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Abstract Shape recognition is a fundamental problem
and a special type of image classification, where each

shape is considered as a class. Current approaches to
shape recognition mainly focus on designing low-level
shape descriptors, and classify them using some ma-

chine learning approaches. In order to achieve effective

learning of shape features, it is essential to ensure that

a comprehensive set of high quality features can be ex-

tracted from the original shape data. Thus we have been

motivated to develop methods of fusion of features and

classifiers for advancing the classification performance.

In this paper, we propose a multi-level framework for

fusion of features and classifiers in the setting of gran-

ular computing. The proposed framework involves cre-

ation of diversity among classifiers, through adopting

feature selection and fusion to create diverse feature

sets and to train diverse classifiers using different learn-
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ing algorithms. The experimental results show that the

proposed multi-level framework can effectively create
diversity among classifiers leading to considerable ad-
vances in the classification performance.

Keywords Machine Learning · Ensemble Learning ·

Image Classification · Shape Recognition · Feature

Extraction · Granular Computing

1 Introduction

Shape recognition is a critical part of pattern recog-

nition due to its wide applications in image retrieval,

object detection surveillance systems and any related

areas. In the recent years, machine learning gains its

popularity due to its modeling ability. In shape recog-

nition tasks, the same kind of shapes is assigned a spe-

cific label, which consists of data samples, and effective
feature descriptors extracted from these data combined
with powerful machine learning algorithms usually lead
to good recognition results.

Feature extraction and classification are two signif-

icant steps in shape recognition, which can directly af-
fect the recognition results. In the past few years, ef-

fective shape features and classification methods have

been studied. In general, a high dimensional feature

set usually contains redundant information which has

negative effects on the recognition result. Specifically,

the redundant information exists in local features and

global features. In addition, classification performance

can be varied due to the diversity among different classi-

fiers, i.e., classifiers trained using different learning algo-

rithms show different classification performance on the

same feature set, and the classifiers trained using the

same algorithm show different performance on differ-

ent feature sets. Therefore, it becomes our motivation
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to select effective features without destroying local and

global relationships and advance the classification per-

formance through fusing different classifiers trained on

distinct features.

In this paper, first, we propose a multi-level frame-

work for shape recognition, which involves creation of

diversity among feature subsets by adopting feature se-

lection and fusion, and training diverse classifiers on

them using seven learning algorithms which are deci-

sion tree, k nearest neighbour, support vector machine,

fuzzy rule, probabilistic neural network, random forests

and gradient boosted trees. Second, we discuss how to

improve the recognition rate by multi-classifier fusion

from the perspective of granular computing. With these

contributions we are able to create diverse classifiers to

advance the performance.

The rest of this paper is organized as follows: Sec-

tion 2 presents related work on shape features and ma-

chine learning related algorithms. In Section 3, we give

the details of the extracted features and the design of
feature fusion and classifier fusion. Experimental con-
figurations and discussion of the results are given in

Section 4. In Section 5, we summarize the contributions

of this paper and suggest some future directions.

2 Related Work

In this section, we provide an overview of feature extrac-
tion in the context of shape recognition and a review of
machine learning techniques that have been popularly

used leading to effective recognition of shapes.

2.1 Overview of features used for shape recognition

Shape recognition (Kurnianggoro et al, 2018; Zhang

and Lu, 2004) has been widely studied in computer
vision in the past decades. Shape representation de-
scriptors with hierarchical structure have better per-

formance on shape classification due to the fact that

the coarse grained characteristics can distinguish the

obvious differences between two shapes, while the dif-

ferences in details can be further recognized through
fine-grained features. In general, the existing shape fea-
tures can be roughly divided into global approaches and
local approaches.

Global approaches extract features on the whole

shape contour or shape contents which include essential

parameters, stochastic methods, scale space descrip-

tors, spectral domains, moment-based descriptors and

grid based methods. Essential parameters like the cen-

ter of gravity, convexity and solidity are simple global

descriptors with low complexity of computation and

implementation. These simple descriptors only perform

well on drastic perceptually shapes. However, a mean-
ingful shape descriptor can be constructed by a combi-
nation of these simple descriptors. Stochastic methods

like Auto-regressive (AR) (Sekita et al, 1992) model de-

scribe shape boundaries through its parameters. Scale

space descriptors like curvature scale space (CSS) (Mokhtar-

ian and Bober, 2003) describe the change of curvature

of a shape in different smoothing values which are less

sensitive to noise and boundaries variations. Fourier de-

scriptor (FD) and wavelet descriptor (WD) can han-

dle the issue of noise sensitivity in a spectral domain.

Classic moment-based descriptors include Hu-moments

and Zernike moments. The former have relatively low

complexity of computation and characteristic of being
invariant to translation, scaling and rotation, whereas
the latter are more robust. Grid based methods (Lu and
Sajjanhar, 1999) encode the shape context as a binary

feature vector. Before the encoding, the normalization

such as scaling the shape into a fixed size needs to be

achieved to cop with the issue of translation, rotation

and scaling. Recently, Multi-scale angular features were
extracted from contour points by Arjun and Mirnalinee
(2018). Due to the fact that a multi-scale scheme will
lead to complex computation, sequential backward se-

lection (SBS) was employed against the expensive com-

putation. The experiments on the MPEG-7 shape data

set show that this descriptor is invariant to scaling and

rotation transformation.

