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Abstract

The Linear Smoothing (LS) scheme [18] ameliorates linear and quadratic
approximations over convex polytopes by employing a three-point integration
scheme. In this work, we propose a linearly consistent one point integration
scheme which possesses the properties of the LS scheme with three integration
points but requires one third of the integration computational time. The essence
of the proposed technique is to approximate the strain by the smoothed nodal
derivatives that are determined by the discrete form of the divergence theorem.
This is done by the Taylor’s expansion of the weak form which facilitates the
evaluation of the smoothed nodal derivatives acting as stabilization terms. The
smoothed nodal derivatives are evaluated only at the centroid of each integra-
tion cell. These integration cells are the simplex subcells (triangle/tetrahedron
in two and three dimensions) obtained by subdividing the polytope. The salient
feature of the proposed technique is that it requires only n integrations for an n−
sided polytope as opposed to 3n in [18] and 13n integration points in the conven-
tional approach. The convergence properties, the accuracy, and the efficacy of
the LS with one point integration scheme are discussed by solving few benchmark
problems in elastostatics.

keywords: Polygonal finite element method, Wachspress shape functions,
numerical integration, linear consistency, one point integration.

1 Introduction

Some of the constraints imposed by the conventional finite element method (FEM) is
relaxed by the introduction of elements with arbitrary edges/faces. Approximations
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on arbitrary polytopes have fueled the development of Polygonal/Polyhedral Finite
Element Methods (PFEM) [39, 40, 45, 36]. POLY elements offer added flexibility in
meshing complex geometries through various meshing algorithms using Voronoi tessel-
lation [5, 46]. Such approaches were used to model complex geometries with inclusions
[22], modeling of polycrystalline materials [43, 5, 23].

Adaptive mesh generation and regeneration such as local refinement and coarsen-
ing is also simplified with polytopes, since they naturally address the issues associ-
ated with hanging nodes [33, 34]. This has led researchers to develop methods with
polygonal discretizations, for example, mimetic finite differences [26], virtual element
method [11, 9, 10], finite volume method [13], discontinuous Galerkin method [7], vir-
tual node method [21] and the scaled boundary finite element method [30, 35, 32].
Furthermore, polygonal/polyhedral elements have also been used to solve problems in-
volving large deformations [2], incompressibility [46], contact problems [3] and fracture
mechanics [24].

The flexibility provided by polytopes comes with challenges. First, the arbitrary
polytopes usually rely on rational basis functions, i.e., the ratio of two polynomials.
The construction of approximation functions over arbitrary polytopes is not unique.
These approaches include: Mean value coordinates [17], Harmonic shape functions [4],
Laplace basis functions [42] and maximum entropy basis functions [39]. Integrating
such rational functions exactly is not possible in general. One approach to integrate
over arbitrary polytopes is to sub-divide the region into triangles (in two dimensions)
or tetrahedra (in three dimensions) and then employ conventional quadrature schemes.
Although, the approach is simple, it requires “many” integration points to integrate
even simple functions [42, 41, 44]. Moreover, the associated approximations do not pass
the patch test [41, 44].

Inspired by the smoothing technique originally proposed for meshfree methods [8],
a smoothing technique was proposed for polygonal elements in [12, 30]. However, it
was shown that the direct application of the smoothing technique with average shape
functions does not pass the patch test either and yields less accurate results [30].

Within the framework of the smoothed finite element method (SFEM), Francis et
al., [18] proposed a linear smoothing (LS) technique. The LS scheme employs 3n and
4n integration points for two and three dimensional elements, where n is the number of
vertices of the polytope. It was shown with the help of numerical examples that the LS
scheme leads to improved accuracy and recovers optimal convergence for the arbitrary
convex polytopes. Moreover, it also passes the patch test to machine precision.

In this paper, we present a new one point quadrature rule over arbitrary star convex
polytopes which can reproduce linear strain. In order to achieve this characteristic, the
Taylor’s expansion of the stiffness matrix and the strain-displacement matrix is em-
ployed around the center of the subcell. The modified derivatives are calculated at the
centroid of each subcell and a conventional assembly procedure is adopted to calculate
the stiffness matrix. The robustness, the accuracy and the convergence properties are
studied with a few benchmark problems in elastostatics. The paper is organized as
follows: Section 2 presents the governing equations for elasto-statics. The details of
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the domain discretization with arbitrary polytopes is discussed in Section 3. Section
4 presents the new one point quadrature scheme for star convex arbitrary polytopes.
Numerical results are presented in Section 5, followed by concluding remarks in the last
section.

2 Governing equations for homogeneous linear elas-

tic material

2.1 Strong form

Consider a homogeneous isotropic linear elastic body occupying d = 2, 3 dimensional
space defined by an open domain Ω ⊂ IRd, bounded by the (d−1) dimensional surface Γ
such that Γ = Γu∪Γt and ∅ = Γu∩Γt, where Γu and Γt are part of the boundary where
Dirichlet and Neumann boundary conditions are specified, with n the unit outward
normal. The boundary-value problem for linear elastostatics is defined by

∇ · σ + b = 0 in Ω, (1)

with the following boundary conditions

u = ū on Γu,

σ · n = t̄ on Γt, (2)

where σ is the Cauchy stress tensor and u : Ω → IRd is the nodal displacement field of
the elastic body when it is subjected to external tractions t̄ : Γt → IRd and body forces
b : Ω → IRd.

2.2 Weak form

We first define the infinite dimensional trial (U ) and test spaces (V 0). Let W(Ω) be
the space including linear displacement fields.

