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4 CONTENTS

Introduction

The focus of the thesis is to develop a notion of translations in the setting

where usually translations are not defined and used that to build interest-

ing geometrical constructions, coherent with the geometry underlying Grushin

spaces. The aim being to use these constructions for future applications to

homogenisation problems in perforated domains in Grushin spaces. The first

step towards the study of homogenisation problems will be to prove a Poincaré

inequality for those perforated domains in the Grushin plane.

Translations are usually associated to geometrical structures where one can

define a group structure. Here we introduce a new idea, translating along vec-

tor fields to construct perforated domains for homogenisation in the setting

of Grushin spaces. This idea can be applied to very general geometries where

neither a vector space nor an algebraic structure are defined. In particular this

notion can be applied to the case of Hörmander vector fields (sub-Riemannian

manifolds).

Briefly the idea is the following: given a family of vector fields on Rn and any

point in x ∈ Rn we translate the point x along the integral curves associated

to the vector fields for a time t = 1.

This can be applied in many different settings. We will give several examples

of translating along one ore more vector fields in the Euclidean Rn which will

lead to interesting periodic structures which are not periodic in the usual sense.

Still the main focus of the thesis is to apply generalised translations to vector
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fields associated to sub-Riemannian structures (i.e. satisfying the Hörmander

condition) and in particular to the Grushin spaces. Grushin spaces are very

important sub-Riemannian geometries induced by specific polynomial vector

fields defined on Rn, which satisfy the Hörmander condition with step 2.

Thus we will first study in details this notion of translations in the Heisenberg

group and in general Carnot groups, comparing that with the group trans-

lations. We will show that in this setting translating along the vector fields

coincides with group translations horizontally. Therefore this idea is in the

direction of the approach to homogenisation problems given in [11] and [48].

Then we will concentrate to the case of the Grushin plane where so far, to our

knowledge, none has been previously done in this setting of problems.

The Thesis is structured as follows:

Part I of the thesis will outline some of the preliminaries to understand the

geometries we work in throughout the main part of the thesis. We will give a

flavour of the main theorems and definitions showing examples where neces-

sary. This will allow the reader not familiar to the field a chance to catch up

before delving into the main thrust of the project.

In particular in Chapter 1 we will introduce notions regarding manifolds. For

further work see [1].

In Chapter 2 we will in depth also at Riemannian and Sub-Riemannian ge-

ometries, expanding on what definitions related to geodesics and the Chow’s

Theorem. Some important books and papers which can help in the under-
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standing of these geometries include [23], [24], [10], [18], [20], [49], [47], [50],

[44], [5], [16], [29], [33], [34], [38], [39] and [26].

In Part II of the thesis we will explore our generalised translations, outlining

how these translations can be applied to construct interesting geometrical sets

as perforated domains and tilings. We will write down generalised transla-

tions explicitly for both the Heisenberg group and the Grushin plane, iterating

these to find out whether or not they satisfy some conditions related to the

construction of periodic perforated domains.

In particular in Chapter 3 we will explore generalised translations and periodic

sets in depth. We look at the case in different spaces including the Grushin

space and the Heisenberg group.

In Chapter 4 instead we will look at perforated domains and tilings in our

setting.

Most of the results in Chapter 3 and Chapter 4 are contained in the preprint

[28].

In Chapter 5 we will give a general geometric approach to prove a Poincaré

inequality for perforated domains as the ones constructed in Chapter 3, by

using the partition of R2 given in Chapter 4. These results are contained in a

preprint in preparation [43].

Finally in Chapter 6 we will briefly discussed the homogenisation problems

which are the focus of our future research and the motivations for the geomet-

rical constructions and the Poincaré inequality proved in the Thesis.
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Chapter 1

Manifolds

In this first chapter we introduce notions associated to manifolds and some

important definitions that are linked to them. Manifolds form the basis to

understanding Riemannian and Sub-Riemannian structures (which we will see

later) and are used in many fields of mathematics including topology and

differential geometry. For further details on smooth manifolds see [36].

1.1 Topological Spaces

Definition 1.1.1. Let X be a non-empty set. A topology on X is a collection

τ of subsets of X such that:

(1) The empty set ∅ ∈ τ and the space X ∈ τ .

