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Abstract 23 

Context: Polycystic ovary syndrome (PCOS) is associated with increased sympathetic nervous 24 

system (SNS) activation but the cerebral pathways involved are unclear. 25 

Objective: To compare cerebral (blood oxygen level-dependent [BOLD] fMRI), pressor 26 

(blood pressure [BP], heart rate [HR]) and muscle sympathetic nerve activity (MSNA) 27 

responses to isometric forearm contraction (IFC) in women with PCOS and matched controls. 28 

Design: Case-control study 29 

Setting: Referral center  30 

Participants: 20 subjects with PCOS (age 29.8  4.8yrs, BMI 26.1  4.9kg/ m²) and 20 31 

age/BMI-matched controls (age 29.7  5.0yrs, BMI 26.1  4.8kg/ m²) 32 

Main outcome measures: BP, HR, catecholamine and MSNA responses to 30% IFC. BOLD 33 

signal change modelled for blood pressure response to 30% IFC.  34 

Results: Whilst HR and BP increased to a similar extent in both groups following IFC, MSNA 35 

burst frequency increased by 68% in the PCOS group (n=7) compared to 11.9% in controls 36 

(n=7) (p=0.002). Brain activation indexed by the BOLD signal in response to IFC was 37 

significantly greater in the PCOS group (n=15) compared to controls (n=15) in the right 38 

orbitofrontal cortex (p<0.0001). Adjustment for insulin sensitivity, but not hyperandrogenism, 39 

abolished these between-group differences.  40 

Conclusions: Our study confirms enhanced sympathoexcitation in women with PCOS and 41 

demonstrates increased regional brain activation in response to IFC. The right orbitofrontal 42 

cortex BOLD signal change in women with PCOS is associated with insulin sensitivity. Further 43 

studies are warranted to clarify whether this may offer a novel target for cardiovascular risk 44 

reduction. 45 

 46 



3 

 

Précis 47 

In women with PCOS, enhanced sympathoexcitation is accompanied by cerebral activation in 48 

the right orbitofrontal cortex that is influenced by insulin sensitivity. 49 

 50 

 51 

 52 
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Introduction 70 

Polycystic ovary syndrome (PCOS) is a common metabolic disorder characterized by defects 71 

in insulin secretion and action. This leads to an increased risk of metabolic syndrome and 72 

disorders of glucose tolerance, including type 2 diabetes [1]. Women with PCOS also display 73 

a higher prevalence of cardiovascular risk markers, including dyslipidemia [2], hypertension 74 

[3] and endothelial dysfunction [4], although studies are yet to confirm if this leads to increased 75 

cardiovascular morbidity and mortality.  76 

 77 

Sympathetic nervous system (SNS) activation may also contribute to this enhanced 78 

cardiometabolic risk [5], since conditions associated with chronic sympathoexcitation, such as 79 

obesity, hyperinsulinemia and obstructive sleep apnoea (OSA), are common in women with 80 

PCOS. In support of this, heart rate variability is altered [6-8] and heart rate and blood pressure 81 

recovery after exercise is delayed [9-10] in women with PCOS compared to matched controls, 82 

consistent with enhanced sympathetic stimulation and increased peripheral arterial resistance. 83 

Direct measurement of muscle sympathetic nerve activity (MSNA) by microneurography has 84 

also confirmed enhanced sympathetic outflow in women with PCOS compared with age- and 85 

BMI-matched controls [11-12].  86 

 87 

The mechanisms by which this enhanced sympathetic activation occurs are not entirely clear, 88 

although both hyperinsulinemia [12] and hyperandrogenism [11] have been implicated. The 89 

origins of this activation are also uncertain, although the hypothalamus [13], brainstem [14] 90 

and higher brain centers [15] appear to be involved in regulating sympathetic tone in rodents. 91 

Contemporary imaging techniques, such as positron emission tomography [16-17] and blood 92 

oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) [18-20], 93 

facilitate neuroanatomical localization of these responses in humans, and have identified a 94 
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number of cortical and brainstem regions involved in this process. To our knowledge, similar 95 

studies have not been undertaken in metabolic disorders characterized by insulin resistance, 96 

including PCOS, in which compensatory hyperinsulinemia might be anticipated to amplify the 97 

cerebral responses to sympathoexcitation.  98 

 99 

We hypothesized that women with PCOS would have evidence of sympathoexcitation 100 

accompanied by functional differences in higher brain centres. We therefore set out to compare 101 

cerebral (BOLD fMRI), pressor (blood pressure and heart rate) and MSNA responses to an 102 

isometric forearm contraction model of sympathoexcitation in women with PCOS and matched 103 

controls. 104 

 105 

 106 

 107 

 108 
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Materials and Methods 109 