U :=
{
u ∈ [C0(Ω)]d : u ∈ [W(Ω)]d ⊆ [H1(Ω)]d, u = ū on Γu

}
,

V 0 :=
{
v ∈ [C0(Ω)]d : v ∈ [W(Ω)]d ⊆ [H1(Ω)]d, v = 0 on Γu

}
.

The Bubnov-Galerkin weak form is obtained by testing the strong form Equation (1)
with the test functions in V 0 and integrating over Ω. Using the divergence theorem
and the fact that the test functions vanish on the Dirichlet boundary Γu, we obtain the
weak form:

Find u ∈ U such that, for all v ∈ V , a(u,v) = `(v), (4a)

a(u,v) =

∫
Ω

σ(u) : ε(v) dV, (4b)

`(v) =

∫
Ω

b · v dV +

∫
Γt

t̂ · v dS, (4c)
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where ε = 1
2

[
∇u +∇uT

]
is the small strain tensor.

2.3 Discretisation

2.3.1 Discretised weak form

The domain Ω is partitioned into nel non-overlapping polyhedral elements with planar
faces. We define the discrete trial and test spaces by constructing shape functions over
the union of all nel ∈ Ω. The shape functions φe are used to discretise the trial and
test functions. These trial and test functions are written as a linear combination, over
the union of all elements, of the shape functions φe with (vector) coefficients ue :

uh =

nel∑
e=1

φeue

vh =

nel∑
e=1

φeve (5)

The construction of these (Wachspress) shape functions is detailed in Section 2.3.2.
With these notations, the following discrete weak form is obtained, which consists in
finding uh ∈ U h ⊂ U such that for all discretised test functions vh vanishing on the
Dirichlet boundary (in set V 0h ⊂ V 0),

a(uh,vh) = `(vh) (6)

which leads to the following system of linear equations:

Ku = f (7)

K =
∑
h

Kh =
∑
h

∫
Ωh

BTCB dV,

f =
∑
h

fh =
∑
h

(∫
Ωh

φTb dV +

∫
Γh
t

φTt̂ dS

)
,

where K is the global stiffness matrix, f is the global nodal force vector, C is the
constitutive relation matrix for an isotropic linear elastic material and B = ∇φ is
the strain-displacement matrix that is computed using the derivatives of the shape
functions.

2.3.2 Construction of the shape functions

There are different ways to represent the shape functions over arbitrary polytopes [40].
In this paper, the Wachspress interpolants are used as the approximation functions to
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Figure 1: Barycentric coordinates: Wachspress basis function

describe the unknown fields. These functions are rational polynomials and the con-
struction of the coordinates is as follows: Let P ⊂ IR3 be a simple convex polyhedron
with facets F and vertices V . For each facet f ∈ F , let nf be the unit outward normal
and for any x ∈ P , let hf (x) denote the perpendicular distance of x to f , which is given
by

hf (x) = (v − x) · nf (8)

for any vertex v ∈ V that belongs to f . For each vertex v ∈ V , let f1, f2, f3 be the
three faces incident to v and for x ∈ P , let

wv(x) =
det(nf1 ,nf2 ,nf3)

hf1(x)hf2(x)hf3(x)
(9)

With a condition that the ordering of f1, f2, f3 be anticlockwise around the vertex
v when seen from outside P . Then the barycentric coordinates for x ∈ P is given
by [48, 49]:

φv(x) =
wv(x)∑

u∈V
wu(x)

. (10)

To deal with non-simple polyhedra, Warren et al., [49] suggested that the non-simple
vertex be decomposed into simple ones by perturbing its adjacent facets. This can also
be accomplished by using polar dual with respect to each point x in P ⊂ R3, there
exists a dual polyhedron,

P̃x :=
{
y ∈ R3 : y.(z− x) ≤ 1, z ∈ P

}
(11)

The dual polyhedron contains the origin and its vertices are the endpoints of the vectors
pf := nf/hf (x). Let us suppose a vertex v ∈ V has k incident faces. The endpoints of
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the k vectors form a k-sided polygon, which is the face of P̃x. This face and the origin
in R3 form a polygonal pyramid, Qv ⊂ P̃x. Then, the functions, φv in Equation (10)
are barycentric coordinates, with wv(x) = vol(Qv).

The Wachspress shape functions are the lowest order shape functions that satisfy
boundedness, linearity and linear consistency on convex polytopes [48, 49]. On one
front, the use of arbitrary shaped elements introduces flexibility and on another, it de-
mands the construction of sufficiently accurate integration rules for computing the terms
in the stiffness matrix. This is because the usual and standard integration rules can-
not be employed directly. Some of the approaches to integrate over arbitrary polygons
include: sub-triangulation [41], Green-Gauss quadrature [38], nodal quadrature [19],
complex mapping [31], conforming interpolant quadrature and strain smoothing [8].
The aforementioned integration rules are restricted to two dimensions. In case of three
dimensions, the polyhedron is sub-divided into tetrahedron and cubature rules over the
tetrahedron are used for the purpose of numerical integration. Except for the strain
smoothing technique, other approaches requires a lot of integration points for sufficient
accuracy. In spite of this, it is inferred in [44] that the polygonal elements with existing
integration technique do not satisfy patch test.

In author’s earlier work [18], a linear smoothing technique was introduced that
employed a linear smoothing function and required 3 integration points per subcell in
two dimensions and four integration points per subcell in three dimensions. This is
accompanied by a modified version of the strain-displacement matrix used to compute
the stiffness matrix. The stiffness matrix, as computed within the framework of the
SFEM is:

K̃ =
∑
h

K̃
h

=
∑
h

∫
Ωh

B̃
T
CB̃ dV, (12)

The next section describes the method to generate arbitrary polyhedral meshes for
complex geometries. Section 4 describes the new one point integration rule to integrate
over the arbitrary polytopes.

