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Stochastic homogeneous hyperelastic solids are characterized by strain-energy densities where the
parameters are random variables defined by probability density functions. These models allow for the
propagation of uncertainties from input data to output quantities of interest. To investigate the effect of
probabilistic parameters on predicted mechanical responses, we study radial oscillations of cylindrical
and spherical shells of stochastic incompressible isotropic hyperelastic material, formulated as quasi-
equilibrated motions where the system is in equilibrium at every time instant. Additionally, we study finite
shear oscillations of a cuboid, which are not quasi-equilibrated. We find that, for hyperelastic bodies of
stochastic neo-Hookean or Mooney–Rivlin material, the amplitude and period of the oscillations follow
probability distributions that can be characterized. Further, for cylindrical tubes and spherical shells,
when an impulse surface traction is applied, there is a parameter interval where the oscillatory and non-
oscillatory motions compete, in the sense that both have a chance to occur with a given probability. We
refer to the dynamic evolution of these elastic systems, which exhibit inherent uncertainties due to the
material properties, as ‘likely oscillatory motions’.

Keywords: stochastic hyperelastic models; dynamic finite strain deformation; quasi-equilibrated motion;
finite amplitude oscillations; incompressibility; applied probability;.

“Denominetur motus talis, qualis omni momento temporis t praebet configurationem capacem aequilibrii
corporis iisdem viribus massalibus sollicitati, ‘motus quasi aequilibratus’. Generatim motus quasi aequi-
libratus non congruet legibus dynamicis et proinde motus verus corporis fieri non potest, manentibus
iisdem viribus masalibus.” - Truesdell (1962)

1. Introduction

Motivated by numerous long-standing and modern engineering problems, oscillatory motions of
cylindrical and spherical shells made of linear elastic material (Krauss, 1967; Love, 1888, 1944;
Reissner, 1941) have generated a wide range of experimental, theoretical and computational studies
(Alijani & Amabili, 2014; Amabili, 2008; Amabili & Païdoussis, 2003; Breslavsky & Amabili, 2018;
Dong et al., 2018). In contrast, time-dependent finite oscillations of cylindrical tubes and spherical shells
of nonlinear hyperelastic material, relevant to the modelling of physical responses in many biological
and synthetic systems (Ahamed et al., 2018; Aranda-Iglesias et al., 2017; Destrade et al., 2011; Haas
& Goldstein, 2015, 2019; Haslach & Humphrey, 2004; Kumar & DasGupta, 2013), have been less
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2 L. A. MIHAI ET AL.

investigated, and much of the work in finite nonlinear elasticity has focused on the static stability of
pressurized shells (Adkins & Rivlin, 1952; Biscari & Omati, 2010; Bucchi & Hearn, 2013a,b; Carroll,
1987; Fu et al., 2016; Goncalves et al., 2008; Goriely et al., 2006; Green & Shield, 1950; Mangan &
Destrade, 2015; Müller & Struchtrup, 2002; Rivlin, 1949; Shield, 1972; Zamani & Pence, 2017), or on
wave-type solutions in infinite media (Il’ichev & Fu, 2014; Pearce & Fu, 2010).

The governing equations for large amplitude oscillations of cylindrical tubes and spherical shells
of homogeneous isotropic incompressible nonlinear hyperelastic material, formulated as special cases
of quasi-equilibrated motions (Truesdell, 1962), were reviewed in Truesdell & Noll (2004). These are
the class of motions for which the deformation field is circulation preserving, and at every time instant,
the current configuration is a possible static configuration under the given forces. The free and forced
axially symmetric radial oscillations of infinitely long, isotropic incompressible circular cylindrical
tubes, with arbitrary wall thickness, were described for the first time in Knowles (1960, 1962). In
Heng & Solecki (1963), Knowles & Jakub (1965) and Wang (1965), free and forced oscillations of
spherical shells were derived analogously. For the combined radial–axial large amplitude oscillations
of hyperelastic cylindrical tubes, in Shahinpoor (1973), the surface tractions necessary to maintain the
periodic motions were discussed, and the results were applied to a tube sealed at both ends and filled
with an incompressible fluid. The dynamic deformation of cylindrical tubes of Mooney–Rivlin material
in finite amplitude radial oscillation was obtained in Shahinpoor & Nowinski (1971), Shahinpoor (1973)
and Shahinpoor & Balakrishnan (1978). Oscillatory motion caused by the dynamic cavitation of a neo-
Hookean sphere was considered in Chou-Wang & Horgan (1989). For a wide class of hyperelastic
materials, both the static and dynamic cavitation of homogeneous spheres were analysed in Ball (1982).
For a hyperelastic sphere of Mooney–Rivlin material, with a cavity, the solution to the nonlinear problem
of large amplitude oscillations was computed numerically in Balakrishnan & Shahinpoor (1978).
Theoretical and experimental studies of cylindrical and spherical shells of rubberlike material under
external pressure were presented in Wang & Ertepinar (1972). In Calderer (1983), the finite amplitude
radial oscillations of homogeneous isotropic incompressible hyperelastic spherical and cylindrical shells
under a constant pressure difference between the inner and the outer surface were studied theoretically.
The finite longitudinal, or ‘telescopic’, oscillations of infinitely long cylindrical tubes were investigated
in Nowinski & Schultz (1964). In Nowinski (1966), the oscillatory motions of cylindrical and prismatic
bodies of incompressible hyperelastic material under dynamic finite shear deformation were analysed.
Other dynamic shear deformations were considered in Wang (1969), where it was emphasized that such
shear motions were not quasi-equilibrated. In Huilgol (1967), the dynamic problem of axially symmetric
oscillations of cylindrical tubes of transversely isotropic incompressible material, with radial transverse
isotropy, was treated. The dynamic deformation of a longitudinally anisotropic thin-walled cylindrical
tube under radial oscillations was obtained in Shahinpoor (1974). In Ertepinar & Akay (1976), radial
oscillations of non-homogeneous thick-walled cylindrical and spherical shells of neo-Hookean material,
with a material constant varying continuously along the radial direction, were studied. In Akyüz &
Ertepinar (1998), for pressurized homogeneous isotropic compressible hyperelastic tubes of arbitrary
wall thickness under uniform radial dead-load traction, the stability of the finitely deformed state and
small radial vibrations about this state were treated, using the theory of small deformations superposed
on large elastic deformations, while the governing equations were solved numerically. In Verron et al.
(1999), the dynamic inflation of hyperelastic spherical membranes of Mooney–Rivlin material subjected
to a uniform step pressure was studied, and the absence of damping in these models was discussed. It was
concluded that, as the amplitude and period of oscillations are strongly influenced by the rate of internal
pressure, if the pressure was suddenly imposed and the inflation process was short, then sustained
oscillations due to the dominant elastic effects could be observed. However, for many systems under
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LIKELY OSCILLATORY MOTIONS OF STOCHASTIC HYPERELASTIC SOLIDS 3

slowly increasing pressure, strong damping would generally preclude oscillations (De Pascalis et al.,
2018). More recently, the dynamic response of incompressible hyperelastic cylindrical and spherical
shells subjected to periodic loading was discussed in Ren (2008, 2009). Radial oscillations of
cylindrical tubes and spherical shells of neo-Hookean (Treloar, 1944), Mooney–Rivlin (Mooney, 1940;
Rivlin, 1948) and Gent (1996) hyperelastic materials were analysed in Beatty (2007, 2011), where it
was inferred that, in general, both the amplitude and period of oscillations decrease when the stiffness
of the material increases. The influence of material constitutive law on the dynamic behaviour of
cylindrical and spherical shells was also examined in Aranda-Iglesias et al. (2018, 2015), Rodriíguez–
Martiínez et al. (2015), and Yuan et al. (2008), where the results for Yeoh (1993) and Mooney–Rivlin
material models were compared. In Breslavsky et al. (2016), the static and dynamic behaviour of
circular cylindrical shells of homogeneous isotropic incompressible hyperelastic material modelling
arterial walls were considered. In (Soares et al., 2019), the nonlinear static and dynamic behaviour of a
spherical membrane of neo-Hookean or Mooney–Rivlin material, subjected to a uniformly distributed
radial pressure on its inner surface, was studied, and a parametric analysis of the influence of the material
constants was presented.

For the assessment and prediction of the mechanical responses of engineered and natural materials,
additional challenges arise from the uncertainties in their elastic properties inferred from sparse and
approximate observational data (Ghanem et al., 2017; Hughes & Hase, 2010; Kaminski & Lauke, 2018;
Oden, 2018; Ostoja-Starzewski, 2007; Sullivan, 2015). For these materials, deterministic approaches,
which are based on average data values, can greatly underestimate or overestimate their properties,
and stochastic representations accounting also for data dispersion are needed to significantly improve
assessment and predictions. In response to this challenge, stochastic elasticity is a fast-developing
field that combines nonlinear elasticity and stochastic theories in order to significantly improve model
predictions by accounting for uncertainties in the mechanical responses of materials. Within this
framework, stochastic hyperelastic materials are advanced phenomenological models described by
a strain-energy density where the parameters are characterized by probability density functions, as
constructed in Staber & Guilleminot (2015, 2016, 2017, 2018), Staber et al. (2019) and Mihai et al.
(2018c). These models rely on the notion of entropy (or uncertainty) (Shannon, 1948; Soni & Goodman,
2017) and on the maximum entropy principle for a discrete probability distribution (Jaynes, 1957a,b,
2003), and allow for the propagation of uncertainties from input data to output quantities of interest
(Soize, 2013). They are also suitable for incorporation into Bayesian methodologies (Bayes, 1763;
McGrayne, 2012) for models selection or updates (Mihai et al., 2018c; Oden, 2018; Robert, 2007).

To study the effect of probabilistic model parameters on predicted mechanical responses, in Mihai
et al. (2018a,b, 2019a,b), for different bodies with simple geometries at finite strain deformations, it
was shown explicitly that, in contrast to the deterministic elastic problem where a single critical value
strictly separates the stable and unstable cases, for the stochastic problem, there is a probabilistic interval
where the stable and unstable states always compete, in the sense that both have a quantifiable chance to
be found. In addition, revisiting these problems from a novel perspective offered fresh opportunities for
gaining new insights into the fundamental elastic solutions, and correcting some inconsistencies found in
the previous works. Specific case studies, so far, include the cavitation of a sphere under uniform tensile
dead load (Mihai et al., 2018a), the inflation of pressurized spherical and cylindrical shells (Mihai et al.,
2018b), the classical problems of the Rivlin cube (Mihai et al., 2019a) and the rotation and perversion
of anisotropic hyperelastic cylindrical tubes (Mihai et al., 2019b).

In this paper, we extend the stochastic framework developed in Mihai et al. (2018a,b, 2019a,b)
to study radial oscillations of cylindrical and spherical shells of stochastic incompressible isotropic
hyperelastic material formulated as quasi-equilibrated motions. For these motions, the system is in
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4 L. A. MIHAI ET AL.

equilibrium at every time instant. We consider also finite shear oscillations of a cuboid, which are not
quasi-equilibrated. We find that, for hyperelastic bodies of stochastic neo-Hookean or Mooney–Rivlin
material, the amplitude and period of the oscillations follow probability distributions that can be fully
characterized. Further, for cylindrical tubes and spherical shells, when an impulse surface traction is
applied, there is a parameter interval where the oscillatory and non-oscillatory motions compete in the
sense that both have a chance to occur with a given probability. We refer to the dynamic evolution
of these elastic systems, which exhibit inherent uncertainties due to the material properties, as ‘likely
oscillatory motions’. Section 2 provides a summary of the stochastic elasticity prerequisites. Section 3
is devoted to the oscillatory motions of a stochastic hyperelastic cuboid under dynamic generalized
shear. This is followed, in Sections 4 and 5, by the radial oscillatory motions of stochastic cylindrical
and spherical shells with bounded wall thickness, respectively. The limiting cases of thin- and infinitely
thick-walled structures are also discussed. Some less straightforward calculations, inherent for these
problems, are deferred to Appendix A. Concluding remarks are drawn in Section 6.