Participants 110 

Patients with PCOS (n=20) were recruited from the endocrine clinic at the University Hospital 111 

of Wales, the endocrine clinic at Morriston Hospital, Swansea, and Morlais Medical Practice, 112 

Merthyr Tydfil. Diagnosis was made according to the Rotterdam criteria [21]. Congenital 113 

adrenal hyperplasia, Cushing’s syndrome, androgen-secreting neoplasms, hyperprolactinemia 114 

and thyroid disease were excluded by biochemical testing. Patients were aged between 18 and 115 

45 years. Exclusion criteria were: pregnancy and breastfeeding, hyperlipidemia or use of lipid-116 

lowering agents, hypertension or use of anti-hypertensives, use of glucocorticoids or anti-117 

obesity drugs, diabetes or use of antidiabetic drugs within 3 months. Patients with any 118 

contraindication to MRI were also excluded. Of the 20 women, 12 had polycystic ovaries 119 

(PCO), hyperandrogenism and anovulation, 5 had hyperandrogenism and anovulation, 2 had 120 

PCO and hyperandrogenism, and 1 had PCO and anovulation. 121 

 122 

Healthy volunteers (n=20) were recruited as controls. For each individual patient, a control was 123 

identified matched for age (within 2 yrs) and BMI (within 2 kg/m²). Controls needed to have 124 

regular menstrual cycles (menses every 27–32 days). Their healthy state was determined by 125 

history, examination and hormonal evaluation (testosterone, androstenedione, thyroid function, 126 

prolactin). Control subjects with signs of hirsutism or with a personal history of diabetes or 127 

hypertension, or a family history of PCOS, or current pregnancy were excluded. Those with 128 

any contraindication to MRI were also excluded. Healthy volunteers were recruited by 129 

advertisement among staff and students at the University Hospital of Wales, Cardiff University 130 

and in the local press. The study was approved by Cardiff University (study sponsors), Cardiff 131 



 

7 

 

and Vale University Health Board and the South East Wales Research Ethics Committee 132 

(reference 12/WA/0239). All subjects gave written, informed consent.  133 

 134 

Anthropometric and biochemical measurements 135 

Height, weight, waist and hip circumference were measured according to our previously 136 

published protocol [22]. Blood samples were collected after an overnight fast. Serum total 137 

cholesterol and triglycerides were assayed using an Aeroset analyzer (Abbott Diagnostics). 138 

Insulin was measured using an immunometric assay specific for human insulin (Invitron), and 139 

glucose was measured using the Aeroset chemistry system (Abbott Diagnostics). Total 140 

testosterone was measured by liquid chromatography-tandem mass spectrometry (QuattroTM 141 

Premier XE triple quadrupole tandem mass spectrometer; Waters Ltd). Androstenedione was 142 

measured by tandem mass spectrometry using an in-house method. Thyroid function tests were 143 

assayed using the Abbott Architect platform (Abbott Laboratories). HbA1c was determined 144 

using a high-performance liquid chromatography (HPLC) assay (Tosoh HLC-723G8, Tosoh 145 

Corporation). The intra- and inter-assay coefficients of variation were all <9%.  146 

 147 

A standard 75-g oral glucose tolerance test was performed in all participants to determine post-148 

prandial insulin sensitivity. Glucose and insulin were measured at 0, 30, 60, 90, and 120 149 

minutes. The areas under the curve (AUCs) for insulin and glucose were calculated using the 150 

trapezoid method. The homeostatic model assessment (HOMA) method was also used to 151 

estimate fasting insulin resistance (HOMA-IR) according to the formula (fasting insulin 152 

(mU/L) x fasting glucose (mg/dL)/405) [23]. 153 

 154 
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Isometric forearm contraction (IFC) protocol 155 