3 Polyhedral meshing

3.1 Voronoi diagrams and Delaunay triangulations

In this section, we present the method that we use to generate the polyhedral meshes
used in discretizing the domains used in the numerical examples (Section 5). To generate
the polyhedral mesh, we follow a standard approach, that we detail below. To partition
the domain Ω ⊂ R3, we use a Voronoi diagram, defined as follows:

Vor(P) = {Ωi}

Ωi = {x ∈ Ω | ‖x− pi‖2 ≤ ‖x− pj‖2 ∀j ∈ (1 . . . n)}
(13)

where P = {pi}ni=1 denotes a set of given points called the generators and where Ω is a
2D or 3D domain, defined by its polygonal or polyhedral boundary. Figure 2-left shows
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Figure 2: Left: an example of a Voronoi diagram; Right: the associated Delaunay
triangulation. The domain Ω is a square.

an example of Voronoi diagram in 2D. Note that the Voronoi diagram is composed of
cells with arbitrary number of edges, which requires complicated data structures. In
3D the situation is even worse: Voronoi cells are polyhedra with arbitrary number of
faces and vertices. Therefore, from a practical point of view, it is easier to construct
instead the dual structure, called the Delaunay triangulation, shown in Figure 2-right.
The Delaunay triangulation, defined as the combinatorial dual of the Voronoi diagram.
That is, the Delaunay triangulation is a simplicial set, that has an edge connecting two
vertices pi and pj whenever the two Voronoi cells Ωi and Ωj have a common edge, and
that has a triangle connecting three vertices pi,pj,pk whenever the three Voronoi cells
Ωi,Ωj and Ωk have a common vertex. From the definition of the Voronoi cells, it is easy
to see that the Delaunay triangles pi,pj,pk are such that their circumscribed circle is
empty of any other point pl. This property is exploited in the most popular algorithm,
independently and simultaneously proposed by Bowyer [6] and Watson [50].

In our setting, now we need to answer the following questions, as will be done in
the following two subsections:

1. Where should we place the generators pi to obtain a good Voronoi diagram (and
what is a good Voronoi diagram) ?

2. How to compute the Voronoi diagram for an arbitrarily domain Ω ?

3.2 Placing the generators pi

A regular Voronoi diagram can be obtained by placing the points P in such a way that
the following objective function F is minimized:

F (P) =
n∑
i=1

∫
Ωi

‖x− pi‖2dx. (14)
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Figure 3: Two steps of Lloyd relaxation and the obtained centroidal Voronoi tessellation
at convergence.

The objective function F , called the quantization noise power, corresponds to the
inertia momenta of the Voronoi cells with respect to the points pi. From a signal point
of view, it measures how well the point-set P samples the domain Ω [28].

To minimize the objective function F , it is interesting to derive its gradient with
respect to one of the points pi. As one can see, it is non-trivial, because function
F depends on integrals over the Ωi regions, and the Ωi regions depend in turn on
the location of the points pi, therefore differentiating function F means differentiating
integrals over moving domains, using for instance Reynolds’s formula. A much shorter
derivation path can be found: using the definition of the Voronoi cells (13), the objective
function F is rewritten as follows:

F (P) =

∫
Ω

min
i
‖x− pi‖2dx,

that is, the lower envelope of a family of functions. By the envelope theorem [29], its
gradient at each point corresponds to the gradient of the function that realizes the min,
and one directly obtains:

∂F

∂pi
= 2mi(pi − gi) where:

 mi =
∫
Ωi
dx

gi = (1/mi)
∫
Ωi

xdx
(15)

Thus, the stationary points of F are such that each generator pi coincides with the
centroid gi of its Voronoi cell, hence the name centroidal Voronoi tessellation (or CVT
for short) that qualify such a configuration. To compute such a CVT, gradient descent
is a natural idea that comes to mind. It was initially proposed to iteratively move the
generators to the centroids [28]. This idea, known as Lloyd relaxation is demonstrated
in Figure 3, where the generators are symbolized as small black dots and the centroids
of the Voronoi cells as large green dots. As can be seen, moving the generators to the
centroids iteratively improves the regularity of the Voronoi diagram. This behavior was
later studied [14], and it was proved that moving the generators to the centroids al-
ways decreases the value of F . Thus, Lloyd relaxation can be understood as a gradient
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descent method that does not require step-length control. Finally, the regularity of F
was analyzed [27] and its C2 smoothness allowed to design a quasi-Newton algorithm
with faster speed of convergence.

To summarize the answer to the initial question, we place the generators as follows:
first starting from a uniform random distribution, we then optimize the generators by
minimizing F . We use the efficient quasi-Newton algorithm. One can also use Lloyd
relaxation, that simply means iteratively relocating the generators to the centroids of
the Voronoi cells.

3.3 Voronoi diagram in an arbitrary domain

Computing a Centroidal Voronoi Tessellation, as explained in the previous subsection,
requires to compute a series of Voronoi diagram, as well as the masses and centroids of
the Voronoi cells. It is easy to see that the Voronoi cells are defined as the intersection
between half-spaces and the domain Ω:

Ωi = {x ∈ Ω | ‖x− pi‖2 ≤ ‖x− pj‖2 ∀j ∈ (1 . . . n)}

= Ω ∩
(

n⋂
i=1

Π+(pi,pj)

)
where Π+(pi,pj) = {x ∈ R3 | ‖x− pi‖2 ≤ ‖x− pj‖2}

Computing the intersection between the half-spaces Π+ is easy, however, the main
difficulty is that the domain Ω that we use is in general non-convex, which can lead
to both very complicated combinatorial configurations and problems with numerical
precision. Therefore, we decompose the domain Ω into tetrahedra. We used Tetgen
[37] in the examples shown here. Then, to compute the Voronoi cells, the only operation
that we need is the intersection between a tetrahedron and a half-space. An example
is shown in Figure 4, with both the initial tetrahedral mesh and its intersection with
the Voronoi diagram. The intersection mesh is computed using a specialized algorithm
[51], based on geometric predicates in arbitrary precision [25] that overcome numerical
precision problems and degeneracies.