Rather than describing the shape from the whole

shape contour or region, local approaches broke the
whole shape contour or region into parts. Local ap-

proaches include chain codes, histogram based descrip-
tors, decomposition based methods and medial axis based
methods. Chain codes (Malo and Freeman, 2009) can

encode a shape contour to a set of vectors with 4 or

8 directions. Since it focuses on the local information

of the given shape contour, variations might impact a

lot on the descriptors. Histogram based descriptors like

shape context (Belongie et al, 2002) can reflect the dis-
tribution of contour points nearby each point which is
less sensitive to noise data. The decomposition based

methods like polygon decomposition divides the con-

tour into small primitives, each of which includes inter-

nal angle, distance from the next vertex, and its x and

y coordinates. Medial axis based methods like region

skeleton describe the shape using its topological struc-

ture. Recently, by Giangreco Maidana et al (2018), a

new local descriptor named Contour-Point Signature

(CPS) contains information of arbitrary contour points

which are proven to be invariant to translation, scaling

and rotation. By Lin et al (2015), region area descriptor

(RAD), region skeleton descriptor (RSD) and simplified
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shape signature (SSS) were proposed. RAD and RSD

exploit information from shape contour and skeleton

while SSS is only contour based. The final descriptor is

concatenated by these novel descriptors. Also, contour

and skeleton information were also considered as com-

plementary, Skeleton-associated Shape Context (SSC)

was proposed by Shen et al (2016). And the Bag of fea-

tures scheme was applied to encode the SSC part to a
meaningful feature as Bag of Skeleton-associated Con-
tour Parts (BSCP). By Priyanka and Sudhakar (2018),

a descriptor using hybrid geometrical concepts to ex-

ploit local information named Triangulated Feature De-

scriptor (TFD) was proposed.

2.2 Review of machine learning methods

While many shape features have been proven to be ef-
fective, little attention has been paid to classification

approaches in shape recognition. Machine learning has
been an important tool for pattern recognition, and in
which, feature fusion and classifier fusion are two im-

portant ways to improve the performance.

As mentioned in 2.1, many shape features combined

with learning algorithms can achieve good performance.

By Priyanka and Sudhakar (2018), the combination of

Triangulated Feature Descriptor (TFD) and kNN achieve

the accuracy of 95.35%. SVM is used by Shen et al

(2016) to verify the proposed feature in terms of ac-

curacy. Comparing with SVM, k-ELM is more efficient

for high-dimensional data. In Lin et al (2015), kernel

extreme learning machine (k-ELM) is used to classify

the shape.

Generally, feature fusion can be separated as two
stages: feature selection and feature combination. Fea-

ture selection (Jovi et al, 2015) plays an important role

in classification tasks and its main purpose is to make

the classifier achieve better performance by reducing

the redundant features and selecting the discrimina-

tive features without transformation. Commonly used

methods are filter methods, wrapper methods, embed-

ded methods and hybrid methods. In order to achieve

the goal of enhancing the efficacy of the learning algo-

rithm, a wrapper based method directly validates the

candidate feature subsets through training classifiers by

using the algorithms such as support vector machine

(SVM), K nearest neighbour (KNN) and naive bayes
(NB). The optimal feature subset is selected accord-
ing to the performance of the classifiers trained on the

candidate feature subsets. In addition, the performance

might be varied a lot due to the use of different clas-

sifiers. Unlike the wrapper method, the filter method

validates each feature subset according to predefined

performance measures, such as information gain and

chi-square, instead of using an algorithm for training

classifiers on the candidate feature subsets. In general,
wrapper methods have better performance than filter
methods but show higher computational complexity.

Embedded methods are literally embedded in the clas-

sifier training algorithm to select the features which can

reduce the cost of computation without loss of classifi-

cation performance such as Wang et al (2015); Bermejo

et al (2014). After feature selection, features are com-

bined through a parallel strategy or a serial strategy (Yang

et al, 2003). Many studies used the feature fusion strat-

egy to advance the performance. A fusion method in-

spired by Canonical correlation analysis (CCA) to find

the discriminant features was proposed by Sun et al

(2005), and experiments on a handwritten Arabic nu-

merals data set and a face data set showed that the

recognition rate using this method could be improved

considerably. By Guan et al (2010), good performance

on an x-ray image data set was achieved using a learning-

based feature selection. In Lin et al (2013), three shape

contour features including shape context(SC), inner dis-

tance shape context (IDSC) and contour points distri-
bution histogram (CPDH) were fused, then KNN was
used for classification on the MPEG-7 shape dataset.
The results show that the fusion features achieve the

excellent performance.