Isometric forearm contraction (IFC) at 30% maximum voluntary contraction was used to 156 

generate a peripheral haemodynamic and SNS response. Maximum grip strength was 157 

determined by asking the volunteer to squeeze an electronic hand dynamometer (90kg capacity 158 

range) (Zhongshan Camry Electronic Co. Ltd, Guangdong, China) with their dominant hand to 159 

maximum effort on three separate attempts, with a 60 second period of rest between each 160 

squeeze, as previously recommended [24]. The mean maximum grip strength was determined 161 

and 30% IFC subsequently calculated. This was then applied in a protocol which followed a 162 

block design of 12 minutes in total, comprising 1 minute rest, 3 minutes squeeze, 2.5 minutes 163 

rest, 3 minutes squeeze and 2.5 minutes rest. The subjects were cued for the rest and squeeze 164 

periods, and targeted to sustain 30% IFC during the squeeze periods (figure 1). 165 

 166 

Sympathetic activity measurements 167 

Blood pressure and heart rate. Resting blood pressure (mmHg) and heart rate (beats/min) were 168 

measured at baseline using an Omron HEM-907 blood pressure monitoring device (Omron 169 

Healthcare UK Ltd) on the non-dominant arm and every 30 seconds throughout the 12 minute 170 

IFC protocol. Mean arterial blood pressure (MAP) was calculated. The mean of the values at 171 

rest were calculated as a pre-IFC blood pressure and heart rate, and the mean of values at the 172 

end of each 3 minute squeeze to give a post-IFC blood pressure and heart rate. 173 

 174 

Plasma catecholamines. Blood was drawn from the non-dominant arm of the subject in a 175 

supine position after a 10 minute rest period (pre-IFC catecholamines). Following 3 minutes 176 

of IFC at 30% maximum handgrip strength, further blood was drawn for post-IFC 177 
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catecholamines. Samples were centrifuged at 2000rpm at 4°C within 10 minutes of collection 178 

and aliquots stored at -80°C until analysis. Catecholamines were measured using an 179 

Epinephrine ELISA Kit (Abnova, Taoyuan County, Taiwan) and Norepinephrine ELISA Kit 180 

(Abnova, Taoyuan County, Taiwan). The intra- and inter-assay coefficients of variation were 181 

<15.4% and <16.1% respectively. 182 

 183 

Microneurography. A subset of patients (n=7, age 29.6 ± 6.4 yrs, BMI 27.3 ± 4.9 kg/m²) and 184 

controls (n=7, age 30.1 ± 6.2 yrs, BMI 27.1 ± 6.2 kg/m²) agreed to undergo microneurography. 185 

Studies were conducted on a separate day between 0830 and 1530 hours in a quiet physiological 186 

lab maintained at 20°C and performed by a single observer blind to subject status (YS). Direct 187 

recordings of multiunit efferent postganglionic muscle sympathetic nerve activity (MSNA) 188 

were obtained with a tungsten microelectrode with a tip diameter of a few micrometers inserted 189 

into a muscle fascicle of the peroneal nerve, posterior to the fibular head. A low-impedance 190 

reference electrode was inserted subcutaneously a few centimeters from the fibular head. When 191 

a muscle nerve fascicle was identified, small electrode adjustments were made until a site was 192 

found in which spontaneous, pulse-synchronous bursts of neural activity could be recorded. 193 

Details of the nerve recording technique and criteria for MSNA have been reported previously 194 

[25]. Bursts identified by inspection of the mean voltage neurogram were expressed as burst 195 

frequency (number of pulse synchronic sympathetic bursts per minute) [bursts/min (BF)] and 196 

burst incidence (number of pulse synchronic sympathetic bursts per 100 heart beats) 197 

[bursts/100 heartbeats (BI)]. Total MSNA activity was measured to take into account both the 198 
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frequency and size of a sympathetic burst (the product of burst per minute and mean burst 199 

amplitude), expressed in arbitrary units. The total MSNA during the last 60 seconds of a rest 200 

period was used as a baseline to establish the percentage change in MSNA during the last 60 201 

seconds of the 30% IFC. 202 

 203 

 204 

MRI data acquisition 205 

MRI was performed on a 3T GE HDx MRI system (General Electric). The head was held 206 

immobile in an eight-channel receive only head coil by foam pads. A continuous series of 232 207 

fMRI image volumes (echo-planar images using BOLD contrast, scan time = 12 mins, TR = 208 

3.1s, TE = 25ms) were collected for each run. In-plane voxel size was 1.5x1.5 mm2, matrix 209 

128x128x40 and Field-of-view (FOV) 192x192mm² in plane. The slice thickness was 2.2mm 210 

and slice gap 0.8mm. Each volume covered the entire brain and brainstem. Slices were tilted 211 

