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ABSTRACT: The monomer, dimer, and trimer of 5,15-diphenyl-10,20-
di(pyridin-4-yl)porphyrin are used to investigate the multi-anchoring 

eff ect on TiO2 for visible light-driven photocatalytic hydrogen 

production in a water medium. Further, the porphyrin trimer is prepared 
and analyzed by nuclear magnetic resonance (NMR) spectroscopy, 
absorption spectroscopy, electrochemical voltammetry, fast atom 
bombardment (FAB) mass spectroscopy, and density functional theory 
(DFT) computation. The results of this study indicate that the peak 
intensities of the absorption spectra increase as the number of porphyrin 

units increases, while changes could be barely observed in the highest 
occupied molecular orbital (HOMO)−lowest unoccupied molecular 
orbital (LUMO) gaps. The porphyrin dimer in a  
1 wt % Pt-loaded TiO2 powder photocatalyst system exhibited optimal 
hydrogen production performance in a stable state over a period of 80 h 

and at a superior rate of 1023 μmol·g−1·h−1
. Further, the stability of the photocatalytic system was systematically 

investigated using films containing dyes on 1 wt % Pt-loaded TiO2/FTO. For a film containing the dimer, almost no 
change was observed in the hydrogen-bond coordination mode of the dimer and the photocurrent during the 
photocatalytic reaction. However, the photocurrents of the monomer and trimer were altered during visible light 
irradiation without altering the coordination mode, indicating that the arrangements and orientations of the porphyrins on 

TiO2 surfaces were altered. These results indicate that the presence of multiple anchoring groups enhance the stability of 
the photocatalytic system and the rate of hydrogen production.  
KEYWORDS: dye-sensitized, hydrogen production, photocatalysis, porphyrin, pyridyl anchor  

■ INTRODUCTION  
 
The dye-sensitized photocatalysts that are responsive to visible 
light are useful for directly harvesting sunlight to generate 
energy. This type of system has been extensively studied, 
resulting in the development of photocatalytic combination 

systems, including TiO2,
1−4

 SnO2,
5
 ZnO,

6
 CuO,

7
 KTaO3,

8−10
 

TaON,
11

 ZnO:GaN,
12

 BiOCl,
13

 Nb-based oxide nano-

sheets,
14−17

 reduced graphene oxide,
18−22

 and C3N4.
23−25

 In 

dye-sensitized photocatalysts, the dyes are excited by light 
energy, which further inject the excited electrons into the bulk/ 

surface of the photocatalyst.
26

 The electrons can be used for 

performing photosynthesis at the active site of the photo-
catalyst, recombining electrons into organic dyes, or releasing 
energy. The charge that arrives at the surface must exhibit a 
sufficient lifetime for efficiently generating hydrogen. There-
fore, one of the most important issues related to a dye-  

 

 
 
 
sensitized photocatalyst is determining the manner in which 
the charge separation at the interface of the dye/photocatalyst 
system can be increased. Further, modifying the dye is an 
eff ective method for transferring electrons from the dye to the 
photocatalyst. Several studies have investigated efficient light 
absorption systems; for example, π-conjugated systems, such 

as phthalocyanines,
27−29

 xanthene dyes,
30−33

 donor−acceptor 

type systems,
26,34

 and metal−ligand charge transfer type dyes, 

including ruthenium complexes,
35

 exhibit an extensive visible 

absorption band for ensuring that efficient light absorption can 
be achieved with respect to charge transfer to the 
photocatalyst. Further, the electrons are mostly used in an  

 

 

  



 
 
efficient manner at the hydrogen generation site of the 

photocatalyst if the lifetime of the charge separation state between 

the dye and the catalyst is considerably long, and this can be 

accomplished by inserting a π-conjugated system into the dye 

structure.
36

 The collection of electrons for hydrogen production in 

dye-supported photocatalysts can also be controlled by modifying 

the dye using hydrophilic or hydrophobic substituents. Lee et al.
37

 

and our research group
38

 have illustrated that electrons can be 

efficiently injected into the hydrogen production site by 

introducing a hydrophobic substituent in the dye. The hydrophobic 

substituent treatment of the dye could improve the hydro-

phobicity of the photocatalyst surface and suppress the 

photoinduced electron trapping at the interface between the 

solvent and the dye-photocatalyst.
38

 Han et al. reported that the 

presence of a hydrophilic substituent in the dye decreased the 

charge recombination rate that was observed in the excited state 

because of the interactions between the hydrophilic group and the 

water medium.
39

 However, ensuring a stable supply of the charge 

injection cycle (from the dye to the photocatalyst) is important 

from the viewpoint of improving the durability of the 

photocatalyst. Further, a usual dye-sensitized type photocatalytic 

system contains an electron donor site and an anchor site for 

attaching onto the photocatalyst. Carboxylic acid,
30−33,40

 

cyanocarboxylic acid, 
41−44

 phosphoric acid,
45−47

 and hydroxyl 

groups
48,49

 have all been employed as anchors. Additionally, a 

multianchoring system with several charge transfer sites has also 

been reported, with phenol
50

 and phosphoric acid
51

 serving as 

anchors. Because these anchor sites can be hydrolyzed under the 

dye-sensitized type photocatalytic reaction conditions,
50

 the 

photocatalytic activity is only maintained for a period of 10−20 

h.
26,52

 Abbotto et al. investigated the bridge eff ect of organic dyes 

with dianchored thiophene cyanocarboxylic acid groups and 

reported that the modification of the thiophene moiety aff ected the 

stability of their photocatalytic activity. On the TiO2 surface, these 

dyes exhibited a highly stable photocatalytic activity over a period 

of 20−90 h and a turnover frequency of 250 μmol·g−1
·h−1

.
53

 

