good fit (Feinstein 96 

& Blackwood, 2012).  97 

While the majority of fungal studies have taken place at localized scales, those that used 98 

broader scales also showed variation in best model fits, either with lognormal or log series 99 

(Nielsen, Kjoller, Bruun, Schnoor, & Rosendahl, 2016) or neutral models (Gumiere, Durrer, 100 

Bohannan, & Andreote, 2016).  Thus, it is unclear whether fungi do or do not show similar 101 

patterns of abundance to other organisms, beyond the fact that most species seem to be rare 102 

and few are common (Nemergut et al., 2013).  In particular, as rarity is scale-dependent, a 103 

true depiction can only be achieved by multiscale comparisons (Leroy, Canard, & Ysnel, 104 

2013), yet such an approach has never been applied to fungi. 105 

The interrelationship of rarity and scale is formalized in another long established pattern in 106 

macroecology: the abundance-occupancy relation (i.e. the relation between the local 107 

abundance of species and the size of their ranges within a region).  A large body of literature, 108 

both theoretical and empirical, has shown that this is another universal and positive relation; 109 

species that are locally abundant tend to occupy wider ranges, i.e. they are more widespread 110 

(Gaston et al., 2000; Borregaard & Rahbek, 2010).  However, while a number of 111 

comprehensive reviews list the wide variety of taxonomic groups that show such 112 

relationships (e.g. Holt, Gaston, & He, 2002), fungi are absent from all such analyses.  It is 113 

intriguing that the closest approach is that of Roney, Kuparinen & Hutchings (2015), in 114 

which lichens were the only taxonomic group in Canada not to show a positive relation, 115 

though sample size (n=15 species) was small. 116 

Abundance-occupancy relationships are not just important in understanding the structuring 117 

forces in local communities, but also for their role in species conservation and habitat 118 

management (McGeoch & Latombe, 2016).  These relationships, in addition to analysis of 119 

SADs and RADs, could provide essential tools for characterization of rare fungi and their 120 
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conservation, but to date, such an approach is lacking.  In general, for the very same reasons 121 

of crypsis and sampling outlined above, fungi have lagged behind most taxonomic groups in 122 

assessments of rarity and the construction of Red Lists for their protection (Dahlberg, 123 

Genney, & Heilmann-Clausen, 2010).  However, many species of fungi produce fruiting 124 

structures (sporocarps) that can be counted, thereby providing a good proxy for individual 125 

abundance, and from which designations of ‘common’ or ‘rare’ can be inferred (Dahlberg & 126 

Mueller, 2011).  While assigning fruit bodies to different individuals may be problematic at 127 

very small scales (< 10 m, Dahlberg & Mueller, 2011), records of occurrence across 128 

geographic ranges, calculated as the ‘area of occupancy’ (Gaston, 1994), can provide data 129 

that are of similar quality to other taxonomic groups (Truong et al., 2017).  The limiting 130 

factor is then the distribution and knowledge of recorders, but coordinated large scale surveys 131 

have enormous untapped potential to provide information on fungal species abundance and 132 

distributions which we currently lack (Molina, Horton, Trappe, & Marcot, 2011; Andrew et 133 

al., 2017).  Indeed, surveys of fruit bodies are an accepted method for biodiversity 134 

assessments, and often reveal species which are undetected by sequencing methods (Runnel, 135 

Tamm, & Lohmus, 2015).  Furthermore, while offering great promise for the future, 136 

molecular methods cannot currently be used to perform macroecological studies of the types 137 

reported here.  This is because of the problems that exist within sequence databases, due to 138 

the high number of unnamed and incorrectly named species, plus primer and other 139 

methodological biases which are particularly acute for soil-dwelling species (Khomich et al., 140 

2018). 141 

Coordinated databases of the occurrence of fungal fruit bodies have been used successfully 142 

to document recent changes in the phenology and spatial distributions of fungi, in response to 143 

changing climate (Boddy et al., 2014; Gange et al., 2018).  Similar such databases and 144 

museum collections have been used in a wide variety of plant and animal studies to examine 145 
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distributions of species abundances and ranges, to show changes over time, and ultimately to 146 

inform conservation policy (Pyke & Ehrlich, 2010).  However, with the exception of a couple 147 

of notable animal and plant pathogens, fungi are again absent from such analyses. 148 