2. Prerequisites

In this section, we recall the notion of (universal) quasi-equilibrated motion in finite elasticity,
introduced in Truesdell (1962) and reviewed in Truesdell & Noll (2004) and summarize the stochastic
finite elasticity framework developed in Mihai et al. (2018c) and applied to various static stability
problems in Mihai et al. (2018a,b, 2019a).

2.1 Quasi-equilibrated motion

For the large strain time-dependent behaviour of an elastic solid, Cauchy’s laws of motion (balance laws
of linear and angular momentum) are governed by the following Eulerian field equations (Truesdell &
Noll, 2004, p. 40):

ρẍ = div T + ρb, (1)

T = TT , (2)

where x = χ(X, t) is the motion of the elastic solid, ρ is the material density, which is assumed constant,
b = b(x, t) is the body force, T = T(x, t) is the Cauchy stress tensor and the superscript T defines
the transpose. To obtain possible dynamical solutions, one can solve Cauchy’s equation for particular
motions, or generalize known static solutions to dynamical forms, using the so-called quasi-equilibrated
motion, which is defined as follows.

Definition 2.1 (Truesdell & Noll, 2004, p. 208) A quasi-equilibrated motion, x = χ(X, t), is the
motion of an incompressible homogeneous elastic solid subject to a given body force, b = b(x, t),
whereby, for each value of t, x = χ(X, t) defines a static deformation that satisfies the equilibrium
conditions under the body force b = b(x, t).

Theorem 2.2 (Truesdell & Noll, 2004, p. 208) A quasi-equilibrated motion, x = χ(X, t), of an
incompressible homogeneous elastic solid subject to a given body force, b = b(x, t), is dynamically
possible, subject to the same body force, if and only if the motion is circulation preserving with a
single-valued acceleration potential ξ , i.e.,

ẍ = −grad ξ . (3)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

atrm
/article-abstract/3/1/tnz003/5543824 by Acquisitions user on 05 Septem

ber 2019



LIKELY OSCILLATORY MOTIONS OF STOCHASTIC HYPERELASTIC SOLIDS 5

For the condition (3) to be satisfied, it is necessary that

curl ẍ = 0. (4)

Then, the Cauchy stress tensor takes the form

T = −ρξI + T(0), (5)

where T(0) is the Cauchy stress for the equilibrium state at time t and I = diag(1, 1, 1) is the identity
tensor. In this case, the stress field is determined by the present configuration alone. In particular, the
shear stresses in the motion are the same as those of the equilibrium state at time t.

Proof. The Cauchy stress T(0) for the equilibrium state under the body force b = b(x, t) at time t
satisfies

− div T(0) = ρb. (6)

First, we assume that the motion x = χ(X, t) is quasi-equilibrated under the body force b = b(x, t)
and deduce that there is a single-valued function ξ , such that (3) holds. Indeed, if the motion is quasi-
equilibrated, then Definition 2.1 implies that, at any fixed time-instant t, the Cauchy stress takes the
form (5), where ξ = ξ(t) is a single-valued function of t. Substituting (5) in (1) gives

ρẍ = −ρ grad ξ + div T(0) + ρb. (7)

Then, (3) follows from (6) and (7).
Conversely, if (3) holds, with ξ a single-valued function, then, substitution of (3) and (6) in (1) gives

− ρ grad ξ = div
(

T − T(0)
)

, (8)

at any time-instant t. From (8), it follows that the Cauchy stress T takes the form (5). Hence, the motion
is quasi-equilibrated according to Definition 2.1. �

Theorem 2.2 may only be applicable to specific quasi-equilibrated motions of specific materials.
Nevertheless, by the above theorem, for a quasi-equilibrated motion to be dynamically possible under
a given body force in all elastic materials, it is necessary that, at every time instant, the deformation
is a possible equilibrium state under that body force in all those materials. Quasi-equilibrated motions
of isotropic materials subject to surface tractions alone are obtained by taking the arbitrary constant in
those deformations to be arbitrary functions of time. Some examples are the homogeneous motions that
are possible in all homogeneous incompressible materials, and also those considered by us in Sections 4
and 5 (see also Truesdell & Noll, 2004, p. 209).

2.2 Stochastic isotropic incompressible hyperelastic models

A stochastic homogeneous hyperelastic model is defined by a stochastic strain-energy function, for
which the model parameters are random variables, drawn from probability distributions (Mihai et al.,
2018c; Staber & Guilleminot, 2015, 2016, 2017). In this case, each model parameter is usually described
in terms of its mean value and its variance, which contains information about the range of values
about the mean value (Brewick & Teferra, 2018; Caylak et al., 2018; Hughes & Hase, 2010; McCoy,
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6 L. A. MIHAI ET AL.

1973; Nörenberg & Mahnken, 2015). Here, we combine finite elasticity (Goriely, 2017; Ogden, 1997;
Truesdell & Noll, 2004) and probability theory (Grimmett & Stirzaker, 2001; Jaynes, 2003) and rely on
the following general assumptions (Mihai et al., 2018a,b,c, 2019a):

(A1) Material objectivity, stating that constitutive equations must be invariant under changes of
frame of reference. This requires that the scalar strain-energy function, W = W(F), depending
only on the deformation gradient F, with respect to the reference configuration, is unaffected
by a superimposed rigid-body transformation (which involves a change of position) after
deformation, i.e., W(RTF) = W(F), where R ∈ SO(3) is a proper orthogonal tensor (rotation).
Material objectivity is guaranteed by defining strain-energy functions in terms of invariants.

(A2) Material isotropy, requiring that the strain-energy function is unaffected by a superimposed
rigid-body transformation prior to deformation, i.e., W(FQ) = W(F), where Q ∈ SO(3). For
isotropic materials, the strain-energy function is a symmetric function of the principal stretches
{λi}i=1,2,3 of F, i.e., W(F) = W(λ1, λ2, λ3).

(A3) Baker–Ericksen (BE) inequalities, which state that the greater principal (Cauchy) stress occurs
in the direction of the greater principal stretch, are (Baker & Ericksen, 1954)

(
Ti − Tj

) (
λi − λj

)
> 0 if λi �= λj, i, j = 1, 2, 3, (9)

where {λi}i=1,2,3 and {Ti}i=1,2,3 denote the principal stretches and the principal Cauchy stresses,
respectively. The BE inequalities (9) take the equivalent form

(
λ1

∂W
∂λ1

− λ2
∂W
∂λ2

) (
λ1 − λ2

)
> 0 if λi �= λj, i, j = 1, 2, 3. (10)

In (9) and (10), the strict inequality ‘>’ is replaced by ‘≥’ if any two principal stretches are
equal.

(A4) Finite mean and variance of the random shear modulus, i.e., at any given deformation, the
random shear modulus, μ, and its inverse, 1/μ, are second-order random variables (Staber &
Guilleminot, 2015, 2016, 2017).

Assumptions (A1)–(A3) are well-known principles in isotropic finite elasticity (Goriely, 2017; Ogden,
1997; Truesdell & Noll, 2004). In particular, regarding (A3), we recall that, for a homogeneous
hyperelastic body under uniaxial tension, the deformation is a simple extension in the direction of the
tensile force if and only if the BE inequalities (9) hold (Marzano, 1983). Another important deformation
is that of simple shear superposed on axial stretch, defined by

x1 = αX1 + k
X2

α2
, x2 = X2

α2
, x3 = αX3, (11)

where (X1, X2, X3) and (x1, x2, x3) are the Cartesian coordinates for the reference (Lagrangian) and the
current (Eulerian) configuration, respectively, and k > 0 and α > 0 are positive constants representing
the shear parameter and the axial stretch (0 < α < 1 for axial tension and α > 1 for axial compression),
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LIKELY OSCILLATORY MOTIONS OF STOCHASTIC HYPERELASTIC SOLIDS 7

respectively. For this deformation, the principal stretches, {λi}i=1,2,3, satisfy

λ2
1 = α6 + k2 + 1 +

√(
α6 + k2 + 1

)2 − 4α6

2α4
,

λ2
2 = α6 + k2 + 1 −

√(
α6 + k2 + 1

)2 − 4α6

2α4 ,

λ2
3 = α2.

(12)

Then assuming that the material is incompressible, the associated principal Cauchy stresses take the
form

Ti = λi
∂W
∂λi

− p, i = 1, 2, 3, (13)

where p is the Lagrange multiplier for the incompressibility constraint. In this case, if the BE inequalities
(9) hold, then the nonlinear shear modulus defined by Mihai & Goriely (2017) and Mihai et al. (2018c)

μ̃ = T1 − T2

λ2
1 − λ2

2

(14)

is positive, i.e., μ̃ > 0, for all k > 0 and α > 0. In the linear elastic limit, where k → 0 and α → 1,
the nonlinear shear modulus given by (14) converges to the classical shear modulus under infinitesimal
deformation, i.e.,

lim
a→1,k→0

μ̃ = μ. (15)

Assumption (A4) then contains physically realistic expectations on the (positive) random shear modulus
μ > 0, which will be characterized by a suitable probability density function.

In the next sections, we analyse the dynamic generalized shear deformation of a cuboid and the
radially symmetric motion of cylindrical tube and spherical shells of stochastic isotropic incompressible
hyperelastic material. One can regard a stochastic hyperelastic body as an ensemble of bodies with
the same geometry where each individual body is made from a homogeneous isotropic incompressible
hyperelastic material, with the elastic parameters drawn from probability distributions. Then for the
individual hyperelastic bodies, the finite elasticity theory applies.

Throughout this paper, we confine our attention to a class of stochastic homogeneous incompressible
hyperelastic materials described by the Mooney–Rivlin-like constitutive law (Mihai et al., 2018c; Staber
& Guilleminot, 2015),

W(λ1, λ2, λ3) = μ1

2

(
λ2

1 + λ2
2 + λ2

3 − 3
)

+ μ2

2

(
λ−2

1 + λ−2
2 + λ−2

3 − 3
)

, (16)

where μ1 and μ2 are random variables. The non-deterministic model (16) reduces to a stochastic neo-
Hookean model if μ2 = 0. If the random parameters μ1 and μ2 are replaced by their respective mean
values, μ

1
and μ

2
, then the resulting mean hyperelastic model coincides with the usual deterministic

one.
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8 L. A. MIHAI ET AL.

For the stochastic material model described by (16), the shear modulus in infinitesimal deformation
is defined as μ = μ1 + μ2. For this modulus, we set the following mathematical constraints, which
ensure that the assumption (A4), made in Section 2 is satisfied (Mihai et al., 2018c),

{
E [μ] = μ > 0,

E
[
log μ

] = ν, such that |ν| < +∞,
(17)

i.e., the mean value μ of the shear modulus μ is fixed and greater than zero, and the mean value of
log μ is fixed and finite. It follows that μ and 1/μ are second-order random variables, i.e., they have
finite mean and finite variance (Soize, 2000, 2001). Under the constraints (??), μ follows a Gamma
probability distribution with hyperparameters ρ1 > 0 and ρ2 > 0, such that

μ = ρ1ρ2, Var[μ] = ρ1ρ
2
2 , (18)

where μ is the mean value, Var[μ] is the variance and ‖μ‖ = √
Var[μ] is the standard deviation of μ.

