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Abstract 

Background: A variety of Copy Number Variants are associated with a high risk of 

neurodevelopmental and psychiatric disorders (ND-CNVs). We aimed to characterise the impact of 

ND-CNVs on childhood development and investigate whether different ND-CNVs lead to distinct and 

specific patterns of cognitive and behavioural outcomes.  

Methods: 258 children with ND-CNVs (13 CNVs across 9 loci) were systematically assessed for 

psychiatric disorders as well as broader traits of neurodevelopmental, cognitive and 

psychopathological origin. A comparison was made with 106 control siblings, in order to test the 

hypothesis that phenotypes would differ by genotype, both quantitatively, in terms of severity, and 

qualitatively in the pattern of associated impairments.  

Outcomes: 79.8% of ND-CNVs carriers met criteria for one or more psychiatric disorders (OR=13.8 

compared to controls): the risk of ADHD (OR=6.9), ODD (OR=3.6), anxiety disorders (OR=2.9), and 

ASD traits (OR=44.1) was particularly high. ND-CNVs carriers were impaired across all 

neurodevelopmental, cognitive, and psychopathological traits relative to controls. Only moderate 

quantitative and qualitative differences in phenotypic profile were found between genotypes. In 

general, the range of phenotypes was broadly similar for all ND-CNV genotypes. Traits did show 

some evidence of genotypic specificity, however the specific genotype accounted for a low 

proportion of variance in outcome (5-20% depending on trait).  

Interpretation: The 13 ND-CNVs studied have a similar range of adverse effects on childhood 

neurodevelopment, despite subtle quantitative and qualitative differences. Our findings suggest that 

genomic risk for neuropsychiatric disorder has pleiotropic effects on multiple processes and neural 

circuits, and provides important implications for research into genotype-phenotype relationships 

within psychiatry. 

Funding: The Medical Research Council and the Waterloo Foundation 
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Research in context 

Evidence before this study 

Several Copy Number Variants (CNVs) have been associated with high risk of development of child 

and adult neuropsychiatric disorders. Increasingly young children with developmental delay referred 

for genetic testing are being diagnosed with neurodevelopmental and psychiatric risk CNVs (referred 

to as ND-CNVs hereafter). It remains unclear whether different genotypes are associated with 

specific cognitive and behavioural phenotypes or whether these outcomes are non-specific. We 

searched PubMed for English language studies published from database inception until January 

10th, 2019 that investigated the relationship between CNVs and cognitive and behavioural 

outcomes.  Search terms included “CNV”, “genomics”, “1q21.1”, “2p16.3”, “NRXN1”, “9q34”, 

“Kleefstra Syndrome”, “15q11.2”, “15q13.3”, “16p11.2”, “22q11.2”, “psychiatry”, and “cognition”. 

Preliminary studies have indicated that deletions and duplications at the same loci may differ in 

cognitive and behavioural phenotypes. However, to date, there have been limited studies that 

contrasted the phenotypes of ND-CNVs across several loci on a range of cognitive and behavioural 

domains. 

Added value of this study 

We found that young people carrying a ND-CNV were at considerably increased risk for 

neuropsychiatric disorder and impairments across a range of neurodevelopmental, 

psychopathological, cognitive, social, sleep and motor traits. Within ND-CNV carriers, comparisons 

between genotypes indicated moderate quantitative and qualitative differences in overall phenotypic 

profile, with evidence that severity of impairment was similar across all genotypes for some traits (e.g. 

mood problems, sleep impairments, peer problems, and sustained attention) whereas for other traits 

there was evidence of genotype specific effects on severity (e.g., IQ, spatial planning, processing 

speed, subclinical psychotic experiences, ASD traits, motor coordination total psychiatric 
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symptomatology, particularly anxiety, ADHD, and conduct related traits). However the proportion of 

variance explained by genotype was low, 5-20% depending on trait, indicating that overall ND-CNVs 

lead to similar neurodevelopmental outcomes. It is important that genotype-phenotype relationships 

are viewed through a developmental lens as some phenotypic outcomes were found to be associated 

with age. 

Implications of all the available evidence 

Our work highlights that children who carry a ND-CNV represent a patient group that warrants 

clinical and educational attention for a broad range of cognitive and behavioural impairments and 

that commonalities in clinically relevant neurodevelopmental impairments exist across ND-CNVs. 

This group of young people could benefit from the development of a general care pathway, to which 

genotype-specific recommendations can be added where needed. Our work indicates that the 

relationship between genotype and neurodevelopmental phenotype is complex and that future 

research will need to take a global systems approach and not be narrowly focused on single 

phenotypes. 
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Introduction 

The advent of microarray technology has heralded a new era for understanding the clinical genetics 

of neuropsychiatric disorders. A striking finding has been the implication of copy number variants 

(CNVs) in these disorders 1, including intellectual disability (ID), autism spectrum disorder (ASD) and 

schizophrenia 2-4. CNVs are submicroscopic deletions or duplications within the genome that are 

greater than 1000 base pairs5 and several loci have been identified whereby CNVs recur with 

sufficient frequency in the population to be associated with neurodevelopmental and psychiatric 

outcomes (hereafter referred to as ND-CNVs).  Recurrent ND-CNVs are individually rare, but 

collectively pathogenic ND-CNVs have been implicated in ~15% of patients with neurodevelopmental 

disability 6. Although these ND-CNVs are strongly associated with disorder, they have incomplete 

penetrance and exhibit a high degree of pleiotropy, conferring risk for a broad range of psychiatric 

disorders, cognitive deficits and medical/physical comorbidities across the lifespan 7-10. 