Here, we use two databases of fungal fruiting records, including lichenised fungi, 149 

assembled in the UK over the last 65 years: (1) a local data set comprising haphazard 150 

collections, with at least weekly frequency from 1950 to 2014, covering an area of 151 

approximately 3 000 km2, part of which was originally used to document phenological 152 

changes (Gange, Gange, Sparks, & Boddy, 2007); and (2) data for the whole of the UK, taken 153 

from The Fungal Records Database of Britain and Ireland (FRDBI; www.fieldmycology.net).  154 

We also use two data sets from Switzerland; a local study in five plots, each of 300 m2 (three 155 

10 x 10 m) plots at the La Chanéaz Forest Reserve, comprising weekly fruit body counts 156 

from May to December from 1975-2006 (described in Andrew et al. 2018) and data for the 157 

whole of Switzerland over the same period (www.swissfungi.ch).  A part (28 y) of the local 158 

data set was used in a general analysis of varying bin sizes and species abundance 159 

distributions (Straatsma & Egli, 2012).  To our knowledge, no other local data sets in the 160 

world are as comprehensive in their extent and time span as these (Andrew et al. 2017). 161 

Our first objective was to examine the SAD and RAD from each of these datasets, using 162 

fungal records to calculate abundance on the basis of both the number of records and the 163 

occupancy.  Our hypothesis was that national scale data would show the classic lognormal 164 

distribution, indicating ‘complete sampling’, while the local sets may show different (log 165 

series or power law) patterns, suggesting dispersal limitation or niche-related processes 166 

(Ulrich et al., 2010).  Our second objective was to examine the abundance-occupancy 167 

relationships for these fungi, and we hypothesised that these would be positive, given that 168 

other microbial abundance patterns such as species-area relationships seem to mirror those of 169 

other organisms (Nemergut et al., 2013).  Finally, we examined the multiscale patterns of 170 

http://www.fieldmycology.net/
http://www.swissfungi.ch/
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rarity in fungi in the UK and Switzerland, using the approach of Leroy et al. (2013).  In 171 

general, species that are rare at a local scale also tend to be rare at a wider, regional scale 172 

(Freckleton, Gill, Noble & Watkinson, 2005).  If the long-established assertion that 173 

‘everything is everywhere, the environment selects’ (O’Malley, 2008) is correct, then fungi 174 

should follow a similar pattern.  However, fungi are often dispersal-limited (Molina et al., 175 

2011; Peay, Kennedy & Talbot, 2016), so the relation may be far less obvious. 176 

 177 

2  | METHODS 178 

2.1 | Composition of the data sets 179 

The UK local data set consists of 62,087 occurrence records of 2,319 fungal species, 180 

spanning the years 1950 – 2014 (inclusive).  A total of 310 observers contributed records 181 

from 1,558 different localities, all within a 30 km radius of Salisbury, Wiltshire, UK (51.068° 182 

N, 1.795° W), covering an area of 2,828 km2.  All records and identifications were confirmed 183 

by the late E.G. Gange, with problematic species being confirmed by Royal Botanic Gardens, 184 

Kew.  Localities were visited on a haphazard basis, but each was visited at least once per 185 

year.  Each record was referenced by a six figure Ordnance Survey grid reference 186 

(https://www.ordnancesurvey.co.uk/), allowing occupancy to be calculated at a resolution of 187 

1 km x 1 km squares (out of a total of 614).  Further details on record assembly are provided 188 

in Gange et al. (2007).  ‘Abundance’ was defined as the total number of records of 189 

occurrence (i.e. not the total number of fruit bodies) for each species, and area of occupancy 190 

as the total number of 1 km x 1 km squares in which each species was recorded, so as to be 191 

comparable with similar previous analyses (Gaston et al., 2000). 192 

The full UK national data set spans a wider time scale and also contains records for the 193 

island of Ireland.  These data are from multiple sources, contributed by individuals, foray 194 
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lists, scientific societies, herbaria records, and publications of the British Mycological 195 

Society.  We excluded records collected: (1) before 1950, (2) from outside mainland Britain, 196 

and (3) which were missing location data, leaving 1,361,069 separate data points for the 197 