The corresponding probability density function takes the form (Abramowitz & Stegun, 1964; Johnson
et al., 1994)

g(μ; ρ1, ρ2) = μρ1−1e−μ/ρ2

ρ
ρ1
2 Γ (ρ1)

, for μ > 0 and ρ1, ρ2 > 0, (19)

where Γ : R∗+ → R is the complete Gamma function

Γ (z) =
∫ +∞

0
tz−1e−t dt. (20)

When μ1 > 0 and μ2 > 0, we can define the auxiliary random variable (Mihai et al., 2018c)

R1 = μ1

μ
, (21)

such that 0 < R1 < 1. Then

μ1 = μR1, μ2 = μ − μ1 = μ(1 − R1). (22)

Setting the realistic constraints (Mihai et al., 2018c; Staber & Guilleminot, 2015, 2016, 2017),

{
E
[
log R1

] = ν1, such that |ν1| < +∞,

E
[
log(1 − R1)

] = ν2, such that |ν2| < +∞,
(23)

we obtain that R1 follows a standard Beta distribution (Abramowitz & Stegun, 1964; Johnson et al.,
1994), with hyperparameters ξ1 > 0 and ξ2 > 0 satisfying

R1 = ξ1

ξ1 + ξ2
, Var[R1] = ξ1ξ2(

ξ1 + ξ2

)2 (
ξ1 + ξ2 + 1

) , (24)
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LIKELY OSCILLATORY MOTIONS OF STOCHASTIC HYPERELASTIC SOLIDS 9

where R1 is the mean value, Var[R1] is the variance and ‖R1‖ = √Var[R1] is the standard deviation of
R1. The corresponding probability density function takes the form

β(r; ξ1, ξ2) = rξ1−1(1 − r)ξ2−1

B(ξ1, ξ2)
, for r ∈ (0, 1) and ξ1, ξ2 > 0, (25)

where B : R∗+ × R
∗+ → R is the Beta function

B(x, y) =
∫ 1

0
tx−1(1 − t)y−1 dt. (26)

Thus, for the random coefficients given by (22), the corresponding mean values take the form,

μ
1

= μR1, μ
2

= μ − μ
1

= μ(1 − R1), (27)

and the variances and covariance are, respectively,

Var
[
μ1

] = (μ)2Var[R1] + (R1)
2Var[μ] + Var[μ]Var[R1], (28)

Var
[
μ2

] = (μ)2Var[R1] + (1 − R1)
2Var[μ] + Var[μ]Var[R1], (29)

Cov[μ1, μ2] = 1

2

(
Var[μ] − Var[μ1] − Var[μ2]

)
. (30)

Note that the random variables μ and R1 are independent, depending on parameters (ρ1, ρ2) and (ζ1, ζ2),
respectively, whereas μ1 and μ2 are codependent variables as they both require (μ, R1) to be defined.

For the numerical illustration of our subsequent results, throughout this paper, we assume that the
random shear modulus μ follows the Gamma distribution represented in Fig. 1, where the shape and
scale parameters are ρ1 = 405 and ρ2 = 0.01, respectively (Mihai et al., 2018b). Different simulations
were created by fixing the parameters (given in each figure caption) and repeatedly drawing random
samples from the underlying distribution. Our computer simulations were run in Matlab 2018a, where
we made specific use of inbuilt functions for random number generation.

Note also that the Gamma distribution represented in Fig. 1, for which ρ1 is large compared to ρ2,
appears to be approximately a normal distribution. However, despite known convergence results and the
qualitative agreement between the two density functions for large values of the mean (see Mihai et al.,
2018b for a detailed discussion), in general, the normal distribution cannot be used to model material
parameters. This is due to the fact that the normal distribution is defined on the entire real line, whereas
elastic moduli are typically positive. In practice, these moduli can meaningfully take on different values,
corresponding to possible outcomes of the experiments. Then the maximum entropy principle allows for
the explicit construction of their probability laws, given the available information. Explicit derivations
of probability distributions for the elastic parameters of stochastic homogeneous isotropic hyperelastic
models, calibrated to available experimental data, are presented in Staber & Guilleminot (2017) and
Mihai et al. (2018c).
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10 L. A. MIHAI ET AL.

Fig. 1. Example of Gamma distribution with hyperparameters ρ1 = 405 and ρ2 = 0.01.

Fig. 2. Schematic of generalized shear of a cuboid, showing the reference state (left) and the deformed state (right), respectively.

3. Generalized shear motion of a stochastic hyperelastic cuboid

First, we consider a stochastic hyperelastic cuboid subject to dynamic generalized shear.

3.1 Dynamic generalized shear

The generalized shear motion of an elastic body is described by Destrade et al. (2011)

x = X√
α

, y = Y√
α

, z = αZ + u (X, Y , t) , (31)

where (X, Y , Z) and (x, y, z) are the Cartesian coordinates for the reference (Lagrangian, material) and
current (Eulerian, spatial) configuration, respectively, α > 0 is a given constant, and u = z − Z,
representing the displacement in the third direction, is a time-dependent function to be determined.
Here we assume that the edges of the cuboid are aligned with the directions of the Cartesian axes in the
undeformed state (see Fig. 2).

By the governing equations (31), the condition (4) is valid for x = (x, y, z)T if and only if

0 = curl ẍ =
⎡
⎣

∂ z̈/∂y − ∂ ÿ/∂z
∂ ẍ/∂z − ∂ z̈/∂x
∂ ÿ/∂x − ∂ ẍ/∂y

⎤
⎦ =

⎡
⎣

∂ ü/∂Y
−∂ ü/∂X

0

⎤
⎦ . (32)
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LIKELY OSCILLATORY MOTIONS OF STOCHASTIC HYPERELASTIC SOLIDS 11

This condition imposes very strict constraints on the motion. Yet, we will see that even though the
generalized shear motion (31) is not quasi-equilibrated, exact solutions are still available, although these
solutions are not universal (Nowinski, 1966; Wang, 1969).

For the deformation (31), the gradient tensor is equal to

F =
⎡
⎣

1/
√

α 0 0
0 1/

√
α 0

uX uY α

⎤
⎦ ,

where uX and uY denote the partial first derivatives of u with respect to X and Y , respectively. The
corresponding left Cauchy–Green tensor is

B = FFT =
⎡
⎣

1/α 0 uX/
√

α

0 1/α uY/
√

α

uX/
√

α uY/
√

α u2
X + u2

Y + α2

⎤
⎦ (33)

and has the principal invariants

I1 =tr (B) = u2
X + u2

Y + 2

α
+ α2,

I2 =1

2

[
(tr B)2 − tr

(
B2
)]

= u2
X

α
+ u2

Y

α
+ 1

α2 + 2α,

I3 = det B = 1.

(34)

The associated Cauchy stress tensor takes the form (Green & Adkins, 1970, pp. 87–91)

T = −pI + β1B + β−1B−1, (35)

where p is the Lagrange multiplier for the incompressibility constraint (I3 = 1), and

β1 = 2
∂W

∂I1
, β−1 = −2

∂W

∂I2
(36)

are the nonlinear material parameters, with I1, I2 given by (34).
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12 L. A. MIHAI ET AL.

3.2 Shear oscillations of a cuboid of stochastic neo-Hookean material

We now specialize to the case of a cuboid of stochastic neo-Hookean material, with μ1 = μ > 0 and
μ2 = 0 in (16), where the non-zero components of the Cauchy stress tensor given by (35) are as follows:

Txx = Tyy = −p + μ

α
,

Tzz = −p + μ
(

u2
X + u2

Y + α2
)

,

Txz = μ√
α

uX ,

Tyz = μ√
α

uY .

(37)

Then by the equation of motion (1),

∂p

∂x
= 0,

∂p

∂y
= 0,

∂p

∂z
= −ρü + μ

(
uXX + uYY

)
,

(38)

where uXX and uYY represent the second derivatives of u with respect to X and Y , respectively. Hence, p
is independent of x and y.

We consider the undeformed cuboid to be long in the Z-direction and impose an initial displacement
u0(X, Y) = u(X, Y , 0) and velocity u̇0(X, Y) = u̇(X, Y , 0). For the boundary condition, we distinguish
the following two cases: (i) If we impose null normal Cauchy stresses, Txx = Tyy = 0, on the
faces perpendicular to the X- and Y-directions, at all time, then p = μ/α is constant and Tzz =
μ
(
u2

X + u2
Y + α2 − 1/α

)
.

(ii) If Txx = Tyy �= 0, as Tzz cannot be made point-wise zero, we denote the normal force acting on
the cross-sections of area A in the z-direction at time t by

Nz(t) =
∫

A
Tzz dA, (39)

and consider this force to be zero, i.e., Nz(t) = 0 at all time. Then p is independent of z, and, by (38), it
is also independent of x and y; hence, p = p(t).

In both the above cases, (i) and (ii), respectively, by (38),

ü = μ

ρ

(
uXX + uYY

)
. (40)

It remains to solve, by standard procedures, the linear wave equation (40), describing the propagation
of waves, subject to the given initial and boundary conditions. To solve this equation, we let the shear
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LIKELY OSCILLATORY MOTIONS OF STOCHASTIC HYPERELASTIC SOLIDS 13

stresses Txz and Tyz, defined by (37), vanish at the sides, i.e.,

Txz(0, Y , Z, t) = Txz(1, Y , Z, t) = 0 ⇐⇒ uX(0, Y , t) = uX(1, Y , t) = 0,

Tyz(X, 0, Z, t) = Tyz(X, 1, Z, t) = 0 ⇐⇒ uY(X, 0, t) = uY(X, 1, t) = 0.
(41)

In this case, the general solution takes the form

u(X, Y , t) =
∞∑

m=1

∞∑
n=1

[
Amn cos

(
ωmnt
)+ Bmn sin

(
ωmnt
)]

cos (πmX) cos (πnY) , (42)

where

ωmn = π

√(
m2 + n2

) μ

ρ
, (43)

and

Amn = 4
∫ 1

0

[∫ 1

0
u0(X, Y) cos (πmX) dX

]
cos (πnY) dY , (44)

Bmn = 4

ωmn

∫ 1

0

[∫ 1

0
u̇0(X, Y) cos (πmX) dX

]
cos (πnY) dY . (45)

These oscillations under the generalized shear motion (31) cannot be completely ‘free’, due to the non-
zero tractions corresponding to the cases (i) and (ii), respectively. Note that the condition (32) is not
satisfied.