Current understanding of genotype-phenotype relationships is hampered by a lack of studies that 

have conducted cross-CNV comparisons11. Therefore it is unclear to what extent phenotypic findings 

for different genotypes can be compared across studies and what the impact is of variation in 

sample sizes and methodological issues of ascertainment and phenotyping. Increasing use of array 

screening in the assessment of children with neurodevelopmental delay is leading to a rise in the 

diagnosis of ND-CNVs by medical genetics clinics, yet information on long-term neuropsychiatric 

prognosis is lacking. There is a need to understand whether different genotypes are associated with 

specific neuropsychiatric, cognitive and other phenotypes. We posit four different models of 

potential genotype-phenotype relationships (Figure 1). 1) The null model proposes that phenotypic 

profile does not differ between genotypes (Model 1, Figure 1). 2) Phenotypic differences are 

qualitative in nature, whereby each ND-CNV is associated with a distinct phenotype due to the 

specific genes involved (Model 2, Figure 1). 3) Phenotypic differences are quantitative in nature 

whereby all ND-CNVs impact on the same range of outcomes but differ from each other in 
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magnitude of impairment (Model 3, Figure 1). 4) A combination of the Models 2 and 3 best explains 

differences in phenotypic outcome across ND-CNVs (Model 4, Figure1).  There is support for the 

qualitative differences model in the autism field where it is hypothesised that the disorder is 

dissociable by the genetic underpinnings12,13, with some researchers using the term “autisms”14. The 

quantitative differences model is supported by findings that genes across ND-CNVs impact shared 

pathways leading to outcomes such as cognitive impairment15 and increased schizophrenia risk16, 

indicating that common mechanisms act across loci. It is important to highlight that variability in 

phenotypic outcomes will also be shaped by incomplete penetrance8, life course developmental 

stage17, genetic context including polygenic risk18 and additional mutations 19,20 as well as 

environmental exposures21.  

Here we present findings from a cohort of children with ND-CNVs from the IMAGINE-ID (Intellectual 

Disability & Mental Health: Assessing the Genomic Impact on Neurodevelopment) consortium. 

Individuals were recruited on the basis of genotype via the United Kingdom’s (UK) National Health 

Service (NHS) medical genetic clinic network. Broad online phenotyping was conducted on over 2000 

individuals (results will be reported elsewhere), and deep phenotyping was conducted within a 

subgroup of the cohort with assessments covering a range of neuropsychiatric, cognitive and other 

traits using a multi-informant approach. The IMAGINE-ID study is creating a lasting resource for 

research into intellectual disability, genotype and mental health. Researchers who would like to use 

IMAGINE-ID data can find further information on our website "http://imagine-id.org/healthcare-

professionals/.  Here we report on findings from the deep phenotyping component of IMAGINE-ID.  

First, we characterised the impact of recurrent ND-CNVs on child development by contrasting the 

performance of CNV carriers with sibling controls. Next, we evaluated the phenotypic differences 

between genotypes and determined whether these were qualitative or quantitative in nature. Finally, 

we established the extent to which neuropsychiatric, cognitive and other outcomes were affected by 

gender and age.  
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Methods 

The Imagine-ID study recruits individuals with genomic variants that have been associated with 

neurodevelopmental problems. Participants are recruited via the UK NHS medical genetics service, 

whereby microarray results can be accessed and patients can be retrospectively and prospectively 

invited to take part in research studies. NHS patients were also recruited via support groups, including 

Unique, Max Appeal and other groups on social media. The IMAGINE-ID study comprises two 

components. First, parents with a child aged 4 years and older with a CNV or Single nucleotide 

polymorphisms (SNV) were invited to complete relatively short online assessments (>2000 completed 

to date). Second, from this pool, families with a child with one of a set of specific, recurrent ND-CNVs 

were approached for a deep phenotyping home based assessment and it is this sample that the 

current study is based on. The specific loci were: 1q21.1 (proximal and distal), 2p16.3, 9q34, 15q11.2, 

15q13.3, 16p11.2 (proximal and distal) and 22q11.2 (Table 1 for further details). These recurrent ND-

CNVs were selected because they are robustly associated with ID and neuropsychiatric phenotypes22-

24, including schizophrenia and ASD, and are frequently diagnosed in medical genetic clinics. Families 

were approached if the child with the ND-CNV was aged 6-19 years (the age range in which our 

assessment battery operates) and if presence of the ND-CNV was confirmed from accessing medical 

records. 274 children with one of these ND-CNVs took part in these detailed assessments. 16 were 

found to have more than one of these ND-CNVs and were excluded from the analysis. This left a 

sample of 258 children with a ND-CNV (9.7 years (SD=3.1), 65.9% male). Of the 258 ND-CNV carriers 