2,319 species from 55,882 localities over an area of approximately 209,330 km2.  These 198 

records do not include the local data (above), which have since been incorporated into the 199 

national set.  Each record was referenced at the resolution of 10 km x 10 km; the standard 200 

grid system in the UK.  As above, ‘abundance’ was measured as the total number of records 201 

for each species, while occupancy was the number of 10 km x 10 km squares in which each 202 

species was found.  A complete list of all species used is given in Supplementary Table S1. 203 

Sampling for the Swiss local data set is described in full in Heegaard et al. (2017) and 204 

Andrew et al. (2018), and full species lists are given in the supplementary material of Andrew 205 

et al. (2018) and Table S2.  Weekly fruit body counts took place from 1975 – 2006, but the 206 

10 x 10m plots were only divided into 1 x 1 m contiguous sub plots in 1992.  Thus, the 207 

description of occupancy is not relevant in this data set, as the scale is too small and the data 208 

consists of the total number of records of 319 separate species.  A subset of the complete 209 

Swiss national dataset was used, to include the same 319 species over the same time span as 210 

the local data, producing 97,358 separate records covering an area of 41,285 km2.  211 

Occupancy at the 10 km x 10 km scale was defined in the same way, using grid references as 212 

above. 213 

 214 

2.1 | Data analyses 215 

2.1.1 | Local dataset species accumulation curves 216 

We first examined the nature of the local data sets by calculating species accumulation curves 217 

and estimating the species pool which may exist if all possible species were found.  The latter 218 
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was examined with three methods: Chao 2, first order jackknife, and Bootstrap.  These 219 

analyses were performed with the package ‘vegan’ in R 3.4.1 (Oksanen et al., 2017; R Core 220 

Team, 2017). 221 

 222 

2.1.2 | Species abundance distributions 223 

All species abundance distributions were fitted using the R package ‘sads’ (Prado, Miranda, 224 

& Chalom, 2016) which uses maximum likelihood methods to fit and compare different 225 

models.  These were the gamma, lognormal, and Weibull (the three most commonly used 226 

continuous distributions), plus the geometric and the negative binomial models.  These were 227 

fitted with zero truncation, since species with zero records were unknown.  We also fitted 228 

Fisher’s log series, and three associated power law functions, Pareto, power, and power bend 229 

(implementation of the latter two not including zeroes); the log series being a special case of 230 

the power bend.  We also fitted MacArthur’s broken stick model and the Poisson lognormal 231 

model; the latter describes species’ abundances in a Poisson sample from an underlying log 232 

normal assemblage.  Finally, we examined the fit of two neutral models, the metacommunity 233 

Zero-sum multinomial distribution, which is thought to describe a community under random 234 

drift, and the Volkov model, thought to describe a community under neutral drift, with 235 

immigration.  References to the use of all models are provided in Prado et al. (2016). 236 

 237 

2.1.3 | Rank abundance distributions 238 

Rank abundance distributions were fitted using the ‘radfit’ command in the R package 239 

‘vegan’ in a similar manner.  In this case, we used the niche preemption model (also termed 240 

the Geometric Series), lognormal, broken stick, and two discrete power law distributions: the 241 

Zipf and Zipf-Mandelbrot.  In all cases, Akaike Information Criteria (AIC) values were 242 
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computed to determine which model(s) provided the best fit to the data (Burnham & 243 

Anderson, 2002).  Those produced for each model were compared using the delta AIC (Δi). A 244 

Δi value < 2 indicates interaction between models, values 3 < Δi < 9 indicate little interaction 245 

and Δi > 10 no interaction (Burnham & Anderson, 2004).  246 

 247 

2.1.4 | Relationships between abundance at local and national scales 248 

Relationships between the number of records at local and national scales were examined with 249 

a Generalised Additive Model (GAM) procedure, using the ‘mgcv’ package in R.  To 250 

examine abundance-occupancy relationships, we followed Holt & Gaston (2003) and 251 