As μ is a random variable, it follows that the speed of wave propagation,
√

μ/ρ, is stochastic.
Hence, both the period and the amplitude of the oscillations are stochastic. As an example, we consider
the initial data u0(X, Y) = cos(πX) cos(πY) and u̇0(X, Y) = 0 leading to A11 = 1 and B11 = 0. In
Fig. 3, we illustrate the stochastic dynamic displacement on the edges (X, Y , Z) ∈ {(0, 0, Z), (1, 1, , Z)}
when m = n = 1, A11 = 1, B11 = 0, ρ = 1 and μ is drawn from the Gamma distribution with
hyperparameters ρ1 = 405 and ρ2 = 0.01, as represented in Fig. 1. The top plot of Fig. 3 represents two
single simulations, with two different values of μ drawn from the distribution, illustrating the variety
of outcomes that can be obtained. The middle plot of Fig. 3 then represents histograms of the ensemble
data. Namely, since not all material parameters are equally likely, not all outcomes are equally likely.
Specifically, the values of u(0, 0, t) are most likely going to be near the mean value (dashed line) with
the probability of observing alternative values of u decreasing as we tend away from the mean. We note
from Fig. 3 that, as we might expect, extremal probabilities always occur at the extreme displacement
of the oscillations, i.e., when the cuboid is slowest. However, in between these probability maxima the
variance grows over time. Thus, although the displacements are initially close (seen explicitly at the
top of Fig. 3 and by the tight distribution around the mean at the bottom left of Fig. 3), eventually, the
phase difference dominates causing the displacements to diverge (top of Figure 3) and an increase in the
variance of the distribution (bottom right of Fig. 3).
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14 L. A. MIHAI ET AL.

Fig. 3. Stochastic displacement u(X, Y , t) of the edges (X, Y , Z) ∈ {(0, 0, Z), (1, 1, Z)} of the cuboid in dynamic generalized shear,
when m = n = 1, A11 = 1, B11 = 0, ρ = 1 and μ is drawn from the Gamma distribution with ρ1 = 405 and ρ2 = 0.01. The top
figure illustrates the displacement over time of two cuboids, with randomly chosen values of μ, derived from the specified Gamma
distribution. The middle figure illustrates a probability histogram at each time instant. Specifically, the integral of the probabilities
over the displacements at any given time instant is equal to 1. The histogram comprises of 1000 stochastic simulations, and the
colour bar defines the probability of finding a given displacement at a given time. The dashed black line corresponds to the
expected values based only on the mean value, μ = ρ1ρ2 = 4.05, of μ. The bottom two figures illustrate specific histogram
distributions at two given times (noted above each figure). These are the distributions that would be seen if the middle figure was
cut along the green and magenta arrows, respectively.

4. Quasi-equilibrated radial–axial motion of a stochastic hyperelastic cylindrical tube

In this section, we analyse the stability and finite amplitude oscillations of a stochastic hyperelastic
cylindrical tube subject to the combined radial and axial quasi-equilibrated dynamic deformation.

4.1 Dynamic radial–axial deformation of a cylindrical tube

For a circular cylindrical tube, the combined radial and axial motion is described by (see Fig. 4)

r2 = a2 + R2 − A2

α
, θ = Θ , z = αZ, (46)

where (R, Θ , Z) and (r, θ , z) are the cylindrical polar coordinates in the reference and current
configuration, respectively, such that A ≤ R ≤ B, A and B are the inner and outer radii in the undeformed

state, respectively, a = a(t) and b = b(t) =
√

a2 + (B2 − A2
)
/α are the inner and outer radii at time t,

respectively, and α > 0 is a given constant (when α < 0, the tube is everted, so that the inner surface
becomes the outer surface). When α = 1, the time-dependent deformation (46) simplifies to that studied
also in Knowles (1960, 1962) and Beatty (2007). The case when α is time dependent was considered in
Shahinpoor (1973).
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LIKELY OSCILLATORY MOTIONS OF STOCHASTIC HYPERELASTIC SOLIDS 15

Fig. 4. Schematic of inflation of a cylindrical tube, showing the reference state, with inner radius A and outer radius B (left), and
the deformed state, with inner radius a and outer radius b (right), respectively.

The radial–axial motion (46) of the cylindrical tube is fully determined by the inner radius a at time t,
which in turn is obtained from the initial conditions. Thus, the acceleration r̈ can be computed in terms
of the acceleration ä on the inner surface. By the governing equations (46), the condition (4) is valid for
x = (r, θ , z)T , since

0 = curl ẍ =
⎡
⎣

(∂ z̈/∂θ)/r − ∂θ̈/∂z
∂ r̈/∂z − ∂ z̈/∂r

∂θ̈/∂r − (∂ r̈/∂θ)/r

⎤
⎦ , (47)

and the acceleration potential, ξ , satisfies (3). Hence, this is a quasi-equilibrated motion, such that

− ∂ξ

∂r
= r̈ = ȧ2

r
+ aä

r
− a2ȧ2

r3 , (48)

and, by integrating (48), the acceleration potential, ξ , is given by (Truesdell & Noll, 2004, p. 215)

− ξ = ȧ2 log r + aä log r + a2ȧ2

2r2 = ṙ2 log r + rr̈ log r + 1

2
ṙ2. (49)

The deformation gradient of (46), with respect to the polar coordinates (R, Θ , Z), is equal to

F = diag

(
R

αr
,

r

R
, α

)
, (50)
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16 L. A. MIHAI ET AL.

the Cauchy–Green deformation tensor is

B = F2 = diag

(
R2

α2r2
,

r2

R2
, α2
)

, (51)

and the principal invariants take the form

I1 =tr (B) = R2

α2r2
+ r2

R2
+ α2,

I2 =1

2

[
(tr B)2 − tr

(
B2
)]

= α2r2

R2 + R2

r2 + 1

α2 ,

I3 = det B = 1.

(52)

Thus, the principal components of the equilibrium Cauchy stress tensor at time t are

T(0)
rr = −p(0) + β1

R2

α2r2 + β−1
α2r2

R2 ,

T(0)
θθ = T(0)

rr +
(
β1 − β−1α

2
)( r2

R2 − R2

α2r2

)
,

T(0)
zz = T(0)

rr +
(

β1 − β−1
r2

R2

)(
α2 − R2

α2r2

)
,

(53)

where p(0) is the Lagrangian multiplier for the incompressibility constraint (I3 = 1), and

β1 = 2
∂W

∂I1
, β−1 = −2

∂W

∂I2
(54)

are the nonlinear material parameters, with I1 and I2 given by (52).
As the stress components depend only on the radius r, the system of equilibrium equations

reduces to

∂T(0)
rr

∂r
= T(0)

θθ − T(0)
rr

r
. (55)

Hence, by (53) and (55), the radial Cauchy stress for the equilibrium state at time t is equal to

T(0)
rr (r, t) =

∫ (
β1 − β−1α

2
)( r2

R2
− R2

α2r2

)
dr

r
+ ψ(t), (56)
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LIKELY OSCILLATORY MOTIONS OF STOCHASTIC HYPERELASTIC SOLIDS 17

where ψ = ψ(t) is an arbitrary function of time. Substitution of (49) and (56) into (5) then gives the
principal Cauchy stress components at time t as follows:

Trr(r, t) = ρ

(
aä log r + ȧ2 log r + a2ȧ2

2r2

)
+
∫ (

β1 − β−1α
2
)( r2

R2 − R2

α2r2

)
dr

r
+ ψ(t),

Tθθ (r, t) = Trr(r, t) +
(
β1 − β−1α

2
)( r2

R2
− R2

α2r2

)
,

Tzz(r, t) = Trr(r, t) +
(

β1 − β−1
r2

R2

)(
α2 − R2

α2r2

)
.

(57)

In (57), the function β1 − α2β−1 can be interpreted as the following nonlinear shear modulus (Mihai &
Goriely, 2017)

μ̃ = β1 − β−1α
2, (58)

corresponding to the combined deformation of simple shear superposed on axial stretch, described by
(11), with shear parameter k = √α2R2/r2 + α4r2/R2 − α6 − 1 and stretch parameter α. As shown
in Mihai & Goriely (2017), this modulus is positive if the BE inequalities (9) hold. In this case, the
integrand is negative for 0 < r2/R2 < 1/α and positive for r2/R2 > 1/α. Using the first equation in
(46), it is straightforward to show that 0 < r2/R2 < 1/α (respectively, r2/R2 > 1/α) is equivalent
to 0 < a2/A2 < 1/α (respectively, a2/A2 > 1/α). When α = 1, the modulus defined by (58)
coincides with the generalized shear modulus defined in Truesdell & Noll (2004, p. 174), and also in
Beatty (2007).

In the limiting case when α → 1 and k → 0, the nonlinear shear modulus defined by (58) converges
to the classical shear modulus from the infinitesimal theory (Mihai & Goriely, 2017),

μ = lim
α→1

lim
k→0

μ̃. (59)

In this case, as R2/r2 → 1, the three stress components defined by (57) are equal.
Next for the cylindrical tube deforming by (46), we set the inner and outer radial pressures acting

on the curvilinear surfaces r = a(t) and r = b(t) at time t (measured per unit area in the present
configuration), as T1(t) and T2(t), respectively (Truesdell & Noll, 2004, pp. 214–217). Evaluating
T1(t) = −Trr(a, t) and T2(t) = −Trr(b, t), using (57), with r = a and r = b, respectively, then
subtracting the results, then gives

T1(t) − T2(t) = ρ

2

[(
aä + ȧ2

)
log

b2

a2 + ȧ2
(

a2

b2 − 1

)]
+
∫ b

a
μ̃

(
r2

R2 − R2

α2r2

)
dr

r

= ρA2

2

[(
a

A

ä

A
+ ȧ2

A2

)
log

b2

a2 + ȧ2

A2

(
a2

b2 − 1

)]
+
∫ b

a
μ̃

(
r2

R2 − R2

α2r2

)
dr

r
.

(60)

Setting the notation

u = r2

R2
= r2

α
(
r2 − a2

)+ A2
, x = a

A
, γ = B2

A2
− 1, (61)
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18 L. A. MIHAI ET AL.

we can rewrite

(
a

A

ä

A
+ ȧ2

A2

)
log

b2

a2 + ȧ2

A2

(
a2

b2 − 1

)
=
(

ẍx + ẋ2
)

log
(

1 + γ

αx2

)
− ẋ2

γ

αx2

1 + γ

αx2

= 1

2x

d

dx

[
ẋ2x2 log

(
1 + γ

αx2

)]

and

∫ b

a
μ̃

(
r2

R2 − R2

α2r2

)
dr

r
=
∫ b

a
μ̃

[
r2

α
(
r2 − a2

)+ A2
− α
(
r2 − a2

)+ A2

α2r2

]
dr

r

= 1

2

∫ x2

x2+ γ
α

1+γ

μ̃
1 + αu

α2u2 du.

Then we can express the equation (60) equivalently as follows:

2x
T1(t) − T2(t)

ρA2 = 1

2

d

dx

[
ẋ2x2 log

(
1 + γ

αx2

)]
+ x

ρA2

∫ x2

x2+ γ
α

1+γ

μ̃
1 + αu

α2u2 du. (62)

Note that, when the BE inequalities (9) hold, μ̃ > 0, and the integral in (60), or equivalently in (62), is
negative if 0 < u < 1/α (i.e., if 0 < x < 1/

√
α) and positive if u > 1/α (i.e., if x > 1/

√
α).

In the static case, where ȧ = 0 and ä = 0, (60) becomes

T1(t) − T2(t) =
∫ b

a
μ̃

(
r2

R2 − R2

α2r2

)
dr

r
, (63)

and (62) reduces to

2
T1(t) − T2(t)

ρA2 = 1

ρA2

∫ x2

x2+ γ
α

1+γ

μ̃
1 + αu

α2u2 du. (64)

For the cylindrical tube in finite dynamic deformation, we set

G(x, γ ) = 1

ρA2

∫ x

1/
√

α

(
ζ

∫ ζ 2

ζ2+ γ
α

1+γ

μ̃
1 + αu

α2u2 du

)
dζ , (65)

and find that G(x, γ ) is monotonically decreasing when 0 < x < 1/
√

α and increasing when x > 1/
√

α.
This function will be useful in establishing whether the radial motion is oscillatory or not.