According to the study of Mohandes (Mohandes

et al, 2018), fusion can be conducted in the sensor level,

the feature level or the decision level, depending on the

stage at which the fusion method operates. Here, we fo-

cus on the problem of classifiers fusion methods in the

decision level according to the outputs of the classifiers,

the fusion rules and the ensemble creation methods.
Comparative studies relevant to the combination rules
can be referred in Kuncheva (2002). Ensemble learning

is a popular way to improve the overall performance

in pattern recognition. Bagging and Boosting are two

classic approaches of ensemble learning. Bagging aims

to generate multiple samples from the original data set

to enable more diverse classifiers trained on the sam-
ples, such as random forests (RF). Boosting makes the
classifier perform better through iterative training such

as Gradient boosted trees (GBT) and Adaboost. Bag-

ging and Boosting employ majority voting and weighted

voting, respectively, for classifiers fusion. Inspired by

granular computing, a probabilistic voting method was

proposed by Liu and Cocea (2017b), in which the exper-
imental results show that it is effective to improve the
overall performance. Recently, classifiers fusion meth-

ods have been used in many fields. A local and global

classifier fusion framework was proposed by Ding et al

(2017) to enhance the performance on digital chest x-

ray images analysis. A whole image is divided into sub-



4 Xinming Wang1 et al.

Fig. 1 Overview of the proposed approach: (a).Global and local features are extracted from each shape. (b).Five wrapper
based feature selection methods are used to select 5 best feature sets. (c).Each base classifier in each local ensemble is trained
on one of the 5 best feature sets and predictions of them are fused. Finally, results of each local ensemble are fused into results
of the global ensemble.

regions for features extraction to train local classifiers.
Global classifiers are trained on the global features ex-

tracted from the whole image. The final decision is ob-
tained using the linear fusion of local and global classi-
fiers. A classifier fusion system named Droid Fusion for
Android malware detection was proposed by Yerima

and Sezer (2018). In Wan et al (2018), the KNN and

NB classifiers are fused in the decision level for tourist

route recommendations. A previous study (Ding et al,

2018) has made a simple attempt with fusion of classi-
fiers.

3 Proposed Approach

The proposed approach of shape recognition can be di-

vided into three steps as shown in Fig. 1. In the first

step, the global features and the local features are ex-

tracted from the shape data set. Then, the distinct fea-

ture subsets are obtained by different wrapper-based

approaches of feature selection and serial combination.

Furthermore, in the local fusion stage, 5 classifiers are

trained on the selected feature subsets by using one

of pre-selected learning algorithms to create a primary

(local) ensemble. Finally, the local ensembles, which

are created using the learning algorithms for training

of base classifiers, are fused to achieve global fusion of

classifiers.

3.1 Feature extraction

Considering the hierarchical shape descriptors have bet-

ter ability of representation, we combine 17 simple shape

descriptors into a robust and accurate shape decriptor,

which contains local and global features, reflecting the

strong complementarity of hierarchical descriptors, that

is, the global features can distinguish the drastic differ-

ences between two shapes, while the differences in de-

tails can be further recognized through local features.
The first feature is circle variance f1 which repre-

sents the ratio of standard deviation σ to average value

µ of radial distance. Radial distance is a vector in which

each element ρi represents the distance from each con-

tour point pi to centroid g. The definitions are (1).

f1 =
σ

µ
; ρi = ‖pi − g‖

2
(1)

The second feature is circularity ratio (area) f2 which

is the ratio of the area of the object Ashape to its area of

tangential circle Acircle while circularity ratio (perime-

ter), the third feature f3 is the ratio of the area of the

shape Ashape to the power 2 of the perimeter of its
tangential circle P 2

circle. Both of the above features are

shown as follows (2).

f2 =
Ashape

Acircle

; f3 =
Ashape

P 2

circle

(2)

The other five ratio involved features are solidity

(f4), eccentricity (f5), convexity (f6), hole area ratio

(f7) and rectangularity (f8) which are defined in Equa-

tion (3). Given an object and its convex hull, convexity

represents the ratio of the perimeter of the convex hull

Phull to the perimeter of the object Pshape. Solidity re-

flects the ratio of the area of the object Ashape to the

area of the convex hull Ahull. Eccentricity is the ratio of

the length of major axis λ1 to the length of minor axis

λ2. In addition, λ1 (f9) and λ2 (f10) are also chosen as

features. Hole ratio is the ratio of the area of hole Ahole

to Ashape. Rectangularity represents the ratio of Ashape
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to the area of the bounding box Abox.

f4 =
Ashape

Ahull

; f5 =
λ1

λ2

;

f6 =
Phull

Pshape

; f7 =
Ahole

Ashape

;

f8 =
Ashape

Abox

; f9 = λ1; f10 = λ2;

(3)

Another feature f11 is centroid which is defined as

the average values of x-axis coordinates and y-axis coor-

dinates in Equation (4) where x and y jointly represent

the coordinate position of the object and n represents
the number of pixels of the object.

f11 = (
1

n

∑
n
i=1

xi,
1

n

∑
n
i=1

yi) (4)

Hu moments (f12) and Zernik moments (f13) which

have already been proven to be compact and effective
are also used here. More details can be found in Hu

(1962); Reed Teague (1980).
Smoothness (f14)(Ding et al, 2015), defined as Equa-

tion (5), represents the curve bending degree. We use

this feature to measure the smoothness of the contour.

f14 =

m∑

n=1

(kn − kmean) (5)

where kn is the curvature of each contour point and

kmean is the mean of the curvature of all points on the

shape contour.