10°-15° from the axial to the coronal plane to reduce signal loss due to dephasing in the 212 

brainstem resulting from through-slice susceptibility-induced gradients [26]. Structural images 213 

were collected using a T1-weighted sequence in order to facilitate visualization.  214 

 215 

Blood oxygen level-dependent (BOLD) fMRI scan protocol 216 

The scan protocol aimed to reveal BOLD signal correlates with the IFC task, using a block 217 

design. Subjects were fitted with a nasal cannula to measure end tidal CO2. Respiration pattern 218 

was determined by a strain-gauge band around the chest. Heart rate was measured from a pulse 219 

oximeter on the left hand (MedRad, USA). Physiological data were collected with a computer-220 
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based data acquisition and analysis system (CED 1401, Cambridge, UK). An in-house MRI-221 

compatible handgrip device was positioned in the dominant hand and connected to a pressure 222 

transducer. The pressure signal was collected with a computer-based data acquisition and 223 

analysis system (CED 1401, Cambridge, UK) and displayed on a screen located inside the 224 

scanner. Subjects followed visual instructions presented on the screen as to the rest and squeeze 225 

periods, with a target bar showing when 30% squeeze had been achieved. PsychoPy version 226 

1.78 [27] was used to run the visual stimulus. Subjects performed the previously described 227 

block paradigm twice with time to rest between the runs.  228 

 229 

Image and statistical analyses 230 

Analysis of the scans was by FEAT (fMRI Expert Analysis Tool, version 6.00) software 231 

(available on-line at www.fmrib.ox.ac.uk/fsl). Each T1 scan was registered to the MNI152, an 232 

average T1 brain image constructed from 152 normal subjects at the Montreal Neurological 233 

Institute (MNI), Montreal, QC, Canada, using linear registration (FLIRT within the FMRIB 234 

Software Library (FSL)) [28-29]. The functional BOLD scans were then registered to each 235 

individual’s T1 structural image. fMRI images were un-warped, motion corrected and spatially 236 

smoothed. Physiological noise from cardiac and respiratory signals was retrospectively 237 

regressed out from the images. FSL contains the software FLIRT (FMRIB's Linear Image 238 

Registration Tool) that allowed the linear transformation of imaging data [28, 30].  A high-pass 239 

filter of 330 seconds was used. To generate contrast images, task-related BOLD activation was 240 

estimated with a design matrix specifying a general linear model (GLM) that included a 241 

waveform based on each person’s IFC recording obtained during the scan protocol from the 242 

hand grip device. The visual stimulus shown in the scan session was also included in this 243 

analysis. BOLD signal changes for blood pressure condition were modelled with a waveform 244 

derived from the blood pressure recordings made out of scanner during the 12-minute 245 
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paradigm. Z statistic images were thresholded using clusters determined by z > 2.3 and a cluster 246 

significance threshold of P = 0.05 [31]. Significant BOLD signal intensity changes were color 247 

coded and rendered onto an individual’s T1-weighted anatomic image set. The resulting 248 

statistical parametric maps were used in higher level analysis to determine differences between 249 

PCOS and control groups. As the paradigm was run twice, an intermediate level FEAT analysis 250 

was run for each subject by combining their two lower-level FEAT outputs, to produce an 251 

average for each subject. These were then used in the higher-level FEAT analysis that could 252 

be used in the group analyses to examine BOLD activation in the PCOS and control groups 253 

and the differences in activation between groups (z >2.3, p=0.05). 254 

 255 

For the pressor, MSNA and catecholamine responses, statistical analysis was performed using 256 

SPSS version 20.0 (IBM, New York). An independent-samples t-test was used to compare the 257 

difference between the PCOS and control group means. A p-value of <0.05 was considered 258 

statistically significant.   259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 
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 271 

Results 272 

Baseline characteristics  273 

Table 1 shows the clinical, anthropometric and metabolic characteristics of the two groups. The 274 

groups were closely matched for age, BMI, resting heart rate and blood pressure. Testosterone 275 

and androstenedione levels were non-significantly higher in PCOS subjects than controls. 276 

Similarly, the insulin response to oral glucose challenge (insulin AUC) and HOMA-IR values 277 

were higher in PCOS subjects but fell just short of statistical significance. Triglyceride levels 278 

in the PCOS group were higher than in controls.  279 

 280 

Sympathetic activity measurements 281 

Pressor response 282 

19 PCOS and 19 controls had heart rate (HR) and blood pressure (BP) measured in response 283 

to the IFC paradigm (table 2). As anticipated, IFC induced a significant rise in HR and BP in 284 

both groups. However, there were no between-group differences in the HR or BP increase from 285 

baseline in response to IFC. 286 

 287 

Catecholamines 288 

The plasma catecholamine response to IFC was assessed in 39 subjects (20 PCOS, 19 controls) 289 