We also set the pressure impulse (suddenly applied pressure difference)

2α
T1(t) − T2(t)

ρA2
=
{

0 if t ≤ 0,
p0 if t > 0,

(66)
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LIKELY OSCILLATORY MOTIONS OF STOCHASTIC HYPERELASTIC SOLIDS 19

where p0 is constant in time. Then integrating (62) once gives

1

2
ẋ2x2 log

(
1 + γ

αx2

)
+ G(x, γ ) = p0

2α

(
x2 − 1

α

)
+ C, (67)

with G(x, γ ) defined by (65) and

C = 1

2
ẋ2

0x2
0 log

(
1 + γ

αx2
0

)
+ G(x0, γ ) − p0

2α

(
x2

0 − 1

α

)
, (68)

where x(0) = x0 and ẋ(0) = ẋ0 are the initial conditions. By (67),

ẋ = ±

√√√√√
p0
α

(
x2 − 1

α

)
+ 2C − 2G(x, γ )

x2 log
(

1 + γ

αx2

) . (69)

Physically, this system is analogous to the motion of a point mass with energy

E = 1

2
m(x)ẋ2 + V(x). (70)

The energy is E = C, the potential is given by V(x) = G(x, γ ) − p0
2α

(
x2 − 1

α

)
and the position-

dependent mass is m(x) = x2 log
(

1 + γ

αx2

)
. Due to the constraints on the function G, this system has

simple dynamics. Depending on the constant μ, the system may have a static state or periodic motion.
Indeed, the radial motion is periodic if and only if the following equation,

G(x, γ ) = p0

2α

(
x2 − 1

α

)
+ C, (71)

has exactly two distinct solutions, representing the amplitudes of the oscillation, x = x1 and x = x2,
such that 0 < x1 < x2 < ∞. Then by (61), the minimum and maximum radii of the inner surface in the
oscillation are equal to x1A and x2A, respectively, and by (69), the period of oscillation is equal to

T = 2

∣∣∣∣
∫ x2

x1

dx

ẋ

∣∣∣∣ = 2

∣∣∣∣∣∣∣

∫ x2

x1

√√√√√
x2 log

(
1 + γ

αx2

)

p0
α

(
x2 − 1

α

)
+ 2C − 2G(x, γ )

dx

∣∣∣∣∣∣∣
. (72)

Note that both the amplitudes and period of the oscillation are random variables described in terms of
probability distributions.
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Fig. 5. The function G(x, γ ), defined by (73), intersecting the (dashed red) line C = 10 when p0 = 0 (left), and the associated
velocity, given by (69) (right), for a cylindrical tube of stochastic Mooney–Rivlin material when α = 1, ρ = 1, A = 1, γ = 1,
and μ̃ = μ = μ1 + μ2 is drawn from the Gamma distribution with ρ1 = 405 and ρ2 = 0.01. The dashed black lines correspond
to the expected values based only on the mean value, μ = ρ1ρ2 = 4.05, of μ. Each distribution was calculated from the average
of 1000 stochastic simulations.

4.2 Radial oscillations of a cylindrical tube of stochastic Mooney–Rivlin material

For cylindrical tubes of stochastic Mooney–Rivlin material defined by (16), with μ = μ1 + μ2 > 0,
evaluating the integral in (65) gives (see Appendix A for detailed calculations)

G(x, γ ) = μ̃

2αρA2

(
x2 − 1

α

)
log

1 + γ

1 + γ

αx2

, (73)

where μ̃ = μ1 + μ2α
2. In this case, assuming that the nonlinear shear modulus μ has a uniform lower

bound, i.e.,

μ > η, (74)

for some constant η > 0, it follows that

lim
x→0

G(x, γ ) = lim
x→∞ G(x, γ ) = ∞. (75)

(i) If p0 = 0 and C > 0, then equation (71) has exactly two solutions, x = x1 and x = x2, satisfying
0 < x1 < 1/

√
α < x2 < ∞, for any positive constant C. It should be noted that, by (57), if Trr(r, t) = 0

at r = a and r = b, so that T1(t) = T2(t) = 0, then Tθθ (r, t) �= 0 and Tzz(r, t) �= 0 at r = a and r = b,
unless α → 1 and r2/R2 → 1. Thus, in general, these oscillations cannot be ‘free’ (Shahinpoor, 1973).

In Fig. 5, for example, we represent the stochastic function G(x, γ ), defined by (73), intersecting the
line C = 10, to solve equation (71) when p0 = 0, and the associated velocity, given by (69), assuming
that α = 1, ρ = 1, A = 1, γ = 1, and μ follows the Gamma distribution with hyperparameters ρ1 = 405
and ρ2 = 0.01.
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LIKELY OSCILLATORY MOTIONS OF STOCHASTIC HYPERELASTIC SOLIDS 21

Fig. 6. Stochastic solution given by (77), with the initial conditions x0 = 1 and ẋ0 = 4.5, for a thin-walled tube, where ρ = 1,
A = 1 and μ is drawn from the Gamma distribution with ρ1 = 405 and ρ2 = 0.01. The dashed black line corresponds to the
expected values based only on the mean value, μ = ρ1ρ2 = 4.05, of μ. The distribution was calculated from the average of 1000
stochastic simulations.

For a thin-walled tube (Knowles, 1960; Shahinpoor & Nowinski, 1971), where α = 1 and γ → 0,
equation (67) takes the form

ẋ2 + μ

ρA2

(
x2 + 1

x2

)
= ẋ2

0 + μ

ρA2

(
x2

0 + 1

x2
0

)
, (76)

and has the explicit solution (Shahinpoor & Nowinski, 1971)

x =
√√√√
[

x0 cos

(
t

A

√
μ

ρ

)
+ ẋ0A

√
ρ

μ
sin

(
t

A

√
μ

ρ

)]2

+ 1

x2
0

sin2
(

t

A

√
μ

ρ

)
. (77)

In this case, assuming that the shear modulus, μ, has a uniform lower bound, equation (71) becomes
(Knowles, 1960)

x2 + 1

x2 = ρA2

μ
ẋ2

0 + x2
0 + 1

x2
0

. (78)

This equation can be solved directly to find the amplitudes

x1,2 =

√√√√√√
ρA2

μ
ẋ2

0 + x2
0 + 1

x2
0

±
√(

ρA2

μ
ẋ2

0 + x2
0 + 1

x2
0

)2

− 4

2
. (79)

Noting that x2 = 1/x1, the period of the oscillations can be calculated as

T = 2

√
ρA2

μ

∣∣∣∣∣∣∣∣

∫ 1/x1

x1

dx√
ρA2

μ
ẋ2

0 + x2
0 + 1

x2
0

− x2 − 1
x2

∣∣∣∣∣∣∣∣
= πA

√
ρ

μ
. (80)

In Fig. 6, we illustrate the stochastic solution given by (77), with the initial conditions x0 = 1 and
ẋ0 = 4.5, assuming that ρ = 1, A = 1 and μ satisfies the Gamma distribution with hyperparameters
ρ1 = 405 and ρ2 = 0.01.
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(ii) When p0 �= 0 and C ≥ 0, substitution of (73) in (71) gives

p0 = μ̃

ρA2 log
1 + γ

1 + γ

αx2

− 2αC

x2 − 1
α

. (81)

As the right-hand side of the above equation is a monotonically increasing function of x, there exists a
unique positive x satisfying (81) if and only if the following condition holds:

lim
x→0

(
μ̃

ρA2 log
1 + γ

1 + γ

αx2

− 2αC

x2 − 1
α

)
< p0 < lim

x→∞

(
μ̃

ρA2 log
1 + γ

1 + γ

αx2

− 2αC

x2 − 1
α

)
,

that is,

− ∞ < p0 <
μ̃

ρA2
log (1 + γ ) . (82)

Then by (61), (66) and (82), the necessary and sufficient condition that oscillatory motions occur is that
the nonlinear shear modulus, μ̃, is uniformly bounded from below as follows:

μ̃ >
p0ρA2

log (1 + γ )
= α

T1(t) − T2(t)

log B − log A
. (83)

By (58),

μ̃ = μ1 + μ2α
2 = μ1 + (μ − μ1

)
α2 = μα2 + μ1

(
1 − α2

)
.

Hence, (83) is equivalent to

μ >
p0ρA2

α2 log (1 + γ )
+ μ1

1 − α2

α2
. (84)

Then, the probability distribution of oscillatory motions occurring is

P1(p0) = 1 −
∫ p0ρA2

α2 log(1+γ )
+μ1

1−α2

α2

0
g(u; ρ1, ρ2) du, (85)

where g(u; ρ1, ρ2) is the Gamma probability density function defined by (19), and that of non-oscillatory
motions is

P2(p0) = 1 − P1(p0) =
∫ p0ρA2

α2 log(1+γ )
+μ1

1−α2

α2

0
g(u; ρ1, ρ2) du. (86)

For example, when α = 1, ρ = 1, A = 1, γ = 1 and μ̃ = μ = μ1 + μ2 satisfies the Gamma
distribution with ρ1 = 405 and ρ2 = 0.01, the probability distributions given by (85) and (86) are
shown in Fig. 7 (blue lines for P1 and red lines for P2). Specifically, (0, μ), where μ = ρ1ρ2 = 4.05
is the mean value of μ, was divided into 100 steps, then for each value of p0, 100 random values of μ

were numerically generated from the specified Gamma distribution and compared with the inequalities

D
ow

nloaded from
 https://academ

ic.oup.com
/im

atrm
/article-abstract/3/1/tnz003/5543824 by Acquisitions user on 05 Septem

ber 2019
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Fig. 7. Probability distributions of whether oscillatory motions can occur or not for a cylindrical tube of stochastic Mooney–
Rivin material, with α = 1, ρ = 1, A = 1, γ = 1 and the shear modulus, μ, following the Gamma distribution with ρ1 = 405,
ρ2 = 0.01. Dark-coloured lines represent analytically derived solutions, given by equations (85) and (86), whereas the lighter
versions represent stochastically generated data. The vertical line at the critical value, p0 = 2.8072, separates the expected
regions based only on the mean value of the shear modulus, μ = ρ1ρ2 = 4.05. The probabilities were calculated from the average
of 100 stochastic simulations.

Fig. 8. The function G(x, γ ), defined by (73), intersecting the (dashed red) curve p0

(
x2 − 1/α

)
/(2α) + C, with p0 = 1 and

C = 7, (left), and the associated velocity, given by (69) (right), for a cylindrical tube of stochastic Mooney–Rivlin material when
α = 1, ρ = 1, A = 1, γ = 1 and μ̃ = μ = μ1 + μ2 is drawn from the Gamma distribution with ρ1 = 405 and ρ2 = 0.01. The
dashed black lines correspond to the expected values based only on the mean value, μ = ρ1ρ2 = 4.05, of μ. Each distribution
was calculated from the average of 1000 stochastic simulations.

defining the two intervals for values of p0. For the deterministic elastic tube, the critical value
p0 = μ log 2 ≈ 2.8072 strictly divides the cases of oscillations occurring or not. For the stochastic
problem, for the same critical value, there is, by definition, exactly 50% chance of that the motion is
oscillatory, and 50% chance that is not. To increase the probability of oscillatory motion (P1 ≈ 1), one
must apply a sufficiently small impulse, p0, below the expected critical point, whereas a non-oscillatory
motion is certain to occur (P2 ≈ 1) if p0 is sufficiently large. However, the inherent variability in the
probabilistic system means that there will also exist events where there is competition between the two
cases.