Corner number (f15) of the shape contour is the
final global feature chosen in our study. It is extracted

by using the CSS algorithm (Mokhtarian and Bober,
2003).

When dealing with the issue of partial occlusion

and noise, local features would be more effective. Chain
codes (f16) (Malo and Freeman, 2009) and shape con-

texts (f17) (Belongie et al, 2002) were extracted to de-
scribe the local contour of each shape in details. For

each contour point, 8-orientation encoding method was
used in chain codes and 36 bins (6 for radial direc-
tion and also for circumferential direction) were set in

shape context to capture distribution of adjacent con-

tour points. Due to the fact that the length normal-

ization of the input data is necessary for many machine

learning methods, we normalize the chain codes features

into a vector of length 8.

f16 = {C1, C2, · · ·C8} (6)

where each element represents the frequency of each

direction. We also normalize the shape contexts features

into a vector of length 36, namely,

f17 = {S1, S2, · · ·Sn, n = 36} (7)

where each element represents the statistical values of

all contour points in each bin.

Finally, a feature vector Fi with a dimension of 66
which contains global and local shape features was con-

structed for each sample, shown in Table 1.

Fi = {f1, f2, ...f17} (8)

Table 1 Compositions of the feature vector with a dimension
of 66.

dimension 8 36 2 7 13

feature f16 f17 f11 f12

f1, f2, f3, f4, f5
f6, f7, f8, f9, f10

f13, f14, f15

3.2 Feature selection

Wrapper based methods of feature selection can achieve

good performance and are also convenient to imple-

ment. Instead of using only one wrapper-based approach

of feature selection, multiple wrapper-based approaches

of feature selection were adopted for the original feature

set. In other words, different learning algorithms are

used for classifiers training in order to achieve different

ways of feature subset selection, leading to diverse fea-

ture subsets being obtained. From this point of view,

more diverse models can be trained on different fea-

ture subsets, which leads to advances in the classifica-

tion performance in the classifiers fusion stage. After

selection, the dimensions of global and local features

depend on the wrapper used, for example, the dimen-

sions of global and local features decreased from 22 to
13 and from 44 to 30, respectively, after using PNN-
based feature selection. Furthermore, the dimensions of
feature subsets selected using different wrappers are dif-

ferent from each other. For instance, the dimensions of

features decreased to 43 by using PNN-based feature

selection whereas the dimensions decreased to 38 by

using RF-based feature selection. The combination of
global and local features is similar to the concept “par-
allel structure” as shown in Fig. 2, which can roughly
discriminate objects with distinct shapes using global

features and identify the specific object by using lo-

cal features. Since wrapper based feature selection does

not consider the internal relationships between global

and local features, it should be used separately on the

global and local feature sets to avoid the inexplicabil-

ity of the selected feature subset. Furthermore, for each

local feature, chain code and shape context also should

be selected respectively.
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Fig. 2 Parallel structure for feature selection: Chain code,
shape context and global features are selected individually
in the same wrapper based feature selection. The selected
features are then combined in series connection.

In particular, five base classifiers, which are trained
by using decision tree (DT), KNN, PNN, Fuzzy Rule

(FR) and RF, were adopted to select the optimal fea-

ture subset depending on their performance. The for-

ward feature selection strategy was employed here to

decide the start feature, which considers adding fea-

tures to an empty set to test the performance. After

feature selection, five feature subsets were obtained cor-

responding to the trained classifiers.

3.3 Classifiers fusion

After feature selection, five feature subsets are obtained

through different wrapper based approaches of feature

selection. Inspired by random feature subset selection in

random forests, performance are likely to be improved

by training multiple classifiers using distinct feature
subsets obtained in the feature selection stage. A hier-
archical structure is used in the classifiers fusion stage,

which involves local fusion and global fusion. There are

seven local fusion parts corresponding to seven learn-

ing algorithms which are DT, KNN, SVM, PNN, FR,

RF and GBT. For each local fusion part, five feature

subsets are used here to train five distinct classifiers

using the same learning algorithm, and the predictions

of these classifiers are fused by using the mean rule.

In this setting, the performance is expected to be im-

proved in comparison with each of the individual clas-

sifiers. Finally, global fusion is undertaken by fusing in

the mean rule the predictions obtained from the local

fusion parts.

3.4 Applications of granular computing concepts

The proposed framework of fusion of features and clas-

sifiers is essentially designed in the setting of granular

computing, which is an information processing paradigm.

In general, granular computing is aimed at structural

thinking at the philosophical level but also at structural

problem solving at the practical level (Yao, 2005b).

In theory, granular computing concepts mainly in-

volve granules and granularity (Pedrycz, 2011; Pedrycz

and Chen, 2011, 2015b,a). A granule is essentially a col-

lection of smaller particles that can form a larger unit.