(table 2). Mean resting catecholamine concentrations were not different between groups. 290 

Following IFC, norepinephrine levels did not change but epinephrine concentrations increased 291 

significantly in the PCOS group (p<0.001). However, differences between groups in 292 

epinephrine response to IFC were not apparent.  293 

 294 
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MSNA 295 

Resting data were obtained from 16 subjects (8 PCOS, 8 controls). Only 14 of these (7 PCOS, 296 

7 controls) were able to proceed with full MSNA recordings post-IFC due to technical 297 

difficulties, including inability to locate the peroneal nerve for recordings (n=1) and a 298 

participant who was unable to keep their leg in position (n=1).  299 

 300 

Resting burst frequency (BF), burst incidence (BI) and total MSNA was not different between 301 

groups (table 2). The increase in BF was significantly greater (68%) in the PCOS group 302 

compared to controls (11.9%; p=0.002). The increases in BI (PCOS: 55.4%, controls: 20.5%) 303 

and total MSNA (PCOS: 124.1%, controls: 86.4%) were not significantly different between 304 

groups. 305 

 306 

fMRI BOLD signal activation 307 

30 participants (15 PCOS, 15 controls) underwent fMRI scanning with out-of-scanner HR and 308 

BP changes recorded every 30 seconds in response to the IFC paradigm. There were no 309 

significant differences in the age, BMI, testosterone, HOMA-IR, resting HR or resting BP 310 

between groups. The change in BOLD signal intensity that fitted the modelled blood pressure 311 

response showed activation in the PCOS group in the right cerebral cortex, right pallidum, right 312 

thalamus and right parietal operculum cortex (p<0.0001) and control group in the intracalcarine 313 

cortex and lingual gyrus (p=0.003). BOLD signal activation was significantly greater in the 314 

PCOS group compared to controls in the right orbitofrontal cortex (p<0.0001), and less so in 315 

the left angular gyrus and lateral occipital cortex (p=0.04) (figures 2(a) and 2(b)). No 316 

differences were observed in the brainstem.  317 

 318 

Metabolic influences on fMRI BOLD signal change 319 
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When the BOLD signal change modelled for hemodynamic response was adjusted for variance 320 

associated with testosterone, using testosterone as a covariate at the group level, BOLD 321 

activation in the right orbitofrontal cortex was still greater in the PCOS group compared to 322 

controls (p<0.0001). However, when the BOLD signal was separately adjusted for insulin 323 

sensitivity (HOMA-IR), the BOLD signal differences between groups in the right orbitofrontal 324 

cortex were no longer significant. When corrected for HOMA-IR, the BOLD signal in the left 325 

angular gyrus and lateral occipital cortex remained significant. 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

 339 

 340 

 341 

 342 
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Discussion 343 

Our study demonstrates that women with PCOS have evidence of enhanced 344 

sympathoexcitation in response to IFC compared to age- and BMI-matched controls, and that 345 

this is accompanied by a difference in BOLD signal change that localizes to the right 346 

orbitofrontal cortex. This finding is consistent with previous studies implicating this region in 347 

the neural control of blood pressure [17, 32, 33], but to our knowledge is the first to confirm 348 

enhanced activation in this region in young women with insulin resistance. These observations 349 

may extend our understanding of the mechanisms involved in neurogenic hypertension in 350 

young ‘at risk’ subjects.  351 

 352 

In common with many previous studies, we used IFC at 30% of maximum grip as our stimulus 353 

to induce a blood pressure rise. In young adult volunteers this has been shown not to increase 354 

nociception [18]. The pressor response we observed was of a similar magnitude to other studies 355 

