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Abstract

Solids exhibit transverse shrinkage when they are stretched, except auxetics that abnormally

demonstrate lateral expansion instead. Graphene possesses the unique normal-auxeticity

(NA) transition when it is stretched along the armchair direction but not along the zigzag di-

rection. Here we report on the anisotropic temperature-dependent NA transitions in strained

graphene using molecular dynamics simulations. The critical strain where the NA transition

occurs increases with respect to an increase in the tilt angle deviating from armchair direc-

tion upon uniaxial loading. The magic angle for the NA transition is 10.9◦, beyond which

the critical strain is close to fracture strain. In addition, the critical strain decreases with an

increasing temperature when the tilt angle is smaller than the NA magic angle. Our results

shed lights on the unprecedented nonlinear dimensional response of graphene to the large

mechanical loading at various temperatures.
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1. Introduction

Poisson’s ratio is a mechanical parameter describing the transverse strain of materials

in response to the axial deformation. Most solid materials shrink transversely when they

are stretched in longitudinal direction, resulting in a positive Poisson’s ratio (PPR) value.

However, the abnormal ones, known as auxetics, will exhibit transverse expansion.

Graphene [1, 2], a two-dimensional sheet consisting of a monolayer carbon atoms arranged

in a hexagonal lattice, is widely regarded as the wonder material in the 21st century. In recent

years, many researchers have reported the intrinsic negative Poisson’s ratio (NPR) in various

graphene derivative materials, including not only the specifically engineered structures such

as graphene ribbons [3], kirigami graphene [4], rippled graphene [5], wrinkled graphene [6, 7],

porous graphene [8] and graphene-based carbon foams [9], but also the chemically altered

materials such as oxidized graphene [10] and semi-fluorinated graphene [11]. Particularly,

even the pristine graphene sheet could exhibit an intrinsic normal-auxeticity (NA) transition

phenomenon from the normal behavior (PPR) to the auxetic behavior (NPR) under strain

[3, 12]. Once the NA transition occurs, the Poissons ratio changes sign from positive to

negative. This is a mechanical phase transition, belonging to second-order phase transition,

which is different from thermodynamic first-order phase transition. Such unique transition

exclusively occurs when the graphene reaches an engineering strain of around 6% in the

armchair direction in the tensile test, while is absent in the zigzag direction. A few efforts

have been devoted to explain the underlying mechanisms of such behavior in graphene. In a

molecular dynamics (MD) work [12], Jiang et al reason out that such NA transition results

from the competition between two deformation modes about the bond stretching and angle

bending interaction. A recent first-principles study [13] done by Qin et al argues that the

decentralized electron localization function driven by strain leads to the electron localization

function coupling between different types of bonds, resulting in an increase of the bond angle

and thus the emergence of the NPR in graphene.

Considering that the graphene, a honeycomb like structure, has a rotational symmetry in

the plane and there is only 30◦ apart between the armchair direction and the closest zigzag

direction, we hypothesize that the anisotropy of the NA transition might imply a possible

critical stretching direction between the armchair and the zigzag direction with respect to

this NA transition phenomenon. To explore this issue, we have carried out extensive studies

by taking advantage of our previous work [14], and shown that the NA transition disappears

at a magic angle θ (shown in Figure 1) of around 10.9◦ and this magic angle is weakly

dependent on the temperature.
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2. Simulation method

As well established, the method of MD simulations are widely used for various investi-

gations [15]. Here all of our MD simulations were conducted on the platform of LAMMPS

[16]. To describe the inter-atomic force among carbon atoms, we adopted the adaptive in-

termolecular reactive empirical bond order (AIREBO) potential [17], which has been widely

utilized to investigate the mechanical properties of the carbon systems. A well known is-

sue about the AIREBO potential is the artificial strengthening before failure [18, 19, 20],

characterized as a sharp upward angle just before the drop in a stress-stress curve. It turns

out that this artificial strengthening is caused by its cutoff distances (rmin
cc and rmax

cc ) in its

switching function defining the C−C interaction between rmin
cc and rmax

cc , which is in the

format of:

f(r) =


1, r < rmin

cc

1
2
[1 + cos( r−rmin

cc

rmax
cc −rmin

cc
)], rmin

cc 6 r 6 rmax
cc

0, r > rmax
cc

(1)

The original type of AIREBO potential has rmin
cc = 1.7 Å and rmax

cc = 2.0 Å. Those

cutoff values model the carbon covalent bond well at the vicinity of its equilibrium distance.