These results indicated that anchoring groups enhanced the dye 

stability of the metal oxide surface in case of photocatalytic 

reactions. Further, the pyridyl groups are considered to be a 

potential candidate to serve as an eff ective anchor group for the 

metal oxide surfaces in the dye-sensitized solar-energy conversion 

systems.
54

 This type of anchor group can coordinate with the 

metal oxide through Brønsted or Lewis acid-type coordination. 

Liu et al. reported the use of stable perylene dye-sensitized TiO2 

photocatalysts containing pyr-idine groups.
55

 Ozawa et al. 

reported that dyes containing pyridyl groups could remain active 

for more than 120 min, even in systems that are applied to 

photoelectrodes.
56

 However, there is insufficient evidence related 

to the pyridyl group’s high level of stability that is observed during 

photocatalytic reaction. Because the porphyrin dye exhibits a wide 

absorption in the visible light spectrum, it demonstrates 

photocatalytic hydrogen production when it is stimulated with 

visible light.
57,58

 Further, supramolecular porphyrin nanowire has 

also displayed eff ective charge separation under visible light 

between nanowire and Pt cocatalyst, resulting in an eff ective 

hydrogen evolution rate that is as high as 14600 μmol·g−1
·h−1

 

over a period of 40 h.
59

 It has been reported that a porphyrin dye 

exhibits photocatalytic activity even when it is combined with a 

semiconductor material. For example, when 5,10,15,20-tetrakis(4-

(hydroxyl)phenyl) porphyrin (TPPH) or Zn(II)- 

 
5 , 1 0 , 1 5 , 2 0 - t e t r a k i s ( 4 - N - m e t h y l p y r i d y l ) p o r p 

h y r i n ([ZnTMPyP]
4+

) are loaded on the reduced graphene oxide 

(RGO) with a donor−acceptor type interaction, a rate of 2240 

μmol·g−1
·h−1

 over 5 h
60

 and a rate of 2560 μmol·g−1
·h−1

 over  
24 h have been achieved for TPPH-Pt/RGO.

61
 Noncovalent 

type μ-oxo-bis-iron(III) porphyrin ((FeTPP)2O)-loaded C3N4 
and 5,10,15,20-Tetrakis (4-carboxyphenyl) porphyrin (TCPP)-

loaded Pt/C3N4 produced 59.2 μmol after 4 h
62

 and a 

production rate of 1208 μmol·g
−1

·h
−1

 over 25 h.
63

 (Zinc-5-(4-
carboxyphenyl)-10,15,20-tri(3-pridyl)porphyrin (ZnMT3PyP)-

loaded Pt/C3N4 displayed a stable hydrogen productivity of 

400 μmol·h
−1

 over a period of 10 h.
64

 Zn(II)-tetrakis(4-

carboxyphenyl)porphyrin (ZnTCPP)-anchored MoS2/TiO2 
displayed a photocatalytic hydrogen production of 
approximately 160 μmol after 36 h even though the  
production rate gradually degraded after 2−4 h.

65
 ZnTCPP/ 

MoS2/ZnO showed 75 μmol·g−1·h−1
 after 3 h.

66
 5,15-  

diphenyl-10,20-di(4-pyridyl)porphyrin (DPyP) included a 
pyridyl group-anchored metal-loaded graphene oxide, which 
enhanced the stability of photocatalytic hydrogen production. 
This system maintained a photocatalytic production rate of 

116 μmol·g
−1

·h
−1

 over 8 h.
22

 Therefore, more efficient and 

stable dye-sensitized photocatalyst systems can be constructed 
using porphyrin units that incorporate multiple pyridyl groups 
to promote hydrogen bonding with the acidic sites in 
semiconductors. Tani et al. reported the photochemical 

dynamics and activity of the cyclic porphyrin dimer.
67−71

  
The porphyrin units are bonded through diacetylene or other 

π-conjugated systems to produce rigid structures. The dimer 

can be used to create an eff ective electrochemical catalyst,
72

 

photoinduced charge separation for photovol-taics,
73,74

 and 

singlet oxygen production.
75

 It has also been reported that the 

pyridyl groups of the dimer could be chemically adsorbed 
through Brønsted acid hydrogen bonding onto the surface of 

TiO2 and that the resulting system acted as a dye-sensitized 

solar cell.
76

 This unique system is not only expected to 

increase the efficiency of charge transfer but is also expected to 
increase the chemical stability of the dye because of multiple 

pyridyl groups that provide hydrogen bonds to the TiO2 

surface. This study examines the hydrogen generation reaction 
of the dye-sensitized photocatalysts containing porphyrins with 
multiple pyridyl groups (Figure 1). The monomer (1), cyclic 
dimer (2), and trimer (3) of 5,15-diphenyl-10,20-di(pyridin-4-
yl)porphyrin were investigated as dye-sensitizers in novel 
highly stable photocatalytic hydrogen production systems. 

