

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/122162/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

Kaszta, Zaneta, Cushman, Samuel A., Hearn, Andrew J., Burnham, Dawn, Macdonald, Ewan A., Goossens, Benoit, Nathan, Senthilvel K. S. S. and Macdonald, David W. 2019. Integrating Sunda clouded leopard (Neofelis diardi) conservation into development and restoration planning in Sabah (Borneo). Biological Conservation 235 10.1016/j.biocon.2019.04.001

Publishers page: http://dx.doi.org/10.1016/j.biocon.2019.04.001

Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

1 ABSTRACT

2 Changes in land use/cover are the main drivers of global biodiversity loss, and thus tools to 3 evaluate effects of landscape change on biodiversity are crucial. In this study we integrated 4 several methods from landscape ecology and landscape genetics into a GIS-based analytical 5 framework, and evaluated the impacts of development and forest restoration scenarios on 6 landscape connectivity, population dynamics and genetic diversity of Sunda clouded leopard in 7 the Malaysian state of Sabah. We also investigated the separate and interactive effects of 8 changing mortality risk and connectivity. Our study suggested that the current clouded leopard 9 population size is larger (+26%) than the current carrying capacity of the landscape due to time 10 lag effects and extinction debt. Additionally, we predicted that proposed developments in Sabah 11 may decrease landscape connectivity by 23% and, when including the increased mortality risk 12 associated with these developments, result in a 40-63% decrease in population size and 13 substantial reduction in genetic diversity. These negative impacts could be mitigated only to a 14 very limited degree through extensive and targeted forest restoration. Our results suggest that realignment of roads and railways based on resistance to movement, without including mortality 15 16 risk, might be misleading and may in some cases lead to decrease in population size. We 17 therefore recommend that efforts to optimally plan road and railway locations base the 18 optimization on effects of development on population size, density and distribution rather than 19 solely on population connectivity.

20

21

22 **Keywords:** land use planning; landscape connectivity; population dynamics; cumulative

23 resistant kernels; least-cost paths; mortality risk

24 1. Introduction

25 Anthropogenic changes in land cover and land use have been a major and direct driver of global 26 terrestrial biodiversity loss (Gagné et al., 2015) and are predicted to increase substantially in the 27 next decade (Hansen et al. 2013). Despite the recognition that effective and well informed 28 landscape planning is crucial for mitigating the negative effects of landscape change on 29 biodiversity, landscape ecological knowledge is not widely used by planning agencies, and 30 science-based information and tools are not often incorporated in land use decision-making 31 (Ahern, 2013; Gagné et al., 2015). This is in part because scientific papers do not often provide 32 practical and feasible ways to quantitatively compare realistic alternative scenarios. Preserving 33 biodiversity in rapidly developing landscapes requires a proactive approach where managers 34 evaluate a priori effects of alternative development or conservation plans. 35 Land use planners face a dilemma in balancing biodiversity conservation with the demands of 36 human population growth and economic development. This is especially relevant in emerging 37 economies, where the pressure on ecosystems and wildlife is extremely high and there may be 38 limited legal and administrative protection of biodiversity. At the same time, many of these 39 regions harbour the highest levels of biodiversity and endemism, which emphasises the 40 importance of scientifically-based tools to guide land use planning to minimize impacts to 41 biodiversity. Identifying and prioritizing areas for development, conservation, and restoration 42 requires quantitative analysis that integrates ecological and urban planning theories (Xun et al., 43 2017). Conservation and land use planning have overlapping goals: conservationists are 44 concerned with the sustainability of ecosystems and populations, while planners focus on 45 sustainable delivery of goods and services for humans often provided by ecosystem services 46 (Botequilha Leitão and Ahern, 2002). Balancing the preservation of biodiversity with economic

development requires conservation actions that can maintain critical ecosystems functions while
minimizing constraints on land development (DeFries et al., 2007). This can be achieved through
efforts to optimize development and conservation strategies that maximize the conservation
benefit with the least economic cost.

51 Critical components of evaluating the impacts of landscape change on wildlife include assessment of how it affects population size, genetic diversity and connectivity. Loss of habitat 52 53 area and increases in mortality risk can lead to reductions of population size, often exhibiting 54 threshold effects where populations decline abruptly after loss of a particular amount of habitat (e.g., Hearn et al. 2018). In addition, loss of connectivity can disrupt the ability of species to 55 56 procure resources, seasonally migrate, shift home ranges, disperse to new home ranges, and 57 exchange genes between local populations, which, in turn, can lead to decreased carrying 58 capacity, loss of genetic variation, population declines and even extinction (Rudnick et al., 2012; 59 Xun et al., 2017). Low genetic diversity can also inhibit the population's ability to respond to 60 rapid environmental changes (Noël et al., 2007), and lead to inbreeding depression (Van Noordwijk, 1994), which can create an extinction vortex where populations decline (Frankham, 61 2005). 62

63 To offset the impacts of fragmentation, degradation and loss of habitat on biodiversity,

64 conservation efforts should focus on protecting and enhancing core population areas, reducing

65 mortality risk and improving connectivity (Rudnick et al., 2012; Cushman et al. 2018). To

66 achieve this, it is therefore crucial to quantitatively assess the pattern of mortality risk across the

67 population as well as the strength and importance of core habitats and the corridors linking them,

and integrate these in models that evaluate how alternative development scenarios affect

69 population size, genetic diversity and connectivity (e.g., Cushman et al. 2016).

70 Measuring and predicting impacts of landscape change on population distribution, abundance, 71 genetic diversity and functional connectivity has become more feasible thanks to new 72 technologies, more powerful computers and freely available GIS data. Furthermore, the new 73 methods in landscape ecology and landscape genetics, like cumulative resistant kernels 74 (Compton et al. 20017), factorial least cost paths (Cushman et al., 2014) and spatially-explicit 75 individual based population models (Landguth and Cushman 2010), enable rigorous and spatially 76 synoptic assessment and prediction of population-level effects and make the analysis of 77 connectivity more accurate and statistically powerful. Importantly, these new approaches, in 78 contrast to traditional landscape assessment methods using structural metrics, are parameterized 79 on the basis of the biology of particular species and the characteristics of the landscape that 80 affect that species' distribution, abundance and movement providing a functional measure of 81 connectivity (e.g. Cushman et al., 2018; Kaszta et al., 2018; Wasserman et al., 2013). There are however few published examples integrating landscape ecology and genetics tools such as 82 83 empirically optimized resistance models, individual-based population and genetics models and synoptic connectivity modelling approaches for optimized land-use planning (e.g., Cushman et 84 al., 2018a, 2016) 85

In this study we focus on Sabah, a Malaysian state in northern Borneo, which has been heavily
impacted by deforestation and faces the challenge of rapid economic development and expanding
urbanization, agriculture and infrastructure. Until recently, the island of Borneo was covered by
one of the world's largest undisturbed blocks of tropical forest, supporting extremely high
endemism and biodiversity (Woodruff, 2010). However, over the past several decades the island
has had the world's highest deforestation rate. Forest cover on Borneo declined by 33.5%
between 1973 and 2015 (Gaveau et al., 2016), due to deforestation for timber extraction and

conversion to agriculture driven mainly by plantation industries (especially oil palm *Elaeis guineensis*, Cushman et al. 2017). The deforestation rate varies by region (Bryan et al., 2013),
with the highest forest loss estimated in the Indonesian provinces of Kalimantan and the
Malaysian states of Sabah and Sarawak (35.6%, 31.9% and 25.9% respectively; Gaveau et al.
2016).

98 To assess and map population core areas and landscape connectivity, landscape planners 99 typically select a focal species or a set of focal species, which usually are area-sensitive species 100 with habitat-restricted dispersal (Rudnick et al., 2012). Large carnivores are often chosen as focal 101 species given they have these characteristics (Carroll et al., 2001; Noss et al., 1996) and they can 102 also serve as ambassador species (Macdonald et al., 2017). The terrestrial apex predator in 103 Borneo is the Sunda clouded leopard (*Neofelis diardi*). This medium-sized felid, endemic to 104 Borneo and Sumatra, is genetically and morphologically distinct from the clouded leopard 105 (*Neofelis nebulosa*) populations inhabiting mainland Southeast Asia (Buckley-Beason et al., 106 2006; Christiansen, 2009; Kitchener et al., 2006; Wilting et al., 2006). Due to its small and 107 declining population (Sabah population ~750 individuals; Hearn et al., 2017), this species is 108 listed as Vulnerable on the IUCN Red List (Hearn et al., 2015). Sunda clouded leopard is a likely 109 wide-ranging, forest-dependent species (Hearn et al., 2018), and thus may act as an effective 110 umbrella for other forest-dependent species. Therefore, changes in landscape connectivity and 111 population dynamics of the Sunda clouded leopard might serve as a good indicator of health of 112 the Sabah ecosystems, and a vehicle to evaluate the impacts of a range of alternative 113 conservation and development scenarios on those ecosystems.

114 Our goal in this study was to demonstrate the use of a GIS-based analytical framework that maps

and quantifies the impact of future development and restoration scenarios on landscape

connectivity, population distribution, density and genetic diversity of the Sunda clouded leopard
across Sabah. We evaluated the impacts of 58 alternative development and ecological restoration
scenarios described in the Structure Plan and the effects of spatially heterogenous mortality risk.
Furthermore, we used spatial optimization to improve the scenarios we found had the largest
negative impacts on clouded leopard population connectivity.