Due to the different sizes of granules, it is highly neces-

sary to have different levels of granularity for structural
information processing.

In practice, the applications of granular computing

concepts are usually achieved through two operations,
namely, granulation and organization (Yao, 2005a). The
former operation aims to decompose a whole (a larger

granule in a higher level of granularity) into parts (smaller
granules in a lower level of granularity), whereas the lat-
ter operation aims to integrate parts into a whole (Yao,
2005a). The two operations have been popularly taken

to implement the top-down and bottom-up approaches,

respectively (Liu and Cocea, 2017a; Liu et al, 2018).

In our proposed framework, granulation is operated
through decomposing the information of original images

into two parts, namely, chain code and shape context,

where both parts involve local features. Organization

is operated through fusion of features selected from

three feature sets, namely, chain code, shape context

and global features, as shown in Fig. 2. In the above

context, each feature set Fi is viewed as a granule gi
in a higher level of granularity and each subset Fij of

selected features is viewed as a sub-granule of gi in a

lower level of granularity.

On the other hand, in the setting of classifiers fu-

sion, a primary (local) ensemble, which consists of 5

base classifiers trained on 5 different feature subsets

by using the same learning algorithm, is viewed as a

basic granule in the bottom level of granularity. The

secondary (global) ensemble, which consists of 5 local

ensembles created using 5 different learning algorithms,

is viewed as a larger granule (in a higher level of gran-

ularity) that is made up of 5 basic granules. Moreover,

the fusion of base classifiers for creation of a local en-

semble and the fusion of local ensembles for creation of

a global ensemble are both viewed as a kind of organi-

zation.
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Table 2 Accuracy of each classifier trained on different feature sets in local classifier fusion

Accuracy DT-based FR-based RF-based PNN-based KNN-based Local Classifier Fusion
DT

(Quinlan, 1993)
77% 75.9% 74.9% 74.7% 76.5% 84.9%

KNN
(Aha et al, 1991)

81.6% 80.9% 81.2% 81.9% 81.9% 81.4%

SVM
(Platt, 1999)

73.4% 73.6% 74% 72.6% 73.1% 74.1%

PNN
(Berthold and Diamond, 1998)

78.4% 77.8% 79.1% 77% 78.1% 79.1%

FR
(Berthold, 2003)

80.4% 79.2% 79.1% 78.1% 82.1% 83.6%

RF
(Cutler et al, 2012)

94.4% 95.1% 95.1% 93.9% 94.6% 95.3%

GBT
(Friedman, 2000)

86.2% 86.4% 86.6% 86.6% 86.3% 87.8%

4 Experimental Results

Our experiment is conducted by using the MPEG-7 CE

Shape-1 Part B data set which contains 1400 images, 70

shape categories and 20 images per category (Thakoor

et al, 2007). Several instances of the data set are shown

in Fig. 3. This experiment was built on the KNIME

Analysis Platform, which has abundant nodes for ap-
plying machine learning algorithms on Intel Core i7-
6700K.

Fig. 3 Examples in MPEG-7 CE Shape-1 Part B dataset

Here we give the settings of each algorithm in each

stage. In the feature selection stage, diverse feature

subsets were obtained through wrapper based feature

selection (Dash and Liu, 1997) approaches which are

driven by 5 learning algorithms, namely, KNN (Aha

et al, 1991), DT (Quinlan, 1993), PNN (Berthold and

Diamond, 1998), FR (Berthold, 2003) and RF (Cutler

et al, 2012). In the classifier fusion stage, two addi-

tional learning algorithms, GBT (Friedman, 2000) and

SVM (Platt, 1999), alongside the above five ones are

used. The setting of the learning algorithms in the fea-

ture selection stage is the same as the one in the fusion

stage.

The only parameter for the KNN algorithm is the

value of K which is set to 7 in this experiment. The

RBF kernel for SVM with sigma =13 and overlapping

penalty = 1 is used. For the DT learner, Gini index

is used for attribute selection and the Reduced Er-

ror Pruning (REF) method is used to simplify decision

trees to avoid overfitting. The Min number records per

node is set as 2, and the average split point in gen-

eral options is chosen. Root split and Binary nominal
splits options are unchecked. For the FR node, acti-
vation across all rules is computed according to the

Min/Max norm, and the volume border based shrink

function is chosen to reduce the rules to avoid conflicts.

As for the PNN learner, theta minus and theta plus are

set to the default values, which are 0.2 and 0.4, respec-

tively. As for the RF learner, information gain ratio is

chosen in tree options for split criterion, and the ensem-

ble size is set to 100, which means that a forest consists

of 100 trees. Another ensemble learning method used

in this experiment is the GBT learner. For this learner,

the tree depth is set as 10, the number of models as

20 and the learning rate as 0.1. When dealing with the

issue of an instance belonging to the none class, XG-

boost is used to handle the missing value. Data sam-

pling and attributes sampling and selection are the key
to the ensemble learner. Bootstrapping is used in ran-
dom forests, which means that the data sampling mode
should be set as random with replacement. The num-

ber of instances before and after sampling is the same.