■ RESULTS AND DISCUSSION 
 

Synthesis and Physical Properties of Dyes 1−3. The dyes, 

monomer 1, and dimer 2, were synthesized using the methods 

reported in previous studies.
67,68,77

 Further, the porphyrin 

macrocyclic trimer was obtained using a reported method with a 

few modifications (Scheme 1).
67,68,76

 Zinc(II) 5,15-bis(3-

ethynylphenyl)-10,20-di(pyridin-4-yl)porphyrin (5) was cyclized 

by Glaser-coupling with CuCl in pyridine, which was followed by 

treatment with hydrochloric acid to eliminate zinc from the 

porphyrin core for generating free-base macrocyclic trimer 3 in a 

20% yield. The structure of macrocycle 3 was confirmed by 
1
H 

nuclear magnetic resonance (NMR) spectroscopy and fast atom 

bombardment mass spectrometry (FAB-MS). The high-resolution 

FAB-MS spec-trum indicated a molecular ion signal at m/z 

1987.6728 (M + 
  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Molecular structure of porphyrin monomer 1, dimer 2, 
and trimer 3.  
 
Scheme 1. Synthesis of Cyclic Porphyrin Trimer 3  
 
 
 
 
 
 
 
 
 
 
 
 

 

H
+
, calculated 1987.6735 error = −0.4 ppm), which 

corresponds to that of 3. 
The absorption spectra of 1−3 were measured in a 1,1,2,2-

tetrachloroethane solution (Figure 2a). In the solution, dye 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. (a) Absorption spectra of porphyrin monomer 1, dimer 
2, and trimer 3 in a 1,1,2,2-tetrachloroethane solution. (b) The 

diffuse reflectance spectra of dyes 1−3 on 1 wt % Pt-loaded TiO2 

and 1 wt % Pt-loaded TiO2 catalyst.  
 
exhibited a characteristic Soret band at 420 nm (ε = 908064) 

and four Q-bands at 516 (ε = 40323), 550 (ε = 14516), 589 (ε  
= 14516), and 645 nm (ε = 4677). The absorption bands for 1 

were observed at 419 (ε = 335151), 516 (ε = 17036), 550 (ε = 

6473), 589 (ε = 5337), and 645 nm (ε = 3180), whereas those 

for 2 were observed at 417 (ε = 623894), 516 (ε = 20353), 545 

(ε = 12389), 590 (ε = 7080), and 647 nm (ε = 4425). The 

 
absorption intensities of 1 and 2 were observed to be similar to 

the values that were reported in the literature.
67,77 

 
The absorption intensity at the Soret band in 3 was 

approximately three times higher than that of monomer 1, 

indicating that the porphyrin in the trimer did not communicate 

eff ectively via intramolecular interactions. The HOMOs and 

LUMOs of 1−3 were estimated using diff erence pulse 

voltammetry in 1,1,2,2-tetrachloroethane containing 0.1  
M nBu4NPF6 (Figure S1). Further, the oxidation and 
reduction peaks were observed at +1.11 V (vs NHE) and 
−1.02 V (vs NHE) for 1, +1.11 V (vs NHE), and −1.02 V 
(vs NHE) for 2, and +1.08 V (vs NHE) and −0.98 V (vs 
NHE) for 3, respectively. 

To estimate the geometries and HOMO−LUMO energies of 

1−3, the density functional theory (DFT) computation were 

performed at the B3LYP/6-31G(d) level using Gaussian 16 

(Figure 3). Further, the porphyrin moieties of 2 and 3 connected 

with the diacetylene unit and retained the same structure as that of 

1. On the basis of the HOMO and LUMO of all the three dyes, the 

orbitals were delocalized only over the porphyrin units, and no 

orbitals were observed on the acetylene units in 2 and 3, indicating 

that the intramolecular interactions in the porphyrin units were 

weak. These estimations were in-line with the experimental 

absorption spectra in the solution, while the weak interaction 

between the porphyrin units of the dimer was confirmed by our 

previous studies.
67,75,76

 The energy gaps of the dyes were 2.73 eV 

for 1, 2.69 eV for 2, and 2.71 eV for 3. The observed trends in 

these values were observed to be consistent with the experimental 

energy gaps that were measured using diff erence pulse 

voltammetry. The similar absorption structures and increasing 

molar absorption coefficients at the Soret and Q-bands with 

increasing porphyrin units indicated that the porphyrin units in the 

macromolecule acted independently as photosensitizers. 

