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Abstract

Classification is a special type of machine learning tasks, which is essentially
achieved by training a classifier that can be used to classify new instances. In
order to train a high performance classifier, it is crucial to extract represen-
tative features from raw data, such as text and images. In reality, instances
could be highly diverse even if they belong to the same class, which indicates
different instances of the same class could represent very different character-
istics. For example, in a facial expression recognition task, some instances
may be better described by Histogram of Oriented Gradients features, while
others may be better presented by Local Binary Patterns features. From
this point of view, it is necessary to adopt ensemble learning to train differ-
ent classifiers on different feature sets and to fuse these classifiers towards
more accurate classification of each instance. On the other hand, different
algorithms are likely to show different suitability for training classifiers on dif-
ferent feature sets. It shows again the necessity to adopt ensemble learning
towards advances in the classification performance. Furthermore, a multi-
class classification task would become increasingly more complex when the
number of classes is increased, i.e. it would lead to the increased difficulty
in terms of discriminating different classes. In this paper, we propose an
ensemble learning framework that involves transforming a multi-class classi-
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fication task into a number of binary classification tasks and fusion of classi-
fiers trained on different feature sets by using different learning algorithms.
We report experimental studies on a UCI data set on Sonar and the CK+
data set on facial expression recognition. The results show that our proposed
ensemble learning approach leads to considerable advances in classification
performance, in comparison with popular learning approaches including de-
cision tree ensembles and deep neural networks. In practice, the proposed
approach can be used effectively to build an ensemble of ensembles acting as
a group of expert systems, which show the capability to achieve more sta-
ble performance of pattern recognition, in comparison with building a single
classifier that acts as a single expert system.

Keywords: Machine Learning, Ensemble Learning, Classification, Bagging,
Boosting, Random Forests

1. Introduction

Machine learning is a branch of artificial intelligence, which can be typ-
ically categorized into supervised learning and unsupervised learning. Su-
pervised learning is generally aimed at learning from labelled data, which
means that each training instance is labelled by domain experts. In contrast,
unsupervised learning is generally aimed at learning from unlabelled data,
which means that none of the training instances is provided with a label.
In practice, supervised learning is involved in classification and regression
tasks, and unsupervised learning is involved in association and clustering
tasks. The rest of this paper will focus on classification tasks.

In the context of machine learning, classification can be achieved by train-
ing classifiers that can be used to classify new instances. In order to train
high quality classifiers, it is crucial to ensure good features to be extracted
from original data. In popular application areas, such as text classification
and image processing, there are various feature extraction methods available
leading to different types of features. However, instances could be highly di-
verse even if they belong to the same class, i.e. some instances may present
one type of features but other instances present another type of features.
From this point of view, it is difficult to decide which method of feature
extraction should be adopted towards transforming a set of raw data into a
good feature set, since it is very likely that a classifier trained on one feature
set is capable of classifying some but not all instances. In order to increase
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the chance of correctly classifying each single instance, it is necessary to make
sure that each instance can be classified by using a classifier that is learned
from features relevant to the instance. On the basis of the above argumen-
tation, it is necessary to undertake the classification task in the context of
ensemble learning, i.e. several feature sets are extracted from the original
data and a classifier is trained on each feature set to be fused with other
classifiers trained on other feature sets.

On the other hand, it is usually the case in real applications that each
learning algorithm has its own advantages and disadvantages, so different al-
gorithms usually show different suitability for training classifiers on different
feature sets. In other words, it is fairly difficult to have a general conclusion
that a learning algorithm is capable of training good classifiers on all fea-
ture sets. Again, due to the diversity among instances, it is highly possible
that different classifiers trained on the same feature set by using different
algorithms show inconsistent classification confidence on different instances,
although one classifier would have the highest overall confidence on all the
instances. For example, there are two classifiers A and B and it is very nor-
mal that classifier A has a higher confidence on instance 1 but classifier B has
a higher confidence on instance 2. From this point of view, it is necessary to
adopt fusion of multiple classifiers trained on the same feature set by using
different learning algorithms.

Furthermore, in the case of multi-class classification, the increase of the
number of classes would usually lead to increasing difficulty in discriminating
between classes. For example, in a binary classification task, it is much
easier to see the tendency (degree of discrimination) that a classifier is biased
towards one class and against the other one through looking at the probability
distribution between the two classes, but the discrimination is obviously more
difficult when there are multiple classes. Also, there is usually uncertainty
in reality on how well a training set can represent a full population of a
problem domain. Therefore, the uncertainty is likely to result in incorrect
estimation of the probability distribution among classes. From this point
of view, it is necessary to transform a mutli-class classification task into n
binary classification tasks, where n is the number of classes.

In this paper, we propose an ensemble learning framework in the setting
of granular computing to address the three points mentioned above. In other
words, the proposed framework involves transforming the task of training a
multi-class classifier into several separate tasks of training n binary classi-
fiers respectively for the n given classes. For training each binary classifier,
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the framework is designed to involve primary fusion of classifiers trained on
different feature sets by using the same learning algorithm and secondary
fusion of the previously fused classifiers resulting from the primary fusion
stage. The contributions of this paper include the following:

• We propose a systematic framework of ensemble learning towards in-
depth training and fusion of classifiers, which is naturally inspired from
the system theory that can be used for creating a group of expert
systems with collaborations to each other.

• We demonstrate a novel application of granular computing concepts
in the context of ensemble learning, i.e. the proposed ensemble learn-
ing framework shows characteristics of granular computing based data
processing, which can benefit the development of intelligent system of
data processing.