Zuckerberg, Porter & Corwin (2009) in using the logit transformation for occupancy data and 252 

the log transformation for the number of records, expressed as the total number for each 253 

species over the 65 and 32 year periods.  As Zuckerberg et al. (2009) comment, phylogenetic 254 

approaches are rarely required in abundance occupancy analyses, since closely related species 255 

can vary greatly in their distributions and population sizes.  As a check, we examined some of 256 

the larger genera represented in the UK databases, Cortinarius (88 species), Russula (72 257 

species), Mycena (59 species), Lactarius (44 species), and Entoloma (44 species).  For these 258 

genera, the record data at the local scale showed huge variation, with a ratio between the most 259 

and least numerous species of 34, 100, 104, 64, and 36 times respectively.  Thus, even at the 260 

local scale, the variation in the number of records of species within genera is so great that 261 

controlling for phylogenetic relatedness is unwarranted, and we conducted an ordinary least 262 

squares regression procedure, with occupancy as the dependent variable (Holt & Gaston, 263 

2003). 264 

 265 

2.1.5 | Multiscale rarity 266 
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If non-linear relationships between abundance at different scales are found, then a multiscale 267 

approach is justified (Leroy et al., 2013).  As this was so, we calculated two-scale (local and 268 

national) rarity weights for all species in the UK and Switzerland, using the R package 269 

‘rarity’, (Leroy et al., 2013).  These were scaled between 0 and 1, with a greater degree of 270 

rarity being indicated by a higher value of the index.  Calculation of these weights involves 271 

an appropriate weighting method and the use of a rarity cut-off value.  To achieve this, we 272 

used Gaston’s quartile definition - that rare species are those 25% with the lowest number of 273 

records or occurrence (Gaston, 1994; Leroy et al., 2013). 274 

 275 

3 | RESULTS 276 

 277 

3.1 | Characteristics of the local data sets 278 

There was no trend over time in the number of collections, or forays per year in the UK 279 

(Figure 1a, F1,63 = 3.51, P > 0.05).  It should be noted that databases of this type do not record 280 

forays when no species were found.  Low numbers in years such as 1976, 1990 and 2011 281 

represent poor years for fruiting, caused by lack of rainfall. 282 

The total number of species (the ‘species pool’) estimated from the UK species 283 

accumulation curve (Figure 1b) varied depending on the method, with the Chao estimating 284 

3,526 ± 96.9, jackknife 3,313 ± 141.4, and bootstrap 2,852 ± 80.8.  Therefore, these values 285 

suggested that between 68% and 84% of the total ‘available’ species were detected in the 65 286 

years of recording. 287 

The total species pool estimates for the Swiss local data were more consistent, with the 288 

Chao estimating 388.75 ± 21.8, jackknife 388.75 ± 17.4 and bootstrap 351.19 ± 10.7.  These 289 
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values suggested that 82 – 90% of the total species were recorded in the 32 years of sampling.  290 

The species accumulation curve is shown in Figure 1c. 291 

 292 

3.2 | Species and rank abundance distributions 293 

The species abundance distribution for UK national scale records was best fitted by the 294 

lognormal distribution (AIC = 33 305.1) (Figure 2a).  No other models provided a good fit to 295 

the data (Supplementary Table S3), with the next best fit provided by the Poisson lognormal 296 

(Δi = 18.0, P < 0.001).  There was no interaction between models (18 < Δi < 3592).  The SAD 297 

for national scale occupancy data was also fitted best by the lognormal (AIC = 29 093.6) 298 

(Figure 2b), this being better than the Weibull model (Δi = 9.2, P < 0.01).  The rank 299 

abundance distribution for national record number was also best fitted by the lognormal (AIC 300 

= 84 952) (Figure 2c), but that for occupancy data was best fitted by the Preemption model 301 

(Geometric series) (AIC = 24 202) (Figure 2d). With both RADs, fitting of the Zipf-302 

Mandelbrot failed, as its estimation is difficult (Oksanen et al., 2017). 303 

The Swiss national record number data was also best fitted by the lognormal distribution 304 

(AIC = 3997.6) though the Weibull and Broken stick also provided a good fit (Table S3, 305 

Figure S1).  The SAD for Swiss national scale occupancy data was also best fitted by the 306 

lognormal (AIC = 3248.4).  The rank abundance distribution for Swiss national record data 307 

was best fitted by the Broken stick, while occupancy data were best fitted by the Geometric 308 

series (Table S3). 309 

The species abundance distribution for UK local record numbers was best fitted by the 310 