 
Figure 2b depicts the diffuse reflectance spectra of the dye-

adsorbed 1 wt % platinum (Pt) coloaded titanium oxide (anatase 

TiO2) catalyst. The 1 wt % Pt coloaded TiO2 powder did not 

demonstrate much reflectance in the visible light range. After dyes 

1−3 were loaded on the catalyst, new bands were observed at 
more than 350 nm, with peaks being observed at 422, 520, 557, 
595, and 645 nm for 1, at 423, 523, 553, 594, and 656 nm for 2, 
and at 420, 519, 557, 595, and 648 nm for 3. These peaks were 
virtually identical to those observed in the solution-state 
absorption spectra, while the observed Soret band reflectance 

intensity was broad in the solution state, indicating that the 

orientation on the TiO2 surface was aff ected by the electronic 

interaction between the dye and TiO2 or between the dyes 

themselves. The amount of dye-loading was determined by the 
decrease in the Soret band intensity of the solution by adsorbing 

the dye to TiO2. The dye-loading of 1−3 on TiO2 were 8.2 μmol/g 

for 1, 28.3 μmol/g for 2, and 30.1 μmol/g for 3. The values for 2 
and 3 were similar to that of the cyanocarboxylic acid group-

loading (30 μmol/g).
36

 Dye 1 was expected to weakly interact 

with TiO2 based on the amount of dye loading. All the three dyes 

displayed a hydrogen bonding-type interaction between the 

pyridyl group of dyes and TiO2 (discussed later), which indicated 

that the porphyrin moiety was arranged on the TiO2 surface with 

the pyridyl group as the anchor site. Further, an undesirable 

orientation (porphyrin ring lying flat on the TiO2 surface) was 

expected because of the nonbulky structure of 1. However, dyes 2 
and 3 displayed a considerably higher loading than that displayed 

by 1, indicating a more tightly packed orientation on the TiO2 

surface. By 
  

http://pubs.acs.org/doi/suppl/10.1021/acsaem.8b01113/suppl_file/ae8b01113_si_001.pdf


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Molecular orbitals of HOMO and LUMO from the optimized structures of 1−3 at the B3LYP/6-31G(d) level of theory.  
 

measuring the amount of N2 gas adsorption, the Brunauer− 
Emmett−Teller (BET) surface areas were determined to be 

53.1m
2
/g for 1/1 wt % Pt/TiO2, 54.0 m

2
/g for 2/1 wt % Pt/ 

TiO2, 54.9 m
2
/g for 3/1 wt % Pt/TiO2, 55.9 m

2
/g for 1 wt 

% Pt/TiO2, and 56.9 m
2
/g for pure TiO2. Compared with 1 

wt % Pt/TiO2 and pure TiO2, the adsorption sites of N2 

molecule were decreased in the cases of the dye/Pt/TiO2 
systems, suggesting that the dyes were actually loaded on 

TiO2 surfaces.
22 

 
Further, the structures of dyes 2 and 3 were macrocyclic and 

were expected to be arranged perpendicular to the TiO2 
surface by hydrogen bonding through the pyridyl groups. 

When the porphyrin unit is vertically arranged on TiO2, it 

should be tightly packed against the TiO2 surface, which 
would explain the increase in the amount of dye loading in 2 
and 3 as compared to that observed in 1. On the basis of the 
experimental results, we confirmed that all the dye LUMOs 
contained higher energy (−0.98 to −1.02 V vs NHE) than that 

contained in the conduction band of anatase TiO2 (−0.5 V 
NHE, Figure 4). This indicated that electrons can be injected  
 
 
 
 
 
 
 
 
 

 

Figure 4. Energy diagram of TiO2 and the porphyrin dyes 1−3.  
 

into the TiO2 surface from dyes 1−3 under light irradiation. 
The physical properties of all the three dyes are 
summarized in Table 1  

Visible Light-Driven Photocatalytic Hydrogen Pro-
duction Test. The visible light-driven photocatalytic hydro-
gen production in water medium using 1−3/1 wt % Pt/anatase 

TiO2 nanoparticles was investigated. The dye-loaded 1 wt % 

Pt/TiO2 catalyst powder was suspended in water with ascorbic 

acid (pH 4) acting as a sacrificial reagent. This suspension was 
purged with argon, and a Xe lamp (>420 nm filter) was used to 
irradiate the system. Further, the amount of hydrogen gas 
output was measured using gas chromatography (Figure 5). 
Dye 1 displayed hydrogen production over a period of 80 h 
although the production activity decreased after 10 h. In 
contrast, dyes 2 and 3 exhibited linear hydrogen productivity 

 
over an 80-h period. These results indicated that the multi-4-
pyridyl anchor for the porphyrin dye-sensitized photocatalytic 
hydrogen production system was observed to be highly stable 
under the reaction conditions. Notably, the hydrogen 

production rates of 2/1 wt % Pt/TiO2 (1023 μmol·g
−1

·h
−1

) and 

3/1 wt % Pt/TiO2 (761 μmol·g
−1

·h
−1

) were considerably 

higher than that of 1/1 wt % Pt/TiO2 (102 μmol·g
−1

·h
−1

). 