121

122 **2. Methods**

123 **2.1.Study area**

The Malaysian state of Sabah occupies an area of 73,631 km² in northern Borneo (Figure 1). The 124 topography of Sabah is rugged, with extensive mountains, particularly in the central, northern 125 126 and western parts of the state. Sabah has had the highest deforestation rate of all Borneo's 127 political units (78.6% of forest cover in 1973 decreased to 47.5% in 2010; Gaveau et al. 2014), 128 and one of the highest deforestation rates in the world (Cushman et al., 2017). Recent 129 deforestation has been driven by conversion of forest to mono-culture plantations, mainly oil 130 palm (21% of Sabah in 2015; McMorrow and Talip 2001, Malaysian Palm Oil Board, 2016) but 131 also timber plantations (3.3% of Sabah; Reynolds et al. 2011). 132 Nevertheless, the state of Sabah has committed to protecting its remaining forest, and increasing 133 the sustainable utilization of forest products. The state contains extensive areas of highly 134 disturbed, regenerating forests. Protected primary forest exists in relatively small patches (280– 135 1399 km²), including the Danum Valley, Maliau Basin and Imbak Canyon Conservation Areas, 136 and the Crocker Range, Kinabalu and Tawau Hills Parks (Figure 1), but the vast majority of

remaining forest has been previously logged (Reynolds et al., 2011). The majority of remaining

138 forest belongs to the state-owned Permanent Forest Reserve, which includes State Parks,

139 Wildlife Reserves as well as commercial Forest Reserves (Reynolds et al., 2011).

140 2.2. Development and restoration scenarios 141 The Sabah Structure Plan for 2033 is a map of proposed future developments and forest 142 restorations for the state of Sabah. The document was certified by the Director of Town and 143 Regional Planning Department, adopted by the Central Town and Country Planning Board and was approved by the State Cabinet on the 20th July 2016. The plan includes, inter alia, 144 145 transportation and connectivity infrastructure, special economic zones and environmentally 146 sensitive areas. 147 In our analyses we considered 59 scenarios, which included a base scenario reflecting existing 148 landscape conditions and 58 development and restoration scenarios proposed in the Sabah 149 Structure Plan for 2033 (Figure 2, Table 2). Development and restoration scenarios based on the 150 Sabah Structure Plan included: (1) 16 new segments of highways (4 lanes); (2) 15 segments of 151 existing roads upgraded to highway (from 2 lanes to 4 lanes); (3) 10 new segments of railroads; 152 (4) 17 new forest restoration (connected forest) areas (Figure 2).

153 *Resistance surfaces*

The base resistance surface for connectivity modelling was created by inverting and rescaling a clouded leopard path-selection function (e.g., Cushman and Lewis, 2010) model developed by Hearn et al. (2018) based on Sunda clouded leopard GPS telemetry data. The path-selection function was developed using conditional logistic regression to predict clouded leopard path selection in the Lower Kinabatangan landscape based on land cover, forest types, canopy cover, forest quality and river network (Table 1; Hearn et al., 2018) and showed that clouded leopard

160 movement choices positively associated with high-canopy cover forest, and that plantation 161 habitats with low canopy cover resist movement. This path-selection function model was 162 extrapolated to the full extent of Sabah by Hearn et al., (2019). The final variables of the path-163 selection model are listed in Table 2. 164 For each of the 58 scenarios (Figure 2) we built a resistance surface reflecting how the landscape 165 change in that scenario would modify the resistance surface by reapplying the path selection 166 function developed by Hearn et al. (2018) to GIS layers reflecting the proposed land use changes 167 (Table 2). In scenarios involving creation of new forest restoration areas, these patches of 168 restored forest were reclassified to forest. The resistance surfaces for each restoration scenario 169 were generated by inverting and rescaling the predictions of the path selection function values 170 between 1 (low resistance = high suitability) and 100 (high resistance = low suitability). As the 171 empirical habitat suitability model did not account for impact of existing major sealed roads (2) 172 lanes), based on expert knowledge, we added them to the resistance surface as an additional 173 resistance value of 10, and performed a set of sensitivity analyses to quantify the impact of 174 different degrees of resistance assigned to roads (last sub-section of the Methods). GIS layers for the development scenarios were created by 'burning in' each of the new segments 175 176 of highways and railroads into the base resistance surface. Existing roads foreseen by the Sabah 177 Structure Plan to be upgraded to highways were assigned an additional resistance value of 30, the 178 new highways were given additional resistance of 40 and the new railroads value 20.

179 Source points

Hearn et al. (2017) estimated a population of approximately 750 clouded leopards in the state of
Sabah. Therefore, to represent the spatial pattern of clouded leopard resource use, we located 750
points in the study area, probabilistically with density and distribution reflecting the pattern of

habitat suitability of our path-selection function (Hearn et al., 2018). For the17 forest restoration
scenarios (potentially new suitable environments for clouded leopard), we generated additional
occurrences inside the restoration areas. This was achieved by calculating the ratio of mean
suitability within that restoration polygon in the base scenario and the restoration scenario, and
dividing the number of source points in that polygon by that ratio. The result was an increase in
source points proportional to the net increase in total suitability in that restoration polygon (Table
3).

190 *Cumulative resistant kernels*

191 We implemented cumulative resistant kernel connectivity modelling (Compton et al., 2007) with 192 the UNICOR software (Landguth et al., 2012). The resistant kernel approach to landscape 193 connectivity maps the most cost-effective movement routes from a source cell to every other cell 194 in the landscape within a maximum dispersal cost-distance. The cumulative resistant kernel 195 surface, which reflects the incidence function of rate of movement through each cell in the 196 landscape (Kaszta et al. 2018), is calculated by summing all individual least-cost kernels from all 197 population source points (Compton et al., 2007). The kernels for each source point were 198 calculated with a cost distance threshold of 125,000 reflecting maximum distance of 125 km a 199 clouded leopard can travel in a uniform landscape of optimal low resistance (i.e., resistance = 1; 200 Hearn et al., 2019; Macdonald et al., 2018).

201 Fragmentation analysis

The cumulative resistant kernels layers for the different scenarios were compared in several
ways. First, we calculated the difference in the cumulative kernel surface between the base
scenario and every other scenario, since differences between cumulative kernel surface summed
across all pixels in the landscape reflect the total change in connectivity between the two

206 connectivity maps. Additionally, we created a binary layer, by reclassifying the cumulative 207 resistant kernel surfaces, giving all pixels lower or equal to 10 a value of 0, and pixels higher 208 than 10, value 1. The choice of value 10 as a threshold to define the binary layer was based on 209 the median value of the cumulative resistant kernels (Table S1). This creates a binary layer with 210 areas of medium to high connectivity classified as 1. We calculated several FRAGSTATS 211 metrics (McGarigal et al., 2012) to investigate the effect of the development and restoration 212 scenarios on the extent, pattern and fragmentation of connectivity, including largest patch index 213 (LPI), percent of landscape (PLAND) and correlation length (GYRATE_AM). LPI is the 214 percentage of the landscape covered by the largest single patch of connected habitat, PLAND is 215 the extent of the landscape covered by connected habitat, and GYRATE_AM is the expected 216 distance from a random location in connected habitat to the edge of connected habitat moving in 217 a straight line in a random direction. These landscape metrics were chosen since they have 218 frequently been used in assessments of connectivity (e.g. Wasserman et al. 2012, Cushman et al. 219 2016) and have been shown to be highly related to genetic differentiation (Cushman et al., 220 2013b). For each scenario we calculated the difference in these metrics between that scenario 221 and the base scenario. Based on the results of the difference in the sum of the cumulative kernel 222 surface and landscape metrics we identified the most influential development and restoration 223 scenarios – those which significantly decreased or increased connectivity in the study area.

224 Least cost path analyses

To investigate how dispersal corridors for Sunda clouded leopards might be affected by the
Sabah Structure Plan, we calculated factorial least cost paths (Cushman et al. 2009) in UNICOR
for the selected most influential scenarios. As an input we used the same source points layers and
resistant surfaces which were used to calculate cumulative resistance kernels. We then analysed

the difference in the strength and locations of least cost paths between each of the selecteddevelopment and restoration scenarios and the current situation.

231 *Alternative scenarios*

232 We used our analytical approaches to suggest less impactful alternative routing of road and 233 railway segments. Specifically we rerouted the planned segments of highways and railroads with 234 the most negative impact on the landscape connectivity by calculating the least cost path 235 connecting two source points representing ends of a highway or railroad segment. The cost layer 236 for these new routes was developed by combining the path selection function suitability layer 237 and a function of topographical slope. The input cost surface was generated by additively 238 combining the clouded leopard habitat suitability layer and topographical slope. The latter was 239 created by first calculating slope in ArcGIS 10.x (ESRI, 2012) from a digital elevation model 240 (DEM; Jarvis et al. 2008) and then by fitting an exponential function to the resulting slope layer 241 (exp (slope/10)) to represent the cost. This resulted in realignment of road and railway segments 242 to new routes that minimize impact on clouded leopard habitat suitability at the pixel scale while 243 avoiding steep slopes that are topographically unsuitable for road or railway development.

244 Comparison of the development and restoration strategies

Each of the alternative road and railway segments was overlaid onto the base resistance surfaceand we recalculated cumulative resistant kernels for each of the alternative scenarios.

Additionally, to compare the total change in connectivity we also calculated cumulative resistant

- 248 kernels for four different development and restoration strategies: (1) 'development with
- 249 restoration' all proposed developments and restoration laid out in the Sabah Structure Plan are
- applied, including new roads and railways as well as the new forest connectivity areas, (2)
- 251 'development strategy', in which the development plan is applied by including only the planned

252 new and upgraded highways and railroads, (3) 'restoration strategy' – plan accounting only for 253 restoration of the 17 forest connectivity areas, (4) 'alternative strategy', which includes 254 restoration of forest connectivity areas as well as development of all new railroads and highways, 255 but the most disruptive segments are realigned to minimalize the total ecological cost defined as 256 impact on the landscape connectivity and clouded leopard population dynamics. For each of the 257 alternative scenarios and the four strategies we then calculated a sum of kernel values and the 258 three previously mentioned landscape metrics (largest patch index, percentage of landscape and 259 correlation length).

260 Simulated population dynamics

We evaluated the influence of the proposed and alternative development and restoration
strategies on Sunda clouded leopard population dynamics and genetic diversity by simulating
changes in clouded leopard population size, allelic richness and heterozygosity. We used CDPOP
(Landguth and Cushman, 2010), an individual-based, spatially explicit cost-distance population
genetics program, to simulate spatial patterns of mating and dispersal as a function of suitable
habitat and dispersal cost.

267 We used standard simulation parameters widely used in landscape genetics simulation modelling 268 (e.g., Cushman and Landguth, 2010; Landguth et al., 2010b). We stipulated the population to 269 have 30 loci, with 10 alleles per locus, which were randomly assigned among individuals. The 270 mutation rate was parametrized to 0.0005. We used an inverse square mating and dispersal 271 probability function, with the maximum cost-weighted dispersal distance of 125km reflecting the 272 estimated maximum dispersal ability of clouded leopard (Hearn et al., 2019; Macdonald et al., 273 2018). Reproduction was sexual with non-overlapping generations. The number of offspring was 274 based on a Poisson probability draw of mean equal 2. We simulated 10 Monte Carlo replicates of

each scenario. We simulated gene flow for 200 non-overlapping generations as previous studies
have shown that this is sufficient time to ensure spatial genetic equilibrium (Landguth et al.,
2010b, 2010a).

We tested for significant differences in clouded leopard population size, allelic richness and
heterozygosity across the scenarios with ANOVA and Tukey HSD using R (R Development
Core Team, 2012). Furthermore, we used the kernel point density function in ArcGIS 10.x
(ESRI, 2012) to map spatial patterns in population density, and used kriging to map allelic
richness and heterozygosity (all as an average of 10 Monte Carlo replicates) of Sunda clouded
leopard populations across Sabah and computed differences between the base and alternative
scenarios.