Pareto distribution (AIC = 1 5594.8) (Figure 3a), as was that for the Swiss local record 311 

numbers (Table S3, Figure S1).  Meanwhile, the abundance distribution for UK local 312 

occupancy was also best fitted by the Pareto distribution (AIC = 13367.4) (Figure 3b) (Table 313 
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S3).  In both cases, all other models differed from the Pareto (P < 0.001).  Rank abundance 314 

fits for UK local data followed an identical pattern to national data (Table S3), fitting a 315 

lognormal and Geometric series respectively (Figure 3c,d).  Swiss local record data differed 316 

from the national data, wherein the lognormal provided the best fit (Table S3). 317 

3.3 | Abundance-occupancy relationships 318 

Species with the greatest number of records at the UK national scale also had the greatest 319 

number at the local scale (Figure 4a).  These data were best fitted by a non-linear model (R2 = 320 

58.8%, P < 0.001), rather than a linear relation (R2 = 47%), because species with very few 321 

records (i.e. were ‘rare’) locally may have few or very many records nationally, illustrated by 322 

the flat bottom to the graph.  However, there appeared to be a tipping point, with very 323 

common species (more than 1,000 records nationally) showing a linear relation with the local 324 

number of records.  A similar relation was seen for occupancy data; species that are most 325 

densely distributed at the national scale are also so at the local scale (Figure 4b), but locally 326 

sparely distributed species may be sparsely or densely distributed nationally.  A non-linear 327 

relation (R2 = 57%, P < 0.001) was also seen in these data, rather than a linear one (R2 = 328 

44.4%), with a tipping point of occurrence in about 200 of the national 10 km x 10 km 329 

squares. 330 

Swiss record data followed a very similar pattern (Figure S2) and were best fitted by a 331 

non-linear model (R2 = 21.1%, P < 0.001), rather than a linear relation (R2 = 15.1%).  There 332 

again appeared to be a tipping pint, with very common species (more than 350 records 333 

nationally) showing a linear relation with local record number (Figure S2). 334 

The abundance-occupancy relationships showed a remarkable similarity in the two 335 

countries (Figure 5).  Although both relationships are significant, they are relatively weak 336 

(UK: R2 = 43.9%; Swiss: R2 = 13.8%), as species that are rare (least abundant) on a local 337 
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scale can be sparsely or densely distributed on a national scale.  In contrast, species with high 338 

local record numbers tend to be densely distributed nationally.  Species with high local record 339 

numbers but sparse distributions nationally are absent in both data sets. 340 

 341 

3.3 | Multiscale indices of rarity 342 

In the UK, most, but not all, species that are rare on a national scale are also rare on a local 343 

scale (R2 = 65.2%, P < 0.001) (Figure 6a), and the significant relation is clearly driven by the 344 

preponderance of data with high rarity indices.  Likewise, those which are sparsely 345 

distributed nationally also tend to be sparsely distributed on a local scale (Figure 6b), though 346 

the relation is considerably weaker (R2 = 49.8%, P < 0.001) and the pattern more diffuse.  347 

The pattern is even more accentuated in Swiss record data (Figure S3) (R2 = 12.3%, P < 348 

0.001), with the majority of species being rare at the local scale.  In these data, there were no 349 

species that were locally common but nationally rare. 350 

The proportions of species falling into the four possible categories of rarity generated by 351 

the two scale approach are given in Table 1.  For both data sets, the vast majority of species 352 

can be considered rare at both spatial scales.  Only between 1% (based on number of records 353 

in UK and Switzerland) and 6% (based on occupancy in UK) of species could be considered 354 

common at both spatial scales (Table 1). 355 

 356 

Discussion 357 

This is the first macroecological study of rarity patterns in fungi.  By using four 358 

comprehensive data sets, we have shown that while some similarities exist in patterns of 359 

abundance between fungi and other organisms, there are also noticeable differences.  Both 360 

UK and Swiss data showed the classic hollow curve of species abundance, but while the 361 
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national data were best fitted by a lognormal model, the local data sets were uniquely fitted 362 

by a Pareto distribution (with very many rare species).  Abundance-occupancy relationships 363 

of fungi were positive, and similar in the UK and Switzerland, but showed a different pattern 364 

to those of other organisms. 365 

Perhaps the most obvious conclusion from these data is that irrespective of the approach 366 

taken, most species of fungi are rare, while only a few can be considered common.  Both 367 

number of records and occupancy at the national scales were best described by the lognormal 368 

distribution, as with marine and soil bacteria (Fuhrman, 2009; Ferrenberg et al., 2013; 369 