Controlled experiments using TiO2 and 1 wt % Pt-loaded TiO2 

for hydrogen production under visible light (>420 nm) 
demonstrated hydrogen production rates of 0 and 12 μmol· 

g
−1

·h
−1

, respectively. This drastic increase in the hydrogen 

productivity of the dye-loaded photocatalysts indicated the 
occurrence of the dye-sensitized type visible light-driven 
photocatalytic reaction. To evaluate the catalytic activity for 
hydrogen production in these systems, the turnover numbers 
(TON) per porphyrin unit were determined (Figure S2). The 

2/1 wt % Pt/TiO2 dye exhibited a higher TON (2860 after 83  
h) as compared to that exhibited by 3/1 wt % Pt/TiO2 (1370 

after 81 h) and 1/1 wt % Pt/TiO2 (1980 after 84 h). Although 

the physical properties and DFT results indicated that the 
porphyrin units in dimer 2 and trimer 3 acted independently as 
photosensitizers, dye 2 was the most active sensitizer for the 
production of hydrogen because of the efficient injection of 

electrons from 2 into the surface of TiO2 under visible light, 

which was confirmed by the photocurrent experiment 
(discussed later). Following the completion of the photo-
reaction, the solution was extracted with 1,1,2,2-tetrachloro-
ethane, and the absorption spectra were measured (Figure S3); 
further, the peak that was observed at approximately 420 nm 
remained intact. The amounts of organic dye dissociation after 
the reaction were estimated to be low for all the three dyes: 1 

(26.7 × 10
−2

%), 2 (1.13 × 10
−2

%), and 3 (0.73 × 10
−2

%). This 

indicated that the porphyrin dyes remained on the TiO2 surface 

after the completion of the photoreaction. Further-more, the 
dissociation amounts of dimer 2 and trimer 3 were 
substantially lower than that of 1, which indicated that the 
multianchoring pyridyl system improved the stability of the 
photocatalyst system.  

Absorption Spectra and IR Spectra after the Hydro-
gen Production Reaction. To further investigate the 
diff erence between the hydrogen production rates for 1−3, a 

thin film of dye/1 wt % Pt-loaded TiO2 substrate was prepared 

on fluorine-doped tin oxide (FTO) glass for performing 
spectroscopic analysis. Figure S4 depicts the dye-adsorbed 1 

wt % platinum (Pt) coloaded titanium oxide (anatase TiO2) 

films on FTO glass. Because of the diff erence in the state of 
the 

  

http://pubs.acs.org/doi/suppl/10.1021/acsaem.8b01113/suppl_file/ae8b01113_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsaem.8b01113/suppl_file/ae8b01113_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsaem.8b01113/suppl_file/ae8b01113_si_001.pdf


         

Table 1. Physical Properties and Calculated Data of Dyes 1−3       
           

 abs. at soln.a reflectance at loading amount oxidation potentiala,c reduction potentiala,c energy HOMOd LUMOd  energy 

sample (nm/ε) powderb (nm) (μmol/g) (V vs NHE) (V vs NHE) gapc (V) (eV) (eV)  gapd (eV) 

1 419/335151 422 8.2 +1.11 −1.02 2.13 −5.20 −2.47 2.73 

 516/17036 520         

 550/6473 557         

 589/5337 595         

 645/3180 645         

2 417/623894 423 28.3 +1.11 −1.02 2.13 −5.30 −2.61 2.69 

 516/20353 523         

 545/12389 553         

 590/7080 594         

 647/442 656         

3 420/908064 420 30.1 +1.08 −0.98 2.06 −5.31 −2.60 2.71 

 516/40323 519         

 550/14516 557         

 589/14516 595         

 645/4677 648           
a
In 1,1,2,2-tetrachloroethane. 

b
Dye/1 wt %Pt−TiO2/FTO. 

c
Diff erence pulse voltammetry was conducted in 0.1 M nBu4NPF6 1,1,2,2-

tetrachloroethane solution. The potentials were calibrated according to Fc/Fc
+

 = +0.63 V vs NHE.
78

 
d
Estimated by DFT at the B3LYP/6-

31G(d) level of theory.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Visible light-driven photocatalytic hydrogen production 

for TiO2, 1 wt % Pt-loaded TiO2, and dyes 1−3 loaded 1 wt % 

Pt/TiO2. Conditions: 300 W Xe lamp (>420 nm), ascorbic acid 
(pH 4) in water.  
 
catalyst, the absorption intensities and the peak positions of the 
dye on the film were observed to be slightly diff erent from 
those of the powder. However, the strength and peak position 
tendencies were observed to be the same for both the powder 
and film (Figure S4). Furthermore, these peaks were virtually 
identical to those observed in the solution state absorption 
spectra, which indicated that it exhibited the same orientation 
as that exhibited by the powder. The substrates were placed in 
an aqueous ascorbic acid solution and were irradiated using a 
Xe lamp. After the initial hydrogen production rate was 
determined through measurement, the production rate in all the 
systems was observed to decrease. However, the hydrogen 
production rate eventually stabilized (Figure S5). The 
hydrogen production rates of the thin films of 2/1 wt % Pt/ 

TiO2 and 3/1 wt % Pt/TiO2 were similar to the rates of 2/1 wt 

% Pt/TiO2 and 3/1 wt % Pt/TiO2 powders.  
The absorption spectra of the dyes on 1 wt % Pt−TiO2 films 

are presented in Figure 6a−c. Before visible light irradiation, 
the films of the dyes exhibited characteristic Soret and Q-
bands. Before the photoreaction, the Soret band of 1 was 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Absorption spectra of dye/1 wt % Pt-loaded TiO2/ FTO 

before (solid) and after (dash) visible light-driven hydrogen 
production: (a) 1, (b) 2, and (c) 3. The FT-IR spectra of the bulk 
dye (dash) and the catalytic system before (solid) and after (dot) 
visible light-driven hydrogen production: (d) 1, (e) 2, and (f) 3.  