• We compare the proposed ensemble learning framework with popu-
lar ensemble and deep learning approaches as well as each standard
learning algorithm that is used to train base classifiers as part of an
ensemble, in terms of classification performance, and the experimen-
tal results show the proposed ensemble learning framework effectively
leads to considerable advances in the classification performance.

The rest of this paper is organized as follows: Section 2 provides a re-
view of existing approaches of ensemble learning and an overview of granular
computing concepts and techniques. In Section 3, we illustrate the proposed
framework of ensemble learning and justify its significance in advancing the
classification performance. In Section 4, we report an experimental study
conducted by using a UCI data set and a facial expression data set and the
results are discussed in depth to show the effectiveness of the proposed ap-
proach of ensemble learning. In Section 5, the contributions of this paper
are summarized, and further directions are suggested towards advancing this
research area in the future.

2. Related Work

In this section, we provide a review of ensemble learning approaches and
identify the limitations of these approaches. Also, we provide an overview of
granular computing concepts and techniques.
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2.1. Review of Ensemble Learning Approaches
Ensemble learning is aimed at training an ensemble of classifiers that can

be combined for advancing the overall classification performance, in compar-
ison with use of a single classifier. In particular, an ensemble learning task
involves ensembles creation and classifiers fusion.

In order to create an ensemble of higher performance, it is necessary to
ensure the two points (Zhou, 2012): a) each single classifier in the ensemble
must not be bad; b) the classifiers in the ensemble need to be highly diverse,
i.e. different classifiers should result in different sets of incorrectly classified
instances and the ideal outcome is that for each instance at least one classifier
gives correct classification. Ensembles creation can be achieved by training
base classifiers in parallel or sequential training of these classifiers. Two
popular approaches of ensembles creation are referred to as Bagging and
Boosting, respectively.

Bagging, which was developed in Breiman (1996), follows the parallel
ensemble learning approach. In particular, the Bagging approach involves
random sampling of training data with replacement, which indicates that
some instances may be selected more than once but other instances may
never be selected. On average, each sample is expected to contain 63.2% of
the training instances (Tan et al., 2005; Liu and Gegov, 2015). The random
sampling would result in n training samples and each base classifier is trained
on one of the n samples to become a member of the ensemble. In the testing
stage, each of the base classifiers in the ensemble makes an individual classi-
fication first for each instance and then the outputs of these base classifiers
are fused to make the final classification for the instance through majority
voting. Due to the case that different samples cover different parts of the
training set, it is likely that the base classifiers trained on these samples are
diverse leading to advances in the classification. The whole procedure of the
Bagging approach is illustrated in Fig. 1.

A popular example of the Bagging approach is referred to as Random
Forests (RF), which is aimed at creation of decision tree (DT) ensembles (Breiman,
2001). In practice, it has been proven experimentally that the RF method
can effectively lead to advances in classification performance, in comparison
with the standard DT learning method (Kononenko and Kukar, 2007; Tan
et al., 2005). The advances are mainly due to the adoption of random data
sampling and the random subspace method (Ho, 1998), leading to the in-
crease of the diversity among the trained DT classifiers (Zhou, 2012; Melville
and Mooney, 2005).
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Figure 1: The Procedure of Bagging (Liu et al., 2016)

Boosting, which was developed in Freund and Schapire (1996), follows
the sequential ensemble learning approach. In particular, the Boosting ap-
proach involves n iterations of training, i.e. a base classifier is trained at
each iteration. The training of each base classifier ht at iteration t depends
on the experience gained from the its former classifier trained at iteration
t− 1 (Li and Wong, 2004). In other words, the latter classifier is trained by
focusing on learning from the instances incorrectly classified by its former
classifier. In this context, each base classifier is assigned a weight depending
on its accuracy estimated by using validation data. The stopping criteria are
satisfied while the error rate is equal to 0 or greater than 0.5 (Li and Wong,
2004). In the testing stage, each of the n base classifiers makes an indepen-
dent classification in a similar way to Bagging, but the final classification is
made by fusing the outputs of the base classifiers through weighted voting
instead of majority voting. Due to the case that different base classifiers
are trained by focusing the corresponding learning tasks on different parts of
the training set, it is likely that the base classifiers trained at different iter-
ations are diverse, leading to advances in the classification performance. A
popular example of Boosting is referred to as Adaboost, which is illustrated
below (Freund and Schapire, 1996):

Given: (x1, y1), ...., (xm, ym) where xi ∈ X, yi ∈ Y ={−1, +1}
Initialize D1(i) = 1/m.
For t = 1, ..., T :
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• Train weak learner using distribution Dt.

• Get weak hypothesis ht : X →{-1, +1} with error εt = Pri[ht(xi) 6= yi].

• Choose αt = 1
2

ln(1−εt
εt

).

• Update:

Dt+1(i) =
Dt(i)

Zt
×
{
e−αt , if ht(xi) = yi
eαt , if ht(xi) 6= yi

}

=
Dt(i)exp(−αtyiht(xi))

Zt

where Zt is a normalization factor (chosen so that Dt+1 will be a dis-
tribution).

Output the final hypothesis: H(x) = sign(
∑T αtht(x))

In the above illustration, xi indicates an input vector and yi indicates
the class label assigned to xi, where i is the index of an instance. Also, X
and Y represent the domain and range of the given data set respectively. In
addition, the distribution Dt reflects how each instance is weighted at each
particular iteration of the procedure for the Adaboost method. The symbol
t represents the number of the current iteration and αt represents the weight
of the classifier learned at the iteration t.

Another example of Boosting is referred to as Gradient Boosted Trees
(GBT), which has been popularly used for creation of DT ensembles for
advancing the performance of decision tree learning (Ogutu et al., 2011).