To obtain the final mesh, the Voronoi cells are assembled from all the volumetric
parts corresponding to intersections with the initial tetrahedral mesh, that is, the edges
displayed in the closeup in Figure 4 are discarded.

Our method may seem at first sight more complicated than directly computing the
intersection between the Voronoi diagram and the interior of Ω, but to our knowledge,
there is no existing algorithm to do so reliably. Our algorithm decomposes the problem
into simpler convex ∩ convex intersections, that can be exactly computing, freely of
numerical precision problems.
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Figure 4: Voronoi meshing of a femur. Top: initial tetrahedral mesh; Bottom: generated
Voronoi diagram and its intersection with the tetrahedral mesh.

4 One point quadrature scheme

In this section, a new numerical integration scheme is proposed to numerically inte-
grate over the star convex arbitrary polygon and polyhedron inspired from the work
of Duan et al., [20]. We restrict ourselves to cell-based smoothing technique, wherein
the physical element is sub-divided into simplex elements. This sub-division is solely
for the purpose of numerical integration and does not introduce additional degrees of
freedom. In this paper, triangles and tetrahedra in two and three dimensions are used
as simplex elements. Similar to our earlier work, a linear smoothing function is em-
ployed, however, only one integration point is used to compute the modified derivative.
This is depicted in Figure 5. For sake of brevity and simplicity of the notation, the
derivation of the proposed smoothing scheme is given in detail only for two-dimensions
using the Cartesian coordinate system. The extension to three dimensions is straight
forward and interested readers are referred to the corresponding author to obtain the
MATLAB code.

Within the SFEM framework, the discrete modified strain field ε̃hij that yields the
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Figure 5: Schematic representation of the three point and one point integration tech-
niques. The nodes are depicted by the filled circles, while the Gauss point per edge/face
is shown by filled squares. The smoothed derivatives are computed at the ’open’ squares
over each smoothing cell denoted by Ωc.
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modified strain-displacement matrix (B̃) which is then used to build the stiffness matrix
is related to the compatible strain field εhij by:

ε̃hij(x) =

∫
Ωh

C

εhij(x) q(x)dV (16)

where q(x) is the smoothing function. On writing Equation (16) at the basis functions
derivative level and invoking Gauss-Ostrogradsky theorem, we get:∫

Ωh
C

φI,x q(x) dV =

∫
Γh
C

φI q(x)nj dS −
∫
Ωh

C

φI q,x(x) dV (17)

In this work, a linear smoothing function q(x) = {1, x, y} in two dimensions and
q(x) = {1, x, y, z} in three dimensions is employed and numerical integration is
employed to evaluate the terms in Equation (17). Note that the domain integral in
Equation (17) is evaluated at the center of the subcell, xc = (xc, yc) (see Figure 5.
The center of the subcell is denoted by ‘open’ circle), whilst, the boundary integral is
evaluated along the boundary of the subcell (the location of integration point on the
boundary is represented by ‘filled’ square in Figure 5). However, this will lead to a
singular system [16, 15]. This is circumvented by introducing higher order derivatives,
viz., φ̃I,x(xc), φ̃I,xx(xc), φ̃I,xy(xc) by using Taylor’s expansion of the modified derivatives
around the center of the subcell, xc. The Taylor’s expansion (around the center of the
subcell xc) of φ̃I,x(x), q(x) and φI(x), used is defined as:

φ̃I,x(x) = φ̃I,x(xc) + (x− xc)φ̃I,xx(xc) + (y − yc)φ̃I,xy(xc) +O((x− xc)
2) (18a)

q(x) = q(xc) + (x− xc)q,x(xc) + (y − yc)q,y(xc) (18b)

φI(x) = φI(xc) + (x− xc)φI,x(xc) + (y − yc)φI,y(xc) +
1

2
(x− xc)2φI,xx(xc)

+ (x− xc)(y − yc)φI,xy(xc) +
1

2
(y − yc)2φI,yy(xc) +O((x− xc)

3)
(18c)

Upon substituting Equation (18) into Equation (17), we obtain:

q(xc)Aφ̃I,x(xc) +
[
q,x(xc)I

xx
c + q,y(xc)I

xy
c

]
φ̃I,xx(xc) +

[
q,x(xc)I

xy
c + q,y(xc)I

yy
c

]
φ̃I,xy(xc)

=

∫
Γh
c

φI(x)q(x)n dΓ −
[
AφI(xc) +

1

2
Ixxc φI,xx(xc) + Ixyc φI,xy(xc) +

1

2
Iyyc φI,yy(xc)

]
(19)

where A =
∫
Ωh

c

dΩ is the area of the integration domain Ω. The first order area moments

with respect to cell center xc vanish and the second order area moments are given by:
Ixxc
Ixyc
Iyyc

 =

∫
Ωc


(x− xc)2

(x− xc)(y − yc)
(y − yc)2

 dΩ (20)
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Remark 1 For a regular polygon, the second order area moment Ixyc also vanish apart
from the first order area moments.