 

observed to be weak and difficult to confirm because of the 

small amount of dye loading. After the photoreaction, the Soret 

band of 1 virtually disappeared because of the broadening that 

was likely to be caused by the aggregation and orientation 

change of the porphyrin. As in the case of 1, the Soret band of  
3 exhibited a decrease in intensity and red-shift after 
photoreaction. These changes in absorption spectra indicated 
that the arrangements and orientations of the porphyrins on the 

1 wt % Pt−TiO2 films varied during the reaction. Further, 
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2 exhibited almost no change in the intensity and wavelength 
of the Soret band. This result indicated that dimer 2 was 

tightly fixed on 1 wt % Pt−TiO2 film during photoreaction. 

Roales et al. reported that it was possible to suppress the 
aggregation of porphyrin moiety by selecting an anchor group 

vertically fixed on TiO2.
79

 Thus, the pyridyl anchor groups of 

2 are vertically fixed to the TiO2 surface to produce small 

changes in the absorption spectrum during photoreaction.  
Ooyama et al. reported that a cyclic porphyrin dimer with 

pyridyl anchors exhibited Brønsted acid-type interactions on 

TiO2 in a dye-sensitized solar cell system.
76

 Figures 6d−f 
present the FT-IR spectra of the dye/1 wt % Pt−TiO  and  

− 
2
 bulk 1 3. All the bulk dyes exhibited pyridine C N  

stretching vibration peaks at 1592−1593 cm
−1

. After loading 

the dyes onto 1 wt % Pt−TiO2, the peaks were observed to 

shift by approximately 3−5 cm
−
 

1
 to 1595−1597 cm

−1
, 

indicating that the pyridyl groups established a hydrogen bond 

with the Brønsted acid sites on the TiO2 surface; further, new 

peaks were observed at 1652−1653 cm
−
 
1
, which indicated the 

occurrence of this pyridinium behavior. After exposure to 
visible light, all these peaks remained unchanged in the FT-IR 
spectra, indicating that the pyridyl group−Brønsted acid-type 

interaction helped to stabilize the dye on TiO2 during the 
photocatalytic reaction.  

Photocurrent Spectra of Dyes on 1 wt % Pt−TiO2 
Films. In these porphyrin systems, the observed LUMO 
energy levels of dyes 1−3 were higher than those of the 

conduction band of TiO2 (Figure 4). The dyes were selectively 
excited by visible light, and electrons were injected from the 

excited states of the dyes to the TiO2 surface.
52

 Hua et al. 

measured the photocurrent using a dye-loaded TiO2 thin film 
applied to FTO and reported that the catalytic system displayed 

an efficient interfacial electron transfer from the dye to TiO2, 
which provided the conditions for a high rate of hydrogen 

production.
80

 To confirm the dye−sensitizer mechanism and 
diff erences in interfacial electron transfer for 1−3 during 
photocatalytic hydrogen production, the photo-currents of 

1−3/1 wt % Pt−TiO2 films on FTO were measured. Figure 7 
depicts the photocurrent plots under irradiation by visible light 

(>420 nm) for 1−3/1 wt % Pt− TiO2/ FTO films at 0 V (vs 

Ag/AgCl. 0.1 M Na2SO4 aq.). All the dye-containing films 
generated a higher current than that of  

 

the bare Pt−TiO2/ FTO film, confirming the occurrence of the 

visible light-driven dye-sensitized electron injection into 1 wt 

% Pt-loaded TiO2/FTO. The absorption properties of those 

porphyrin dyes were in contrast to their photocatalytic 

activities. Before conducting the photocatalytic hydrogen 

production test, the order of photocurrent strength was 3 > 2 > 

1; however, it was subsequently changed to 2 > 3 > 1 after the 

photocatalytic test. The photocurrent of the film containing 1 

and 3 decreased, while a similar current was observed in the 

film containing 2. As depicted in Figures 6a−c, the spectral 

features of 1 and 3 also changed after the photocatalytic 

reaction, which was indicative of dye aggregation on the TiO2 

surface, resulting in a decrease in both the absorbance at the 

Soret band because of H-aggregation-type interaction and the 

photocurrent intensity. However, the absorption spectrum and 

photocurrent of 2 remained the same during photoreaction. 