[18, 34-35] and did not differ between women with PCOS and controls. This is in keeping with 356 

observations in patients with type 2 diabetes whereby systolic and diastolic blood pressure rose 357 

in parallel to controls in response to IFC, despite differences in resting blood pressure between 358 

groups [36].  359 

 360 

We did not observe any rise in concentrations of the sympathetic neurotransmitter 361 

norepinephrine in either group but plasma measurement offers limited sensitivity and 362 

reproducibility, unlike radiolabelled techniques which may be used reliably to measure 363 

regional sympathetic activity in individual organs. Furthermore, plasma norepinephrine 364 

measurement cannot distinguish between increased central catecholamine production and 365 
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reduced clearance [37]. For these reasons, the significance of the greater rise in plasma 366 

epinephrine concentrations in the PCOS group following IFC is uncertain.  367 

 368 

In contrast to plasma catecholamines, microneurography represents a more direct measurement 369 

of sympathetic neural output. In common with many studies, we chose the common peroneal 370 

nerve, in view of its easy accessibility, to measure efferent MSNA. Importantly, MSNA 371 

correlates well with autonomic effector (including blood pressure and heart rate) responses 372 

[25], and provides immediate data on sympathetic output. However, it is invasive, hence we 373 

were only able to recruit a proportion of our total group to this sub-study. Nevertheless, women 374 

with PCOS showed a greater rise in burst frequency in response to IFC than controls, although 375 

resting measures were not different between groups. This contrasts with previous studies, 376 

where higher resting MSNA values were observed in women with PCOS [11-12].  However, 377 

it is noticeable that the resting burst frequency and burst incidence values in our control group 378 

were significantly greater than those reported in these previous studies, and this may go some 379 

way to explain the absence of differences in MSNA between our two groups at baseline.   380 

 381 

This study identified several cortical areas whose BOLD signal change correlated with the 382 

modelled BP response to static exercise. Of these, between-group differences were most 383 

apparent in the right orbitofrontal cortex. This cerebral region has previously been shown to 384 

associate with a pressor response in humans. In a positron emission tomography study, 385 

Critchley and colleagues identified the right orbitofrontal cortex as one of several brain regions 386 

implicated in the cardiovascular response to isometric exercise and mental stress [17]. Harper 387 

et al. used functional MRI to demonstrate increased activity in the right orbitofrontal cortex 388 

during hypertension induced by cold pressor and Valsalva stimuli [33], whilst Gianaros et al. 389 

showed that the orbitofrontal cortex was similarly activated in response to a behavioral stressor 390 
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[32]. More recently, Macefield and Henderson contemporaneously captured skin sympathetic 391 

nerve activity (SSNA) directly during BOLD fMRI of the brain [38], showing correlation of 392 

spontaneous SSNA with BOLD signal intensity in the right orbitofrontal cortex. Furthermore, 393 

in animal studies, the orbitofrontal cortex has been shown to connect to the insular cortex, a 394 

key regulator in the pressor response [39]. Our data therefore support the prevailing view that 395 

a cortical and sub-cortical network exists in humans to control cardiovascular responses. 396 

Studies in patients with intractable epilepsy undergoing intracranial electrode implantation and 397 

deep brain stimulation appear to confirm this, whereby stimulation of the subcallosal 398 

neocortex, which lies adjacent to the orbitofrontal cortex, elicited marked systolic hypotensive 399 

changes likely as a result of reduced sympathetic drive [40].      400 

 401 

In an attempt to understand the potential metabolic drivers of the altered BOLD signal 402 

response, we extended our analyses to sequentially adjust for hyperandrogenism and insulin 403 

resistance, observing that adjustment for HOMA-IR, but not testosterone, abolished the 404 

between-group differences in BOLD signal intensity in the right orbitofrontal cortex. This 405 

implies that differences in insulin sensitivity, and compensatory hyperinsulinemia, might 406 

account for the differences we observed in the BOLD signal response in this area in response 407 

to IFC. Our findings may thus have relevance for other metabolic disorders characterized by 408 

insulin resistance, such as metabolic syndrome and type 2 diabetes, which we speculate might 409 

similarly be affected by altered BOLD signal in this cerebral region. Although little insulin is 410 

produced in the brain, insulin receptors are widely distributed in the brain and peripherally-411 

made insulin can cross the blood-brain barrier [41]. Furthermore, intracerebroventricular 412 

injection of insulin in rodents induces sympathoexcitation via the arcuate nucleus [13, 42]. In 413 

humans, hyperinsulinemia increases MSNA and modifies baroreflex control of sympathetic 414 

activity [43-44] although these effects of insulin on sympathetic outflow may be blunted in 415 
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insulin-resistant states such as obesity and the metabolic syndrome [45-46]. We therefore 416 

speculate that the enhanced activation observed in the right orbitofrontal cortex in women with 417 