Remark 2 Equation (21) always have an unique solution provided the triangles do not
degenerate to a line.

This now leads to the following system of linear equations:

Wdj = gj, j = 1, 2 (21)

where,

W =

 A 0 0
Axc Ixxc Ixyc
Ayc Ixyc Iyyc



g1 =



3∑
L=1

2∑
G=1

φI(xG)nLxwG

2∑
G=1

φI(xG)xGn
L
xwG − Fg

2∑
G=1

φI(xG)yGn
L
ywG



g2 =



3∑
L=1

2∑
G=1

φI(xG)nLxwG

2∑
G=1

φI(xG)xGn
L
xwG

2∑
G=1

φI(xG)yGn
L
ywG − Fg


(22)

where

Fg = AφI(xc) +
1

2
Ixxc φI,xx(xc) + Ixyc φI,xy(xc) +

1

2
Iyyc φI,yy(xc)

where φI(xc), φI,xx(xc)φI,yy(xc) and φI,xy(xc) are the barycentric coordinates and its
derivatives are evaluated at the center of the cell, (xG, yG) and wG are the integration
points and the weights respectively, along the boundary of the smoothing cells (see
Figure 5. The integration points are shown as filled square) and nLx and nLy are the
outward normals along the boundary of the smoothing cell. The solution vector is
given by:

d1 =


φ̃I,x(xc)

φ̃I,xx(xc)

φ̃I,xy(xc)

 (23a)

d2 =


φ̃I,y(xc)

φ̃I,yx(xc)

φ̃I,yy(xc)

 (23b)
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This is further used to construct the modified strain displacement matrix and its deriva-
tives used to evaluate the stiffness matrix as:

B̃ =
[
B̃1 B̃2 .... B̃n

]
(24)

B̃I(xc) =

φ̃I,x(xc) 0

0 φ̃I,y(xc)

φ̃I,y(xc) φ̃I,x(xc)

 (25)

∂B̃I(xc)

∂x
=

φ̃I,xx(xc) 0

0 φ̃I,yx(xc)

φ̃I,yx(xc) φ̃I,xx(xc)

 (26)

∂B̃I(xc)

∂y
=

φ̃I,xy(xc) 0

0 φ̃I,yy(xc)

φ̃I,yy(xc) φ̃I,xy(xc)

 (27)

It should be noted that in the proposed technique the smoothed nodal derivatives
are used to compute the terms in the modified stiffness matrix. To introduce the
higher order modified derivatives into the final discretized form (see Equation (12)),
the stiffness matrix is expanded in Taylor’s series (around the center of the subcell, xc)
as:

K̃Ωc =

∫
Ωc

B̃
T
CB̃ dV, (28a)

=

∫
Ωc

[
B̃

T
+
∂B̃

T

∂x
(x− xc) +

∂B̃
T

∂y
(y − yc)

]
C

[
B̃

T
+
∂B̃

T

∂x
(x− xc) +

∂B̃
T

∂y
(y − yc)

]
dV,

(28b)

However, to compute the body forces, standard Wachspress interpolants and its higher
order derivatives are employed. The body force is computed as follows:

f̃b =

∫
Ωc

(
φTb

)
dV, (29a)

=

∫
Ωc

{
φTb|(xc) +

∂φT

∂x
b|(xc)(x− xc) +

∂φT

∂y
b|(xc)(y − yc)

+
1

2

∂2φT

∂x2
b|(xc)(x− xc)2 +

1

2

∂2φT

∂y2
b|(xc)(y − yc)2

+
∂2φT

∂x∂y
b|(xc)(x− xc)(y − yc)

}
dV,

(29b)

= AφTb|(xc) +
1

2
Ixxc

∂2φT

∂x2
b|(xc) +

1

2
Iyyc

∂2φT

∂y2
b|(xc) + Ixyc

∂2φT

∂x∂y
b|(xc) (29c)

The stiffness matrix with the modified derivatives and the body force vector with
the higher order derivatives are substitute in Equation (7) to compute the unknown
displacement field.
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5 Numerical examples

In this section, we demonstrate the accuracy and the convergence properties of the
proposed linear smoothing scheme (LS) over arbitrary polytopes using 1n integration
point. The LS1 scheme is compared to the The LS3n scheme by solving few benchmark
problems. We also demonstrate the performance of the proposed scheme in three-
dimensional elasticity problems. In all the numerical examples, we discretize the domain
with arbitrary polytopes based on centroid Voronoi tessellation. The two dimensional
polygonal meshes are generated by using the built-in Matlab function voronoin and the
Matlab functions in Polytop [45]. For three dimensional problems, the polyhedral
meshes are generated based on the approach discussed in 3. For the purpose of error
estimation and convergence studies, the L2 norm and H1 seminorm of the error are
used. The following convention is used while discussing the results:

• LS3n-2D, LS3n-3D: linear smoothing scheme with three point integration rule
over arbitrary polytopes, in two and in three dimensions, respectively.

• LS1-2D, LS1-3D: linear smoothing scheme with one point integration rule over
arbitrary polytopes, in two and three dimensions, respectively.