For GBT, no data sampling method is used in this ex-

periment, i.e. Bootstrapping is not used here, which

means that each tree is trained on the same sample.
For attributes sampling and selection, each tree in the
RF learner and the GBT learner uses a different feature
subset, the size of each feature subset is the square root

of the total number of attributes. Other configurations
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include mid-point splits and binary splits for nominal

columns in tree options and static random seed are cho-

sen for both ensemble learners. The Mean rule is chosen

as the fusion rule and the weight of each classifier is set

as 1.

The accuracy obtained through the global fusion of

classifiers is 91.4%. No matter whether the RF predic-

tor is involved or not in the global fusion, the accuracy

is not changed. The results on the accuracy of the lo-

cal fusion of classifiers and each of the base classifiers

are shown in Table 2. Each row represents the accuracy

of each base classifier trained on each of the obtained

feature subsets and the accuracy of local fusion of clas-

sifiers. For instance, the first row indicates the accuracy

of each DT classifier trained through five feature sub-

sets selected by using DT, FR, RF, PNN and KNN for

feature evaluation and the accuracy of fusion of them.
By using distinct feature subsets to train classifiers, the
adoption of local fusion generally leads to an improve-
ment of the performance in comparison with the per-

formance of each individual base classifier, except for

the case that KNN is used for training base classifiers

on the feature subsets. When DT is used for training

base classifiers, the improvement of the performance is
much more obvious (by 10.2%), in comparison with us-
ing the other algorithms for training base classifiers. For

all of the 7 selected learning algorithms, RF shows the

best performance, which also indicates the relevance of

adopting ensemble learning. Even though local fusion

leads to an effective improvement of the classification

performance, it is still worse than the one obtained us-
ing the RF learner only. The above phenomenon is likely
due to the case that some instances are only correctly

classified by RF but the summed confidence of the other

classifiers is higher than the one of RF, leading to in-

correct classifications of these instances through fusion

of the classifiers. In the above case, the total number

of incorrectly classified instances would be increased, if
some instances that are incorrectly classified by RF can
not be correctly classified after the fusion of the clas-

sifiers, leading to the drop in the overall classification

accuracy, in comparison with using RF.

In order to show in-depth analysis of why and how
classifiers fusion can lead to advances in the perfor-

mance, we provide some analysis of the diversity among

classifiers in an ensemble. In particular, for local fusion

of classifiers, Pearson correlation coefficient for each

pair of base classifiers is shown in Tables 3-5,7-10. Each

base classifier is trained on the feature subset selected

by using the learning algorithm specified in a bracket.

Table 3 shows that the diversity among the DT
classifiers is generally higher (correlation coefficient be-

tween 0.722 and 0.778). In this case, the local fusion of

Table 3 Pearson correlation coefficient of each DT classifier
trained through 5 selected feature sets

Correlation
DT
(DT)

DT
(FR)

DT
(RF)

DT
(PNN)

DT
(KNN)

DT(DT) 1 0.756 0.751 0.751 0.754
DT(FR) 0.756 1 0.778 0.741 0.756
DT(RF) 0.751 0.778 1 0.722 0.738
DT(PNN) 0.751 0.741 0.722 1 0.76
DT(KNN) 0.754 0.756 0.738 0.760 1

the DT classifiers leads to a considerable improvement

of the classification performance (0.849), in comparison

with the best performing base classifier (0.77), as shown

in Table 2.

Table 4 Pearson correlation coefficient of each KNN classi-
fier trained through 5 selected feature sets

Correlation
KNN
(DT)

KNN
(FR)

KNN
(RF)

KNN
(PNN)

KNN
(KNN)

KNN(DT) 1 0.924 0.951 0.886 0.9
KNN(FR) 0.924 1 0.925 0.884 0.906
KNN(RF) 0.951 0.925 1 0.883 0.89
KNN(PNN) 0.886 0.884 0.883 1 0.905
KNN(KNN) 0.9 0.906 0.89 0.905 1

Table 4 shows that the diversity among the KNN

classifiers is generally lower (correlation coefficient be-
tween 0.883 and 0.925). In this case, the local fusion
of the KNN classifiers leads to a marginal drop in the

classification performance (0.814), in comparison with

the best performing base classifier (0.819).

Table 5 Pearson correlation coefficient of each SVM classi-
fier trained through 5 selected feature sets

Correlation
SVM
(DT)

SVM
(FR)

SVM
(RF)

SVM
(PNN)

SVM
(KNN)

SVM(DT) 1 0.829 0.835 0.767 0.786
SVM(FR) 0.829 1 0.832 0.773 0.800
SVM(RF) 0.835 0.832 1 0.770 0.796
SVM(PNN) 0.767 0.773 0.770 1 0.796
SVM(KNN) 0.786 0.800 0.796 0.796 1

Table 5 shows that the diversity among the SVM

classifiers is generally not high enough (correlation co-

efficient between 0.767 and 0.835). In this case, the lo-

cal fusion of the SVM classifiers leads to a marginal

improvement in the classification performance (0.741),

in comparison with the best performing base classifier
(0.74).