22.8% (n=59) had a de novo variant, 44.2% (n=114) an inherited variant and for 32.9% (n=85) the 

status was unknown. A sibling without the ND-CNV (sibling control) and closest in age to the index 

child was also invited to take part. We recruited 106 sibling controls (10.9 years (SD=3.0), 51.9% 

male)). Availability of micro-array results and medical records allowed us to exclude presence of the 

ND-CNVs under study for n=77. For the remaining, n=16 came from families with an inherited ND-

CNV.  Informed consent was gained from primary carers and participants. Protocols were approved 

by the NHS London Queen Square research ethics committee. ND-CNV genotype was confirmed via 
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NHS medical genetics clinic records and by the Cardiff University Division of Psychological Medicine 

and Clinical Neurosciences (CU DPMCN) laboratory.  

 

 

Assessments 

 

25 quantitative cognitive and behavioural traits and 5 composite scores were measured using a 

multi-informant approach. In addition categorical psychiatric diagnoses were derived. Assessments 

of the child were made by experienced research psychologists. Assessments took place within the 

participant’s home with the advantages this maximised accessibility to the study and reduced bias 

against participants who may struggle to travel to a research clinic, and furthermore the child could 

be assessed in a familiar setting where they are less likely to be anxious and more likely to engage 

with the assessments. Measures are briefly described, full details on assessments and a summary 

table can be found in the Supplementary Materials. 

 

Cognition 

 

Cognition was assessed via direct child assessments. IQ was assessed using the Wechsler 

Abbreviated Scale of Intelligence (WASI)25 from which scores for non-verbal reasoning, perceptual 

organisation, verbal knowledge and verbal reasoning were derived as well as full scale IQ (FSIQ), 

performance IQ (PIQ) and verbal IQ (VIQ) composite scores. Set-shifting ability was assessed using 

the Wisconsin Card Sorting Test (WSCT)26. The CANTAB (Cambridge Neuropsychological Test 

Automated Battery)27 was used to assess spatial working memory, spatial planning, sustained 

attention and processing speed.  

 

Psychopathology and functioning  
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The Child and Adolescent Psychiatric Assessment (CAPA)28 carer report interview was used to derive 

categorical diagnoses and a total symptom count composite score, as well as the following symptom 

subscales: attention deficit hyperactivity disorder (ADHD), anxiety, mood, obsessive-compulsive 

disorder (OCD), oppositional defiant disorder (ODD), and problems with sleep. The child report CAPA 

was conducted to assess subclinical psychotic experiences. Interviews were taped and diagnoses 

confirmed in consensus meeting led by a child psychiatrist. General and social functioning was 

assessed by the psychologists conducting the home visit using the Children’s Global Assessment 

Scale (CGAS)29 and the Social and Occupational Functioning Assessment Scale (SOFAS)30. Autism 

Spectrum Disorder (ASD) traits were assessed via caregiver report using the Social Communication 

Questionnaire (SCQ)31.  Motor coordination impairment was assessed via caregiver report using the 

Developmental Coordination Disorder Questionnaire (DCDQ)32.  The Strengths and Difficulties 

Questionnaire (SDQ)33 was completed by the caregiver and the teacher from which conduct, 

emotional, hyperactivity, peer (quality of peer relationships) and prosocial subscale scores were 

derived as well as SDQ total composite score.  

Analysis 

Aim 1: Cognitive and behavioural phenotype of ND-CNV carriers in relation to controls 

Categorical outcome measures 

The prevalence of psychiatric disorder was compared between ND-CNV carriers and controls. 

Analysis was conducted using generalized linear mixed-effects models, with carrier status, age and 

gender as fixed effects and family as a random effect to take into account that control siblings are 

related to ND-CNV carriers.  

Continuous outcome measures  
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All cognitive and behavioural trait scores and composite scores (FSIQ, PIQ, VIQ, total symptom count 

and SDQ total score) were transformed using Tukey’s Ladder of Powers. This transformation makes 

the data fit the normal distribution as closely as possible. All tests scores were then standardised into 

z-scores using the mean and SDs of the control group as reference, i.e. the difference in the individual’s 

score and the mean score for the entire control group was divided by the SD for the control group. Z-

scores were constructed so that a negative score denoted a poorer outcome. Linear mixed-effects 

models were conducted with test score as the outcome and carrier status, age and gender as fixed 

effects and family as a random effect. To estimate the standardised difference between ND-CNV 

carriers and controls Cohen’s d was calculated. To assess the potential effects of intelligence on group 

differences, analyses were repeated with FSIQ as a covariate. To correct for multiple testing in Aim 1 

a Benjamini-Hochberg false discovery rate (B-H FDR) of 0.05 for correction of p-values was applied.  

Aim 2: Investigation of qualitative and quantitative differences between ND-CNVs 

To investigate which genotype-phenotype relationship model (Figure 1) best explained our data, we 

used the z-scores generated within Aim 1 for each child with a ND-CNV to calculate the mean z-score 

across individuals with the same ND-CNV genotype for each trait. Hierarchical clustering was 

performed using Ward’s method and Euclidian distance to investigate which ND-CNVs, and which 

cognitive and behavioural phenotypes clustered together.  The frequency of each ND-CNV is 

presented in Table 1. 