However, when the system is stretched to a certain amount beyond 0.1 of strain, the C-

C distances fall into the switching region, bringing in an artificial strengthening of C−C

bonds. To adopt the AIREBO potential for large deformation, researchers generally modify

the cutoff distances according to the specific systems studied [18, 19, 20]. We have examined

this rmin
cc parameter and adopted the value of 1.92Å, as reported in our previous work[14].

The stress-strain curves are extremely insensitive to the cutoff distances under the strain

below 0.1. The influence of the cutoff values becomes non-negligible in the regime of the

strain above 0.1. We adopt the same cutoff values rmin
cc = 1.92 Å and report our results

under the strain from 0 to 0.1 only.

The structure of monolayer graphene was built up in the way that the tilted two-

dimensional layer would lie in the x-y plane. The tilt angle θ, away from the armchair

direction as shown in Figure 1, defined the stretching direction in the tensile test. Due

to the six-fold symmetry, the tilt angle is continuously ranged from 0◦ to 30◦. However,

since we expect to apply the periodic boundary condition on both the x and y directions

to eliminate the edge effect, the tilt angle must be carefully chosen due to the restriction of

the atomistic structure. As a result, we selected eight monolayer graphene samples with θ
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Figure 1: (a) A schematic plot of tilted monolayer graphene layout in the x-y plane with tilt angle θ =
16.1◦. Periodic boundary conditions are applied in in-plane directions.(b)(c) The snapshot of the deformed
sample at the strain of 0.05 and 0.10 separately.

of 0.0◦, 4.7◦, 8.2◦, 10.9◦, 12.5◦, 13.9◦, 16.1◦and 19.1◦ respectively. Each sample has a similar

size of about 200Å×200Å and consists of about 16,000 carbon atoms. These configurations

are selected to ensure that the system size has trivial effects on the results [21]. Details

about the graphene samples are summarized in Table 1 of the supplementary materials.

For all the simulations, the time step was set at 0.00025 ps and the Newton’s equation of

motion were numerically integrated using the velocity-Verlet algorithm [22]. In each tensile

test, the graphene sample was initially relaxed for 20 ps at the specific temperature and zero

external pressure using the isothermal-isobaric ensemble dynamics to reach the equilibrium.

Subsequently, the sample was still kept relaxed in the y direction, but got subjected to a

uniaxial tensile test along the x direction with an engineering strain rate of 109 s−1. The

sizes of the sample in both the x and y directions were calculated and output every 1,000

steps by taking the mean values at 600 consecutive steps respectively. The temperature

and pressure were controlled by the Nose-Hoover thermostat and barostat [23, 24]. The

boundary conditions were periodic in both the x and y direction but fixed in the z direction.

The OVITO software [25] was used to realize visualization and generate snapshots.
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3. Results and discussion

We have examined the collateral strain and Poisson’s ratio as a function of the tensile

strain in eight graphene samples. The engineering strain in the y direction is defined as

εy = (Ly − Ly0)/Ly0, where Ly0 and Ly are the lengths of sample in the y direction before

and after the deformation. Similarly, the strain in the x direction is defined as εx = (Lx −
Lx0)/Lx0, where Lx0 and Lx are the lengths of sample in the x direction before and after

the deformation. The collateral strain evolutions at the temperature of 300K are shown

in Figure 2(a), where the data are obtained by fitting the εx − εy curves into 4th order

polynomial functions.
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Figure 2: Dependence of the NA transition on the stretching direction in the monolayer graphene at 300K.
(a) The engineering strain εy vs εx at θ ranging from 0.0◦ to 19.1◦. (b) Corresponding Poisson’s ratio ν in
the monolayer graphene at different θ.

Figure 2(b) illustrates the accompanying evolutions of Poisson’s ratio ν for the uniaxial
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tensile test in the x direction at the temperature of 300K. Here the Poisson’s ratio is defined

as [26] ν = −dεy/dεx. There are two ways to define the Poisson’s ratio, depending on the

amount of the deformations. Analog to the two definitions of strain, engineering strain and

true strain, we could denote the two definitions as engineering Poisson’s ratio (ν = −εy/εx)

and true Poisson’s ratio (ν = −dεy/dεx). The engineering Poisson’s ratio is good for small

deformation, and the true Poisson’s ratio is good for large deformation beyond linear elastic

strain region. The Poisson’s ratio we used here is the true Poisson’s ratio due to the large

deformation we applied in this study. To avoid confusing, the Poisson’s ratio are all true

Poisson’s ratio in this study except special notice.

The NA transition occurs when ν changes from positive (normal) to negative (auxetic).