In Fig. 8, we illustrate the stochastic function G(x, γ ), defined by (73), intersecting the curve
p0

(
x2 − 1/α

)
/(2α) + C, with p0 = 1 and C = 7, to find the solutions of equation (71), and the

associated velocity, given by (69), assuming that α = 1, ρ = 1, A = 1, γ = 1, and μ satisfies the
Gamma distribution with ρ1 = 405 and ρ2 = 0.01.
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When C = 0, equation (81) can be solved explicitly to find the amplitude

x1 =
√

γ /α

(1 + γ ) exp
[− (p0ρA2

)
/(μ̃)
]− 1

=
√ (

B2 − A2
)
/α

B2 exp
[−2α

(
P1 − P2

)
/μ̃
]− A2

. (87)

Note that, in the static case, by (64) and (66), at x = x1, the required pressure takes the form

p(s)
0 = μ̃

αx2ρA2

γ − γ

αx2

1 + γ

αx2

+ μ̃

ρA2 log
1 + γ

1 + γ

αx2

. (88)

Thus, the difference between the applied pressure in the static and dynamic case, given by (88) and (81),
with C = 0, respectively, is

p(s)
0 − p0 = μ̃

αx2ρA2

γ − γ

αx2

1 + γ

αx2

. (89)

Hence, p(s)
0 < p0 if 0 < x1 <

√
α, and p(s)

0 > p0 if x1 >
√

α.
If the tube wall is thin (Knowles, 1962; Shahinpoor & Nowinski, 1971), then 0 < γ � 1 and α = 1,

and (81) becomes

p0

γ
= μ

ρA2

(
1 − 1

x2

)
− 2αC

x2 − 1
α

. (90)

Then the necessary and sufficient condition that oscillatory motions occur is that

− ∞ = lim
x→0

[
μ

ρA2

(
1 − 1

x2

)
− 2αC

x2 − 1
α

]
<

p0

γ
< lim

x→∞

[
μ

ρA2

(
1 − 1

x2

)
− 2αC

x2 − 1
α

]
= μ

ρA2
. (91)

Thus, for the motion to be oscillatory, the shear modulus must be bounded from below as follows:

μ >
p0

γ
ρA2 = 2

γ

(
T1(t) − T2(t)

)
. (92)

Then the probability distribution of oscillatory motions occurring is

P1(p0/γ ) = 1 −
∫ p0

γ
ρA2

0
g(u; ρ1, ρ2) du, (93)

and that of non-oscillatory motions is

P2(p0/γ ) = 1 − P1(p0/γ ) =
∫ p0

γ
ρA2

0
g(u; ρ1, ρ2) du. (94)

For ρ = 1, A = 1 and μ̃ = μ = μ1 + μ2 drawn from the Gamma distribution with ρ1 = 405
and ρ2 = 0.01, the probability distributions given by (93) and (94) are shown in Fig. 9 (blue lines for
P1 and red lines for P2). For the deterministic thin-walled tube, the critical value p0/γ = μ = 4.05
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Fig. 9. Probability distributions of whether oscillatory motions can occur or not for a thin-walled cylindrical tube of stochastic
Mooney–Rivin material, with ρ = 1, A = 1 and the shear modulus, μ, following the Gamma distribution with ρ1 = 405,
ρ2 = 0.01. Dark-coloured lines represent analytically derived solutions, given by equations (85) and (86), whereas the lighter
versions represent stochastically generated data. The vertical line at the critical value, p0/γ = 4.05, separates the expected
regions based only on the mean value of the shear modulus, μ = ρ1ρ2 = 4.05. The probabilities were calculated from the average
of 100 stochastic simulations.

Fig. 10. Stochastic solution given by (95), with p0/γ = 1, for a thin-walled tube, where ρ = 1, A = 1 and μ is drawn from the
Gamma distribution with ρ1 = 405 and ρ2 = 0.01. The dashed black line corresponds to the expected values based only on the
mean value, μ = ρ1ρ2 = 4.05, of μ. The distribution was calculated from the average of 1000 stochastic simulations.

strictly separates the cases of oscillations occurring or not. However, in the stochastic case, the two
cases compete.

If C = 0, then setting x0 = 1 and ẋ0 = 0, the equation of motion has the explicit solution
(Shahinpoor & Nowinski, 1971)

x =
√√√√

μ

ρA2 − p0
2γ

μ

ρA2 − p0
γ

−
p0
2γ

μ

ρA2 − p0
γ

cos

(
2t
√

μ

ρA2 − p0

γ

)
. (95)

In Fig. 10, we illustrate the stochastic solution given by (95), with p0/γ = 1, assuming that ρ = 1,
A = 1, and μ satisfies the Gamma distribution with hyperparameters ρ1 = 405 and ρ2 = 0.01.

If the tube wall is infinitely thick (Shahinpoor, 1973), then γ → ∞, and assuming that the nonlinear
shear modulus, μ̃, has a uniform lower bound, (82) becomes

− ∞ = lim
x→0

[
μ̃

ρA2 log
(
αx2
)

− 2αC

x2 − 1
α

]
< p0 < lim

x→∞

[
μ̃

ρA2 log
(
αx2
)

− 2αC

x2 − 1
α

]
= ∞. (96)

Hence, the motion is always oscillatory for any value of the applied impulse.

5. Quasi-equilibrated radial motion of a stochastic hyperelastic spherical shell

Next we examine the stability and finite amplitude oscillations of a stochastic hyperelastic spherical
shell under quasi-equilibrated dynamic radial deformation.
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Fig. 11. Schematic of inflation of a spherical shell, showing the reference state, with inner radius A and outer radius B (left), and
the deformed state, with inner radius a and outer radius b (right), respectively.

5.1 Dynamic radial deformation of a spherical shell

For a spherical shell, the radial motion is described by (Balakrishnan & Shahinpoor, 1978; Beatty, 2011;
Heng & Solecki, 1963; Knowles & Jakub, 1965) (see Fig. 11)

r3 = a3 + R3 − A3, θ = Θ , φ = Φ, (97)

where (R, Θ , Φ) and (r, θ , φ) are the spherical polar coordinates in the reference and current configura-
tion, respectively, such that A ≤ R ≤ B, A and B are the inner and outer radii in the undeformed state,
and a = a(t) and b = b(t) = 3

√
a3 + B3 − A3 are the inner and outer radii at time t, respectively.

As for the cylindrical tube, the radial motion (97) of the spherical shell is determined entirely by the
inner radius a at time t. By the governing equations (97), the condition (4) is valid for x = (r, θ , φ)T ,
since

0 = curl ẍ =
⎡
⎣

(∂φ̈/∂θ)/r − (∂θ̈/∂φ)/(r sin θ)

(∂ r̈/∂φ)/(r sin θ) − ∂φ̈/∂r
∂θ̈/∂r − (∂ r̈/∂θ)/r

⎤
⎦ , (98)

and the acceleration potential, ξ , satisfies (3). Hence, this is a quasi-equilibrated motion, such that

− ∂ξ

∂r
= r̈ = 2aȧ2 + a2ä

r2
− 2a4ȧ2

r5
, (99)

and integrating (99) gives (Truesdell & Noll, 2004, p. 217)

− ξ = −2aȧ2 + a2ä

r
+ a4ȧ2

2r4 = −rr̈ − 3

2
ṙ2. (100)

For the deformation (97), the gradient tensor with respect to the polar coordinates (R, Θ , Φ) takes the
form

F = diag

(
R2

r2 ,
r

R
,

r

R

)
, (101)
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the Cauchy–Green tensor is equal to

B = F2 = diag

(
R4

r4 ,
r2

R2 ,
r2

R2

)
(102)

and the corresponding principal invariants are

I1 =tr (B) = R4

r4
+ 2

r2

R2
,

I2 =1

2

[
(tr B)2 − tr

(
B2
)]

= r4

R4
+ 2

R2

r2
,

I3 = det B = 1.

(103)

Then the principal components of the equilibrium Cauchy stress at time t are

T(0)
rr = −p(0) + β1

R4

r4 + β−1
r4

R4 ,

T(0)
θθ = T(0)

rr +
(

β1 − β−1
r2

R2

)(
r2

R2
− R4

r4

)
,

T(0)
φφ = T(0)

θθ ,

(104)

where p(0) is the Lagrangian multiplier for the incompressibility constraint (I3 = 1), and

β1 = 2
∂W

∂I1
, β−1 = −2

∂W

∂I2
, (105)

with I1 and I2 given by (103).
As the stress components depend only on the radius r, the system of equilibrium equations reduces

to

∂T(0)
rr

∂r
= 2

T(0)
θθ − T(0)

rr

r
. (106)

Hence, by (104) and (106), the radial Cauchy stress for the equilibrium state at t is equal to

T(0)
rr (r, t) = 2

∫ (
β1 − β−1

r2

R2

)(
r2

R2
− R4

r4

)
dr

r
+ ψ(t), (107)
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where ψ = ψ(t) is an arbitrary function of time. Substitution of (100) and (107) into (5) gives the
following principal Cauchy stresses at time t:

Trr(r, t) = −ρ

(
a2ä + 2aȧ2

r
− a4ȧ2

2r4

)
+ 2
∫ (

β1 − β−1
r2

R2

)(
r2

R2
− R4

r4

)
dr

r
+ ψ(t),

Tθθ (r, t) = Trr(r, t) +
(

β1 − β−1
r2

R2

)(
r2

R2 − R4

r4

)
,

Tφφ(r, t) = Tθθ (r, t).

(108)

In (108), the function β1 − β−1

(
r2/R2

)
can be regarded as the following nonlinear shear modulus

(Beatty, 2011; Mihai & Goriely, 2017):

μ̃ = β1 − β−1
r2

R2 , (109)

corresponding to the combined deformation of infinitesimal shear superposed on finite axial stretch,
defined by (11), with the shear parameter satisfying k → 0 and the stretch parameter α = r/R. This
modulus is positive if the BE inequalities (9) hold (Mihai & Goriely, 2017). In this case, the integrand
in (108) is negative for 0 < r2/R2 < 1 (i.e., when 0 < a2/A2 < 1) and positive for r2/R2 > 1 (i.e.,
when a2/A2 > 1).

When R2/r2 → 1, the nonlinear elastic modulus given by (109) converges to the shear modulus
from linear elasticity,

μ = lim
R2/r2→1

μ̃. (110)

In this case, the stress components given by (108) are equal.
For the spherical shell deforming by (97), we set the inner and outer radial pressures acting on the

curvilinear surfaces, r = a(t) and r = b(t) at time t, as T1(t) and T2(t), respectively (Truesdell & Noll,
2004, pp. 217–219). Then evaluating T1(t) = −Trr(a, t) and T2(t) = −Trr(b, t), using (108), with r = a
and r = b, respectively, and subtracting the results, gives

T1(t) − T2(t) = ρ

[(
a2ä + 2aȧ2

)(1

a
− 1

b

)
− a4ȧ2

2

(
1

a4
− 1

b4

)]
+ 2
∫ b

a
μ̃

(
r2

R2
− R4

r4

)
dr

r

= ρ

[(
aä + 2ȧ2

) (
1 − a

b

)
− ȧ2

2

(
1 − a4

b4

)]
+ 2
∫ b

a
μ̃

(
r2

R2
− R4

r4

)
dr

r

= ρA2
[(

a

A

ä

A
+ 2

ȧ2

A2

)(
1 − a

b

)
− ȧ2

2A2

(
1 − a4

b4

)]
+ 2
∫ b

a
μ̃

(
r2

R2
− R4

r4

)
dr

r
.