Analysis of qualitative and quantitative differences in overall phenotypic profile was based on ranking 

the mean of each phenotypic trait score for each ND-CNV. In the analysis of qualitative effects a set of 

phenotype rankings was created for each ND-CNV (Model 2, Figure 1, within each genotype row, 

phenotype was ranked by phenotypic severity). Rank discordance between ND-CNVs would suggest 

that the phenotype profile for each ND-CNV differs, therefore indicating the presence of qualitative 

differences.  In the analysis of quantitative effects a set of ND-CNV rankings was created for each 

phenotype (Model 3, Figure 1, within each phenotype column, each ND-CNV was ranked by 
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phenotypic severity). Rank concordance between phenotypes would suggest that ND-CNVs differ in 

severity across phenotypes, therefore indicating quantitative differences. Note these models aren’t 

opposing ends of a spectrum, both quantitative and qualitative effects can be present (Model 4, Figure 

1). To test for similarities and differences for both qualitative and quantitative effects across ND-CNVs, 

rank concordance was assessed using Kendall’s test and rank discordance using the Friedman test. 

This rank concordance based approach has been previously used to investigate genotype-phenotype 

relationships34. To avoid collinearity, composite scores were not included in the concordance analysis. 

Furthermore to test for quantitative effects between ND-CNVs at the level of individual traits, 

ANCOVAs were conducted with the test score as the outcome, genotype as the predictor, and gender 

and age as covariates.  

Aim 3: Effect of age and gender on cognitive and behavioural outcomes 

To investigate the influence of gender and age on the outcomes within ND-CNV carriers, we estimated 

eta-squared and standardised beta value from the ANCOVAs conducted for the quantitative analysis. 

Eta-squared values reflect the proportion of variance in the quantitative trait explained by the 

predictor and the standardised beta values reflect the magnitude and direction of effect of the 

predictor on phenotypic outcome. To correct for analyses across aims 2 and 3 a B-H FDR 0.05 

correction of p-values was applied.  

Role of the funding source 

The funders of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report. The corresponding author had full access to all the data in 

the study and had final responsibility for the decision to submit for publication. 

Results 

Aim 1: Prevalence of psychiatric disorder was significantly elevated in ND-CNV carriers (79.8%) 

compared to controls (21.3%), OR = 13.8, 95% CI = 7.2-26.3, p=7.79×10-7). ND-CNV carriers had 
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significantly elevated rates of ADHD (47.2% vs 11.0%, OR =6.9, 95% CI =3.2-15.1, 2.09×10-6), ODD 

(20.6% vs 6.7%, OR =3.6, 95% CI = 1.4-9.4, p=1.20×10-2), anxiety disorder (21.9% vs 9.3%, OR = 2.9, 

95% CI = 1.2-6.7, p=1.46×10-2), ASD (66.1% vs 4.7%, OR = 44.1, 95% CI = 15.3-127.5, 2.50×10-9) and 

Tic Disorder (16.3% vs 0.0%, p=2.10×10-5, OR could not be estimated as no controls affected) 

compared to controls (see Table 2). These results remained significant when FSIQ was controlled for, 

and all survived B-H FDR correction. Mood disorder, OCD and subclinical psychotic experiences were 

present in ND-CNV carriers but prevalence was not significantly elevated relative to controls. None 

of the ND-CNV carriers or controls met criteria for psychotic disorder.  

Linear mixed-effects model analysis found that ND-CNV carriers showed significant impairment on 

all our continuous measures of cognitive and behavioural traits and composite scores (Table 3, 

Figure 2) compared to controls. These results remained significant when FSIQ was controlled for, 

and all survived B-H FDR correction. Cohen’s d varied from 0.27 (subclinical psychotic experiences) to 

1.76 (hyperactivity subscale, caregiver reported). Large effect size differences between ND-CNV 

carriers and controls were found for FSIQ, including PIQ, VIQ and all comprising subtests, sustained 

attention, total psychiatric symptom count, ADHD and ASD traits, motor coordination, general and 

social functioning, total SDQ score (carer and teacher report) and hyperactivity (carer and teacher 

report), peer (carer report), prosocial (carer report)  SDQ subscales. The majority of contrasts 

remained significant when we compared all deletion carriers to the controls and all the duplications 

carriers to the controls (see Supplementary Table 1, which also details contrasts of each ND-CNV 

from controls). Findings remained similar when the 29 control sibling for whom we did not have full 

genetic confirmation of absence of the ND-CNVs under study were excluded (see Supplementary 

Table 2), therefore all control siblings were included in all subsequent analyses in this paper. As well 

as caregiver report, teachers reported that ND-CNV carriers scored significantly worse on SDQ total 

score and subscale scores (Table 3 and Figure 2). Teacher reported SDQ scores were moderately 

correlated with carer report scores; total SDQ score r= 0.470, p=1.35×10-11; SDQ subscale scores, r= 