285 *Mortality*

286 Many recent papers on effects of landscape structure on biodiversity conservation have focused 287 on connectivity without explicitly evaluating effects of spatially heterogenous mortality risk 288 (e.g., Cushman et al., 2018b, 2016; Thatte et al., 2018). We investigated the effect of mortality 289 risk, in addition to landscape connectivity, on population dynamics and genetic diversity of 290 clouded leopard. However, the relationship between landscape elements, such as land cover 291 types, roads and railroads, and risk of mortality for clouded leopard is unknown, but likely is 292 associated with habitat quality and landscape resistance (e.g., Mateo-Sanchez et al. 2016, 2017; 293 Zeller et al. 2018). Therefore, we simulated spatial mortality risk as proportional to landscape 294 resistance at several levels: base morality (mortality risk is equal to landscape resistance), 1.25 x 295 base mortality (125% threshold), 1.5 x base mortality (150% threshold) and 2 x base mortality 296 (200% threshold).

297 Roads and railways have an additional mortality effect on clouded leopards through road kill and 298 poaching associated with road access to the region surrounding the road, which are not included 299 in the resistance surfaces. Therefore, we simulated an additional effect of linearly decreasing 300 mortality risk up to 10km from roads and railways. The 10km range of this effect accounts for 301 large home ranges of clouded leopard and the probability of an animal being exposed to the road 302 and off-road poaching.

303 We then multiplied each of the mortality layers by 1.25, 1.5 and 2 to investigate the sensitivity of 304 the mortality values on the CDPOP results. As the values of the input CDPOP mortality layer 305

The CDPOP results for each scenario where then compared (including comparison of all

need to be between 1 to 100, we saturated all mortality values above 100 to 100.

307 scenarios with and without spatially heterogeneous mortality risk) and tested for significant 308 differences using ANOVA and Tukey HSD test. Furthermore, to compare the spatial patterns of 309 population size and genetic diversity across scenarios we produced a point density maps for 310 population size and interpolation maps for allelic richness and heterozygosity using kriging in 311 ArcGIS 10x.

312 Sensitivity analysis of road resistance

306

313 The resistance value assigned to roads was based on expert opinion and not on empirical data. 314 Therefore, we performed a set of sensitivity analysis using the base resistance scenario reflecting 315 current landscape. We built three sets of resistance layers to each assigning different resistance 316 values for roads: 5, 10 and 15. These resistance layers were then used to calculate cumulative 317 resistance surfaces, least cost paths layers, as well as population density, alleles richness and 318 heterozygosity surfaces. To evaluate how sensitive the results are to the parameterization of road

resistance we calculated correlation and averaged absolute difference across the three roadresistance scenarios in the base landscape.

321 **3. Results**

322 Landscape connectivity of the base scenario

323 There are two main core clouded leopard populations in Sabah (Figure 3-B): the larger is located

in central Sabah and encompasses the Yayasan Sabah Forest Management Area, and the smaller

325 core area is located in the north-western mountainous region, and includes Crocker Range,

326 Kinabalu Park and Trus Madi Forest Reserve. These core areas are associated with the largest

327 contiguous forested areas in Sabah. The core areas are connected by three strong linkages located

328 in central Sabah and one weaker western corridor (Figure 3-A)

329 *Comparison of development and restoration scenarios*

Among the 17 investigated forest restoration scenarios two substantially improved connectivity
in Sabah (CF 2 and CF10); these increased the sum of kernel values across Sabah by 2.43% and

332 3.45% respectively (Table). Both of these restoration areas also significantly increased the

percentage of landscape, largest patch index and correlation length of connected habitat. Three of

the 17 planned forest restoration areas did not improve connectivity in Sabah (CF4, CF5 and

335 CF16), and two areas had weak positive influence (CF1 and CF14). Only four planned forest

connectivity areas increased all the investigated landscape metrics (CF1, CF2, CF3 and CF10),

- 337 with scenarios CF2 and CF10 having by far the largest positive impact on Sabah-wide
- 338 connectivity (Table 2, Figure S1-G, H). Furthermore, forest restoration area CF2 shifts the
- corridor linking northern and southern core areas to the east (Figure S8), contrary to the CF10

340 (Figure S9), which had an opposite effect – strengthening the western corridor and weakening
341 the eastern connection between the two core areas.

Most new segments of roadway (12 segments out of 16) decreased landscape connectivity in
Sabah, with 3 segments (HN2, HN5 and HN16) predicted to have large negative impacts
(difference in kernel sum with the base scenario of -3.68%, -2.31% and -2.44% respectively;
Table 2 and Figure S1-B, C,D). Incorporating these three new highway segments into the

landscape also significantly decreased the landscape metrics LPI, PLAND, and GYRATE_AM.

347 One of the road segments slated to be upgraded from a minor road to a highway (HU4) had even

348 greater effects on connectivity, decreasing the sum of kernel values by 3.87% (Table 2, Figure

349 S1-E), the largest impact amongst all road development scenarios (Table 2). However, the

350 highest negative influence on connectivity was recorded for the railroad R6 segment (Figure S1-

F), which decreased the sum of kernel values by 4.58% (Table 2). Furthermore, construction of

352 new segments of highways and railroads shifts the strength of some linkages and has mainly

assa negative effect on connectivity (Figure S2-S7).

354 *Comparison of alternative segments and development strategies*

355 Figure 2 shows a map of planned developments for Sabah along with proposed alternative 356 scenarios for the 5 most disruptive highway and railroad segments (HN2, HN5, HN16, HU4, R6; 357 based on Table 2). Based on sum of kernel values, realignment of the most disruptive segments 358 of highways and railroads, with the exception of HU4, decreased the negative effect of these 359 segments on connectivity (Table4). The negative effect of realigning HU4 arises because this 360 segment already exists as a minor road, and construction of an additional segment of highway, 361 even if possibly less disruptive in itself than upgrading the existing road, when combined with 362 the existing road has a larger negative impact. The strongest improvement in the connectivity,

based on sum of kernel values and landscape metrics, was recorded for realigned segment of
highway HN5 (Table4). The realignment increased the sum of kernel values between 0.02 and
0.58 (the average increase of 0.33).

366 When looking at the combined effect of scenarios, the strategy including restoration of the 17 367 forest connectivity areas without any development improved the total Sabah connectivity by 368 9.38% based on sum of kernel values, and it also increased all the three landscape metrics 369 (Table5). Not surprisingly the development of highways and railroads without forest restoration 370 had a large negative effect on connectivity (~ 23% decrease in the sum of kernel values; Table 371 5). Combining development of new highways and railroads with forest restoration increased the 372 sum of kernel values by 6.4% compared to the development-only strategy. Furthermore, 373 realignment of the 5 most disruptive segments of highways and railroads additionally improved 374 connectivity by almost 3% (Table 5).

375 *Population dynamics without mortality*

376 The simulated mean population size of clouded leopard in Sabah after 200 generations dropped 377 from the initial 750-760 to 575 for the restoration strategy without spatial mortality risk and 378 about 550 for the development strategy without mortality risk (the number indicates a median of 379 10 Monte Carlo replicates, Figure 4). Results of ANOVA and Tukey HSD test indicated a 380 positive (mean = +19.4) and significant (p<0.05) difference in clouded leopard population size 381 between the restoration strategy and the base scenario (Table 6). Furthermore, the development 382 strategy significantly reduced mean simulated population size compared to the restoration 383 strategy, the full Sabah Structural Plan (combining restoration and development) or the 384 alternative strategy (including our proposed realignments), with reductions of -23.6, -14.5 and -385 16.2 respectively (Table 6). Looking at the spatial variation in population density between the

386 four scenarios and the base scenario, we found that the development strategy has a universally 387 negative effect, with highest impacts in the eastern part of Lahad Datu District and Beluran 388 District, as well as in the West Coast Division and Keningau District (Figure S10). 389 The differences between scenarios in allele richness, although resulting in lower numbers for the 390 development scenarios and higher for the restoration scenarios, were not statistically significant 391 (Table 6). Comparing heterozygosity across scenarios, the differences are more striking and most 392 of them are statistically significant (Table 6). In particular, heterozygosity significantly increased 393 with the restoration strategy compared to the development, development with restoration and 394 alternative strategy (on average by 0.064, 0.047 and 0.047 respectively). Furthermore, both 395 development with restoration and alternative scenarios significantly decreased heterozygosity 396 compared to the base scenario (Table 6). Looking at the spatial differences in allelic richness and 397 heterozygosity across scenarios, we can observe some important differences (Figure S10 and 398 Figure S11). In general, if the future actions focus only on forest restoration, both allelic richness 399 and heterozygosity will increase across Sabah. The alternative alignment scenario was the 400 second-best strategy, and it increased heterozygosity in a large portion of the state. On the 401 contrary, the scenario where development occurred without forest restoration decreased clouded 402 leopard allelic richness and heterozygosity across Sabah.

403 *Population dynamics with mortality*

The clouded leopard population size and genetic diversity measured by the level of
heterozygosity and allelic richness after 200 generations greatly varied when different thresholds
of mortality were applied (Figure 4). Overall, including spatially varying mortality risk caused
dramatic declines in population size and genetic diversity for all scenarios (Figure S13), with
large decreases in effect at higher levels of mortality risk. A statistically significant drop in

population size was observed across all scenarios, except the base scenario, even with the lowest
mortality threshold (Figure 4, Table S3). At the lowest level of mortality risk the simulation
predicted the base scenario (current landscape condition) to result in declines in clouded leopard
population size from current 750 to 500, allelic richness from 170 (base scenario after 200
generations) to 145 and heterozygosity from 0.53 (base scenario after 200 generations) to 0.48
(Figure 4, Table S3).

415 The most dramatic decline in population size (from 750 to 275-450 individuals depending on the 416 mortality threshold), number of alleles (from 165 to 125-145 depending on the mortality 417 threshold) and heterozygosity (from 0.49 to 0.1-0.32 depending on the mortality threshold) was 418 found for development strategy (Figure 4). For population size we observed a statistically 419 significant, steep linear decline with increasing mortality threshold. Number of alleles and 420 heterozygosity exhibited a decreasing but non-linear trend with increasing mortality threshold 421 (Figure 4, Table S3). The negative effect of development on population size and genetic diversity 422 comparing to the base scenario was observed across almost entire Sabah state (Figure S13B, 423 Figure S14B and Figure S15B).