PCOS may reflect preserved insulin sensitivity in this cerebral region. This raises the 418 

possibility that insulin sensitization might have therapeutic benefit in reducing sympathetic 419 

output in PCOS and consequently improving cardiometabolic outcomes. Indeed, metformin 420 

caused a dose-dependent reduction in heart rate, blood pressure and renal sympathetic nerve 421 

activity in spontaneously hypertensive rats [49], but similar benefits were not observed short-422 

term in obese hypertensive men [50]. In contrast, both rosiglitazone and pioglitazone have been 423 

shown to reduce sympathetic nerve activity in subjects with type 2 diabetes [51-52].        424 

 425 

In contrast to other studies [18], we did not find any change in BOLD signal in the brainstem 426 

following IFC, a region that we hypothesized at the outset might be activated in response to 427 

this paradigm. In particular, medullary structures are implicated in autonomic control of 428 

cardiovascular responses. Reasons for this might include physiological noise due to cardiac 429 

and respiratory motion, and the presence of magnetic field inhomogeneity caused by the nearby 430 

sphenoid sinus. Furthermore, the small size of brainstem nuclei in humans [53] makes 431 

localization challenging even when using MRI scanners (3T) that image with greater resolution 432 

than conventional systems. In this regard, the enhanced signal and spatial resolution offered by 433 

7T systems may offer an important advance.  434 

 435 

Our study has some limitations. Firstly, we chose to define our subjects with PCOS by the 436 

Rotterdam criteria since this embraces a ‘milder’ metabolic phenotype characterized by lesser 437 

degrees of hyperandrogenism and insulin resistance than other definitions such as the NIH 438 

criteria [54]. Whilst this allowed us to explore the effects of relatively mild insulin resistance 439 

on cerebral and pressor responses to IFC, the study group was heterogeneous and it is difficult 440 
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to be certain if our findings extend to all sub-phenotypes of the syndrome; further studies are 441 

needed in this regard. Since patients with hyperandrogenic PCOS carry a worse 442 

cardiometabolic risk profile, we speculate that inclusion of patients with more severe 443 

hyperandrogenism may have exaggerated the differences we observed in orbitofrontal cortex 444 

activation and/or unmasked other cerebral regions implicated in the neurogenic regulation of 445 

blood pressure. Inclusion of a young population nevertheless avoids the potentially 446 

confounding influences of vascular pathology (from e.g. diabetes and hypertension) on blood 447 

flow and therefore BOLD signal. Secondly, MSNA and pressor recordings were undertaken 448 

out-of-scanner; it would have been preferable to do so during scanning, as demonstrated 449 

recently by others [20, 38] but this is beyond our current technical ability. Thirdly, our study 450 

used static hand grip to induce a pressor response, which is a motor task cued by a visual 451 

stimulus. Although the potential confounding influence of this model was reduced by factoring 452 

the motor and visual tasks into the FEAT analysis, we nevertheless observed a change in BOLD 453 

signal intensity in the intracalcarine cortex and lingual gyrus in controls, in the parietal 454 

operculum in subjects with PCOS, and between-group differences in the lateral occipital cortex 455 

and left angular gyrus, which are likely to relate to remaining confounding effects of the visual 456 

stimulus. Similarly, the signal change in the right thalamus, pallidum and cerebral cortex in the 457 

PCOS group may reflect residual confounding by the motor component of the hand grip task. 458 

However, imaging studies have also suggested that areas of the thalamus may be implicated in 459 

blood pressure control, potentially via increasing vagal tone and reducing sympathoexcitation 460 

[55]. 461 

 462 

In conclusion, our study supports previous observations of enhanced sympathetic output in 463 

women with PCOS but demonstrates for the first time that this is accompanied by regional 464 

differences in cerebral activation that are most marked in the right orbitofrontal cortex. This 465 
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differential activation appears to relate to altered insulin sensitivity, and suggests that 466 

treatments targeted at reducing hyperinsulinemia in young women with PCOS may have 467 

benefits in reducing sympathetic output and improving cardiovascular health.   468 

 469 
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Tables and figures. 674 

Table 1. Anthropometric and metabolic characteristics of the study population  675 

 PCOS (n=20)* 

Mean ± SD 

Control (n=20) 

Mean ± SD 

p- value 

Age (yrs) 29.80 ± 4.78 29.65 ± 4.96 0.92 

BMI (Kg/m²) 26.05 ± 4.90 26.11 ± 4.83 0.97 

WHR 0.88 ± 0.07 0.84 ± 0.04 0.04 

Waist circumference 

(cm) 