0.316 to 0.548, p= 5.69×10-16 to 1.13×10-5.  
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Aim 2: Within ND-CNV carriers, mean performance (adjusted for age and gender) on phenotypic 

traits for each ND-CNV are visualised in Figure 3, where distinct profiles are apparent. Regarding 

phenotypic associations, 2 clusters can be distinguished; neurodevelopmental traits (Figure 3, Box B); 

and mental health and cognitive comorbidities (Figure 3, Box A). All genotypes showed evidence of 

strong impairments in the neurodevelopmental traits cluster, whereas level of impairment within the 

mental health and cognitive comorbidities cluster was less and more variable across ND-CNVs (the 

traits that comprise each cluster are shown in Figure 3, and see the Supplementary Table 1 for z-

scores for each ND-CNV). The dendrogram on Figure 3 shows the pattern of ND-CNV clustering, 

there was no strong evidence that deletion variants differed in profile from duplication variants, or 

that deletions and duplications at the same loci differed in profile.  

In terms of the overall phenotypic profile there was evidence of both qualitative and quantitative 

differences between genotypes. Both tests of significance for rank concordance and discordance 

were significant for both analyses of qualitative (Friedman chi-squared = 177.39, p<1.00×10-15; 

Kendall F=15.81, p<1.00×10-15) and quantitative effects (Friedman chi-squared = 53.04, p=4.06×10-7; 

Kendall F=5.15, p<8.72×10-8). These findings indicate that, although significant quantitative and 

qualitative differences exist, the converse is true in that qualitative and quantitative similarities also 

exist. We therefore conclude effects for both qualitative as well as quantitative differences between 

genotypes are moderate, and overall our data supports Model 4 (Figure 1). A sensitivity analysis was 

conducted excluding individuals with 9q34.3 deletion or 22q11.2 deletion as the dendrogram (Figure 

3) indicated their phenotypic profiles stood apart from the other ND-CNVs and that this could drive 

the differences we found. However, excluding these two groups did not change our finding of 

moderate qualitative and a quantitative differences between genotypes, and did not change the 

hierarchical clustering of traits into neurodevelopmental traits and mental health and cognitive 

comorbidities. We conducted further sensitivity analysis to confirm that our findings were not driven 

by a) by one of the two clusters specifically or b) overlap between different phenotypic measures 

(Supplementary Materials). We found that a) moderate qualitative and quantitative differences 
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existed within both the neurodevelopmental traits as well as the mental health and cognitive 

comorbidities clusters, indicating that both phenotypic clusters drive qualitative and quantitative 

differences; b) findings remained the same when analyses were conducted on a second set of 

rankings based on sub-cluster scores, therefore taking account of overlapping correlated phenotypic 

traits. Sub-clusters were identified from the hierarchical clustering conducted for Figure 3 (listed in 

Supplementary Materials).  

At the level of individual phenotypic traits quantitative differences were found with genotype 

predicting between 5-20% of variance (Eta-squared effect size) in impairment within ND-CNV 

carriers depending on the specific trait (Table 4).  The effect of genotype significantly predicted 

impairment severity in some traits; FSIQ, PIQ, VIQ, all the IQ subtests, spatial planning, processing 

speed, total CAPA symptom count including the anxiety, ADHD and ODD subscales, subclinical 

psychotic experiences, social functioning, ASD traits, motor coordination, SDQ total including 

conduct, hyperactivity and prosocial subscales (Table 4). However, for set-shifting ability, spatial 

working memory, sustained attention, mood CAPA subscale, OCD CAPA subscale, sleep CAPA 

subscale, general functioning, emotional SDQ subscale, and the peer SDQ subscale, the effect of 

genotype was not significant. For these analyses, p-values equal or less than 0.02 survived BH-FDR 

0.05 correction. These findings remained largely the same when we included family ethnic 

background and family income in the analysis, with genotype explaining 5-21% of variation in 

phenotypic outcome, depending on the trait (see Supplementary Table 3). 

Aim 3: The phenotypic profile of ND-CNV carriers was influenced by age (accounting for 0-25% of 

variance depending on trait) with deficits in some traits becoming reduced in older children: the 

hyperactivity SDQ subscale (β = 0.18, p=5.04×10-3), sustained attention (β = 0.53, p=1.89×10-11 and 

higher executive function (set-shifting, β = 0.18, p=1.32×10-2). Deficits in other traits were found to 

be greater in older children; FSIQ (β =-0.18, p=3.61×10-3), spatial working memory (β =-0.10, 

p=7.92×10-3), mood CAPA subscale (β = -0.17, p=1.05×10-2), subclinical psychotic experiences (β = -
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0.20, p=1.40×10-3), and the peer subscale of the SDQ (β = -0.21, p=1.34×10-3). We conducted 

interaction analysis to evaluate, for the traits we found to be age related, whether there was 

evidence of differences in the relationship between age and phenotypic outcome between ND-CNV 

carriers and controls. An interaction between age and group status (ND-CNV carriers vs controls) was 

found only for the CAPA mood subscale score (p=4.38×10-2), indicating that with increasing age 

mood problems develop at a greater rate in ND-CNV carriers relative to controls. For the other traits 