424 Even when development was accompanied by restoration, the population size, allelic richness 425 and heterozygosity decreased significantly and systematically with growing mortality threshold 426 (Figure 4). However, for almost all mortality thresholds, with exception of the base mortality, 427 restoration applied with development statistically significantly increased population size as 428 compared to development without restoration (by 20-21 individuals) and heterozygosity (by 429 0.03-0.09) (Table S4). This positive difference in population size between development strategy 430 with and without restoration was particularly pronounced in Papar, Tambunan, Ranau and 431 Nabawan districts (Figure 5A), and in case of heterozygosity across the entire Sabah (Figure 5B).

432 Overall, including mortality at different thresholds in the development and restoration strategies433 caused statistically significant decreases in population size (from -111 to -269 individuals),

434 allelic richness (from -31 to -50 alleles) and heterozygosity (from -0.15 to -0.3) when comparing

- to the base scenario without mortality (Table S4). This decrease was observed across entire state
- 436 of Sabah (Figure 6).
- 437 Realignment of the segments of roads and railways (the alternative strategy) did not increase
- 438 population size or genetic diversity compared to the original development and restoration

439 strategy (Figure 4, Table S3). Furthermore, with mortality at the 150% threshold, the alternative

440 strategy produced a statistically significant decrease in population size (-25 individuals in

441 comparison with the original development and restoration strategy).

442 Sensitivity analysis of roads' resistance

443 The sensitivity analysis of road resistance showed that all three base scenarios with different

444 resistance values for roads are highly correlated (Pearson's correlation \geq 0.97; Table S2).

445 Furthermore, the absolute averaged difference between the three roads scenarios were very small446 (Table S2).

447 **4.** Discussion

448 In this paper we integrated individual-based, spatially explicit population, genetic and

449 connectivity modelling to evaluate habitat extent, population size, population connectivity and

450 genetic diversity of Sunda clouded leopard under a range of realistic development and

- 451 conservation scenarios and attempted to optimize alternative development plans to minimize
- 452 impacts on Sunda clouded leopards across the Malaysian state of Sabah in Borneo. This study is
- 453 the first to combine these methods from landscape ecology and landscape genetics to evaluate
- 454 effects of alternative development and conservation scenarios and to test the impact of mortality

imposed by landscape features, such as road kill and risk of poaching. In the past, this kind of
integration was difficult due to the challenges of characterizing the ecology and behaviour of the
target species (Fu et al., 2010) and limited development of spatial modelling tools to
quantitatively compare scenarios.

459

460 *Comparison with previous studies*

461 462 Several authors have attempted to quantify the effects of existing or future landscape structures 463 on connectivity. Such attempts, however, typically were not based on biological data about the 464 species of interest (Xun et al., 2017), did not consider alternative landscape change scenarios (Fu 465 et al., 2010), and few analysed the effects of the scenarios on landscape connectivity, population 466 dynamics or genetic diversity, and none of the previous studies incorporated the potential effects 467 of landscape change mortality risk. The study of Wasserman et al. (2010, 2012a, b) to date is the 468 only paper that combined resistant kernels and individual-based population dynamics models to 469 predict effects of climate change on population connectivity, population size and genetic 470 diversity of American marten (Martes americana). The design of the Wasserman et al. (2010) 471 study was, however, not focused on providing guidelines for land use planning agencies. 472 Recently, Thatte et al. (2018) used CDPOP to compare alternative development and conservation 473 scenarios in their impacts on tiger population size and genetic diversity in Central India, and is 474 an excellent example of using individual-based simulation modelling to compare scenarios, but 475 did not implement spatially heterogeneous mortality risk as part of their scenarios. Our analysis 476 extends this by including spatially heterogenous mortality risk as a function of landscape 477 features, and optimal realignment of proposed developments and additional evaluation of 478 connectivity and landscape patterns (kernels, least-cost paths and landscape pattern analysis).

479 The negative impact of land use change and road expansion on wildlife populations is not only 480 due to its disruptive effect on habitat connectivity but also through increasing direct mortality via 481 vehicle collisions and likely increased poaching as roads provide improved access across the 482 landscape. For example, Kramer-Schadt et al. (2004) found that most suitable patches could be 483 interconnected by movements of dispersing lynx but become isolated due to the high mortality of 484 dispersing lynx. Our results showed that including mortality in individual-based population 485 dynamics models can have immense effects on the results and should not be ignored when 486 investigating effects of developments on survival and genetic stability of a population. Similarly 487 to the study of Kramer-Schadt et al. (2004), our analysis showed that the true effect of the 488 proposed developments on population size and genetic diversity of Sunda clouded leopards is 489 greater than simulated only by connectivity modelling itself, which accounts only for decreased 490 connectivity and not increased mortality.

491 Gagné et al. (2015) concluded that ecological guidelines are usually not considered in land use 492 planning due to limitations in their practicality and feasibility. Most guidelines require species-493 specific information which is often scarce at the scales required for planning. Collection of such 494 data is costly and time-consuming, and in most planning offices the resources allocated to the 495 acquisition of biodiversity data are insufficient (Botequilha Leitão and Ahern, 2002; Gagné et al., 496 2015; Miller et al., 2009). As a result, lack of information is often a decisive argument for not 497 attending to biodiversity impact analysis (Botequilha Leitão and Ahern, 2002). Furthermore, 498 according to review of Gagné et al. (2015), it is difficult for planners, who often lack the 499 ecological expertise, to translate biological knowledge into specific planning actions. Finally, 500 guidelines are often presented in an unintegrated manner, lacking clear protocols which limits 501 their usability. This study represents an elaboration and extension of this line of work in that for

the first time we have produced a comprehensive model-based framework to quantitatively
compare scenarios of alternative landscape change in terms of their potential impacts on habitat
connectivity, population size and genetic diversity of a focal species.

505 Significance for clouded leopard conservation

506 Our analysis suggests that the current clouded leopard population size in Sabah may dramatically 507 decline (~ -26%), even without additional development, likely reflecting the time lag effect and 508 extinction debt of recent massive and rapid habitat loss. Our results imply that without creating 509 new suitable habitats for clouded leopard, the current carrying capacity of the available habitat is 510 not sufficient to sustain the current population size. For example, similarly to the findings of 511 Hearn et al. (2019), our models predicted loss of the clouded leopard local population in the 512 lower Kinabatangan floodplain due to current isolation and past loss of habitat.

513 Most importantly, however, our findings strongly indicate that development of infrastructure, 514 like highways and railroads, is likely to have large negative impacts on clouded leopard 515 populations (23% drop in connectivity), including large population declines across Sabah and 516 extinction of some subpopulations. For example, our simulations suggest that construction of 517 new highways and railways in Sabah (even accompanied by habitat restoration) may cause future 518 loss of local clouded leopard population in Tawau Hills National Park. One of our most 519 important results is that this detrimental effect of development is immensely stronger when 520 clouded leopard mortality is considered. Including mortality effects led to population declines 521 from 40% to 63% (for the low mortality and high mortality effects, respectively, compared to 522 the scenario without mortality effects. Similarly, Kramer-Schadt et al. (2004) found that 523 mortality significantly impedes dispersal probability of lynx when including road mortality and 524 Frair et al. (2008) demonstrated that even relatively low road density significantly increase

525 mortality of elk. Roads and railways have a diffusive effect on an animal survival, generating not 526 only a direct risk of a road kill (Kramer-Schadt et al., 2004), but they also provide an access for 527 humans elevating the risk of an animal being poached (Frair et al., 2008; Haines et al., 2012). 528 This diffusive effect of human infrastructure is broader for mobile carnivores with large home 529 ranges (Kramer-Schadt et al., 2004). As a consequence, road-related mortality can create 530 localized population sinks (Nielsen et al., 2006) and alter the demographic structure of 531 populations (Steen and Gibbs, 2004). Our results dramatically demonstrate this, with large 532 decreases in population size and genetic diversity predicted across Sabah under all mortality 533 scenarios. This emphasizes the critical importance of mitigating mortality risk in addition to 534 preserving core habitats and connectivity between them. 535 Not all the development scenarios are predicted to have equally negative effects on the clouded 536 leopard population. Some of the planned segments of highways and railroad were predicted to 537 have negligible effect on the population connectivity. In contrast, certain segments of proposed 538 new roads or railways would have disproportionately large negative influences on landscape 539 connectivity of clouded leopard populations across almost entire Sabah state. Developing the 540 new segment of railroad R6, especially when combined with upgrading existing road to highway 541 HU4, significantly decreases the connectivity in southern part of Sabah, which might begin a 542 disintegration of the large southern core area into two separate parts (Figure S1-E). 543 Developments in one place affects strength of corridors in a much wider extent, weakening or 544 straightening some of the connections (Figure S2-S9). This shows how important it is to 545 evaluate potential impacts of new infrastructure in the landscape and to alter development plans 546 to minimize ecological costs while achieving the development goals.

547 Furthermore, findings of our study demonstrate that the negative effect of roads and railways can 548 be mitigated by targeted forest restoration efforts, however, only to very limited extents. We 549 found very large differences in the effectiveness of forest restorations depending on where they 550 are in the landscape. Specifically, some proposed forest restoration areas were not predicted to 551 have any positive (or negative) effect, suggesting that conservation investment may be more 552 efficiently deployed elsewhere. However, some of the proposed restoration areas, like CF2 and 553 CF10 (Table 2, Figure 2 and Figure S1), substantially improved landscape connectivity, with 554 large impacts on simulated genetic diversity. Our results show that effective forest restoration is 555 not only a function of the size of restored areas, but their location also has a disproportionally 556 large influence. Four out of the five restoration areas that had the highest impact on connectivity 557 had substantially higher influence than predicted by their size alone and CF2 had more than 2.5 558 times higher influence than expected based on its size alone (Figure S16). The large impact 559 resulting from the restoration of the forest connectivity area CF2 is because it links two large 560 core areas around Trus Madi and Tankulap-Piningah Forest Reserves, enabling connectivity in 561 regions which previously were fragmented. This shows that evaluating and optimizing 562 alternative restoration scenarios is critical to maximize the effectiveness of conservation action. 563 The finding that forest restoration could effectively increase population connectivity of clouded 564 leopards are consistent with Hearn et al., (2018) who concluded that riparian corridors were cost 565 effective measures to increase connectivity, and reforestation of inundated/flooded plantation 566 areas greatly increased connectivity whilst minimising the financial impact to the plantation 567 industry.

However, results of our scenarios that included mortality risk demonstrated that habitat
restoration could be ineffective if mortality risks associated with development are not accounted

for and reduced. Clouded leopard population size and generic diversity dropped dramatically when we simulated spatially heterogeneous mortality risk associated with developments, even when development was accompanied by forest restoration. While the difference in population size and heterozygosity was significant for the development and restoration scenario as compared to the development strategy without restoration, it was a relatively small benefit compared to the massive effects of development on the population when development produces elevated mortality risk in addition to impacting connectivity alone.