Table 7 shows that the diversity among the PNN

classifiers is generally not high enough (correlation co-

efficient between 0.820 and 0.920). In this case, the lo-

cal fusion of the PNN classifiers leads to the unchanged
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Table 6 Accuracy of each classifier without feature selection in local classifier fusion

Accuracy
All

Features
All

Features
All

Features
All

Features
All

Features
Local

Classifier Fusion
DT

(Quinlan, 1993)
74.4% 74.4% 74.6% 75.4% 75.6% 77.2%

KNN
(Aha et al, 1991)

81.3% 81.5% 81.4% 82.2% 81.6% 79.4%

SVM
(Platt, 1999)

74.7% 75.5% 75.1% 74.2% 73.9% 73.8%

PNN
(Berthold and Diamond, 1998)

78% 77.5% 77.3% 77.4% 77.6% 77.8%

FR
(Berthold, 2003)

78.4% 80.3% 79.1% 78.4% 80% 79.1%

RF
(Cutler et al, 2012)

94.2% 94.5% 94.6% 94.7% 94.5% 94.9%

GBT
(Friedman, 2000)

85.5% 86.6% 85.8% 85.6% 87.5% 85.1%

Table 7 Pearson correlation coefficient of each PNN classi-
fier trained through 5 selected feature sets

Correlation
PNN
(DT)

PNN
(FR)

PNN
(RF)

PNN
(PNN)

PNN
(KNN)

PNN(DT) 1 0.912 0.920 0.820 0.846
PNN(FR) 0.912 1 0.919 0.842 0.852
PNN(RF) 0.920 0.919 1 0.834 0.853
PNN(PNN) 0.820 0.842 0.834 1 0.85
PNN(KNN) 0.846 0.852 0.853 0.85 1

classification performance (0.791), in comparison with

the best performing base classifier (0.791).

Table 8 Pearson correlation coefficient of each FR classifier
trained through 5 selected feature sets

Correlation
FR
(DT)

FR
(FR)

FR
(RF)

FR
(PNN)

FR
(KNN)

FR(DT) 1 0.845 0.857 0.814 0.859
FR(FR) 0.845 1 0.867 0.804 0.846
FR(RF) 0.857 0.867 1 0.808 0.829
FR(PNN) 0.814 0.804 0.808 1 0.818
FR(KNN) 0.859 0.846 0.829 0.818 1

Table 8 shows that the diversity among the FR clas-

sifiers is generally not too low (correlation coefficient

between 0.804 and 0.867). In this case, the local fusion

of the FR classifiers leads to a slight improvement of the

classification performance (0.836), in comparison with

the best performing base classifier (0.821).

Table 9 shows that the diversity among the RF clas-
sifiers is generally not high (correlation coefficient be-

tween 0.953 and 0.967). In this case, the local fusion of

the RF classifiers only leads to a marginal improvement

in the classification performance (0.953), in comparison

with the best performing RF classifier (0.951).

Table 10 shows that the diversity among the GBT

classifiers is generally not too low (correlation coeffi-

Table 9 Pearson correlation coefficient of each RF classifier
trained through 5 selected feature sets

Correlation
RF
(DT)

RF
(FR)

RF
(RF)

RF
(PNN)

RF
(KNN)

RF(DT) 1 0.967 0.963 0.958 0.963
RF(FR) 0.967 1 0.963 0.956 0.965
RF(RF) 0.963 0.963 1 0.953 0.957
RF(PNN) 0.958 0.956 0.953 1 0.955
RF(KNN) 0.963 0.965 0.957 0.955 1

Table 10 Pearson correlation coefficient of each GBT clas-
sifier trained through 5 selected feature sets

Correlation
GBT
(DT)

GBT
(FR)

GBT
(RF)

GBT
(PNN)

GBT
(KNN)

GBT(DT) 1 0.827 0.832 0.828 0.838
GBT(FR) 0.827 1 0.832 0.836 0.830
GBT(RF) 0.832 0.832 1 0.833 0.842
GBT(PNN) 0.828 0.836 0.833 1 0.825
GBT(KNN) 0.838 0.83 0.842 0.825 1

cient between 0.825 and 0.838). In this case, the local

fusion of the GBT classifiers leads to advances in the

classification performance (0.878), in comparison with

the best performing GBT classifier (0.866).

The accuracy obtained through the global fusion of

classifiers without feature selection is 89.6%, which de-

creased by 1.8%, comparing to the accuracy of global

fusion with feature selection. Table 6 shows the results

on the accuracy of the local fusion of classifiers and the

one of each base classifier trained on the same feature

set. While the accuracy of local fusion of DT and that

of RF increased slightly by 1.6% and 0.2%, respectively,

the accuracy of the other local fusion all decreased,

and KNN dropped most with 2.8%. Comparing with

Table 2, performances of classifiers in the same local

ensemble are more similar due to the case that classi-

fiers are trained on the same feature set. For instance,

the standard deviation of accuracies of 5 DT classifiers
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trained on distinct feature sets is 0.89, which is higher

than the standard deviation obtained on the same fea-

ture set, which is 0.52. Similarly, comparing to the worst

performing one of the DT classifier, the improvement

of accuracy through local fusion of the DT classifiers

trained on different feature sets (10.2%) is higher than

the one obtained through local fusion of the DT classi-

fiers trained on the same feature set (2.8%). Moreover,
through comparing the results shown in Tables 3 and 8,
we can see that the performance achieved through lo-

cal fusion of classifiers is improved, when using feature

selection in comparison with using the original feature

set, no matter which one of the seven learning algorithm

is used for training base classifier. In other words, the

performance of local fusion could be improved by train-

ing classifiers on distinct feature sets.