(hyperactivity, spatial working memory, sustained attention, set-shifting, FSIQ, spatial working 

memory, subclinical psychotic experiences and the peer SDQ subscale) no evidence of differential 

development with age was found between ND-CNV carriers and controls. Gender was found to 

influence phenotypic outcomes in ND-CNV carriers, but accounted for little variation (0-4% 

depending on trait). Males had greater deficits on the hyperactivity SDQ subscale (β = 0.17, 

p=1.61×10-2), sleep CAPA subscale (β = 0.16, p=1.83×10-2) and sustained attention (β = 0.18, 

p=5.35×10-3) than females, but they performed better on the PIQ perceptual organisation subtest (β 

= -0.16, p=6.37×10-3). For these analyses, p-values equal or less than 0.02 survived BH-FDR 0.05 

correction. These results remained largely the same when taking into account family ethnicity and 

family income (see Supplementary Table 3). 

Discussion  

The IMAGINE-ID cohort allowed us to conduct one of the largest studies to define genotype-

phenotype relationships across a range of ND-CNV loci. Overall our findings support a model whereby 

these ND-CNVs have a broadly general effect on phenotypic outcome, but specific effects can be 

identified, albeit accounting for a low proportion of variance (5-20% depending on trait). Some traits 

had similar levels of impairment across all genotypes (e.g. mood problems, sleep impairments, peer 

problems, and sustained attention) whereas for other traits there was more evidence of genotype 

specific patterns (e.g., IQ, spatial planning, processing speed, subclinical psychotic experiences, ASD 

traits, motor coordination total psychiatric symptomatology, particularly anxiety, ADHD, and conduct 
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related traits). Phenotypic differences between ND-CNVs were found to be both quantitative and as 

well as qualitative in nature (Model 4, Figure 1). Hierarchical cluster analysis of phenotypic traits 

identified two clusters; neurodevelopmental traits that were strongly impaired across CNVs, and 

mental health and cognitive comorbidities where impairment was generally less and more variable 

across the genotypes. ND-CNVs affect biological pathways that impact risk of developmental 

impairment and this impairment differs in magnitude by genotype, but the unique gene content of 

each ND-CNV also appears to mould the specific psychiatric, cognitive and other manifestations. As a 

group, children with a ND-CNV were found to be at very high risk of developing psychiatric disorder, 

with 79.8% having at least one psychiatric diagnosis. Moreover, using a broad multi-informant 

approach we found that ND-CNV carriers were impaired relative to their siblings across all the 

psychiatric, neurodevelopmental, psychopathological, cognitive, social, sleep and motor domains 

assessed.  This patient group clearly warrants clinical and educational attention and intervention.  

ND-CNV carriers were found to be at increased risk for a range of psychiatric disorders (OR=13.8 for 

any disorder), including ADHD (OR=6.9), anxiety disorder (OR=2.9), ASD (OR=44.1), ODD (OR=43.6), 

and tic disorders (OR could not be calculated as no controls were affected). All the ND-CNV carriers 

were impaired across all behavioural and cognitive traits measured, the strongest trait differences 

found between ND-CNV carriers and controls included ASD symptom count (d=1.71), hyperactivity 

(d=1.76), social functioning (d=1.60) and motor coordination (d=1.62). Motor coordination is a domain 

that has been relatively understudied in the context of ND-CNV carriers, but recent studies indicate 

that it is an antecedent35 of, and indexes, psychiatric disorder36 in ND-CNV carriers.  Our teacher-report 

measures confirmed that neuropsychiatric impairments were present in multiple settings, indicating 

pervasiveness. Our findings of broad ranging impairments is consistent with studies of common 

polygenic risk37 and familial risk38,39  of psychiatric disorder, that find that genetic risk is associated 

with disrupted childhood neurodevelopment across several domains. Psychiatric disorder was present 

in control siblings at rates in line with previous population studies that have used the same 

instruments as in the current study 40,41 as well as with previous studies that have compared ND-CNV 
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carriers to controls42,43. Some previous studies of 22q11.2 deletion carriers have contrasted to 

community controls, but the effect sizes we find when we contrast to sibling controls are broadly 

similar44,45.   

Strikingly, the specific effect of CNV genotype only accounted for 5-20% of variation in outcome 

depending on phenotypic trait, indicating that the majority of variance is explained by additional 

factors. We found that age was a predictor of outcome for several traits, both ADHD symptoms and 

deficits in our cognitive measures of sustained attention and executive function decreased with age, 

whereas IQ deficits, spatial working memory, mood symptoms, subclinical psychotic experiences and 

peer problems increased with age. These trends are in line with general population studies40,46. We do 

find that increase of mood symptoms with age was greater in ND-CNV carriers relative to controls. 

The other phenotypic traits however, although impaired in ND-CNV carriers, showed comparable 

trends with increasing age as in in the controls. These initial cross-sectional findings illustrate the 

importance of having a control group when viewing genotype-phenotype relationships through a 

developmental lens17,47. These cross-sectional findings warrant future longitudinal studies. Although 

we found gender differences in neurodevelopmental traits in line with findings within the general 

population48, the proportion of variance explained was low (<5%). This may reflect that male-to-

female ratios for conditions such as autism are reduced in populations with intellectual disability49.  