577 We would like to stress the importance of considering mortality effects in decision making 578 regarding spatial planning of landscape development and siting highways and railways. We 579 found that realignment of the most impactful segments of highways and railroads based on 580 resistance to movement, without accounting for mortality risk, might be misleading. For 581 example, our road and railway realignment without including mortality showed significant 582 improvement in population connectivity, population size and genetic diversity. However, when 583 we simulated elevated mortality risk associated with the realignment it appeared that not only did 584 the proposed realignment not prove to be better, but at one mortality threshold it significantly 585 decreased population size compared to the original development and restoration plan.

586 *Scope and limitations*

587 Our analysis is based on the only existing dataset on Sunda clouded leopard movement and the 588 only existing empirically based model of landscape resistance for the species (Hearn et al., 589 2018). This data set, however, being derived from a relatively small number of individuals in a 590 single landscape in lowland Sabah, may not represent the full scope of clouded leopard 591 movement behaviour in relation to environmental features. For example, the movement data 592 were collected in an area with no major roads which made it impossible to empirically estimate

the resistance of roads to clouded leopard movement; hence we had to assess it based on expert
knowledge. Future research, therefore, should focus on gathering more extensive clouded
leopard movement data from a wider geographical extent.

596 In addition, our development scenarios only included the specific planned actions in the Sabah 597 Structure Plan 2033. However, construction of one road usually leads to a fishbone effect, with 598 additional roads built off of the main road. These roads will also facilitate human disturbance, 599 poaching and land conversion (e.g., Cushman et al., 2017) These are not incorporated into the 600 model, which was intended to provide a focused evaluation of the specific foreseen actions in the 601 official Sabah Structure Plan. Thus, our predictions should be seen as a highly conservative 602 bottom end of negative impacts and future research should strive to integrate all these factors to 603 provide a fuller accounting of ecological impacts of alternative development scenarios.

604 Our methodological framework provided an example of optimizing placement of roads 605 connecting given locations. For this purpose we used least cost path analysis to minimize 606 ecological cost (e.g., intersection with cumulative habitat suitability) and engineering feasibility 607 (e.g., topographical slope). Topographical slope is a critical factor considered by engineers in 608 designing and routing roads and is an obvious factor to consider in such realignment analysis. 609 However, one should remember that decision of developing a road network is often grounded in 610 complex economic and socio-political factors. We did not have knowledge and necessary data to 611 incorporate these factors in our road optimization model. The example provided in this paper is 612 relatively simple and not tied to socio-economic factors affecting decision-making in Sabah. 613 Nevertheless, the analysis provides useful suggestions for how road impacts could be minimized 614 and illustrates a methodology that can be extended to incorporate any relevant spatial layer into

road resistant surface, (e.g., political considerations, economic factors, social attitudes, geology,real costs of road construction, etc.).

617 There is little information about road resistance and effects of landscape structure and change on 618 mortality risk for clouded leopard. As a result we used sensitivity analysis to evaluate the effects 619 of this uncertainty. We found that across a realistic range of road resistance levels the results did 620 not markedly change, indicating relatively high certainty in the implications of our road 621 connectivity analysis. In contrast, however, there were immense differences in the effects of 622 different levels of spatial mortality risk. Given that mortality risk had huge impacts on predicted 623 population size and genetic diversity, improving understanding of how landscape features and 624 landscape change affect risk of mortality is critical.

625 *Wider implications*

The GIS-based analytical framework we described in this paper was built to integrate connectivity modelling and landscape genetics tools to provide decision makers in Sabah information to optimize the trade-off between economic development and biodiversity conservation. Although our analyses were based on the Sabah Structural Development Plan and its impact on Sunda clouded leopard, the presented methodological workflow and tools can be applied to almost any area and species.

The most important point to keep in mind when interpreting our results is that it is not a projection of what we expect the actual clouded leopard population response will be if any of the investigated development scenarios were actually implemented. Rather, it is a quantitative assessment of the differences in expected impact between scenarios, assuming all other factors stay the same, and omitting factors not included in the model. The future of Sabah, as

637 everywhere in the developing world, includes a complex of interacting factors affecting land use 638 change and human exploitation of wildlife. Our modeling approach provides a framework that is 639 highly flexible and powerful to include multiple and interacting factors. However, to do this 640 realistically requires knowledge of how landscapes will change in the future, how those changes 641 will affect human behaviours and attitudes, and how these in conjunction will affect wildlife 642 habitat and wildlife populations. In this paper we implemented analysis of 58 landscape change 643 scenarios that are officially described in the Sabah Structural Plan 2033, which gives our analysis 644 a foundation in plausible reality. However, the actual development that Sabah will follow will 645 most probably dramatically differ from that aspirational and general plan. As presented here, our 646 results show the effectiveness of the tools and their utility for comparing the impacts of 647 alternative scenarios on connectivity, population size and genetic diversity. The specific findings 648 are useful in identifying the locations of development and restoration that would be most 649 impactful among those analysed. However, for this approach to be directly relevant to 650 conservation in Sabah in the future it should be integrated formally in the official planning 651 process, where actual and realistic development plans are evaluated, both in terms of their 652 incremental impact on connectivity but also on poaching risk and in affecting likely future 653 patterns of landscape change (e.g. Cushman et. al 2017).

654 5. Conclusions

The approach we presented here could be usefully applied to a wide range of systems and species. This study focused on balancing Sunda clouded leopard conservation with development goals in Sabah. We developed an integrated modelling framework to evaluate the relative impacts of 58 different development and forest restoration scenarios, with and without mortality risk, on population connectivity, population size and genetic diversity, and illustrated a method

to adjust development plans to minimize negative ecological impacts. We hope that these results will be useful in guiding the Sabah government in deciding the best way to jointly conserve their precious natural heritage and achieve their economic development goals. We also hope that this example will be a step forward to achieve the broader, and critical, goal of integrating scenario optimization in conservation and development planning around the world.

665 6. Acknowledgments

We thank Sabah Parks, Sabah Forestry Department, Sabah Wildlife Department, Yayasan Sabah,
the State Secretary, the Sabah Chief Minister's Department, and the Sabah Biodiversity Centre
for permission to conduct field research in Sabah. This field research was funded primarily by
the Robertson Foundation, Recanati-Kaplan Foundation, and the Sime Darby Foundation, with
additional funding from the Clouded Leopard Project, the Felidae Conservation Fund, Houston
Zoo, HG Wills International Trust for Nature Conservation, Panthera, Point Defiance Zoo and
Aquarium, and Wild About Cats.

674 7. References

- Ahern, J., 2013. Urban landscape sustainability and resilience: the promise and challenges of
- 676 integrating ecology with urban planning and design. Landsc. Ecol. 28, 1203–1212.
- 677 https://doi.org/10.1007/s10980-012-9799-z
- 678 Botequilha Leitão, A., Ahern, J., 2002. Applying landscape ecological concepts and metrics in
- 679 sustainable landscape planning. Landsc. Urban Plan. 59, 65–93.
- 680 https://doi.org/10.1016/S0169-2046(02)00005-1
- Bryan, J.E., Shearman, P.L., Asner, G.P., Knapp, D.E., Aoro, G., Lokes, B., 2013. Extreme
- 682 Differences in Forest Degradation in Borneo: Comparing Practices in Sarawak, Sabah, and
- Brunei. PLoS One 8. https://doi.org/10.1371/journal.pone.0069679
- 684 Buckley-Beason, V.A., Johnson, W.E., Nash, W.G., Stanyon, R., Menninger, J.C., Driscoll,
- 685 C.A., Howard, J.G., Bush, M., Page, J.E., Roelke, M.E., Stone, G., Martelli, P.P., Wen, C.,
- 686 Ling, L., Duraisingam, R.K., Lam, P. V., O'Brien, S.J., 2006. Molecular Evidence for
- 687 Species-Level Distinctions in Clouded Leopards. Curr. Biol. 16, 2371–2376.
- 688 https://doi.org/10.1016/j.cub.2006.08.066
- 689 Carroll, C., Noss, R.F., Paquet, P.C., 2001. Carnivores as focal species for conservation planning
- 690 in the Rocky Mountain region. Ecol. Appl. 11, 961–980. https://doi.org/10.2307/3061005
- 691 Christiansen, P.E.R., 2009. Neotype of Neofelis diardi (Mammalia: Carnivora: Felidae). Zootaxa
 692 68, 58–68.
- 693 Compton, B.W., McGarigal, K., Cushman, S.A., Gamble, L.R., 2007. A resistant-kernel model
- of connectivity for amphibians that breed in vernal pools. Conserv. Biol. 21, 788–799.
- 695 https://doi.org/10.1111/j.1523-1739.2007.00674.x
- 696 Cushman, S.A., Elliot, N.B., Bauer, D., Kesch, K., Bahaa-el-din, L., Bothwell, H., Flyman, M.,

- 697 Mtare, G., Macdonald, D.W., Loveridge, A.J., 2018a. Prioritizing core areas, corridors and
- 698 conflict hotspots for lion conservation in southern Africa. PLoS One 13.
- 699 https://doi.org/10.1371/journal.pone.0196213
- 700 Cushman, S.A., Elliot, N.B., Bauer, D., Kesch, K., Bahaa-el-din, L., Bothwell, H., Flyman, M.,
- 701 Mtare, G., Macdonald, D.W., Loveridge, A.J., 2018b. Prioritizing core areas, corridors and
- conflict hotspots for lion conservation in southern Africa. PLoS One 13, e0196213.
- 703 https://doi.org/10.1371/journal.pone.0196213
- 704 Cushman, S.A., Elliot, N.B., Macdonald, D.W., Loveridge, A.J., 2016. A multi-scale assessment
- of population connectivity in African lions (Panthera leo) in response to landscape change.
- 706 Landsc. Ecol. 31, 1337–1353. https://doi.org/10.1007/s10980-015-0292-3
- Cushman, S.A., Landguth, E.L., 2010. Spurious correlations and inference in landscape genetics.
 Mol. Ecol. 19, 3592–3602. https://doi.org/10.1111/j.1365-294X.2010.04656.x
- 709 Cushman, S.A., Lewis, J.S., 2010. Movement behavior explains genetic differentiation in
- American black bears. Landsc. Ecol. 25, 1613–1625. https://doi.org/10.1007/s10980-0109534-6
- 712 Cushman, S.A., Lewis, J.S., Landguth, E.L., 2014. Why did the bear cross the road? Comparing
- the performance of multiple resistance surfaces and connectivity modeling methods.
- 714 Diversity 6, 844–854. https://doi.org/10.3390/d6040844
- 715 Cushman, S.A., Macdonald, E.A., Landguth, E.L., Malhi, Y., Macdonald, D.W., 2017. Multiple-
- scale prediction of forest loss risk across Borneo. Landsc. Ecol. 32, 1581–1598.
- 717 https://doi.org/10.1007/s10980-017-0520-0
- 718 Cushman, S.A., Shirk, A.J., Landguth, E.L., 2013. Landscape genetics and limiting factors.
- 719 Conserv. Genet. 14, 263–274. https://doi.org/10.1007/s10592-012-0396-0