In terms of classifiers fusion in the testing stage, there are several rules
of fusion as studied in Kittler et al. (1998); Kuncheva (2002); Kittler and
Alkoot (2003); Tax et al. (2000, 1997), which can impact the performance of
classification. As proposed in Xu et al. (1992), the outputs of base classifiers
can be measured in three levels:
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• Abstract: the class label of each classifier is used as an output

• Rank: a ranking list of class labels is provided as the output of a
classifier

• Measurement: the posterior probability of each class is provided as an
output of a classifier

The rank level outputs are generally used for multi-class classification
tasks. The outputs in the abstract or measurement level are commonly used
for classifiers combination in both binary and multi-class classification tasks.
In the abstract level, the rule of combination is referred to as vote, which
simply counts the votes for each class and outputs the class that obtains the
most votes. In the measurement level, some common rules of combination
include sum, mean, max, min, median and product.

Given a n-class classification problem: y ∈ {c1, c2, ..., cn}, and m classi-
fiers {h1, h2, ..., hm} are trained in a feature space D : {x1, x2, ...., xk}, the
combination rules are defined in Eqs. (1)-(6).

PEnsemble(ci|x1, x2, ....xk) =
m∑
j=1

Phj(ci|x1, x2, ....xk) (1)

PEnsemble(ci|x1, x2, ....xk) =
1

m

m∑
j=1

Phj(ci|x1, x2, ....xk) (2)

PEnsemble(ci|x1, x2, ....xk) =
m

max
j=1

Phj(ci|x1, x2, ....xk) (3)

PEnsemble(ci|x1, x2, ....xk) =
m

min
j=1

Phj(ci|x1, x2, ....xk) (4)

PEnsemble(ci|x1, x2, ....xk) = medmj=1Phj(ci|x1, x2, ....xk) (5)

PEnsemble(ci|x1, x2, ....xk) = Πm
j=1Phj(ci|x1, x2, ....xk) (6)

All of the above rules can be generally referred to as algebraic fusion.
In this context, the final classification through algebraic fusion is made by
selecting the class that obtains the maximum posterior probability as defined
in Eq. (7).
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assign ct → {x1, x2, ...., xk} , if

PEnsemble(ct|x1, x2, ....xk) =
n

max
i=1

PEnsemble(ci|x1, x2, ....xk)
(7)

In practice, the above rules of fusion, such as vote, mean, max and me-
dian, can be either fixed or trained. For example, majority vote is simply
a fixed rule of fusion, whereas weighted vote is considered as a trained rule,
since the weight for each base classifier needs to be estimated typically on
validation data. Similarly, the algebraic rules can also be used by assigning a
weight to each classifier. In addition, there are some other trained rules such
as behaviour knowledge space (Huang and Suen, 1995), Dempster-Shafer (Xu
et al., 1992), decision templates (Kuncheva et al., 2001).

From a theoretical perspective, trained rules are preferred to fixed rules
leading to potentially better performance, since the classification perfor-
mance achieved through using fixed rules are considered to be sub-optimal
without measure of classifier weight, as discussed in Duin (2002). However,
trained rules heavily need large and nicely cleaned data (Jr., 2011). In other
words, trained rules are likely to result in overfitting if the data is small or
not nicely cleaned.

In the context of fixed rules of fusion, some comparison studies have been
done in Kittler et al. (1998); Kittler and Alkoot (2003); Kuncheva (2004);
Tax et al. (2000, 1997). In general, these rules are considered to have overall
good performance and high popularity in real applications (Kuncheva et al.,
2001), and the majority vote and sum/mean rules are used the most fre-
quently (Kittler and Alkoot, 2003). Also, the sum/mean rule is viewed as
the most favourite one (Kittler et al., 1998; Kuncheva et al., 2001). These
rules have been popularly used in pattern recognition (Mangai et al., 2010;
Kamble and Kokate, 2017), e.g. handwriting digits recognition (Shukla and
Pandey, 2014), characters recognition (Chackoa and P.M.Dhanya, 2015) and
affect recognition (Gunes and Piccardi, 2005).

Overall, the above review of related works on ensemble learning (along-
side the summary of methods analysis shown in Table 1) indicates that the
existing ensemble learning approaches are generally designed to employ a sin-
gle learning algorithm to train multiple classifiers on different data samples
or feature subsets or to employ different learning algorithms to train multiple
classifiers on the same feature set extracted from a single data sample, while
only a single rule of fusion is adopted for making a final classification. In
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Table 1: Theoretical analysis of different methods
Method Pros Cons

Bagging

variance reduction unsuitable for dealing
creation of diversity through with imbalanced data

different training samples lack of diversity creation
through different algorithms

Boosting

bias reduction unsuitable for
creation of diversity through dealing with small data

focusing on incorrectly classified lack of diversity creation
instances at later stages of training through different algorithms

Random subspace

reduction of no clear guideline on how
curse of dimensionality to define the dimensionality

creation of diversity through of the feature subspace
different feature subsets lack of diversity creation

through different algorithms

Fixed rules of fusion

low computational complexity not suitable for combining
suitable for combining independent highly correlated classifiers

or lowly correlated classifiers with different performance
with similar performance no consideration of the confidence

on small data of each single classifier

Trained rules of fusion
more suitable than fixed rules high computational complexity

for combining highly correlated unsuitable for dealing
classifiers with different performance with small data

this way, the creation of diversity among classifiers can be limited, due to
the case that the same algorithm may have different suitability for learning
from different data samples or feature sets and that the same data sample or
feature set may also show different suitability for different algorithms to learn
effectively. In addition, the effectiveness of each fusion rule highly depends on
the size of data and the actual degree of diversity among different classifiers.
Therefore, it is necessary to design a more systematic framework of ensemble
learning that produces an ensemble of ensembles and to incorporate different
fusion rules into the framework, through employing the concepts of granular
computing that will be introduced shortly in Section 2.2.