Nemergut et al., 2013) and most macroorganisms (Ulrich et al., 2010).  There has been much 370 

debate on whether lognormal SADs are the product of sampling artefacts, model fitting, the 371 

influence of environmental variables, or the apportionment of niches between species 372 

(Williamson and Gaston, 2005; McGill et al., 2007).  Furthermore, we must not forget that 373 

the lognormal is a purely statistical distribution.  However, despite the potential for artefacts, 374 

the finding that lognormal distributions tend to arise in assemblages that are completely 375 

sampled (Ulrich et al., 2010), strongly suggests that there are good biological reasons for 376 

such patterns, including niche processes, competition and dispersal. 377 

The dictum for microbes that ‘everything is everywhere, but the environment selects’, 378 

(reviewed by O’Malley (2008)), has been challenged in many microbial studies (Martiny et 379 

al., 2007).  Fungal species certainly exhibit biogeographical patterns at continental or smaller 380 

scales (Taylor et al. 2006; Tedersoo 2017).  In general, everything is not everywhere, but 381 

environmental filtering certainly plays a role in determining fungal distributions, with 382 

dispersal limitation being proposed as one of the main drivers (Peay et al., 2016).  We found 383 

variation in the occupancy within the geographic range of fungi of two or three magnitudes at 384 

both national scales and at the local scale in both countries, clearly supporting the fact that 385 

not all species occur everywhere within their range.  Furthermore, relatively low amounts of 386 
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variation were explained by our analyses of local vs. national record number and occupancy, 387 

and also with the multiscale analysis of rarity indices, suggesting that environmental filtering, 388 

most likely manifest as habitat availability, plays an important role.  This was particularly 389 

true in Switzerland, where landscape structure is more heterogeneous than the UK (Hofer, 390 

Wagner, Herzog & Edwards, 2008). 391 

A recent meta-analysis suggests that few fungi may be habitat generalists (Meiser, Bálint 392 

& Schmitt, 2014) and so the availability of habitats in the local environment determines 393 

species occurrence (Kivlin, Winston, Goulden, & Treseder, 2014).  This fact is further 394 

supported by the two local data sets displaying a fit to a power law, rather than the lognormal, 395 

upholding our first hypothesis and suggestive of niche-related processes (i.e. habitat 396 

availability) playing a role (Ulrich et al., 2010).  Both these data sets are free from many 397 

forms of bias that influence such analyses (Gange, Gange, Mohammad, & Boddy, 2012; 398 

Lavoie, 2013), particularly as they were coordinated regular surveys over long time periods, 399 

that were not influenced by citizen scientists recording certain species (e.g. edible fungi) or 400 

searching in known localities (Geldmann et al., 2016).  However, such model fits may still be 401 

indicative of incomplete or imperfect sampling (McGill, 2003; Ulrich et al., 2010), 402 

particularly as neither species accumulation curve was asymptotic.  A further complication is 403 

that spatial distributions of saprotrophic and ectomycorrhizal fungi in the UK have changed 404 

in recent years, correlated with changes in temperature and rainfall (Gange et al., 2018). 405 

This is the first time that a Pareto distribution has been fitted to fungal data sets, though 406 

previous authors generally examined a limited range of models (e.g. Dumbrell et al., 2010a; 407 

Unterseher et al., 2011; Gumiere et al., 2016).  Pareto distributions are characterised by the 408 

presence of many species of low abundance (often singletons) and far fewer of high 409 

abundance, producing a long ‘thin’ tail to the SAD.  Such distributions are widely reported in 410 

physics, computer science, economics and social sciences as well as biology (Newman, 411 
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2005).  Our data are remarkably similar to those of many invertebrate distributions, with 28% 412 

singletons in the UK local fungal data, and 9% in the Swiss data, compared with 29-32% for 413 

tropical arthropods (Coddington, Agnarsson, Miller, Kuntner, & Hormiga, 2009) and 17% for 414 

temperate spiders (Leroy et al., 2013).  However, this is considerably less than the 53% 415 

singletons recorded in a short term (1 year) survey of fruit body abundance of temperate 416 

forest fungi in northern Spain (Abrego & Salcedo, 2014).   417 

It is most likely that dispersal ability and niche availability influences the numbers of very 418 

rare fungal species (Unterseher et al., 2011).  In British lichens, species with high 419 

colonization ability (dispersal) occupy larger geographic ranges (Leger & Forister, 2009) and 420 

this may be true for fungi generally (Cox, Newsham, Bol, Dungait, & Robinson, 2016), so 421 

limited dispersal ability may explain why many species are rare (Molina et al., 2011).  422 