Because of its high stability, dimer 2 demonstrated the highest 

hydrogen production performance. The rate of dye-sensitized 

hydrogen production was dependent on the amount of 

electrons that can be injected from the dye-sensitizer to the 

reaction site. These results indicated that the dye orientation 

strongly aff ected the electron injection efficiency from the 

organic dye to the TiO2 surface.  
On the basis of these photocatalytic tests and photocurrent 

results, the excited state of dyes 1−3 was observed to result in 

the injection of electrons from the dye to the TiO2 surface. As 
depicted in Figure 8, under visible-light (>420 nm) irradiation,  
 
 
 
 
 
 
 
 
 
 

 

Figure 8. Proposed mechanism for photocatalytic H2 generation in 

the dye 1−3/Pt/TiO2 system under visible-light irradiation.  

 

the electrons in the HOMOs of 1−3 (+1.08 to +1.11 V vs 
NHE) were excited to the LUMOs (−0.98 to −1.02 V vs NHE), 
creating excited-state dyes 1−3. The potentials of LUMOs 

were more negative than the CB of TiO2 (−0.50 V vs NHE), 
thus providing a suitable thermodynamic driving force for 

electron injection from the excited state of 1−3 to TiO2. The 
injected electrons migrate to the platinum (Pt) cocatalyst, 
which results in the eff ective production of hydrogen. The 

oxidized dye (1−3)
+
 exhibits a higher oxidation potential than 

that exhibited by ascorbic acid (AA, +0.46 vs NHE)
81

 and can 

be regenerated by reduction with AA. TiO2 acts as the electron 

transfer bridge between the dye and the Pt cocatalyst on TiO2, 
eff ectively causing the charge separation and photocatalytic 

hydrogen production that are observed in the dye/Pt−TiO2− 
AA system. 

■ CONCLUSIONS 
 
Figure 7. Photocurrent plots of dye/1 wt % Pt-loaded TiO2/ FTO and 

bare (1 wt % Pt-loaded TiO2/ FTO): (a) before and (b) after visible 
light-driven hydrogen production. Amperometric i−t curve at 0 V (vs 

Ag/AgCl. 0.1 M Na2SO4 aq. (pH 4), Pt counter electrode). 

 
The monomer, dimer, and trimer of 5,15-diphenyl-10,20-
di(pyridin-4-yl)porphyrin were used to investigate the multi-

anchoring eff ect on 1 wt % Pt−TiO2 for visible light-driven 

photocatalytic hydrogen production in water. The dimer 
  



 
 
system exhibited optimal hydrogen production characteristics, 

high stability over an 80-h period, and a superior production rate 

of 1023 μmol·g−1
·h−1

. The hydrogen production rates for the 

trimer and monomer were 723 and 123 μmol·g− 
1
·h−1

, 

respectively. These pyridyl groups were anchored on the TiO2 

surface through Brønsted acid-type hydrogen bonding in which 

the coordination prevented the dissociation of the dye from the 

TiO2 surface. The dimer and trimer demonstrated a smaller 

amount of dye dissociation after the photoreaction as compared to 

that demonstrated by the monomer, indicating that the multiple 

pyridyl−TiO2 interactions enhanced the stability of the dye-

sensitized photocatalytic system. The absorption spectra and 

photocurrents of the monomer and trimer indicated that the dye 

arrangements and orientations were altered during photoreaction, 

while the dimer of the more rigid structure displayed virtually no 

change. Consequently, the high stability of the dimer on TiO2 

achieved the highest hydrogen production activity. The results of 

this study revealed the positive eff ects of employing the 

multianchoring of pyridyl−TiO2 on eff ective hydrogen production 

by yielding a highly stable photocatalytic system for artificial 

photosynthesis. This approach can pave the way for further 

developing new and highly stable dye-sensitized photocatalysts. 

■ EXPERIMENTAL SECTION  
General Information. The 

1
H spectrum was recorded on a Bruker 

AV600 (600 MHz) spectrometer. The 
1
H NMR chemical shifts were 

reported to be δ values (ppm) relative to Me4Si. The high-resolution 
FAB mass spectra were recorded on a JMS-700 MS station 
spectrometer. The FAB-MS spectra were measured using 3-nitro-
benzyl alcohol (NBA) as the matrix. Analytical thin layer 
chromatography (TLC) was performed on Merck silica gel 60 F254, 
while flash column chromatography was performed using Kanto 
Si60N (neutral) silica gel. The absorption and diffuse reflectance 
spectra were recorded on a Shimadzu UV-3600. The diffuse 
reflectance spectra of the catalyst were measured with 1 wt % catalyst-

loaded BaSO4 pellets. The BET surface area was measured on  
a BELSORP-max-32-N-VP-CM (MicrotracBEL Corp.). The IR 
spectra were recorded on a Shimadzu IR Prestige-21 spectropho-
tometer. All the solvents and reagents were of reagent quality, 
purchased commercially, and used as received without further 
purification. The FTO overlayer conducting glass (transmission 

>90% in the visible, sheet resistance 7 Ω square−1
 was purchased 

from Sigma-Aldrich. Titanium-oxide paste of Ti-Nanoxide T/SP 
was purchased from Solaronix.  

Dye-Loading Process into 1 wt % Pt-Loaded TiO2 Anatase. 