In the first example, the accuracy and the convergence properties of the proposed
one point quadrature (LS1-2D, LS1-3D) is demonstrated with a linear patch test. The
following displacements are prescribed on the boundary in the two-dimensional case:(

û
v̂

)
=

(
0.1 + 0.1x+ 0.2y

0.05 + 0.15x+ 0.1y

)
(30)

and in the three-dimensional case the following displacements are prescribed on the
boundary:  ûv̂

ŵ

 =

 0.1 + 0.1x+ 0.2y + 0.2z
0.05 + 0.15x+ 0.1y + 0.2z
0.05 + 0.1x+ 0.2y + 0.2z

 . (31)

The exact solution to Equation (1) is u = û in the absence of body forces. The
domain is discretized with arbitrary polygonal and polyhedral finite elements. Figure 6
and Figure 7 shows a few representative meshes used for the two and three dimensional
studies, respectively. The errors in the L2 norm and the H1 seminorm for the LS3n
schemes and the proposed LS1 one point quadrature are shown in Table 1 for two-
dimensions and in Table 2 for three dimensions. It can be seen that the proposed one
point quadrature scheme passes the linear patch test to machine precision for both
polygonal and polyhedral discretizations.

Next, the convergence properties and the accuracy of the proposed technique is
studied when the following higher order displacements are prescribed on the boundaries:(

û
v̂

)
=

(
0.1x2 + 0.1xy + 0.2y2

0.05x2 + 0.15xy + 0.1y2

)
, (32)
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Table 1: Relative error in the L2 norm and H1 seminorm for the two-dimensional linear
patch test.

Mesh LS3n-2D LS1-2D

(c.f. Figure 6) L2 H1 L2 H1

a 5.38×10−14 2.84×10−11 8.38×10−15 2.96×10−13

b 1.93×10−13 4.43×10−11 7.62×10−14 4.79×10−12

c 2.01×10−13 7.01×10−11 1.43×10−13 1.28×10−11

d 2.96×10−13 1.02×10−10 2.71×10−13 2.76×10−11

Table 2: Error in the L2 norm and H1 seminorm for the three-dimensional linear patch
test.

Number of LS3n-3D LS1-3D

elements L2 H1 L2 H1

9 2.03×10−12 3.34×10−10 2.98×10−11 2.23×10−10

25 1.92×10−12 1.75×10−10 7.38×10−10 5.56×10−09

100 2.66×10−12 4.93×10−10 2.08×10−10 2.13×10−09

300 3.21×10−12 3.11×10−10 7.73×10−10 1.28×10−09

in the two-dimensional case and the following in the three-dimensional case: ûv̂
ŵ

 =

 0.1 + 0.2x+ 0.2x+ 0.1z + 0.15x2 + 0.2y2 + 0.1z2 + 0.15xy + 0.1yz + 0.1zx
0.15 + 0.1x+ 0.1y + 0.2z + 0.2x2 + 0.15y2 + 0.1z2 + 0.2xy + 0.1yz + 0.2zx

0.15 + 0.15x+ 0.2y + 0.1z + 0.15x2 + 0.1y2 + 0.2z2 + 0.1xy + 0.2yz + 0.15zx


(33)

The exact solution to Equation (1) is u = û when the body is subjected to the body
forces:

b =

(
−0.2C(1, 1)− 0.15C(1, 2)− 0.55C(3, 3)
−0.1C(1, 2)− 0.2C(2, 2)− 0.2C(3, 3)

)
, (34)

in two-dimensions and

b =

−0.3C(1, 1)− 0.2C(1, 2)− 0.15C(1, 3)− 0.6C(4, 4)− 0.35C(6, 6)
−0.15C(1, 2)− 0.3C(2, 2)− 0.2C(2, 3)− 0.55C(4, 4)− 0.4C(5, 5)

0.1C(1, 3)− 0.1C(2, 3)− 0.4C(3, 3)− 0.3C(5, 5)− 0.4C(6, 6)

 (35)

in three dimensions, where C is the constitutive matrix. The domain is discretized
with arbitrary polygonal and polyhedral finite elements. Figure 6 and Figure 7 shows a
few representative meshes used for the two and three dimensional studies, respectively.
Figure 8 shows the convergence rates when the domain is discretized with polytope
linear elements. It can be inferred that the proposed one point quadrature scheme
yields optimal convergence rates in two and in three dimensions.
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(a) (b)

(c) (d)

Figure 6: Square domain discretized with polygonal elements. Representative meshes
containing (a) 10, (b) 20, (c) 50 and (d) 100 polygons.

(a) (b)

Figure 7: Cube domain discretized with polyhedral elements. Representative mesh
containing 200 polyhedra.
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(b) Three dimensional domain

Figure 8: Convergence results for the quadratic patch test. The domain is discretized
with arbitrary polytopes. The new integration scheme delivers optimal convergence
rates in both the L2 norm and H1 seminorm with three times as many integration
points per element as the standard approach.18



5.1 Thick cantilever beam under end shear

In this example, a two-dimensional cantilever beam subjected to a parabolic shear load
at the free end is examined, as shown in Figure 9a. The geometry of the cantilever is
L = 10 m and D = 2 m. The material properties are: Young’s modulus, E = 3×107

N/m2, Poisson’s ratio ν = 0.25 and the parabolic shear force is P = 150 N. The exact
solution for the displacement field is given by [47]:

u(x, y) =
Py

6EI

[
(9L− 3x)x+ (2 + ν)

(
y2 − D2

4

)]
,

v(x, y) = − P

6EI

[
3νy2(L− x) + (4 + 5ν)

D2x

4
+ (3L− x)x2

]
. (36)

where I = D3/12 is the second area moment. A state of plane stress is considered.
Figure 9b shows a sample polygonal mesh. The numerical convergence of the relative
error in the L2 norm and the H1 seminorm is shown in Figure 10. It can be seen that
the proposed one point integration rule yields optimal convergence rate in both the
L2 norm and the H1 seminorm. With mesh refinement the solution approaches the
analytical solution asymptotically. It is further noted that the proposed integration
rule yields similar results when compared to the recently proposed integration rule [18]
that employs 3n integration point per element (see Figure 5a).