2.2. Overview of Granular Computing

Granular computing is a paradigm of information processing (Pedrycz and
Chen, 2011, 2015a,b), which is aimed at structured thinking at the philosoph-
ical level and structured problem solving at the practical level (Yao, 2005b).
Two main operations of granular computing are referred to as granulation
and organization. The former operation is aimed to decompose a whole into
parts, i.e. a top-down approach of information processing, whereas the latter
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operation is aimed to integrate parts into a whole, i.e. a bottom-up approach
of information processing (Liu et al., 2018; Yao, 2005a).

In granulation and organization, the main aim is to deal with information
granules. Each granule is defined as a collection of smaller particles that can
form a larger particle (Liu and Cocea, 2017b). In other words, different
granules usually have different sizes, e.g. a set can be viewed as a granule,
which can be either a smaller one or a larger one. Also, a smaller set can be
an element (subset) of a larger set, which indicates the need to involve the
concept of granularity, i.e. a smaller granule needs to be located at a lower
level of granularity, whereas a larger granule should be located at a higher
level of granularity (Liu and Cocea, 2018). In this context, granulation is
essentially an operation of decomposing a larger granule at a higher level of
granularity into several smaller granules at a lower level of granularity, and
organization is essentially an operation in the opposite way.

In practice, granular computing concepts can be used in various appli-
cation areas. For example, in natural language processing, a document is
generally a complex instance that can be simplified through text parsing, i.e.
the instance is defined as an information granule, which can be decomposed
into sub-granules located at different levels of granularity, e.g. chapters, sec-
tions, paragraphs, sentences and words (Liu and Cocea, 2017b, 2018). Also,
in image processing, a complex image usually needs segmentation into sev-
eral target regions (Liu et al., 2018), which is viewed as a special form of
information granulation. Other applications of granular computing concepts
are popularly involved in multi-attribute decision making (Xu and Wang,
2016; Liu and You, 2017; Chatterjee and Kar, 2017; Zulueta-Veliz and Garca-
Cabrera, 2018) and fuzzy sets (Chen and Chang, 2001; Chen, 1996), rough
sets (Zhang et al., 2016b; Ma and Zhu, 2015) and clustering (Horng et al.,
2005; Chen et al., 2009).

In the context of ensemble learning, an ensemble of classifiers can obvi-
ously be viewed as a granule. Also, as introduced in Liu and Cocea (2019), an
ensemble can be larger to contain not only single classifiers but also smaller
ensembles of classifiers, which shows that an ensemble can be created in a
granular architecture involving different levels of granularity. On the other
hand, the design of the Bagging approach shows the characteristics of granu-
lar computing. For example, this approach involves transforming a training
set into different versions of samples, which is essentially a form of granu-
lation (Liu and Cocea, 2017a). In the classification stage, all the classifiers
in an ensemble need to be fused to provide a final classification for each in-
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stance, which is essentially a form of organization (Liu and Cocea, 2017a).
A very similar argumentation has also been made in Hu and Shi (2009).

3. Proposed Ensemble Learning Framework

In this section, we illustrate our proposed framework of ensemble learning
and justify theoretically why the characteristics of the proposed framework
can lead to advances in classification performance.

3.1. Key Features

The proposed framework essentially involves three parts of design, namely,
data transformation, creation of primary ensembles and creation of secondary
ensembles. The whole framework is illustrated in Fig. 2.

Figure 2: Proposed Framework of Ensemble Learning

In terms of data transformation, the aim is to transform a multi-class
classification task into n binary classification tasks, where n is the number
of classes. In this context, the original data set D needs to be transformed
into n data sets D[n] with manipulation on class labels c[n]. For example,
if a data set contains three classes, namely, A, B and C, then the three
manipulated data sets would each contain one of the above three classes and
its negation, i.e. A and ¬A, B and ¬B, C and ¬C .
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In the feature extraction stage, the manipulated data sets D[n] would
be transformed into the exactly same feature sets by using the same feature
extraction method, since it is an unsupervised task. However, in order to
obtain more diverse features, it is necessary to adopt multiple feature ex-
traction methods, leading to different feature sets F [m] extracted from each
manipulated data set Dt for class ct. The extracted feature sets F [m] would
usually need to be processed further for the purpose of feature selection,
leading to removal of redundant features.

In the primary ensembles creation stage, a base classifier htij is trained
on each feature set Fj extracted from data set Dt, by using algorithm ai. For
each data set Dt, the classifiers hti[m] trained on different feature sets F [m]
by using the same algorithm ai make up a primary ensemble Eti through
algebraic fusion. The whole procedure of primary ensembles creation is illus-
trated in Fig. 3.