- 720 DeFries, R., Hansen, A., Turner, B.L., Reid, R., Liu, J., 2007. Land Use Change Around
- Protected Areas : Management To Balance Human Needs and Ecological Function. Ecol.
 Appl. 17, 1031–1038. https://doi.org/10.1890/05-1111
- 723 Duraiappah, A.K., Naeem, S., Agardy, T., Ash, N.J., Cooper, H.D., Diaz, S., Faith, D.P., Mace,
- G., McNeely, J.A., Mooney, H.A., others, 2005. Ecosystems and human well-being:
- biodiversity synthesis; a report of the Millennium Ecosystem Assessment. World ResourcesInstitute, Washington. DC.
- 727 ESRI, 2012. 10.1 ArcGIS. Environ. Syst. Res. Institute, Redlands, CA.
- 728 Frair, J.L., Merrill, E.H., Beyer, H.L., Morales, J.M., 2008. Thresholds in landscape connectivity
- and mortality risks in response to growing road networks. Jourbal Aplied Ecol. 45, 1504–
- 730 1513. https://doi.org/10.1111/j.1365-2664.2007.0
- 731 Frankham, R., 2005. Genetics and extinction. Biol. Conserv. 126, 131–140.
- 732 https://doi.org/10.1016/j.biocon.2005.05.002
- Fu, W., Liu, S., Degloria, S.D., Dong, S., Beazley, R., 2010. Characterizing the "fragmentation-
- barrier" effect of road networks on landscape connectivity: A case study in Xishuangbanna,
- 735 Southwest China. Landsc. Urban Plan. 95, 122–129.
- 736 https://doi.org/10.1016/j.landurbplan.2009.12.009
- 737 Gagné, S.A., Eigenbrod, F., Bert, D.G., Cunnington, G.M., Olson, L.T., Smith, A.C., Fahrig, L.,
- 738 2015. A simple landscape design framework for biodiversity conservation. Landsc. Urban
- 739 Plan. 136, 13–27. https://doi.org/10.1016/j.landurbplan.2014.11.006
- 740 Gaveau, D.L.A., Sheil, D., Husnayaen, Salim, M.A., Arjasakusuma, S., Ancrenaz, M., Pacheco,
- 741 P., Meijaard, E., 2016. Rapid conversions and avoided deforestation: Examining four
- decades of industrial plantation expansion in Borneo. Sci. Rep. 6, 1–13.

- 743 https://doi.org/10.1038/srep32017
- 744 Gaveau, D.L.A., Sloan, S., Molidena, E., Yaen, H., Sheil, D., Abram, N.K., Ancrenaz, M., Nasi,
- 745 R., Quinones, M., Wielaard, N., Meijaard, E., 2014. Four decades of forest persistence,
- clearance and logging on Borneo. PLoS One 9, 1–11.
- 747 https://doi.org/10.1371/journal.pone.0101654
- 748 Haines, A.M., Elledge, D., Wilsing, L.K., Grabe, M., Barske, M.D., Burke, N., Webb, Stephen,
- 749 L., 2012. Spatially Explicit Analysis of Poaching Activity as a Conservation Management
- 750 Tool. Wildl. Soc. Bull. 36, 685–692. https://doi.org/10.1002/wsb.194
- Hansen, M.C., 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change. Nat.
- Rev. Genet. Cell Genes Dev. Nat. PLoS Biol. Proc. Natl. Acad. Sci. U.S.A. J. Jurka Trends
 Genet. Genet. Sci. Bioinforma. 850, 123–134. https://doi.org/10.1126/science.1244693
- Hearn, A., Ross, J., Brodie, J., Cheyne, S., Haidir, I.A., Loken, B., Mathai, J., Wilting, A.,
- McCarthy, J., 2015. Neofelis diardi. The IUCN Red List of Threatened Species 2015: e.
 T136603A50664601.
- 757 Hearn, A.J., Cushman, S.A., Goossens, B., Macdonald, E., Ross, J., Hunter, L.T.B., Abram,
- 758 N.K., Macdonald, D.W., 2018. Evaluating scenarios of landscape change for Sunda clouded
- leopard connectivity in a human dominated landscape. Biol. Conserv. 222, 232–240.
- 760 https://doi.org/10.1016/j.biocon.2018.04.016
- 761 Hearn, A.J., Cushman, S.A., Goossens, B., Ross, J., Macdonald, E.A., Hunter, L.T.B.,
- 762 Macdonald, D.W., 2019. Predicting connectivity, population size and genetic diversity of
- 763 Sunda clouded leopards across Sabah, Borneo. Landsc. Ecol. 1.
- 764 https://doi.org/10.1007/s10980-018-0758-1
- Hearn, A.J., Ross, J., Bernard, H., Bakar, S.A., Goossens, B., Hunter, L.T.B., Macdonald, D.W.,

- 766 2017. Responses of Sunda clouded leopard Neofelis diardi population density to
- 767 anthropogenic disturbance: refining estimates of its conservation status in Sabah. Oryx 1–
- 768 11. https://doi.org/10.1017/S0030605317001065
- 769 Jarvis, A., Reuter, H.I., Nelson, A., Guevara, E., 2008. Hole-filled SRTM for the globe Version
- 4. available from CGIAR-CSI SRTM 90m Database (http://srtm. csi. cgiar. org).
- 771 Kaszta, Z., Cushman, S.A., Sillero-Zubiri, C., Wolff, E., Marino, J., 2018. Where buffalo and
- cattle meet: Modelling interspecific contact risk using cumulative resistant kernels.
- 773 Ecography (Cop.). 41, 1–11. https://doi.org/10.1111/ecog.03039
- 774 Kitchener, A.C., Beaumont, M.A., Richardson, D., 2006. Geographical Variation in the Clouded
- Leopard, Neofelis nebulosa, Reveals Two Species. Curr. Biol. 16, 2377–2383.
- 776 https://doi.org/10.1016/j.cub.2006.10.066
- 777 Kramer-Schadt, S., Revilla, E., Wiegand, T., Breitenmoser, U., 2004. Fragmented landscapes,
- road mortality and patch connectivity: Modelling influences on the dispersal of Eurasian
- 779 lynx. J. Appl. Ecol. 41, 711–723. https://doi.org/10.1111/j.0021-8901.2004.00933.x
- 780 Landguth, E.L., Cushman, S.A., 2010. Cdpop: A spatially explicit cost distance population
- 781 genetics program. Mol. Ecol. Resour. 10, 156–161. https://doi.org/10.1111/j.1755-
- 782 0998.2009.02719.x
- 783 Landguth, E.L., Cushman, S.A., Murphy, M.A., Luikart, G., 2010a. Relationships between
- migration rates and landscape resistance assessed using individual-based simulations. Mol.
- 785 Ecol. Resour. 10, 854–862. https://doi.org/10.1111/j.1755-0998.2010.02867.x
- 786 Landguth, E.L., Cushman, S.A., Schwartz, M.K., McKelvey, K.S., Murphy, M., Luikart, G.,
- 787 2010b. Quantifying the lag time to detect barriers in landscape genetics. Mol. Ecol. 19,
- 788 4179–4191. https://doi.org/10.1111/j.1365-294X.2010.04808.x

789	Landguth, E.L., Hand, B.K., Glassy, J., Cushman, S.A., Sawaya, M.A., 2012. UNICOR: A
790	species connectivity and corridor network simulator. Ecography (Cop.). 35, 9-14.
791	https://doi.org/10.1111/j.1600-0587.2011.07149.x
792	Macdonald, E.A., Cushman, S.A., Landguth, E.L., Hearn, A.J., Malhi, Y., Macdonald, D.W.,
793	2018. Simulating impacts of rapid forest loss on population size, connectivity and genetic

diversity of Sunda clouded leopards (Neofelis diardi) in Borneo. PLoS One 13, 1–22.

795 https://doi.org/10.1371/journal.pone.0196974

- 796 Macdonald, E.A., Cushman, S.A., Landguth, E.L., Hearn, A.J., Malhi, Y., Macdonald, D.W.,
- n.d. Simulating impacts of rapid forest loss on population size, connectivity and genetic
- diversity of Sunda clouded leopards (Neofelis diardi) in Borneo. PLoS One 165–228.
- 799 Macdonald, E.A., Hinks, A., Weiss, D.J., Dickman, A., Burnham, D., Sandom, C.J., Malhi, Y.,
- 800 Macdonald, D.W., 2017. Identifying ambassador species for conservation marketing. Glob.