(111)

Setting the notation

u = r3

R3
= r3

r3 − a3 + A3
, x = a

A
, γ = B3

A3
− 1, (112)
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we can rewrite

(
a

A

ä

A
+ 2

ȧ2

A2

)(
1 − a

b

)
− ȧ2

2A2

(
1 − a4

b4

)

=
(

ẍx + 2ẋ2
) [

1 −
(

1 + γ

x3

)−1/3
]

− ẋ2

2

[
1 −
(

1 + γ

x3

)−4/3
]

=
(

ẍx + 3

2
ẋ2
)[

1 −
(

1 + γ

x3

)−1/3
]

− ẋ2

2

γ

x3

(
1 + γ

x3

)−4/3

= 1

2x2

d

dx

{
ẋ2x3
[

1 −
(

1 + γ

x3

)−1/3
]}

and

∫ b

a
μ̃

(
r2

R2 − R4

r4

)
dr

r
=
∫ b

a
μ̃

[(
r3

r3 − a3 + A3

)2/3

−
(

r3 − a3 + A3

r3

)4/3]
dr

r

= 1

3

∫ x3

x3+γ
1+γ

μ̃
1 + u

u7/3 du.

Hence, (111) can be written equivalently as follows:

2x2 T1(t) − T2(t)

ρA2
= d

dx

{
ẋ2x3
[

1 −
(

1 + γ

x3

)−1/3
]}

+ 4x2

3ρA2

∫ x3

x3+γ
1+γ

μ̃
1 + u

u7/3
du. (113)

Note that, when the BE inequalities (9) hold, μ̃ > 0, and the integral in (113) is negative if 0 < x < 1
and positive if x > 1.

In the static case, (111) reduces to

T1(t) − T2(t) =
∫ b

a
μ̃

(
r2

R2
− R4

r4

)
dr

r
, (114)

and (113) becomes

2
T1(t) − T2(t)

ρA2 = 4

3ρA2

∫ x3

x3+γ
1+γ

μ̃
1 + u

u7/3 du. (115)

For the dynamic spherical shell, we set

H(x, γ ) = 4

3ρA2

∫ x

1

(
ζ 2
∫ ζ 3

ζ3+γ
1+γ

μ̃
1 + u

u7/3 du

)
dζ , (116)

and obtain that H(x, γ ) is monotonically decreasing when 0 < x < 1 and increasing when x > 1.
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We also set a pressure impulse that is constant in time,

2
T1(t) − T2(t)

ρA2
=
{

0 if t ≤ 0,
p0 if t > 0.

(117)

Then integrating (113) once gives

ẋ2x3
[

1 −
(

1 + γ

x3

)−1/3
]

+ H(x, γ ) = p0

3

(
x3 − 1

)
+ C, (118)

with H(x, γ ) defined by (116), and

C = ẋ2
0x3

0

[
1 −
(

1 + γ

x3

)−1/3
]

+ H(x0, γ ) − p0

3

(
x3

0 − 1
)

, (119)

where x(0) = x0 and ẋ(0) = ẋ0 are the initial conditions. From (118), we obtain

ẋ = ±
√√√√√

p0
3

(
x3 − 1

)+ C − H(x, γ )

x3

[
1 −
(

1 + γ

x3

)−1/3
] . (120)

The analogy with the motion of a point mass in a potential still holds with appropriate modification.
Hence, oscillatory motion of the spherical shell occurs if and only if the following equation,

H(x, γ ) = p0

3

(
x3 − 1

)
+ C, (121)

has exactly two distinct solutions, representing the amplitudes of the oscillation, x = x1 and x = x2,
such that 0 < x1 < x2 < ∞. In this case, the minimum and maximum radii of the inner surface in the
oscillation are given by x1A and x2A, respectively, and the period of oscillation is equal to

T = 2

∣∣∣∣
∫ x2

x1

dx

ẋ

∣∣∣∣ = 2

∣∣∣∣∣∣∣∣∣

∫ x2

x1

√√√√√ x3

[
1 −
(

1 + γ

x3

)−1/3
]

p0
3

(
x3 − 1

)+ C − H(x, γ )
dx

∣∣∣∣∣∣∣∣∣
. (122)

Note that the amplitude and the period of the oscillation are random variables characterized by
probability distributions.
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Fig. 12. The function H(x, γ ), defined by (123), intersecting the (dashed red) line C = 10, when p0 = 0 (left), and the associated
velocity, given by (120) (right), for the spherical shell of stochastic neo-Hookean material, where ρ = 1, A = 1, γ = 1 and μ

is drawn from the Gamma distribution with ρ1 = 405 and ρ2 = 0.01. The dashed black lines correspond to the expected values
based only on the mean value, μ = ρ1ρ2 = 4.05, of μ. Each distribution was calculated from the average of 1000 stochastic
simulations.

5.2 Radial oscillations of a spherical shell of stochastic neo-Hookean material

For a spherical shell of stochastic neo-Hookean material, with μ1 = μ > 0 and μ2 = 0 in (16),
evaluating the integral in (116) gives (see Appendix A for a detailed derivation)

H(x, γ ) = μ

ρA2

(
x3 − 1

)
⎡
⎢⎣ 2x3 − 1

x3 + x2 + x
− 2 x3+γ

1+γ
− 1

x3+γ
1+γ

+
(

x3+γ
1+γ

)2/3 +
(

x3+γ
1+γ

)1/3

⎤
⎥⎦ . (123)

Assuming that the nonlinear shear modulus, μ, is uniformly bounded from below, i.e.,

μ > η, (124)

for some constant η > 0, it follows that

lim
x→0

H(x, γ ) = lim
x→∞ H(x, γ ) = ∞. (125)

(i)When p0 = 0 and C > 0, equation (121) has exactly two solutions, x = x1 and x = x2, satisfying
0 < x1 < 1 < x2 < ∞, for any positive constant C. In this case, it should be noted that, by (108), if
Trr(r, t) = 0 at r = a and r = b, so that T1(t) = T2(t) = 0, then, Tθθ (r, t) = Tφφ(r, t) �= 0 at r = a and

r = b, unless r3/R3 → 1. Thus, the oscillations cannot be considered as ‘free’ in general.
In Fig. 12, we show the stochastic function H(x, γ ), defined by (123), intersecting the line C = 10,

to solve equation (121) when p0 = 0, and the associated velocity, given by (120), assuming that ρ = 1,
A = 1, γ = 1 and μ follows the Gamma distribution with hyperparameters ρ1 = 405 and ρ2 = 0.01.
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Fig. 13. The function H(x, γ ), defined by (123), intersecting the (dashed red) curve p0

(
x3 − 1

)
/3 + C, with p0 = 1 and C = 3

(left), and the associated velocity, given by (120) (right), for the spherical shell of stochastic neo-Hookean material, where ρ = 1,
A = 1, γ = 1 and μ is drawn from the Gamma distribution with ρ1 = 405 and ρ2 = 0.01. The dashed black lines correspond to
the expected values based only on the mean value, μ = ρ1ρ2 = 4.05, of μ. Each distribution was calculated from the average of
1000 stochastic simulations.

(ii)When p0 �= 0 and C ≥ 0, substitution of (123) in (121) gives

p0 = 3μ

ρA2

⎡
⎢⎣ 2x3 − 1

x3 + x2 + x
− 2 x3+γ

1+γ
− 1

x3+γ
1+γ

+
(

x3+γ
1+γ

)2/3 +
(

x3+γ
1+γ

)1/3

⎤
⎥⎦− 3C

x3 − 1
. (126)

As the right-hand side of (126) is function of x that monotonically increases from −∞ as x → 0 to ∞
as x → ∞, the motion is oscillatory for all values of the given pressure difference.

In the static case, by (115) and (117), the applied pressure takes the form

p(s)
0 = μ

ρA2

[(
1 + γ

x3 + γ

)4/3

+ 4

(
1 + γ

x3 + γ

)1/3

− 1

x4 − 4

x

]
. (127)

In Fig. 13, we represent the stochastic function H(x, γ ), defined by (123), intersecting the curve
p0

(
x3 − 1

)
/3 + C, with p0 = 1 and C = 3, to obtain the solutions of equation (121), and the associated

velocity, given by (120), assuming that ρ = 1, A = 1, γ = 1 and μ follows the Gamma distribution
with ρ1 = 405 and ρ2 = 0.01.

If the spherical shell has an infinitely thick wall (Balakrishnan & Shahinpoor, 1978; Knowles &
Jakub, 1965), then γ → ∞, and the necessary and sufficient condition for the motion to be oscillatory
becomes

lim
x→0

[
3μ

ρA2

(
2x3 − 1

x3 + x2 + x
− 1

3

)
− 3C

x3 − 1

]
< p0 < lim

x→∞

[
3μ

ρA2

(
2x3 − 1

x3 + x2 + x
− 1

3

)
− 3C

x3 − 1

]
,
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Fig. 14. Probability distributions of whether oscillatory motions can occur or not for an infinitely thick-walled spherical shell of
stochastic neo-Hookean material, with ρ = 1, A = 1 and the shear modulus, μ, following the Gamma distribution with ρ1 = 405,
ρ2 = 0.01. Dark-coloured lines represent analytically derived solutions, given by equations (130) and (131), whereas the lighter
versions represent stochastically generated data. The vertical line at the critical value, p0 = 20.25, separates the expected regions
based only on the mean value of the shear modulus, μ = ρ1ρ2 = 4.05. The probabilities were calculated from the average of 100
stochastic simulations.

that is

− ∞ < p0 <
5μ

ρA2 . (128)

Thus, for the oscillations to occur, the shear modulus must satisfy (Knowles & Jakub, 1965)

μ > p0
ρA2

5
= 2

5

(
T1(t) − T2(t)

)
. (129)

Then the probability distribution of oscillatory motions occurring is

P1(p0) = 1 −
∫ p0

ρA2

5

0
g(u; ρ1, ρ2) du, (130)

and that of non-oscillatory motions is

P2(p0) = 1 − P1(p0) =
∫ p0

ρA2

5

0
g(u; ρ1, ρ2) du. (131)

For ρ = 1, A = 1 and μ̃ = μ = μ1 + μ2 drawn from the Gamma distribution with ρ1 = 405 and
ρ2 = 0.01, the probability distributions given by (130) and (131) are shown in Fig. 14 (blue lines for P1
and red lines for P2). For the deterministic thin-walled tube, the critical value p0 = 5μ = 20.25 strictly
separates the cases of oscillations occurring or not. However, in the stochastic case, there is competition
between the two cases.

If the spherical shell wall is thin (Beatty, 2011; Verron et al., 1999; Wang, 1965), then 0 < γ � 1,
and setting C = 0 for example, the necessary and sufficient condition for the oscillatory motions to
occur becomes

− ∞ = lim
x→0

μ

ρA2

(x + 1)
(
2x4 − x2 − 1

)

x3
(
x3 + x2 + x

) <
p0

γ
< sup

μ

ρA2

(x + 1)
(
2x4 − x2 − 1

)

x3
(
x3 + x2 + x

) ≈ 0.7414
μ

ρA2 .