Figure 3: Procedure of Primary Ensembles Creation

Since each learning algorithm ai can lead to creation of a primary ensem-
ble Eti resulting from manipulated data set Dt, it is very straightforward to
create a secondary ensemble Et through algebraic fusion of all the primary
ensembles Et[k], which are created by using all the employed algorithms a[k].
In this context, n secondary ensembles E[n] are obtained respectively for the
n manipulated data sets D[n].
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As illustrated in Fig. 2, the final classification is made through fusion of
all the secondary ensembles E[n]. The aim of the final fusion is to choose one
of the predefined classes c[n] to be the final output. Since each secondary
ensemble consists of k primary ensembles of binary classifiers, it is necessary
to check whether each secondary ensemble outputs a positive class ct or a
negative class ¬ct. Ideally, it would be expected that only one secondary
ensemble outputs a positive class, such that this class would be the final
output. However, it is possible in reality that more than one ensemble output
positive classes or even none of the ensembles output a positive class. In
this case, it is necessary to check which ensemble has the highest confidence
(posterior probability) for classifying the instance to the positive class, i.e.
the positive class resulting from the most confident ensemble is chosen as the
final output.

3.2. Justification

The proposed framework of ensemble learning is essentially designed in
the setting of granular computing, which involves information granulation
through transforming a multi-class classification task into n binary classifi-
cation tasks. In other words, a multi-class classifier h, which is trained on the
original data set D, is viewed as a granule g at a higher level of granularity.
In this context, each binary classifier ht, which is trained on a manipulated
data set Dt, would be viewed as a sub-granule gt (of granule g) at a lower
level of granularity.

On the other hand, ensembles creation also involves the use of granular
computing concepts. In particular, each primary ensemble Eti is viewed
as a granule at a lower level of granularity. The primary ensembles Et[k]
created for a manipulated data set Dt make up a secondary ensemble Et,
which is viewed as a granule at a higher level of granularity. The creation
of a secondary ensemble through algebraic fusion of primary ensembles is
viewed as a special form of organization. Also, the final classification for an
instance through fusion of all the secondary ensembles E[n] is again viewed
as a special form of organization. On the basis of the above justification, the
ensemble learning framework is designed to achieve multi-level fusion (MLF),
i.e. fusion operations at different levels of granularity.

In terms of data transformation, the main aim is to achieve training of
classifiers in more depth. In particular, in a multi-class classification task,
feature selection is aimed at identifying features that are capable of discrim-
inating between classes. Also, classification is undertaken by training a clas-
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sifier that discriminates one class from the other classes. However, when the
number of classes is increased, it usually becomes increasingly more difficult
to discriminate between classes. From this point of view, data transformation
in the setting of granular computing leads to re-framing of the classification
problem through training a binary classifier in more depth on each manipu-
lated data set. In this context, feature selection can be done separately for
each class in depth, i.e. a subset of relevant features is obtained for each
class. Furthermore, a binary classifier is trained in depth on each feature
subset selected for a specific class, and the binary classifiers are likely to be
diverse, due to the case that they are trained on different feature subsets.

The above setting of data transformation can help reduce the risk of over-
fitting on one hand, through more effective feature selection for each class,
since learning from features irrelevant for a specific class could affect the clas-
sification performance for this class. On the other hand, the transformation
of a multi-class classification task into n binary classification tasks can result
in the class imbalance issue, leading to the risk to affect the performance of
feature selection and classification for a class of a very low frequency. How-
ever, this can be overcome in practice by selecting algorithms that are less
sensitive to class imbalance for classifiers training. Also, our setting in the
final stage (shown in Fig. 2) for transforming n binary classification tasks
back into a multi-class classification task can also help avoid incorrect clas-
sification occurring from a binary classifier ht due to the imbalance of the
manipulated data set Dt, by fusing the outputs of the n binary classifiers to
obtain a final classification for each instance.

As introduced in Section 3.1, classifiers training on the feature sets F [m]
extracted from each manipulated data set Dt can lead to k primary ensem-
bles Et[k] and one secondary ensemble Et. Since the base classifiers in each
primary ensemble are trained on different feature sets by using the same algo-
rithm, it is likely that the base classifiers are diverse. In other words, different
feature sets are extracted by using different feature extraction methods, so
the feature sets are likely to be diverse leading to more diverse classifiers
being trained. Also, the primary ensembles are created by using different
learning algorithms, which indicates that the primary ensembles are likely to
be diverse, due to different strategies involved in these learning algorithms.
However, the diversity creation in primary and secondary ensembles cannot
guarantee an improvement of the classification performance through fusion
of classifiers, especially when one classifier in an ensemble is dominant of
the others. This indicates that ensemble creation needs to avoid having a
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dominant classifier in the ensemble.

Figure 4: Tumer and Ghosh’s framework (Brown and Kuncheva, 2010; Tumer and Ghosh,
1996a,b) for analyzing estimation errors

The motivation of using algebraic rules of classifiers fusion is essentially to
reduce the estimation error of the posterior probability for each class towards
reducing the risk of overfitting. In particular, as shown in Fig. 4, in a binary
classification problem, the true probability distributions (Pd(a) and Pd(b))
for classes a and b have an overlap (the dark shaded area in Fig. 4), which
represents the Bayes error and is irreducible. However, due to the case that
a training set is unlikely to represent a full population of a problem domain,
the estimated posterior probabilities for the two classes (Pe(a) and Pe(b)) are
usually different from the true probabilities (Pd(a) and Pd(b)), which leads
to the added error (the light shaded area in Fig. 4).

In reality, it is fairly difficult to obtain a full population, so we adopt
algebraic fusion rules for the purpose of reducing the estimation error of
the posterior probability for each class, especially when the training sample
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is small. Also, we choose to adopt fixed rules instead of trained rules for
algebraic fusion, since the latter type of rules usually need a large amount of
data for avoiding the case of overfitting, as mentioned in Section 2.1.

4. Experimental Studies, Results and Discussion

In this section, we report two experimental studies using a UCI data
set on Sonar (Lichman, 2013) and an image data set on facial expression
recognition, respectively, in order to evaluate our proposed framework of
ensemble learning.