Table 11 Accuracy evaluation of our approach compared to
the state-of-the-art methods

Algorithm Accuracy
Class segment set

(Sun and Super, 2005)
90.9%

CS+SP
(Bai et al, 2009)

96.6%

BCF+SVM
(Wang et al, 2014)

97.16%

BSCP
(Shen et al, 2016)

98.41±0.44%

Our
Approach

84.1%

Comparisons of accuracy derived from various meth-

ods on MPEG-7 shape dataset are shown in Table 11. In

order to make a fair comparison with other algorithms,

half training validation, which uses 50% data for train-

ing and the remaining 50% for testing, is adopted in our
experiment. In terms of fusion, two methods were in-
troduced in Boln-Canedo and Alonso-Betanzos (2018).
The first one is by training base classifiers separately on

distinct feature sets selected by using different learning

algorithms, and then adopting fusion of these classifiers,

which is the main strategy of our proposed framework.

The second one is adopting the fusion of distinct feature

subsets after feature selection and then training classi-

fiers on the finally fused feature subset. Our approach

focuses on creation of the diversity in distinct feature

subsets obtained by using various wrapper based fea-

ture selection methods, From a granular computing per-

spective, the experimental results demonstrate that the

proposed framework achieved effectively an improve-

ment of the classification accuracy by creating diver-

sity among classifiers trained using a same learning al-

gorithm on distinct feature subsets. However, the sig-

nificance level of the performance improvement can be

affected by the quality of features extracted. Some al-

gorithms extract high-level features to describe shapes
such as bag of contour fragment (BCF) which are ca-
pable of better ability to describe shapes leading to

advanced performance. The relatively undesirable per-

formance in our approach is probably due to the fact

that features used in this experiment can not represent

shapes completely, which limit the space for improve-
ments of performance. Accuracy of our approach could
be further improved if deeper feature extraction and
fusion are investigated in future.

Overall, the results shown in Tables 2-10 indicate

that the adoption of wrapper based feature selection
driven by different learning algorithms leads to creation

of diverse feature subsets and provides the potential of
training diverse classifiers on the selected feature sub-
sets using the same learning algorithm. However, this
depends on the characteristics of learning algorithms,

e.g., some algorithms may be insensitive to the changes

to the feature sets leading to very similar classifiers

trained on different feature subsets.

Moreover, it is the key to create diversity among
classifiers so that the fusion of classifiers is more likely

to lead to an improvement of the classification perfor-

mance. For example, the diversity among the base clas-

sifiers trained using DT is the much higher than the

diversity among the base classifiers trained using any

other algorithm, which results in the most significant

improvement of the performance through fusion of the
DT classifiers.

5 Conclusion

In this paper, we have proposed a multi-level frame-

work of fusion of features and classifiers in the setting of

granular computing. In particular, we have designed to

extract features in different ways and adopt the wrap-

per based feature selection driven by different learning

algorithms for obtaining diverse subsets of fused fea-

tures, in order to enable creation of diversity among

classifiers trained on these feature subsets. We have also

adopted different learning algorithms for investigating

local fusion of classifiers trained using each of the se-

lected learning algorithms and exploring the potential

of diversity creation based on different learning strate-

gies of these algorithms.

The experimental results have shown that the lo-
cal fusion of classifiers trained using the same learning

algorithm generally leads to advances in the classifica-

tion performance. The diversity analysis also indicates

that fusion of classifiers is likely to lead to an improve-

ment of the classification performance as long as the

classifiers show high diversity to each other and none
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of the classifiers shows very different performance from

the others. The same claim also applies to the case of

global fusion of all the primary (local) ensembles.

In future, it is worth to investigate in more depth

the diversity creation through deep feature extraction

and selection in the setting of multi-granularity learn-

ing (Liu and Cocea, 2017a, 2018). Moreover, it is also

worth to investigate the effectiveness of adopting the
proposed framework of ensemble learning in the con-
text of multi-attribute decision making (Xu and Wang,
2016; Liu and You, 2017; Chatterjee and Kar, 2017;

Lee and Chen, 2008; Zulueta-Veliz and Garca-Cabrera,

2018), and incorporate fuzzy set theory related tech-

niques (Zadeh, 1965; Wang and Chen, 2008; Chen et al,

2012, 2009; Chen and Chen, 2011; Chen and Tanuwi-
jaya, 2011; Chen and Chen, 2001; Chen and Chang,
2011; Chen et al, 2013) into the proposed framework to

achieve fuzzy ensemble learning (Nakai et al, 2003).
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