801 Ecol. Conserv. 12, 204–214. https://doi.org/10.1016/j.gecco.2017.11.006

- 802 McGarigal, K., Cushman, S.A., Ene, E., 2012. FRAGSTATS v4: spatial pattern analysis
- 803 program for categorical and continuous maps. University of Massachusetts, Amherst,
- 804 Massachusetts, USA. goo. gl/aAEbMk.
- 805 McMorrow, J., Talip, M.A., 2001. Decline of forest area in Sabah, Malaysia: Relationship to
- state policies, land code and land capability. Glob. Environ. Chang. 11, 217–230.
- 807 https://doi.org/10.1016/S0959-3780(00)00059-5
- 808 Miettinen, J., Shi, C., Tan, W.J., Liew, S.C., 2012. 2010 land cover map of insular Southeast
- Asia in 250-m spatial resolution. Remote Sens. Lett. 3, 11–20.
- 810 https://doi.org/10.1080/01431161.2010.526971
- 811 Miller, J.R., Groom, M., Hess, G.R., Steelman, T., Stokes, D.L., Thompson, J., Bowman, T.,

812	Fricke, L., King, B., Marquardt, R., 2009. Biodiversity conservation in local planning.
813	Conserv. Biol. 23, 53-63. https://doi.org/10.1111/j.1523-1739.2008.01110.x
814	Nielsen, S.E., Stenhouse, G.B., Boyce, M.S., 2006. A habitat-based framework for grizzly bear
815	conservation in Alberta 0. https://doi.org/10.1016/j.biocon.2005.12.016
816	Noël, S., Ouellet, M., Galois, P., Lapointe, F.J., 2007. Impact of urban fragmentation on the
817	genetic structure of the eastern red-backed salamander. Conserv. Genet. 8, 599-606.
818	https://doi.org/10.1007/s10592-006-9202-1
819	Noss, R.F., Quigley, H.B., Hornocker, M.G., Merrill, T., Paquet, P.C., 1996. Conservation
820	biology and carnivore conservation in the Rocky Mountains. Conserv. Biol. 10, 949–963.
821	https://doi.org/10.1046/j.1523-1739.1996.10040949.x
822	R Development Core Team, 2012. R: A language and environment for statistical computing. R
823	Foundation for Statistical ComputingTeam, Vienna, Austria.
824	Reynolds, G., Payne, J., Sinun, W., Mosigil, G., Walsh, R.P.D., 2011. Changes in forest land use
825	and management in Sabah, Malaysian Borneo, 1990-2010, with a focus on the Danum
826	Valley region. Philos. Trans. R. Soc. B Biol. Sci. 366, 3168–3176.
827	https://doi.org/10.1098/rstb.2011.0154
828	Rudnick, D., Ryan, S.J., Beier, P., Cushman, S.A., Dieffenbach, F., Trombulak, S.C., 2012. The
829	Role of Landscape Connectivity in Planning and Implementing Conservation and

- 830 Restoration Priorities. Issues in Ecology Recommended Citation.
- 831 https://doi.org/10.1371/JOURNAL.PONE.0110984
- 832 Steen, D.A., Gibbs, J.P., 2004. Effects of Roads on the Structure of Freshwater Turtle
- 833 Populations 18, 1143–1148.
- 834 Thatte, P., Joshi, A., Vaidyanathan, S., Landguth, E., Ramakrishnan, U., 2018. Maintaining tiger

- 835 connectivity and minimizing extinction into the next century: Insights from landscape
- genetics and spatially-explicit simulations. Biol. Conserv. 218, 181–191.
- 837 https://doi.org/10.1016/j.biocon.2017.12.022
- 838 Van Noordwijk, A.J., 1994. The interaction of inbreeding depression and environmental
- stochasticity in the risk of extinction of small populations, in: Conservation Genetics.
- 840 Springer, pp. 131–146.
- 841 Wasserman, T.N., Cushman, S.A., Littell, J.S., Shirk, A.J., Landguth, E.L., 2013. Population
- 842 connectivity and genetic diversity of American marten (Martes americana) in the United
- 843 States northern Rocky Mountains in a climate change context. Conserv. Genet. 14, 529–
- 844 541. https://doi.org/10.1007/s10592-012-0336-z
- 845 Wasserman, T.N., Cushman, S.A., Schwartz, M.K., Wallin, D.O., 2010. Spatial scaling and
- 846 multi-model inference in landscape genetics: Martes americana in northern Idaho. Landsc.

Ecol. 25, 1601–1612. https://doi.org/10.1007/s10980-010-9525-7

- 848 Wasserman, T.N., Cushman, S.A., Wallin, D.O., Hayden, J., 2012. Multi scale habitat
- relationships of Martes americana in northern Idaho, U.S.A. USDA For. Serv. Res. Pap.
 RMRS-RP 1–21.
- 851 Wilting, A., Fischer, F., Bakar, A., Linsenmair, K.E., 2006. Clouded leopards, the secretive top-
- 852 carnivore of South-East Asian rainforests: their BMC Ecol. 13, 1–13.
- 853 https://doi.org/10.1186/1472-6785-6-16
- Xun, B., Yu, D., Wang, X., 2017. Prioritizing habitat conservation outside protected areas in
- rapidly urbanizing landscapes: A patch network approach. Landsc. Urban Plan. 157, 532–
- 856 541. https://doi.org/10.1016/j.landurbplan.2016.09.013

859 TABLES

Table 1. GIS layers used to build the resistance surface

Name	Resolution	Source
Forest quality and land cover 2010	50m	Gaveau et al. (2014)
Forest types	50m	Sabah Forestry Department
Land cover 2010	250m	Miettinen et al. (2012)
Canopy cover	30m	Hansen (2013)
Rivers	Vector	Sabah Forestry Department

Table 2. Change in the variables of clouded leopard habitat suitability model for the scenarios considering new forest connectivity areas.

Input layer	Turned into
A graforost/forest regrowth (Caysey et al. 2014)	Logged forest (Gaveau et al.,
Agroforest/forest regrowth (Gaveau et al., 2014)	2014)
Oilpolm plantation (Coverse et al. 2014)	Logged forest (Gaveau et al.,
Oilpalm plantation (Gaveau et al., 2014)	2014)
Logged forest (Gaveau et al., 2014)	Remained the same
Plantation regrowth (Miettinen et al., 2012)	0
Lowland mosaic (Miettinen et al., 2012)	0
Lowland open (Miettinen et al., 2012)	0
Lowland freshwater swamp forest (Miettinen et al., 2012)	Remained the same
Lowland mixed dipt (Miettinen et al., 2012)	Remained the same
Lowland mixed dipt limestone (Miettinen et al., 2012)	Remained the same
Forest cover (Hansen, 2013) < 0.75	0.75
Rivers	Remained the same

Destanction and	Size [l.m2]	Number of source locations			
Restoration area	Size [km ²]	Base scenario	Restoration scenario		
CF1	440	5	5		
CF2	362	7	8		
CF3	1270	8	10		
CF4	20	0	0		
CF5	83	0	1		
CF6	136	0	1		
CF7	59	0	1		
CF8	230	1	3		
CF9	38	0	1		
CF10	1413	22	23		
CF11	60	1	1		
CF12	71	1	1		
CF13	281	3	3		
CF14	41	1	1		
CF15	177	3	4		
CF16	41	1	2		
CF17	65	1	1		

Table 3. Number of clouded leopard source locations in each forest restoration area (CF – connected forest) in the base scenario (current state) and the restoration scenario.

Table 4. Difference in kernel sum, percentage of landscape, largest patch index and correlation length between each development scenario and the base scenario (CF – connected forest, HN – highway new, HU – highway upgraded, R – railroad; the most influential scenarios are in bold).

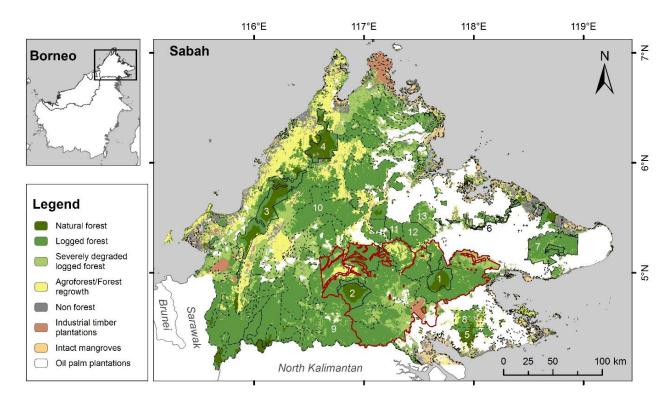
S	cenario	Kernel sum [%]	Percentage of landscape [%]	Largest Patch Index [%]	Correlation length [%]
	CF1	0.40	0.35	0.37	0.23
	CF2	2.43	0.78	0.81	0.13
	CF3	0.80	0.22	0.22	0.04
	CF4	0.00	0.00	0.00	0.00
eas	CF5	0.00	0.00	0.00	0.00
ar	CF6	0.03	0.00	0.00	0.00
vity	CF7	0.01	0.00	0.00	0.00
sctiv	CF8	0.03	0.06	0.00	-0.05
New forest connectivity areas	CF9	0.24	0.03	0.03	-0.02
t co	CF10	3.45	0.72	0.74	0.02
rest	CF11	0.02	0.00	0.00	0.00
v fo	CF12	0.81	0.03	0.04	-0.02
New	CF13	0.96	0.00	0.00	0.00
	CF14	0.02	0.00	0.00	0.00
	CF15	0.12	0.05	0.05	0.01
	CF16	0.00	0.00	0.00	0.00
	CF17	0.03	0.02	0.00	-0.02
	HN1	0.00	0.00	0.00	0.00
	HN2	-3.68	-0.65	-0.67	0.00
	HN3	-1.88	0.00	0.00	0.00
	HN4	0.00	0.00	0.00	0.00
	HN5	-2.31	-0.47	-0.49	-0.27
NS	HN6	-0.12	0.00	0.00	0.00
New Highways	HN7	0.00	0.00	0.00	0.00
ligh	HN8	0.00	0.00	0.00	0.00
W F	HN9	-0.01	0.00	0.00	0.00
Ne	HN10	-0.11	-0.13	-0.14	-0.05
	HN11	-0.01	-0.02	-0.02	0.00
	HN12	-0.05	-0.01	-0.02	-0.01
	HN13	-1.21	-0.24	-0.25	-0.09
	HN14	-0.77	-0.34	-0.35	0.10
	HN15	-1.80	-0.28	-0.29	0.15

	HN16	-2.44	-0.52	-0.54	0.46
	HU1	0.00	0.00	0.00	0.00
	HU2	0.00	0.00	0.00	0.00
	HU3	-0.01	-0.02	-0.02	-0.02
Ŋ	HU4	-3.87	-0.17	-0.17	-0.02
Roads upgraded to highway	HU5	0.00	0.00	0.00	0.00
hig	HU6	0.00	0.00	0.00	0.00
t 0	HU7	0.00	0.00	0.00	0.00
led	HU	0.00	0.00	0.00	0.00
grae	HU9	-0.40	-0.51	-0.53	-0.05
ßdn	HU10	-1.32	-0.06	-0.06	0.03
ıds	HU11	-0.02	0.00	0.00	0.00
Roa	HU12	0.00	0.00	0.00	0.00
	HU13	-0.81	-0.29	-0.30	-0.13
	HU14	-0.90	-0.25	-0.26	0.02
	HU15	-0.19	-0.08	-0.08	0.02
	R1	0.00	0.00	0.00	0.00
	R2	-0.07	-0.06	-0.06	-0.05
	R3	0.00	0.00	0.00	0.00
S	R4	-0.02	-0.01	-0.01	0.00
Railroads	R5	-0.44	-0.28	-0.29	0.20
ailr	R6	-4.58	-0.20	-0.21	0.02
2	R7	-0.05	-0.05	-0.05	-0.05
	R8	0.00	0.00	0.00	0.00
	R9	-0.20	-0.09	-0.09	0.02
	R10	0.00	0.00	0.00	0.00

876	Table 5. Difference in kernel sum, percentage of landscape, largest patch index and correlation length between each
877	of the development strategies or alternative segments of roads and railroads, and the base scenario (HN - highway
878	new, HU – highway upgraded, R – railroad; in bold are the values from before the realignment of the roads and

railroads).