The corresponding strain is named as the critical strain of the NA transition. When the tilt

angle θ is smaller than 10.9◦, graphene will take the transition from PPR to NPR before εx

reaches 0.1. For the tilt angle θ larger than 10.9◦, no NA transition phenomena are observed

in the range of εx from 0 to 0.1. In other words, 10.9◦ is the critical angle where the NA

transition phenomenon of graphene will occur at a strain εx no higher than 0.1 at the room

temperature. In addition, the critical strain increases with respect to an increase of tilt

angle θ (Figure 2(b)).

We also explored the effect of temperature on the NA transition behavior of the mono-

layer graphene at different θ. The tensile tests at different temperatures (600K, 900K, 1200K

and 1500K) were further conducted on the graphene samples. Figure 3 shows the depen-

dence of the NA transition behavior on the stretching direction for the monolayer graphene

at 1500K. Similar dependences at other temperatures are shown in the supplementary ma-

terials. Figure 3 illustrates that the NA transition occurs in the monolayer graphene when

θ is 10.9◦, but disappears when θ is 12.5◦ in the range of εx from 0 to 0.1, suggesting that

the magic angle where the NA transition phenomenon occurs is slightly higher than 10.9◦

but lower than 12.5◦ at 1500K. As it has been shown in the supplementary materials, at

other temperatures from 600K to 1200K, the magic angle also lies between 10.9◦ and 12.5◦,

suggesting its insensitivity to the temperature.

It is worth noting that though it has been theoretically predicted that the NPR at the zero

strain is isotropic with six-fold fold-rotation symmetric structures at zero temperature [27],

we observe that the Poisson’s ratio results with different θ do not completely converge at εx =

0 at the finite temperatures. MD studies [28, 29] show that the value of Young’s modulus

obtained by linearly fitting the stress-strain curve near the zero strain with the AIREBO

force-field slightly varies along the armchair and zigzag directions. A more detailed study

6
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Figure 3: Dependence of the NA transition on the stretching direction in the monolayer graphene at 1500K.
(a) The engineering strain εy vs εx at θ ranging from 0.0◦ to 19.1◦. (b) Corresponding Poisson’s ratio ν of
the monolayer graphene at different θ.

[21] even demonstrates that the Young’s modulus value of graphene, calculated with the

AIREBO force-field, monotonically decreases from along the armchair direction to along the

zigzag direction. Such a non-isotropic mechanics might attribute to the nonlinear elasticity

at finite temperatures.

The critical strain of the NA transition in the monolayer graphene strongly depends on

the tilt angle θ and temperature, as illustrated in Figure 4. As a general trend, the critical

strain decreases with the increasing temperature when θ is fixed, but increases with the

increasing θ when the temperature is fixed. In addition, when the temperature is fixed, the

critical strain changes more swiftly in response to an increase of θ at larger θ, suggesting

that it is more sensitive to larger θ. Moreover, the critical strain has a higher decreasing

rate at higher θ in response to the increasing temperature.
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Figure 4: Dependence of the critical strain of the NA transition on the tilt angle and temperature in the
monolayer graphene.

The auxetic materials have great potential for wide applications, such as protective

structures [30] (e.g. body armor and shock absorber), novel biomedical structures [31]

(e.g. artificial blood vessels, ligament anchors), and traditional mechanical components [32]

(e.g. aero engine blades and wing panels). However, most auxetic materials and structures

generally have a substantial porosity in their geometrical configuration, naturally demoting

their mechanical performance at the very beginning [33]. Generally, such sacrifices cannot be

compensated by the obtained auxetic behavior and therefore limits the practical application

of the auxetics. Fortunately, graphene is immune from such weakness since it has a tensile

modulus of 1 TPa [34], adding itself to the list of the strongest and stiffest materials ever

tested. Combined with its biocompatibility [31] and its insensitivity of the NA transition

to the surrounding temperature, graphene has considerable applications in the aspect of

auxeticity in a wide temperature span.

4. Conclusion

In summary, we have investigated the anisotropic and temperature-dependent auxetic

behaviors of the monolayer graphene using the molecular dynamics simulations. We have

explicitly examined eight configurations with the tilt angle ranging from 0◦ to 19.1◦ with

respect to the armchair direction. We have found the magic angle of 10.9◦, and beyond

which the NA mechanical transition disappears in the range of strain from 0 to 0.1. Further

molecular dynamics studies have revealed that this NA magic angle slightly increases (by
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less than 1.6◦) when the temperature increases from 300 K to 1500 K. This study might

be helpful in understanding nonlinear mechanics of graphene and exploring its potential

applications.
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