The preparation method for 1.0 wt % Pt-loaded TiO2 was observed to 

be as follows in accordance with the literature.
36,38

 The commercially 

available TiO2 (<25 nm, anatase, Aldrich) was used. 1.0 wt % Pt-

loaded TiO2 (50 mg) was immersed in a 1,1,2,2-tetrachloroethane 

solution containing dye sensitizers (3 × 10−4
 M, 10 mL) at room 

temperature for 24 h in the dark. The amount of dye-loading was 
estimated by obtaining the diff erence of absorption intensity at the 

Soret band before and after the absorption spectra.
82

 On the basis of 

the calibration curve, the dye-loading amount on 1 wt % Pt/TiO2 was 
estimated for 1 (8.2 μmol/g), 2 (28.3 μmol/g), and 3 (30.1 μmol/g). 

After the 1 wt % Pt/TiO2 was dye-loaded, the solvent was eliminated 
by centrifugation (3600 rpm, 20 min). The catalyst was recovered by 
filtration and rinsed using 1,1,2,2-tetrachloroethane. The dye-loaded 

1.0 wt % Pt-loaded TiO2 catalyst powder was dried under vacuum at 
room temperature and was further used to perform the water splitting 
reactions without conducting any further treatment.  

Photocatalytic Hydrogen Production Reaction. The photo-
catalytic hydrogen production experiment was performed using a 
conventional closed-circulation system with a dead volume of 

approximately 500 mL. The Pt/dye/TiO2 catalyst (10 mg) was 
suspended in 10 mL of ascorbic acid water (pH 4.0, adjusted using 

 
NaOH aq.). A quartz reaction cell was irradiated using a 300 W Xe 
lamp (Asahi Inc., Japan) equipped with a cutoff  filter that was less 

than 420 nm (Edmund optics, >420 nm cutoff ). During the H2O 

photochemical reaction, the mixture was magnetically stirred. The 

amount of obtained H2 gas was measured using a thermal 
conductivity detector gas chromatograph (GC-8A, Shimadzu Corp., 
Japan) that was connected to a conventional volumetric circulation 
line with a vacuum pump. The photoreaction film (dye-loaded 1 wt % 

Pt−TiO2 film/FTO substrate) experiments were performed using the 

same reaction cell and conditions, except for the fact that 30 mL of 
ascorbic acid water (pH 4.0, adjusted using NaOH aq.) was used.  

Fabrication of the 1 wt %-Co-loaded TiO2/FTO Substrate 
and Photocurrent Spectra. The Pt source was used as  
chloroplatinic acid solution of 8 wt % in water (Sigma-Aldrich). The 
preparation of the anatase phase thin-film has been described 

elsewhere.
83

 A thin film of 1 wt % Pt-co-loaded−TiO2 was prepared 
to coat an FTO glass substrate, with the dimensions of the active area 

being controlled at 1.5 cm
2
. The photocurrent was measured using a 

BAS ALS1200B instrument. All the measurements were performed in 

DI water solutions containing 0.1 M Na2SO4 as a supporting 
electrolyte, where pH = 4. A conventional three electrode 

configuration (dye-loaded 1 wt % Pt−TiO2 film/FTO substrate 
working electrode, platinum mesh counter electrode, and Ag/AgCl 
reference electrode) was employed. The photocurrent properties were 
obtained under irradiation by a 300 W Xe lamp (Asahi Spectra, MAX-  
303) using a long-pass filter (Edmund optics, > 420 nm cutoff ). 

Synthesis of Cyclic Trimer 3. A mixture of zinc(II) 5,15-bis(3- 

ethynylphenyl)-10,20-di(pyridin-4-yl)porphyrin (292 mg, 0.4 mmol), 

CuCl (4.0 g, 40 mmol), and pyridine (300 mL) was heated at 85 °C 

for 12 h. The mixture was further cooled to 0 °C, and 7 M NH3 aq. 

(150 mL) was added. Oxygen was bubbled through the reaction 

mixture for 30 min at 0 °C. The mixture was further extracted with 

CHCl3, washed with 7 M NH3 aq. three times, and concentrated to 

dryness. The residual solid was dissolved in CHCl3 (200 mL), and a 

minimum amount of pyridine (∼1 mL) and 6 M HCl (40 mL) was 

added. The solution was allowed to react for 30 min. The solution was 

further neutralized with sat. NaHCO3 aq. and dried over anhydrous 

Na2SO4. Purification with flash chromatography (gradient elution 

CHCl3:EtOH = 100:1 to 10:1) yielded 2 (21.6 mg, 8%) and the target 

compound 3 (52.4 mg, 20%) as a purple-red solid. Physical data of 3: 

mp > 300 °C; 
1
H NMR (CCl3, 600 MHz) −3.05 (bs, 6H), 7.71−8.00 

(m, 6H), 8.03−8.23 (m, 30H), 8.73−8.98 (m, 36H); a clear 
13

C NMR 

spectrum of 3 could not be obtained due to the low solubility; ν(ATR) 

1592 (C = N) cm−1
; HRMS (FAB) m/z [M + H]

+
 calculated for 

C138H79N18 1987.6735; found 1987.6728. 
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