Meanwhile, since the number of fungi in an assemblage may be functionally related to the 423 

number of plants (Hawksworth (1991), (though see also Tedersoo et al. (2014) for a 424 

contradiction with soil fungi) and assemblages of plants, even when completely censused, 425 

appear to follow power law distributions (Ulrich et al., 2010), the availability of plant 426 

substrates (niches) may be a major factor influencing fungal distributions. 427 

Fungal species that were rare (measured as either records or occupancy) on a national 428 

scale were also rare on a local scale.  The national number of records explained about 47-429 

58% of the variation in local record number, similar to the 31% for phytoplankton and 58% 430 

for aquatic bacteria (Ostman et al., 2010).  This conclusion was also reinforced by the 431 

multiscale analyses; here the majority of species were rare at both scales.  However, this 432 

analysis showed that it is quite possible for all parts of the graphical spectrum to be occupied, 433 

further refuting the ‘everything is everywhere…’ idea and upholding our original hypothesis.  434 

Calculation of the rarity weights for each species is an important aspect of our analysis, as it 435 

gives a numerical index for each species, which is far more informative than simple 436 
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categories (Leroy et al., 2013).  In future, such indices could help with the construction of 437 

Red Lists, provided that the quantitative information can be related to IUCN criteria adapted 438 

for fungi (Dahlberg & Mueller, 2011). 439 

Our study is also the first to find good evidence for a positive abundance-occupancy 440 

relation for fungi, upholding our second hypothesis.  Comparison with previous studies is 441 

hampered by authors using different measures of occupancy and abundance or by treating 442 

abundance as the dependent variable.  However, the form of the fungal relation is different to 443 

that of other analyses which have used the same approach (logit and log, with occupancy on 444 

the y axis) (e.g. Holt & Gaston, 2003; Zuckerberg et al., 2009), which show clear linear 445 

relationships, with R2 values between 60 and 90%.  The fungal relationships, although very 446 

similar in the two countries, were much more diffuse and bear some similarity to that of 447 

marine bacteria (Amend et al., 2013), but not to intestinal bacteria (Green, Fisher, McLellan, 448 

Sogin, & Shanks, 2016).  Our data are similar to all others in that there were no locally 449 

abundant species with sparse national distributions, but the critical difference is that there 450 

were many locally rare species which are densely distributed at a wider scale. 451 

Eight possible mechanisms which might account for a positive abundance-occupancy 452 

relation have been proposed (Gaston, Blackburn, & Lawton, 1997; Gaston et al., 2000).  The 453 

first pertains to sampling bias, which may result from low sampling intensity at small spatial 454 

scales.  We do not believe that poor sampling in the local data sets has contributed to the 455 

observed relation, as there was no trend in ‘foray effort’ over time in the UK and 456 

standardized weekly counts were conducted in Switzerland.  Furthermore, the UK local data 457 

comprised 6,868 separate forays and each involved the collection and identification of every 458 

fungus seen, while the Swiss data comprised 992 separate sampling occasions.  Citizen 459 

science data, while not without its faults, can be used for macroecological analyses, if 460 

collated properly, and many previous analyses of this type have used such data (Dickinson, 461 
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Zuckerberg & Bontner, 2010).  Indeed, patterns of phenology in these national and local data 462 

sets are remarkably similar (Andrew et al., 2018), suggesting that the local data sets were not 463 

biased towards or against certain species.  It is possible that model fits might change if all of 464 

the local species estimated to be in the pool were found.  However, given that all of the 465 