Further research will be required to understand what genetic and environmental factors underlie the 

remaining, unexplained variation, in outcome.    

The high prevalence of psychiatric disorders and the finding that ND-CNV carriers were impaired 

across all the cognitive, motor and psychopathological measures assessed highlight that children with 

ND-CNVs require coordinated multidisciplinary care to address a range of psychiatric, psychological, 

motor coordination, sleep and social and educational needs. This warrants a step change in current 

clinical service provision, and calls for greater awareness of this new patient group amongst clinicians 

and educators. The commonalities we are finding in clinical outcomes across ND-CNVs suggest this 
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group could benefit from the development of a dedicated clinical care pathway, which would provide 

psychoeducation about the broad range of associated risk alongside tailored monitoring of more 

genotype-specific vulnerabilities.   Support and intervention plans for children with a ND-CNV need to 

consider the child’s behaviour in educational and peer contexts as well as address behaviour exhibited 

in the home or clinic. The presence of commonalities in clinical outcomes also indicates that genomic 

risk for neurodevelopmental conditions impacts shared biological processes which could be targeted 

for pharmacological intervention. In this light, it is noteworthy that several ND-CNVs have been linked 

to synaptic dysfunction16. The broad ranging phenotypic outcomes associated with ND-CNVs indicates 

that genotype-phenotype relationships have a complex architecture. Current research efforts that use 

genetic first approaches in human studies and animal models as a way of identifying direct causal 

pathways from genotype to psychiatric disorder via intermediary phenotypes need to take account of 

these complexities, the use of an endophenotype approach should be cautioned50. Systems biology 

and network approaches are needed to globally capture the architecture of genotype-phenotype 

relationships. Efforts focusing on single causal pathways are likely to only provide limited research and 

clinical benefit. 

Limitations 

Individuals had to have a known genetic diagnosis to take part, the study would therefore not capture 

asymptomatic individuals who carry ND-CNVs. Therefore, the true phenotype in the general 

population is likely to be less severe than what we report, with bias being greater for those ND-CNVs 

with a lower penetrance.  However, it is important to put our study in context with wider research. 

Large population-based studies have examined the phenotype of ND-CNVs in adults from the general 

population7,9, but the present study gives unique insights into the development of children at the more 

severe end of the phenotypic spectrum who are most likely to engage with health services and be in 

need of clinical and educational support. Some of our findings could reflect ascertainment bias, in that 

carriers with severe developmental delay are more likely to be referred to medical genetic clinics for 
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testing. However, we found that the differences between ND-CNV carriers and controls remained 

significant after controlling for IQ. Due to our sample size we may be underpowered to detect more 

subtle genotype-phenotype relationships, however this is unlikely to affect our main conclusions that 

ND-CNVs have large pleiotropic effects on childhood development and that although specific 

genotype-phenotype relationships exist within ND-CNV carriers the effect size is relatively low. 

IMAGINE-ID is a nationwide study, however, to increase power in future studies, multinational 

collaborations will be needed. Initiatives such as the pan-European “Maximising Impact of research in 

NeuroDevelopmental DisorderS” MINDDS network (https://mindds.eu/) provide a springboard for 

developing international studies of ND-CNV carriers.  

Conclusion 

Our findings provide evidence of specific genotype-phenotype relationships within CNV carriers both 

in terms of quantitative and qualitative differences. However, although differences can be identified, 

these account for a low proportion of variance and therefore we conclude that different genotypes 

do not result in discrete forms of neurodevelopmental disorders. Our dimensional approach 

facilitated the investigation of genotype-phenotype relationships beyond categorical psychiatric 

diagnosis.  Using a multi-informant deep phenotyping approach we found that genomic risk for 

psychiatric disorder had wide ranging effects on childhood development spanning a range of 

cognitive and behavioural domains. Our findings highlight that there are core neurodevelopmental 

traits that are strongly impaired across all ND-CNV carriers, but additionally ND-CNV carriers are also 

affected by broad-ranging mental health and cognitive comorbidities. This suggests that multiple 

processes and neural circuits are affected by ND-CNVS. Future research into the relationship 

between genotype and psychiatric outcomes via intermediary endophenotypes needs to consider 

this when interpreting findings.  Early detection of children with ND-CNVs is warranted to a) 

investigate antecedents and developmental course of neuropsychiatric impairments, b) add to the 

understanding of how genomic risk manifests, c) inform early intervention programs.  
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Tables 

Table 1: ND-CNV breakpoints and frequencies 

# Not listed on Mendelian Inheritance in Man (MIM) website but associated with 

neurodevelopmental phenotypes. 

Table 2: Prevalence of psychiatric disorder and childhood outcomes in ND-CNV carriers and controls 

CI, 95% confidence interval; OR, Odds ratio; ADHD, Attention Deficit Hyperactivity Disorder; ASD, Autism 

Spectrum Disorder; OCD, Obsessive Compulsive Disorder; ODD, Oppositional Defiant Disorder. Generalized 

linear mixed-effects model was conducted with diagnosis as the outcome and carrier status, age and gender as 

fixed effects and family as a random effect.  