85.9 ± 13.7 85.1 ± 11.1 0.86 

Hip circumference 

(cm) 

97.2 ± 10.4 101.4 ± 11.8 0.24 

Testosterone 

(nmol/L) 

1.41 ± 0.77 1.03 ± 0.53 0.09 

Androstenedione 

(nmol/L) 

4.51 ± 2.99 3.64 ± 1.28 0.25 

HbA1c (mmol/mol) 34.15 ± 2.76 34.21 ± 2.64 0.95 

Total cholesterol 

(mmol/L) 

5.22 ± 1.05 4.79 ± 0.55 0.12 

Triglycerides 

(mmol/L) 

1.34 ± 0.68 0.90 ± 0.36 0.02 

Insulin AUC (pmol 

min/L) 

55519.50 ± 

41547.67 

35320.26 ± 

21008.31 

0.07 

Glucose AUC 

(mmol min/L) 

764.85 ± 239.02 661.89 ± 219.03 0.17 

HOMA-IR 1.41 ± 1.10 0.88 ± 0.65 0.08 

Resting HR 

(beats/min) 

71.05 ± 8.59 71.26 ± 7.65 0.94 

Resting SBP 

(mmHg) 

114.53 ± 9.33 117.58 ± 12.62 0.40 

Resting DBP 

(mmHg) 

65.16 ± 13.33 65.47 ± 14.31 0.94 

Resting MAP 

(mmHg) 

81.63 ± 11.26 83.84 ± 10.54 0.54 

BMI, body mass index; AUC, area under the curve during oral glucose tolerance test; 676 

HOMA-IR, homeostatic model assessment of insulin resistance. *19 controls underwent an 677 

oral glucose tolerance test 678 

 679 
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Table 2. Pressor, catecholamine and MSNA responses to IFC in PCOS and control groups 681 

 PCOS 

Mean  SD 

Controls 

Mean  SD 

p-value  

PCOS vs 
controls Pre-IFC Post-IFC p-value Pre-IFC Post-IFC p-value 

Pressor 
response 

n=19 n=19  

HR (beats/min) 71.05 ± 8.59 

 
76.68  8.04 <0.001 71.26 ± 7.65 75.11 8.43 <0.001 0.155 

SBP (mmHg) 114.53 ± 9.33 127.11  13.69 

 

<0.001 117.58 ± 12.62 125.84  11.21 <0.001 0.090 

DBP (mmHg) 65.16 ± 13.33 74.84  15.79 

 

<0.001 65.47 ± 14.31 74.21  10.68 <0.001 0.157 

MAP (mmHg) 81.63 ± 11.26 92.37  13.97 

 

<0.001 83.84 ± 10.54 91.32  9.27 <0.001 0.058 

Catecholamines n=20 
 

n=19  

Epinephrine 

concentration 

(ng/mL) 

0.68  0.53 1.23  0.71 <0.001 0.77  0.59 0.99  0.61 0.14 0.32 

Norepinephrine 

concentration 

(ng/mL) 

18.11  11.18 16.77  10.01 0.38 22.99  13.33 20.99  12.12 0.25 0.42 

MSNA n=7 

 

n=7  

BF (bursts/min) 25.9 ± 4.4 42.9 ± 8.2 

 

0.001 29.6 ± 7.1 34.9 ± 4.5 0.149 0.002 

BI (bursts/100 

heartbeats) 

36.3 ± 9.9 54.4 ± 12.1 0.004 42.0 ± 10.3 47.9 ± 7.1 0.199 0.133 

Total MSNA 2.4 ± 1.3 5.5 ± 3.1 

 

0.004 2.6 ± 0.7 4.4 ± 1.7 0.048 0.420 
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HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; MSNA, muscle sympathetic nerve 682 

activity; BF, burst frequency; BI, burst incidence.  683 

 684 

Legends for figures 685 

Figure 1. 12 minute IFC paradigm comprising 1 minute rest, 3 minutes 30% IFC, 2.5 minutes rest, 3 minutes 30% IFC and 2.5 minutes rest. The 686 

timings of MSNA, catecholamine, heart rate and blood pressure measurements are indicated.   687 

 688 

Figure 2. BOLD signal activation (modelled for blood pressure) differences between PCOS and controls in the right orbitofrontal cortex (a) and 689 

between PCOS and controls in the left angular gyrus and lateral occipital cortex (b). The significant region is displayed with a threshold of 690 

Z>2.3, with a cluster probability threshold of p<0.05. 691 

 692 
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