The first study is aimed at investigating the impacts of feature selection
and multi-level fusion of classifiers on the classification performance. The
‘Sonar’ data set contains 60 features and 208 instances, where 97 instances
belong to the ‘Rock’ class and 111 instances belong to ‘Mine’ class.

In the experimental setup, a feature subset, which contains 19 features,
is created by using the Correlation-based Feature Subset Selection (CFS)
method (Hall and Smith, 1997). In this context, each learning algorithm is
used to train two classifiers respectively on the original feature set and the
feature subset and the two classifiers make up a primary ensemble. In partic-
ular, we employ three popular learning algorithms, namely, Support Vector
Machine (SVM), Multi-layer Perceptron (MLP) and K Nearest Neighbour
(KNN), for training base classifiers. Therefore, there will be three primary
ensembles created and each ensemble consists of two base classifiers trained
by using one of the three learning algorithms. The base classifiers in each
primary ensemble are fused by using the mean rule. Furthermore, the three
primary ensembles are fused further by using the max rule, in order to make
up the secondary ensemble for final classification of each new instance.

In terms of parameters setting of learning algorithms, trials and errors
have been conducted for the parameter selections of the base classifiers.
Specifically, SVM classifiers are trained with the overlapping penalty of 1.0
by using the polynomial kernel, and the values of bias, power and gama are all
set to 1.0. The MLP architecture is set to have 1 hidden layer and 10 neurons
per layer and classifiers are trained through up to 100 iterations. In terms
of KNN, the value of K is set to 3 and the nearest neighbours are weighted
according to their distances to the test instance. All the experiments are
conducted using 10-fold cross validation.

The results are shown in Table 2. In this table, SVM1, MLP1 and KNN1
indicate that the three algorithms are used to train classifiers on the original
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Table 2: Results on ‘Sonar’ Data Set
Method Accuracy F-measure (Rock) F-measure (Mine)

SVM1 0.779 0.736 0.810
SVM2 0.774 0.759 0.787
SVM3 0.803 0.776 0.824
MLP1 0.808 0.792 0.821
MLP2 0.769 0.742 0.791
MLP3 0.808 0.785 0.826
KNN1 0.813 0.782 0.835
KNN2 0.856 0.840 0.868
KNN3 0.856 0.839 0.870
MLF 0.870 0.852 0.884

feature set, whereas SVM2, MLP2 and KNN2 indicate that the classifiers
are trained on the feature subset created through using the CFS method.
Furthermore, SVM3, MLP3 and KNN3 are created by fusing respectively the
three pairs of classifiers: SVM1+SVM2, MLP1+MLP2 and KNN1+KNN2.
Finally, MLF is created by fusing SVM3, MLP3 and KNN3.

The results shown in Table 2 indicate that feature selection through the
CFS method leads to decrease of the classification performance for SVM and
MLP but the performance is improved for KNN. In terms of primary ensem-
bles creation, the fusion of SVM1 and SVM2 leads to a small improvement
for both the accuracy and the F-measure for each class. However, for both
MLP and KNN, the classifiers fusion leads to the same accuracy, marginal
decrease of the F-measure for the ‘Rock’ class and a minor improvement for
the the F-measure for the ‘Mine’ class, in comparison with the better one
of the two base classifiers. In terms of the secondary ensemble creation, the
fusion of the three primary ensembles leads to the best performance for both
the accuracy and the F-measure for each class.

The above results show that the impact of feature selection on classifiers
training is varied for different learning algorithms, i.e. for some algorithms,
the overall performance of the classifiers trained on a feature subset may
be increased, but the performance may be decreased for other algorithms.
However, the increase or decrease of the overall performance can not simply
indicate the increase or decrease of the classifier confidence for classifying
each instance. From this point of view, it is likely to encourage the diversity
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between the classifiers trained respectively on the original feature set and the
feature subset, as supported by the results on diversity measures shown in
Table 3.

Table 3: Diversity Measures for Classifiers in Primary Ensembles

Classifiers Pair Q-statistics

SVM1+SVM2 0.918
MLP1+MLP2 0.711
KNN1+KNN2 0.785

The pairwise measures of diversity are achieved by using the Q-statistics,
which is commonly used in practice (Kuncheva and Whitaker, 2003) and is
defined in Eq. (8), i.e. the smaller the value the higher the diversity.

Qij =
ad− bc
ad+ bc

(8)

where a and d represent the numbers of instances that both classifiers hi and
hj give the positive and negative prediction respectively; b represents the
number of instances that classifier hi gives the negative class but classifier
hj gives the positive class; and c represents the number of instances in the
opposite case.

The results shown in Table 3 indicates that MLP and KNN lead to two
pairs of classifiers of higher diversity, in comparison with SVM. However, the
fusion of SVM1 and SVM2 leads to a larger improvement of the classification
performance, which indicates that diversity is not a direct measure of the
performance improvement as argued in Brown and Kuncheva (2010), but
the encouragement of diversity between classifiers shows the effectiveness of
advancing the classification performance for at least one class.

In the secondary ensemble creation stage, the fusion of the three primary
ensembles leads to further encouragement as shown in Table 4.

Table 4: Diversity Measures for Primary Ensembles

Ensemble SVM3 MLP3 KNN3

SVM3 1 0.825 0.706
MLP3 0.825 1 0.73
KNN3 0.706 0.73 1
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The results shown in Table 4 indicate that the use of learning algorithms
with different strategies can encourage more effectively the diversity between
classifiers, leading to further advances in the classification performance.