‘missing’ species must be represented by very low numbers of records, the most likely 466 

outcome would be that the model fit will remain the same, while the thin tail of the SAD 467 

would be extended. 468 

Phylogenetic relatedness has been suggested as a second possible, but unlikely, influence 469 

on the relation (Gaston et al., 1997) and is also unlikely in our study due to the enormous 470 

variation in abundance and range within almost all genera.  A third proposal is that the 471 

position in the overall geographic range of a species is important in determining its local 472 

abundance; species at the edge of their overall range generally have lower abundance.  It is 473 

interesting that a prediction arising from this hypothesis is that widespread species may show 474 

high or low local density, while species with restricted geographic ranges only have low 475 

density (Gaston et al., 1997).  This would give a triangular abundance-occupancy relation, as 476 

found in this study.  Given the differences in UK climate from N-S and W-E, and the 477 

sensitivity of fungi to climate (Boddy et al., 2014; Gange et al., 2018), it is plausible that 478 

locally rare species might vary greatly in their geographic range, depending on what part of 479 

the overall range the local area occupies.  The other five hypotheses, based on resource use, 480 

resource availability, habitat selection, metapopulation dynamics or vital rates seem far less 481 

likely to apply to fungi. 482 

Overall, using four extensive data sets, we have shown that fungi exhibit some markedly 483 

different macroecological patterns to other organisms.  In particular, the abundance-484 

occupancy relationships for fungi are very different, and suggest that the forces that 485 

determine commonness and rarity in other organisms are different for fungi.  It is clear that 486 
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after either 32 or 65 y of intensive sampling in the two localities, many fungal species 487 

remained undetected and that the vast majority of species could be considered as rare. 488 
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Table 1  Percentage of species in different categories of rarity, as measured by the number of 684 
records and occupancy (in parenthesis for UK data only). 685 
 686 

UK, n= 2,319 
National 

Rare Not rare 

Local 
Rare 96.2 (85.3) 1.6 (7.5) 

Not rare 0.6 (1.1) 1.6 (6.1) 

 687 

Switzerland, n=319 
National 

Rare Not rare 

Local 
Rare 87.3 10.9 

Not rare 0 1.8 

 688 
 689 
 690 
 691 

 692 

  693 
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Figure 1  Temporal characteristics of the local datasets.  (a) The number of annual forays in 694 

the UK, (b) the accumulated total number of species observed over 65 years in the UK and 695 

(c) the accumulated total number of species observed over 32 years in Switzerland.  696 

 697 

 698 

 699 

 700 

 701 
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Figure 2  Frequency distributions for species abundance (SAD) and rank abundance 702 

(RAD) of the UK national data set based on (a,c) number of records and (b,d) occupancy.  703 

 704 
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 707 
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Figure 3  .  Frequency distributions for species abundance (SAD) and rank abundance 710 

(RAD) of the UK local data set based on (a,c) number of records and (b,d) occupancy. 711 

 712 

 713 

 714 

 715 

 716 



34 
 

Figure 4  Relations between UK local and national scale data.  (a) Relationship between 717 

number of local and national records. (b) Relationship between local and national occupancy.  718 

Species with the most records nationally also have most records at a local scale (a), while 719 

those which are most densely distributed nationally are also so at a local scale, measured by 720 

counts in 10 km and 1 km grids respectively (b).The fitted lines are from a locally weighted 721 

regression (loess) procedure. 722 
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Figure 5  The abundance-occupancy relations for (a) British and (b) Swiss fungi.  Species 726 

with high numbers of records locally tend to be densely distributed at a wider scale.  727 

However, species with low local record number may be sparsely or densely distributed at a 728 

wider scale. 729 
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Figure 6  Multiscale patterns of rarity in British fungi.  Using (a) number of records or (b) 734 

occupancy, species can be rare at one scale, but common at another and vice versa.  The 735 

majority of species are rare at both scales, using data of the number of records, but the pattern 736 

for occupancy is different, suggesting that species with low occupancy locally may be 737 

sparsely or densely distributed at a larger scale. 738 

 739 

 740 

 741 

 742 



37 
 

Figure S1.  SAD and RAD for Swiss national data 743 

Figure S2.  Relation between Swiss local and national scale data 744 

Figure S3.  Multiscale patterns of rarity in Swiss fungi 745 

Table S1.  Complete species list for the UK 746 

Table S2.  Complete species list for Switzerland 747 

Table S3.  Results of model fits 748 
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