#due to 0 values for controls OR could not be estimated, p-values were estimated using fishers exact test but 

should be treated cautiously 

*Survives Benjamini-Hochberg false discovery rate 0.05 correction 

Table 3: Quantitative cognitive and behavioural traits in controls and ND-CNV carriers 

FSIQ, Full Scale Intelligence Quotient; PIQ, Performance Intelligence Quotient; VIQ, Verbal Intelligence 

Quotient; CAPA, Child and Adolescent Psychiatric Assessment; ADHD, Attention Deficit Hyperactivity Disorder; 

OCD, Obsessive Compulsive Disorder; ODD, Oppositional Defiant Disorder; ASD, Autism Spectrum Disorder; 

SDQ, Strengths and Difficulties Questionnaire.  Test scores were transformed so that their distribution 

approximated the normal distribution as closely as possible. Transformed scores were standardised into z 

scores using the means and SDs of the control group as reference and adjusted for age and gender, and were 

constructed so that a negative score denoted a poorer outcome. Linear mixed-effects models were conducted 

with test score as the outcome and carrier status, age and gender as fixed effects and family as a random 

effect. Cohen’s d represents the standardised difference in trait score between ND-CNV carriers and controls 

adjusted for age and gender, scores were categorised into effect size descriptor categories; 0.00-0.19 

negligible, 0.20-0.49 small, 0.50-0.79 medium, 0.80+ large. 

 # denotes composite scores. 

*Survives Benjamini-Hochberg false discovery rate 0.05 correction 

Table 4: Effect size of genotype, age, and gender on phenotypic outcomes. 

Eta, eta-squared, FSIQ, Full Scale Intelligence Quotient; PIQ, Performance Intelligence Quotient; VIQ, Verbal 

Intelligence Quotient; CAPA, Child and Adolescent Psychiatric Assessment; ADHD, Attention Deficit 

Hyperactivity Disorder; OCD, Obsessive Compulsive Disorder; ODD, Oppositional Defiant Disorder; ASD, Autism 

Spectrum Disorder; SDQ, Strengths and Difficulties Questionnaire.   P-values, eta-squared values were derived 

from ANCOVA analyses examining the effect of genotype, age and gender. Standardised beta values were 

derived from linear regression models. For gender a positive beta value indicated that males had a higher 

score compared to females, for age a positive beta value indicated that the score increased with age. 

 # denotes composite scores. 

*Survives Benjamini-Hochberg false discovery rate 0.05 correction 
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Figures 

Figure 1: Visual representation of models of genotype-phenotype relationships 

Each cell represents z-score performance for a neuropsychiatric domain. Z scores can be found in 

Supplementary Table 1. In model 1 there are no phenotypic differences between genotypes. In model 2 there 

are qualitative differences, in that the neuropsychiatric profile differs by genotype, but they are no 

quantitative differences. Each genotype has the same overall severity of impairment, but the distribution 

across phenotypic traits is different, e.g. for genotype 1, phenotype 2 and 6 are most severely affected, whilst 

for genotype 3 it is phenotypes 2 and 10. In model 3 there are quantitative differences as each genotype 

differs in average level of impairment, however, there are no qualitative differences in phenotypic profile as 

within each genotype, severity does not differ by phenotype. In model 4 there are both quantitative and 

qualitative differences in neuropsychiatric profile. 

Figure 2: Standardised difference between ND-CNV carriers and controls on quantitative cognitive 

and behavioural traits 

FSIQ, Full Scale Intelligence Quotient; PIQ, Performance Intelligence Quotient; VIQ, Verbal Intelligence 

Quotient; CAPA, Child and Adolescent Psychiatric Assessment; ADHD, Attention Deficit Hyperactivity Disorder; 

OCD, Obsessive Compulsive Disorder; ODD, Oppositional Defiant Disorder; ASD, Autism Spectrum Disorder; 

SDQ, Strengths and Difficulties Questionnaire.  Cohen’s d represents the standardised difference in trait 

between ND-CNV carriers and controls adjusted for age and gender. The red lines denote effect size descriptor 

categories51; 0.00-0.19 negligible, 0.20-0.49 small, 0.50-0.79 medium, 0.80+ large. 

Figure 3: Phenotypic profiles of individual ND-CNV genotypes 

ADHD, Attention Deficit Hyperactivity Disorder; OCD, Obsessive Compulsive Disorder; ODD, Oppositional 

Defiant Disorder; ASD, Autism Spectrum Disorder. Test scores were transformed so that their distribution 

approximated the normal distribution as closely as possible. Transformed scores were standardised into z 

scores using the means and SDs of the control group as reference and adjusted for age and gender, and were 

constructed so that a negative score denoted a poorer outcome. Cream colour represents a z score difference 

of zero between the ND-CNV group and controls, whereas yellow through to orange, red purple and black 

represents a deficit in the CNV group relative to controls. Hierarchical clustering, for the purposes of 

presentation (indicated by the dendrogram), was performed using Ward’s method and Euclidian distance. 

Domains clustered into two groups; mental health and cognitive comorbidities (cluster A, blue box) and 

neurodevelopmental traits (cluster B, green box) 
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