The second study is aimed to investigate the impact of the transformation
of a multi-class classification task into n binary classification tasks alongside
multi-level fusion of binary classifiers. There are 593 sequences of frontal-
view posed facial expression images contributed by 123 subjects in the CK+
data set (Lucey et al., 2010). We select a total of 344 (instances) peak
facial expression images for the 7 (classes) expressions for the evaluation of
the proposed framework. The frequency distribution among the 7 classes is
45 (angry): 59 (disgust): 25 (fear): 69 (happy): 35(neutral): 28 (sad): 83
(surprise).

In terms of feature extraction, the set of images is transformed into two
sets of features, namely, Histogram of Oriented Gradients (HOG) and Local
Binary Patterns (LBP), where the former contains 575 features and the latter
contains 530 attributes. Each of the extracted feature sets is assigned 7
different pairs of class labels (angry/not angry, disgust/not disgust, fear/not
fear, happy/not happy, neutral/not neural, sad/not sad and surprise/not
surprise) in order to create 7 new data sets for binary classification. In this
context, each of the 7 classes (angry, disgust, fear, happy, neutral, sad and
surprise) is treated as a target class, and the other 7 classes (not angry,
not disgust, not fear, not happy, not neural, not sad and not surprise) are
all non-target classes. Therefore, each of the 7 new data sets is created for
identifying one of the 7 target classes.

Furthermore, each of the 14 data sets (7 with HOG features and 7 with
LBP features) is processed through feature selection by using the CFS method,
in order to remove redundant features and select a subset of features relevant
for the target class only. In particular, the number of features selected for
each data set is shown in Table 5.

In terms of training the base classifiers that make up primary ensembles,
SVM, MLP and KNN are used as the learning algorithms with the same
parameters setting as the one in Study 1 on the ‘Sonar’ data set. Again, all
the experiments are conducted using 10-fold cross validation.

In terms of primary ensembles creation, a base classifier is trained on each
of the 14 data sets, i.e. 14 base classifiers are trained in total, resulting from
7 HOG feature sets and 7 LBP feature sets, respectively. In this context,
each learning algorithm would lead to 7 primary ensembles for the 7 target
classes, respectively, and each ensemble consists of two classifiers trained,
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Table 5: Number of features selected for each target class

Class HOG LBP

angry 40 14
disgust 47 25

fear 25 13
happy 56 29
neural 28 26

sad 17 10
surprise 53 39

respectively, on HOG and LBP features. Each primary ensemble is created
through classifiers fusion in the mean rule. Furthermore, for each of the 7
target classes, a secondary ensemble is created by fusing in the median rule
the three primary ensembles that result from the learning algorithms (SVM,
MLP and KNN). Finally, all the secondary ensembles are fused to make a
final classification for each instance.

In order to evaluate the performance of the proposed ensemble learning
framework, we compare it with the standard learning methods (SVM, MLP
and KNN) as well as the ensemble learning methods (RF and GBT), since
they are all very popular for pattern recognition tasks. All the above methods
are used to train classifiers on the HOG and LBP features in the setting
of 7-class classification. Again, both the HOG and LBP feature sets are
processed through feature selection by using the CFS method, leading to 71
HOG features and 39 LBP features being selected, respectively. The results
are shown in Table 6.

Table 6: Results on Facial Emotions Recognition
Method Accuracy F1(angry) F1(disgust) F1(fear) F1(happy) F1(neutral) F1(sad) F1(surprise)

SVM1 0.814 0.644 0.891 0.731 0.957 0.545 0.552 0.952
SVM2 0.741 0.390 0.941 0.545 0.917 0.559 0.302 0.876
MLP1 0.762 0.583 0.885 0.582 0.942 0.516 0.441 0.897
MLP2 0.648 0.341 0.807 0.304 0.847 0.519 0.203 0.833
KNN1 0.747 0.454 0.870 0.5 0.932 0.507 0.348 0.947
KNN2 0.555 0.270 0.718 0.260 0.871 0.189 0.04 0.721
RF1 0.817 0.584 0.885 0.65 0.945 0.685 0.52 0.964
RF2 0.645 0.359 0.862 0.256 0.870 0.319 0.140 0.762

GBT1 0.765 0.522 0.840 0.553 0.889 0.638 0.528 0.927
GBT2 0.631 0.447 0.764 0.238 0.841 0.474 0.122 0.8
MLF 0.834 0.703 0.940 0.615 0.952 0.649 0.542 0.947
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In Table 6, SVM1, MLP1, KNN1, RF1 and GBT1 indicate that these
methods are used to train classifiers on the HOG feature set, whereas SVM2,
MLP2, KNN2, RF2 and GBT2 indicate that classifiers training are done
using the LBP feature set.

The results shown in Table 6 indicate that our proposed ensemble learning
framework leads to the best overall accuracy of classification and F-measure
for the ‘angry’ class. For all the other classes, the performance on F-measure
is slightly worse than the best performing one, except for the ‘fear’ class. The
low performance on the ‘fear’ class is likely due to the case that the lowest
frequency of this class, leading to low performance of all the base classifiers
apart from SVM1. As mentioned in Section 2.1, one of the two key points
for effective ensemble learning is to make sure that each single classifier must
not be too bad. In the above case, all the three learning algorithms (SVM,
MLP and KNN) are not capable of training high quality classifiers on the
LBP feature set and two of them can not train high quality classifiers on the
HOG feature set, which indicates that it is unlikely to achieve advances in the
performance through fusion of classifiers trained by using these algorithms.