5.2 Three dimensional cantilever beam under end torsion

Consider a prismatic cantilever beam with Ω : [−1, 1] × [−1, 1] × [0, L] (see Figure 11
(a) for geometry of the domain) subjected to end torsion. The material is assumed
to be homogeneous and isotropic with Youngs’ modulus, E = 1 N/m2, Poisson’s ratio
ν = 0.3 and shear modulus G = E/(2(1 + ν)). Two different loading conditions, viz.,
end shear load and end torsion, are considered here for which analytical solutions are
available in the literature. The accuracy and the convergence properties are studied
for random closed-pack Voronoi mesh. Figure 12 shows a few representative random
Voronoi meshes employed for this study. The exact displacement solution for this
boundary value problem is [1]:

ux = −βyz
uy = βxz

uz = β

[
xy +

∞∑
n=1

32a2(−1)n

π3(2n− 1)3
sin
(

(2n− 1)
πx

2a

) sinh((2n− 1)πy
2a

)

cosh((2n− 1)πy
2a

)

]
(37)
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Figure 9: Two dimensional cantilever beam: (a) Geometry and boundary conditions
and (b) representative polygonal mesh
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Figure 10: Convergence of the relative error in the L2 norm and the H1 seminorm with
mesh refinement for a two-dimensional cantilever beam subjected to end shear. It is
inferred that the proposed integration scheme yields optimal convergence rates.
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Figure 11: Cantilever beam: (a) Geometry, length L and rectangular cross-section of
width 2a and height 2b. For the present study, the following dimensions are considered:
L = 5, a = b = 1.

(a)

(b)

Figure 12: Three dimensional cantilever beam: representative polyhedral discretization.
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where the constant β is proportional to the total torque applied to the beam. The exact
Cauchy stress field is given by:

σxx = σxy = σyy = σzz = 0

σxz = Gβ

∞∑
n=1

16a(−1)n

π2(2n− 1)2
cos
(

(2n− 1)
πx

2a

) sinh((2n− 1)πy
2a

)

cosh((2n− 1)πy
2a

)

σyz = Gβ

[
2x+

∞∑
n=1

16a(−1)n

π2(2n− 1)2
sin
(

(2n− 1)
πx

2a

) cosh((2n− 1)πy
2a

)

cosh((2n− 1)πy
2a

)

]
(38)

For the present study, the infinite series in Equations (37) - (38) is truncated at n =
40 and analytical displacements are prescribed at z = 0 and at z = L. On the rest of
the boundary, tractions are applied that are consistent with the exact stress field. The
convergence of the proposed technique over arbitrary polyhedron with mesh refinement
is studied. The results from the present approach is compared with the linear smoothing
technique that employs 4 integration points per tetrahedron. The relative error in the
L2 norm and the H1 seminorm is shown in Figure 13 and it can be seen that the
proposed approach yields optimal convergence rates. Figure 14 shows the vector sum
of the displacement and the von-Mises equivalent stress on the deformed shape for a
representative polyhedral discretization.

5.3 Three dimensional L-shaped block

Consider a three dimensional square block with a cubic hole subjected to the surface
traction, t = 1N/mm2 as shown in Figure 15a. Due to symmetry, only a quarter of
the domain is modeled. This results in a three dimensional L-shaped block as shown
in Figure 15b. The input parameters used for this analysis are a = 50mm, E = 1 MPa
and ν = 0.3. The reference solution (Strain energy = 382505 MPa) is computed using
the commercial software Abaqus with an overkill finite element mesh (49211 tetrahedral
elements). Figure 17 shows the convergence of the strain energy with mesh refinement.
It is opined that the results from the proposed numerical integration scheme converges
asymptotically to the reference solution. The rate of convergence is also shown in the
inset. The oscillations that is seen could be attributed to the fact that the polyhedral
mesh refinement is not structured.

5.4 Stress analysis of a femur

As a last example, we perform a stress analysis of a right human proximal femur. The
computed tomography (CT) scan of a patient was obtained using General Electric’s
Ultrafast High-Resolution Multislice CT scanner (16 slices) containing 909 images with
the pixel size of 0.7031 mm, slice thickness of 0.4 mm and resolution of 512×512. The
Materialise’s Interactive Medical Image Control System (MIMICS) is then used to seg-
ment the images with default thresholding range (226 HU and 3071 HU) to create
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Figure 13: Convergence of the relative error in the L2 norm and the H1 seminorm
with mesh refinement for the three-dimensional cantilever beam problem subjected to
end torsion. It can be seen that the proposed integration rule yields similar results
when compared to linear smoothing scheme with four integration points. The rate of
convergence is also optimal in both the L2 norm and in the H1 seminorm.

(a) (b)

Figure 14: Cantilever beam subjected to pure torsion: (a) vector sum of the displace-
ments and (b) von-Mises equivalent stress
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Figure 15: Three dimensional block and an L-shaped quarter model.
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Figure 16: Few sample meshes of L-shaped quarter model containing: a) 80 and b) 320
elements.
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three-dimensional model. The femur is then discretized with polyhedral elements using
geogram. The total length of the femur is 288.48 mm. Figure 18 shows the geometry
and the boundary conditions employed in this study. As shown, the displacement on the
bottom face of the femur is restrained in all three directions and a displacement of mag-
nitude 0.1 is prescribed in the negative z-direction at all the nodes whose z−coordinate
is greater than 281.79mm. The femur is assumed to be linear isotropic with Young’s
modulus, E = 15 GPa and Poisson’s ratio, ν = 0.3. The reference solution for the strain
energy is obtained using the commercial FE software, Abaqus with 33,5168 tetrahedral
elements. Figure 19 shows the convergence of the strain energy with mesh refinement
with the proposed numerical integration technique. It is seen that the results from the
proposed technique converge to the reference solution asymptotically. Figure 20 shows
the von-Mises equivalent stress contour plot for a typical polyhedral discretization.

uz

z

xy

28��79mm

(a) (b)

Figure 18: Human femur: (a) geometry and boundary conditions and (b) representative
polyhedral mesh.