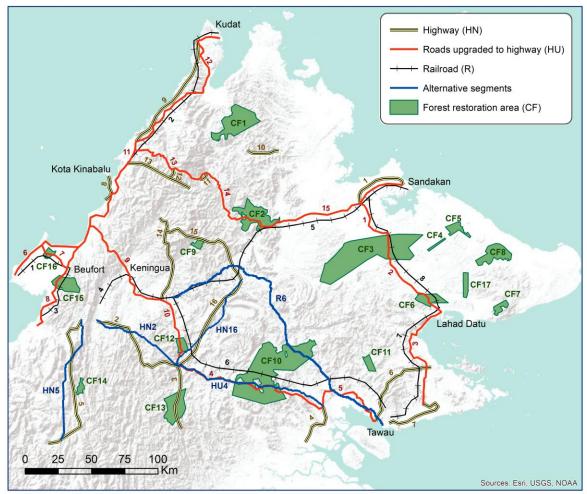
Strategy/scenario	Kernel sum [%]	Percentage of landscape [%]	Largest Patch Index [%]	Correlation length [%]
Development + restoration	-16.55	-2.91	-3.11	-0.68
Restoration	9.38	2.27	2.26	0.06
Development	-22.92	-5.53	-5.73	-0.64
Alternative	-13.63	-3.06	-3.25	-0.99
HN2 alternative	-3.29/ -3.68	-0.82/ -0.65	-0.85/ -0.67	0.01/0
HN5 alternative	-1.73/ -2.31	-0.44/ -0.47	-0.46/ -0.49	-0.23/ -0.27
HN16 alternative	-2.42/ -2.44	-0.55/ -0.52	-0.57/ -0.54	0.49/ 0.46
HU4 alternative	-5.22/ -3.87	-0.16/ -0.17	-0.16/ -0.17	-0.01/ -0.02
R6 alternative	-4.25/ -4.58	-0.28/ -0.20	-0.29/ -0.21	0.19/ 0.02

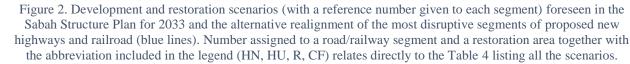

882 883 Table 6. Results of Tukey HSD test comparing differences in clouded leopard population size after 200 generations between development strategies without mortality and with mortality at 150% threshold.

					1	
STRATEGY	POPULATIC	ON SIZE	ALLELS		HETEROZIGOSITY	
STRAILOT	Difference	р	Difference	р	Difference	р
	Ν	NO MORTAL	LITY	-	· · · · · · · · · · · · · · · · · · ·	
Base – Alternative	-12	0.093	-8.9	0.414	0.037	0.010
Develop & restore – Alternative	-1.7	0.996	-2.5	0.988	0.004	0.997
Restoration – Alternative	7.4	0.514	-4.5	0.901	0.047	0.000
Develop – Alternative	-16.2	0.010	-10.9	0.220	-0.017	0.506
Develop & restore – Base	10.3	0.196	6.4	0.717	-0.033	0.026
Restoration – Base	19.4	0.001	4.4	0.908	0.009	0.884
Develop – Base	-4.2	0.895	-2	0.995	-0.054	0.000
Restoration – Develop & restore	9.1	0.306	-2	0.995	0.043	0.002
Develop – Develop & restore	-14.5	0.026	-8.4	0.473	-0.020	0.309
Develop-Restoration	-23.6	0.000	-6.4	0.717	-0.064	0.000
	MORTALIT	Y WITH THE	RESHOLD 150	%	1	
Base – Alternative	190.3	0.000	25.2	0.000	0.268	0.000
Develop & restore – Alternative	25.5	0.001	3.8	0.797	0.015	0.531
Develop - Alternative	5.5	0.877	7.5	0.197	-0.075	0.000
Restoration – Alternative	201.6	0.000	27.2	0.000	0.285	0.000
Develop & restore – Base	-164.8	0.000	-21.4	0.000	-0.253	0.000
Develop– Base	-184.8	0.000	-17.7	0.000	-0.342	0.000
Restoration – Base	11.3	0.309	2	0.976	0.017	0.365
Develop – Develop & restore	-20	0.010	3.7	0.812	-0.089	0.000
Restoration – Develop & restore	176.1	0.000	23.4	0.000	0.270	0.000

Restoration - Develop	196.1	0.000	19.7	0.000	0.360	0.000
-----------------------	-------	-------	------	-------	-------	-------

885 FIGURES


887


Figure 1. Map of the Malaysian state of Sabah, northern Borneo, showing land use in 2010 (Gaveau et al., 2014).
Fully protected forest areas (National Parks, Wildlife Reserves and Conservation Areas) are outlined in solid black
lines and include: (1) Danum Valley and (2) Maliau Basin Conservation Areas, (3) Crocker Range, (4) Kinabalu and
(5) Tawau Hills Parks, and (6) Lower Kinabatangan and (7) Tabin Wildlife Reserves. Commercial Forest Reserves

are outlined in dashed black lines; key areas include (8) Ulu Kalumpang, (9) Sapulut, (10) Trus Madi, (11)

893 Tankulap-Piningah, (12) Deramakot and (13) Segaliud Lokan Forest Reserves. The Yayasan Sabah Forest

894 Management Area is outlined in dark red. Polygons represent the state owned, Permanent Forest Reserve system.

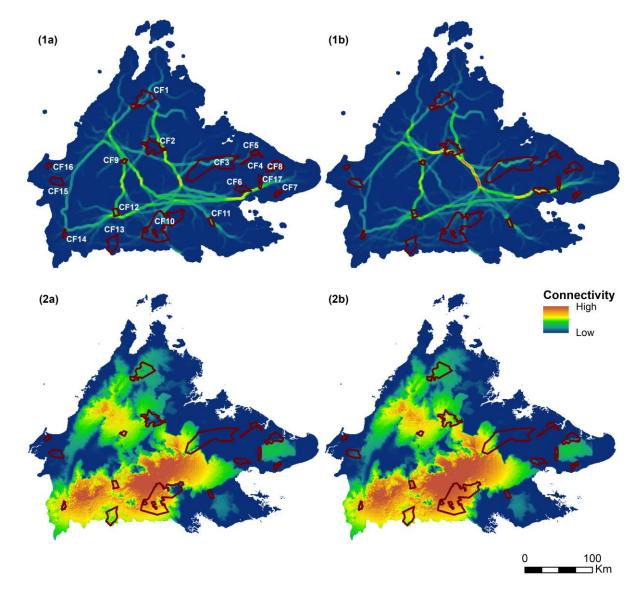


Figure 3. Factorial least cost paths (1) and resistant kernels (2) for the base scenario (a) and scenario incorporating all forest restoration areas (b). Each forest restoration area is marked in red and its ID is given on map (1a).

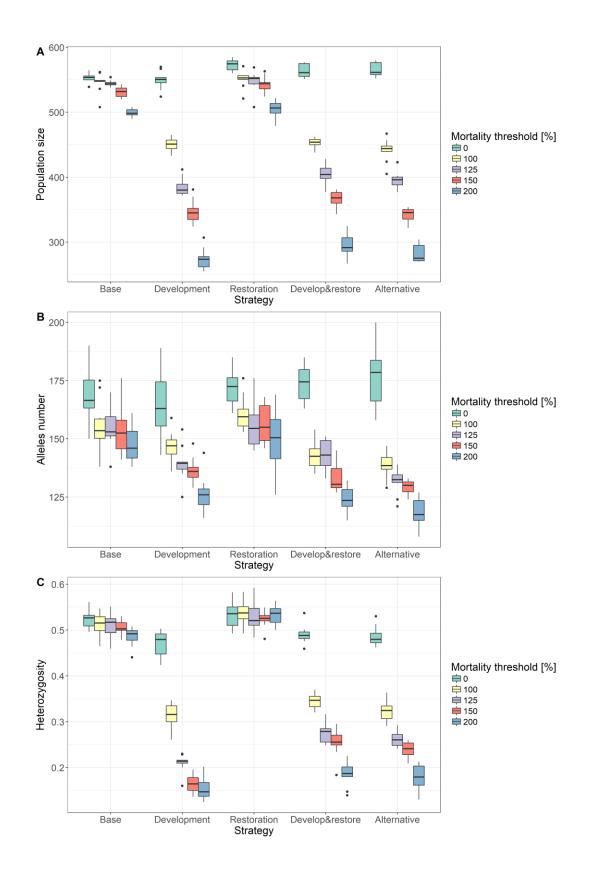
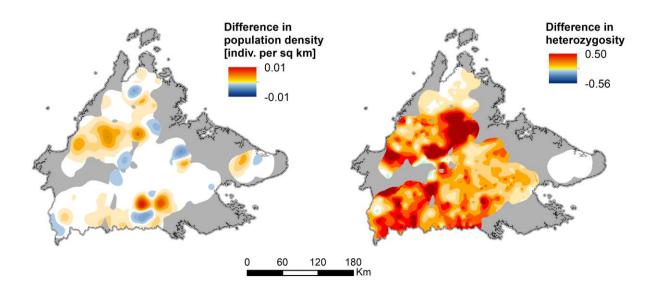
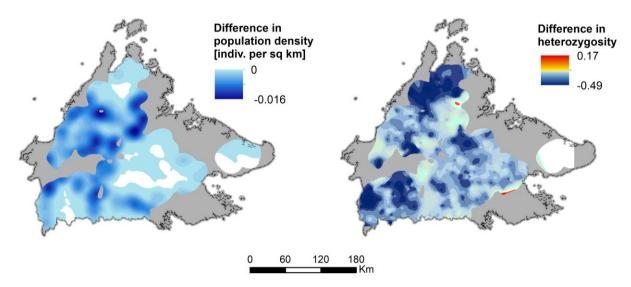



Figure 4. Populations size, allelic richness and heterozygosity of clouded leopard population after 200 generations under different development strategies without mortality (mortality threshold = 0) and with mortality of various thresholds (100 = base mortality, 125 = base mortality x1.25, 150 = base mortality x1.5, 200 = base mortality x2)

(A) Population density


(B) Heterozygosity

- Figure 5. Difference in clouded leopard population density and heterozygosity in 200 generations between the development & restoration and the development strategies with mortality at 150% threshold.
- 912

(A) Population density

(B) Heterozygosity

913 914 Figure 6. Difference in clouded leopard population density and heterozygosity in 200 generations between the development & 915 restoration strategy with mortality at 150% threshold and without mortality.