The fearful facial expression images tend to indicate comparatively mild
physical cues and facial deformations which also pose great challenges to
other facial expression research (Zhang et al., 2016a, 2013). Nevertheless, for
the overall accuracy for the 7-class expression recognition, the proposed meta-
ensemble model achieves the highest performance and outperforms other en-
semble models by a significant margin.

On the other hand, the results show that the best performing approach
for each class is varied, e.g. the SVM classifier trained on the HOG feature
set performs the best for the ‘fear’, ‘happy’ and ‘sad’ classes, whereas the
RF ensemble trained on the HOG feature set is the best performing one
for the ‘neutral’ and ‘surprise’ classes. Furthermore, although the classifiers
trained on the LBP feature set perform worse than the ones trained on the
HOG feature set, the results on the performance for the ‘disgust’ class show
that the use of LBP features leads to a better SVM classifier being trained,
in comparison with the use of HOG features. The above argumentation
again indicates the necessity of adopting our proposed framework of ensemble
learning, since the results show the effectiveness of reducing the variance of
performance of the same classifier for different classes.

Furthermore, since convolutional neural networks (CNN) have been pop-
ularly used as the state of the art approaches in image recognition, we also
compare our proposed ensemble learning approach with six pre-trained CNN
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models, namely, GoogLeNet, Inceptionv3, ResNet101, AlexNet, VGG16 and
VGG19, while the pre-trained CNN models are used in the setting of transfer
learning. In particular, following the popular way of experimental evaluation
as adopted in related works on image recognition through deep learning (Fer-
nandes et al., 2018; Fielding and Zhang, 2018; Sun et al., 2018; Tan et al.,
2019), the experiments are conducted using holdout validation over 10 runs
by randomly selecting 90% of the instances for training and the rest for test-
ing in each run. These deep networks are pre-trained using a million images
and are able to classify images into 1000 object categories. We conduct the
transfer learning by re-training the last learnable layer and the final classifi-
cation layer in these deep networks using the CK+ dataset.

The setting of our proposed ensemble learning approach (alongside each
standard learning algorithm used for training base classifiers) is the same as
the one taken in the above 10-fold cross validation for obtaining the results
shown in 6. The transfer learning based on each of the pre-trained CNN
models is set as follows, i.e. MiniBatchSize (Size of the mini-batch)=10, the
maximum number of Epochs=6, and learning rate=3e-4 with the stochas-
tic gradient descent with momentum (SGDM) optimizer as the solver for
training network.

Table 7: Classification Results through Holdout Validation

Method Accuracy

GoogLeNet 0.788
Inceptionv3 0.636
ResNet101 0.758
AlexNet 0.789
VGG19 0.849
VGG16 0.849
MLF 0.879

The results obtained using holdout validation are shown in Table 7, which
indicate that our proposed ensemble learning approach outperforms all the
pre-trained CNN models adopted in the setting of transfer learning. The re-
sults indicate that our proposed approach shows better suitability for dealing
with small data in comparison with deep learning approaches.

Overall, the results shown in Tables 2 and 6 indicate that the ways we
designed the proposed ensemble learning framework can encourage more ef-
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fectively the creation of diversity among different classifiers leading to better
performance of classification, in comparison with popular ensemble learning
approaches. Also, the proposed approach can achieve more stable perfor-
mance for each single class, while the performance of each standard learning
approach is likely to be good only for some but not all of the classes, through
looking at the results on F-measure for each class as shown in Table 6. More-
over, the results shown in Table 7 indicate that it is necessary to explore in
more depth the use of traditional learning approaches in the setting of en-
semble learning, while the size of data is fairly small, due to the case that
deep learning approaches highly need much larger data for achieving good
learning performance.

5. Conclusion

In this paper, we proposed a systematic framework of ensemble learning
in the setting of granular computing. In particular, this framework involves
transforming a multi-class classification task into a number of binary clas-
sification tasks (through information granulation), which are finally turned
back into a multi-class classification task to decide the final classification for
each instance (through information organization). In the ensembles creation,
the framework was designed to make the learning of binary classifiers benefit
from diverse feature sets and learning algorithms, i.e. the ensemble learning
task involves primary fusion of multiple classifiers trained for each class on
different feature sets by the same learning algorithm and secondary fusion of
the previously fused classifiers resulting from primary fusion.

We conducted experiments by using a UCI data set on ‘Sonar’ and the
CK+ data set on facial expression recognition. The experimental results show
that the proposed framework leads to considerable advances in the classifica-
tion performance, in comparison with popular ensemble learning approaches
(RF and GBT) as well as the standard learning algorithms (SVM, MLP
and KNN) that were used to train classifiers that make up an ensemble.
The experimental results obtained on the CK+ data set also show that our
proposed ensemble learning approach outperforms transferring learning ap-
proaches based on CNN models pre-trained on image data in other domains.

In future, we will investigate the use of fuzzy set theory (Zadeh, 1965)
for developing fuzzy ensemble learning approaches (Nakai et al., 2003), since
fuzzy approaches are generally capable of dealing with ambiguous cases, e.g.
the ‘sad’ and ‘fear’ emotions, in the setting of fuzzy expert systems for pat-
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tern recognition. Also, we will investigate in depth the use of various feature
selection techniques (Liu et al., 2018) for obtaining diverse feature sets to-
wards training diverse classifiers and advancing further the performance of
ensemble learning, i.e. designing multiple expert systems with high diversity.
Moreover, it is also worth to investigate how to achieve the above-mentioned
extraction of more diverse features in the setting of deep learning frame-
works. In addition, we will look to incorporate collaborative characteristics
into the proposed framework of ensemble creation, such that the design of
each of multiple expert systems can be enhanced through collaborations with
the designs of the other expert systems.
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