(132)
where sup denotes supremum.
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Fig. 15. Probability distributions of whether oscillatory motions can occur or not for a thin-walled spherical shell of stochastic
neo-Hookean material, with ρ = 1, A = 1 and the shear modulus, μ, following the Gamma distribution with ρ1 = 405,
ρ2 = 0.01. Dark-coloured lines represent analytically derived solutions, given by equations (134) and (135), whereas the lighter
versions represent stochastically generated data. The vertical line at the critical value, p0/γ = 3.0027, separates the expected
regions based only on the mean value of the shear modulus, μ = ρ1ρ2 = 4.05. The probabilities were calculated from the average
of 100 stochastic simulations.

Hence, for the motion to be oscillatory, the shear modulus must be uniformly bounded from below
as follows,

μ >
p0

γ

ρA2

0.7414
≈ 2.7

γ

(
T1(t) − T2(t)

)
. (133)

Then, the probability distribution of oscillatory motions occurring is

P1(p0/γ ) = 1 −
∫ p0

γ
ρA2

0.7414

0
g(u; ρ1, ρ2) du, (134)

and that of non-oscillatory motions is

P2(p0/γ ) = 1 − P1(p0/γ ) =
∫ p0

γ
ρA2

0.7414

0
g(u; ρ1, ρ2) du. (135)

For ρ = 1, A = 1 and μ̃ = μ = μ1 + μ2 drawn from the Gamma distribution with ρ1 = 405 and
ρ2 = 0.01, the probability distributions given by (134) and (135) are shown in Fig. 15 (blue lines for
P1 and red lines for P2). For the deterministic thin-walled tube, the critical value p0/γ = 0.7414μ =
3.0027 strictly separates the cases of oscillations occurring or not. However, in the stochastic case, the
two cases compete.

6. Conclusion

We provided here a synthesis on the analysis of finite amplitude oscillations resulting from dynamic
finite deformations of given isotropic incompressible nonlinear hyperelastic solids and extended this
to non-deterministic oscillatory motions of stochastic isotropic incompressible hyperelastic solids with
similar geometries. Specifically, we treated in a unified manner the generalized shear motion of a cuboid
and the radial motion of inflated cylindrical and spherical shells of stochastic neo-Hookean or Mooney–
Rivlin material. For these finite dynamic problems, attention was given to the periodic motion and the
time-dependent stresses, while taking into account the stochastic model parameters, which are random
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variables described by given probability laws. We found that, in this case, the amplitude and period
of the oscillation of the stochastic bodies are also characterized by probability distributions, and, for
cylindrical tubes and spherical shells, when an impulse surface traction is applied, there is a parameter
interval where both the oscillatory and non-oscillatory motions can occur with a given probability. This
is in contrast to the deterministic problem where a single critical parameter value strictly separates the
cases where oscillations can or cannot occur.

The finite dynamic analysis presented here can be extended (albeit numerically) to other stochastic
homogeneous hyperelastic materials (for example, using the stochastic strain-energy functions derived
from experimental data in Mihai et al., 2018c), or to inhomogeneous incompressible bodies similar
to those considered deterministically in Ertepinar & Akay (1976). For incompressible bodies with
inhomogeneous material parameters, the constitutive parameters of the stochastic hyperelastic models
can be treated as random fields, as described in Staber & Guilleminot (2018)and Staber et al. (2019).
Clearly, the combination of knowledge from elasticity, statistics and probability theories offers a richer
set of tools compared to the elastic framework alone and would logically open the way to further
considerations of this type. However, as the role of stochastic effects on instabilities in finite strain
elastodynamics is still in its infancy, it is important to consider the homogeneous case in the first
instance.

If the material is compressible (unconstrained), then the theorem on quasi-equilibrated dynamics
given by Truesdell (1962), and recalled by us in Section 2, is not applicable (Truesdell & Noll, 2004,
p. 209). As we relied on the notion of quasi-equilibrated motion to derive our analytical results for
incompressible cylindrical tubes and spherical shells, the same approach cannot be used for the
compressible case. Nevertheless, as seen from the generalized shear motion of a cuboid, presented
in Section 3, more general elastodynamic problems can still be formulated where the motion is not
quasi-equilibrated. However, while stochastic versions of compressible hyperelastic materials can also
be obtained, as shown in Staber & Guilleminot (2016), few theoretical results are available on the
oscillatory motion of finitely deformed compressible hyperelastic solids (see, e.g., Akyüz & Ertepinar,
1998).

The analysis presented here is timely not only because ‘Today, it is well understood that as soon
as the probability theory can be used, then the probabilistic approach of uncertainties is certainly the
most powerful, efficient and effective tool for modelling and for solving direct and inverse problems’
(Soize, 2013), but also because time-dependent finite elastic deformations, although relevant to the
modelling of various physical systems, have seldom been considered in more recent studies, which
focused primarily on static elastic deformations or on dynamic viscoelasticity problems. Clearly,
further numerical and experimental investigations of oscillatory finite deformations could help to
bridge the gap between these popular areas and add some valuable insight into specific applications
as well.

Funding

Engineering and Physical Sciences Research Council of Great Britain (EP/R020205/1 to A.G. and
EP/S028870/1 to L.A.M.).

A. Additional detailed calculations

In this appendix, for the stochastic cylindrical and spherical shells discussed in Sections 4 and 5,
respectively, we provide detailed derivations of the general functions G(x, γ ), defined by (73), and
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H(x, γ ), defined by (123), and calculate the limits of these functions in the particular cases of thin-
walled and infinitely thick-walled shells.

(I) For a Mooney-type model, the function G(x, γ ) is defined by (65), where μ̃ = μ1 + μ2α
2t. In

this case, we obtain

G(x, γ ) = 1

ρA2

∫ x

1/
√

α

(
ζ

∫ ζ 2

ζ2+ γ
α

1+γ

μ̃
1 + αu

α2u2 du

)
dζ

= μ̃

ρA2

∫ x

1/
√

α

(
ζ

∫ ζ 2

ζ2+ γ
α

1+γ

1 + αu

α2u2
du

)
dζ

= μ̃

ρA2

∫ x

1/
√

α

{
1

α2

[
(1 + γ )

ζ

ζ 2 + γ
α

− 1

ζ

]
+ 1

α

[
ζ log ζ 2 − ζ log

ζ 2 + γ
α

1 + γ

]}
dζ

= μ̃

2αρA2

(
1 + γ

α
log

x2 + γ
α

1
α

+ γ
α

− 1

α
log x2 + 1

α
log

1

α

)

+ μ̃

2αρA2

(
x2 log x2 − x2 − 1

α
log

1

α
+ 1

α

)

− μ̃

2αρA2

(
x2 log

x2 + γ
α

1 + γ
− x2 + γ

α
log

x2 + γ
α

1
α

+ γ
α

− 1

α
log

1

α
+ 1

α

)

= μ̃

2αρA2

(
x2 − 1

α

)
log

1 + γ

1 + γ

αx2

.

For the thin-walled tube (Knowles, 1962; Shahinpoor & Nowinski, 1971), α = 1 and 0 < γ �
1, and approximating log(1 + γ ) by γ and log

[
1 + γ /

(
αx2
)]

by γ /
(
αx2
)
, we find

G(x, γ ) = γ
μ̃

2ρA2

(
x2 − 1

)(
1 − 1

x2

)
.

For the cylindrical cavity (Shahinpoor, 1973), γ → ∞; hence,

G(x, γ ) = μ̃

2αρA2

(
x2 − 1

α

)
log
(
αx2
)

.

(II) For a neo-Hookean-type model, the function H(x, γ ) is defined by (116), where μ̃ = μ.
Following Knowles & Jakub (1965), we set the corresponding strain-energy density in the
form

W0(u) = μ

2

(
u−4/3 + 2u2/3 − 3

)
,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

atrm
/article-abstract/3/1/tnz003/5543824 by Acquisitions user on 05 Septem

ber 2019



LIKELY OSCILLATORY MOTIONS OF STOCHASTIC HYPERELASTIC SOLIDS 37

and denote by W ′
0(u) its first derivative with respect to u. Then by standard calculations

(involving integration by parts and change of variables), we obtain

H(x, γ ) = 4

3ρA2

∫ x

1

(
ζ 2
∫ ζ 3

ζ3+γ
1+γ

μ̃
1 + u

u7/3 du

)
dζ

= 2

ρA2

∫ x

1

(
ζ 2
∫ ζ 3

ζ3+γ
1+γ

W ′
0(u)

u − 1
du

)
dζ

= 2

ρA2

∫ x

1

⎧⎨
⎩ζ 2

⎡
⎣W0(ζ

3)

ζ 3 − 1
−

W0

(
ζ 3+γ
1+γ

)

ζ 3+γ
1+γ

− 1
+
∫ ζ 3

ζ3+γ
1+γ

W0(u)

(u − 1)2 du

⎤
⎦
⎫⎬
⎭ dζ

= 2

ρA2

⎧⎨
⎩
∫ x

1
ζ 2

⎡
⎣W0(ζ

3)

ζ 3 − 1
−

W0

(
ζ 3+γ
1+γ

)

ζ 3+γ
1+γ

− 1

⎤
⎦ dζ +

∫ x

1

[
ζ 2
∫ ζ 3

ζ3+γ
1+γ

W0(u)

(u − 1)2
du

]
dζ

⎫⎬
⎭

= 2

3ρA2

[∫ x3

1

W0(u)

u − 1
du + x3

∫ x3

1

W0(u)

(u − 1)2
du −

∫ x3

1

uW0(u)

(u − 1)2
du

]

+ 2

3ρA2

[∫ 1

x3+γ
1+γ

(1 + γ )
W0(u)

u − 1
du + x3

∫ 1

x3+γ
1+γ

W0(u)

(u − 1)2
du −

∫ 1

x3+γ
1+γ

[u(1 + γ ) − γ ] W0(u)

(u − 1)2 du

]

= 2

3ρA2

[
x3
∫ x3

1

W0(u)

(u − 1)2 du −
∫ x3

1

W0(u)

(u − 1)2 du

]

+ 2

3ρA2

[
x3
∫ 1

x3+γ
1+γ

W0(u)

(u − 1)2
du −

∫ 1

x3+γ
1+γ

(1 + γ )
W0(u)

(u − 1)2
du +

∫ 1

x3+γ
1+γ

γ
W0(u)

(u − 1)2
du

]

= 2

3ρA2

(
x3 − 1

) ∫ x3

x3+γ
1+γ

W0(u)

(u − 1)2 du

= μ

3ρA2

(
x3 − 1

) ∫ x3

x3+γ
1+γ

2u4/3 + 4u + 3u2/3 + 2u1/3 + 1

u2/3(u + u2/3 + u1/3)2 du

= μ

ρA2

(
x3 − 1

)
⎡
⎢⎣ 2x3 − 1

x3 + x2 + x
− 2 x3+γ

1+γ
− 1

x3+γ
1+γ

+
(

x3+γ
1+γ

)2/3 +
(

x3+γ
1+γ

)1/3

⎤
⎥⎦ .
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For the thin-walled shell (Beatty, 2011; Verron et al., 1999; Wang, 1965), 0 < γ � 1, and

H(x, γ ) = γ
4μ

3ρA2

∫ x

1

u6 − 1

u5 du

= γ
μ

ρA2

(x + 1)
(
2x4 − x2 − 1

)

x3
(
x3 + x2 + x

) .

For the spherical cavity (Balakrishnan & Shahinpoor, 1978; Knowles & Jakub, 1965), γ → ∞;
hence

H(x, γ ) = μ

3ρA2

(
x3 − 1

) 5x3 − x2 − x − 3

x3 + x2 + x
.
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