6 Concluding Remarks

A linearly consistent one point quadrature rule has been proposed to integrate over star
convex arbitrary polytopes. The results from the proposed scheme are compared with
the linear smoothing scheme. The linear smoothing scheme (denoted as LS3n-2D/LS3n-
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Figure 19: Convergence of the total strain energy with mesh refinement for a femur.

(a) (b)

Figure 20: von Mises equivalent stress contour for a femur.
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3D in the paper) consists in subdividing the poly-element into simplices (triangles or
tetrahedra). The linear smoothing scheme is then performed over each triangle. This
process requires 3n and 4n integration points per element, where n is the number of
sides/faces of the element. This significantly reduces the computational effort whilst
preserving accuracy and stability. The proposed integration rule also preserves optimal
convergence rates in both the L2 norm and in the H1 seminorm.
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Bischoff, and Christian Röossl. Geometric modeling based on polygonal meshes.
https://hal.inria.fr/inria-00186820, 47(2):441–453, 2007.

[6] Adrian Bowyer. Computing dirichlet tessellations. Comput. J., 24(2):162–166,
1981.

[7] A. Cangiani, E. H. Georgoulis, and P. Houston. hp-version discontinuous galerkin
methods on polygonal and polyhedral meshes. Mathematical Models and Methods
in Applied Sciences, 24(10):2009–2041, september 2014.

[8] J. S. Chen, C.T. Wu, S. Yoon, and Y. You. A stabilized conforming nodal integra-
tion for galerkin mesh-free methods. International Journal for Numerical Methods
in Engineering, 50(2):435–466, 2001.

[9] L Beirao da Veiga, F Brezzi, A Cangiani, G Manzini, L D Marini, and A Russo.
Basic principles of virtual element methods. Mathematical Models and Methods in
Applied Sciences, 23:199–214, 2013.

30



[10] L. Beirao da Veiga, F. Brezzi, L. D. Marini, and A. Russo. The hitchhiker’s guide
to the virtual element method. Mathematical Models and Methods in Applied
Sciences, 24(08):1541–1573, July 2014.

[11] L Beirao da Veiga and G Manzini. The mimetic finite difference method and the
virtual element method for elliptic problems with arbitrary regularity. Technical
Report LA-UR-12-22977, Los Alamos National Laboratory, 2012.

[12] KY Dai, GR Liu, and TT Nguyen. An n-sided polygonal smoothed finite element
method (nsfem) for solid mechanics. Finite Elements in Analysis and Design,
43:847–860, 2007.

[13] J. Droniou. Finite volume schemes for diffusion equation: Introduction to and
review of modern methods. Mathematical Models and Methods in Applied Sciences,
24:1575–1619, 2010.

[14] Qiang Du, Vance Faber, and Max Gunzburger. Centroidal voronoi tessellations:
Applications and algorithms. SIAM Rev., 41(4):637–676, December 1999.

[15] Q. Duan, X. Gao, B. Wang, X. Li, and H. Zhang. A four-point integration scheme
with quadratic exactness for three-dimensional element-free galerkin method based
on variationally consistent formulation. Computer Methods in Applied Mechanics
and Engineering, 280(1):84–116, 2014.

[16] Q. Duan, X. Gao, B. Wang, X. Li, H. Zhang, T. Belytschko, and Y. Shao. Consis-
tent element-free galerkin method. International Journal for Numerical Methods
in Engineering, 99(2):79–101, 2014.

[17] M. S. Floater. Mean value coordinates. Computer Aided Geometric Design,
20(1):19–27, 2003.

[18] A. Francis, A.Ortiz-Bernardin, S. P. A. Bordas, and S. Natarajan. Linear smoothed
polygonal and polyhedral finite elements. International Journal for Numerical
Methods in Engineering, 109(9):1263–1288, 2017.

[19] Arun. Gain. Polytope-based topology optimization using a mimetic-inspired method.
PhD thesis, University of Illinois at Urbana-Champaign, 2014.

[20] X. Gao, Q. Duan, Y. Shao, X. Li, B. Chen, and H. Zhang. Quadratically consistent
one-point (qc1) integration for three-dimensional element-free galerkin method.
Finite Elements in Analysis and Design, 114:22–38, 2016.

[21] Xu hai Tang, Sheng-Chuan Wu, Chao Zheng, and Jian hai Zhang. A novel vir-
tual node method for polygonal elements. Applied Mathematics and Mechanics,
30:1233–1246, 2009.

31



[22] J. Jaskowiec, P. Plucinski, and A. Stankiewicz. Discontinuous galerkin method
with arbitrary polygonal finite elements. Finite Elements in Analysis and Design,
120:1–17, 2016.

[23] K. Jayabal, A. Menzel, A. Arockiarajan, and S.M Srinivasan. Micromechanical
modelling of switching phenomena in polycrystalline piezoceramics. application of
a polygonal finite element approach. Computational Mechanics, 48(4):421–435,
2011.

[24] A. R. Khoei, R. Yasbolaghi, and S.O.R. Biabanaki. A polygonal finite element
method for modeling crack propogation with minimum remeshing. International
Journal of Fracture, 194(2):123–148, 2015.
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