(2) If Uα ∈ τ for all α ∈ A (A is a generic family of indices), then

⋃
α∈A

Uα ∈ τ

9
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(the union of any number of open sets is open).

(3) If Uα ∈ τ for all α = 1, ..., n, then

n⋂
α=1

Uα ∈ τ

(the finite intersection of open sets is open).

If τ is a topology on X we say that (X, τ) is a topological space and the

elements of τ are called open sets.

Definition 1.1.2. If x ∈ X, then an open set containing x is said to be an

(open) neighbourhood of x.

Example 1.1.1. If we have the set X = {1, 2, 3} then the collections of subsets

τ = {∅, {1}, {2, 3}, {1, 2, 3}} form a topology on X. Moreover {1} and {1, 2, 3}

are a neighbourhood of 1.

Example 1.1.2. If we have the set X = {1, 2, 3} then the collections of subsets

τ = {∅, {1, 2}, {2, 3}, {1, 2, 3}} does not form a topology on X as {2, 3} ∩

{1, 2} = {2} /∈ τ .

Definition 1.1.3. A set in a topological space is said to be disconnected if it

is the union of two disjoint nonempty open sets. Otherwise, X is said to be

connected.

Definition 1.1.4. Given a topological space (X, τ) and a subset S ⊆ X we

can define a topology on S, called the subspace topology, as

τS = {S ∩ U |U ∈ τ}.

Example 1.1.3. Consider the standard topology of open sets on R. The

set X = [1, 5] is connected as there do not exist two nonempty open sets
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whose union is equal to X. If we take for example we take S = (0, 3) ∪ (3, 5).

Referring to Definition 1.1.4 we can see that the set S is disconnected. In

fact U1 = (0, 3) ∩ S and U1 = (3, 4) ∩ S are open w.r.t induced topology and

U1 ∪ U2 = S.

Definition 1.1.5. A topological space (X, τ) is called Hausdorff if, whenever

x, y ∈ X and x 6= y, we can find U, V ∈ τ such that x ∈ U , y ∈ V and

U ∩ V = ∅.

Example 1.1.4. Let (X, τX) be a topological space with the trivial topology

τX = {∅, X}. Then (X, τX) is not a Hausdorff space as there are no disjoint

subsets other than the empty set which does not contain any elements. The set

(0,1) with its standard topology is a Hausdorff space as for all distinct points

x, y ∈ (0, 1) you find open sets (x − ε, x + ε), (y − ε, y + ε) (for some ε > 0

small enough) such that their intersection is the empty set.

Definition 1.1.6. A cover of a set X is a collection of sets whose union

contains X as a subset. If

C =
{
Uα : α ∈ A

}
(1.1)

is an indexed family of sets Uα, then C is a cover of X if

X ⊆
⋃
α∈A

Uα. (1.2)

A subcover V is a subset of C that still covers X. A subset of a topological

space is called compact if every open cover has a finite subcover. We say that C

is an open cover if each of its elements is an open set (i.e. each Uαis contained

in τ , where τ is a given topology on X).
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Example 1.1.5. Let X = {1, 2, 3} with topology

τ = {∅, X, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}},

U1 = {1}, U2 = {2} and U3 = {3}. Then C = {U1, U2, U3} is an open cover of

X as we have that X =
3⋃
i=1

Ui.

Looking at the set (0, 1) with its standard topology we see that the sets (0 +

1
n
, 1− 1

n
) (with n ∈ N/{0}) form a open cover. As there does not exist a finite

subcover, then (0,1) is not compact.

To define continuity we first need to define the preimage of a set.

Definition 1.1.7. (Preimage) Let f be defined as the function f : X → Y .

The preimage of a set B ⊆ Y is the set

f−1(B) = {x ∈ X|f(x) ∈ B}.

Definition 1.1.8. (Continuity) Let (X, τX), (Y, τY ) be two topological spaces.

A function f : X → Y is said to be continuous if and only if for every open set

V (i.e. ∀V ∈ τY ), the preimage f−1(V ) is an open subset of X, f−1(V ) ∈ τX .

Example 1.1.6. Let X = {1, 2, 3, 4},

τX =
{
∅, {1}, {2}, {3}, {2, 3}, {1, 3}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}

}
, Y = {1, 2, 3}

and

τY =
{
∅, {2}, {1, 2, 3}

}
.
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Let us define f : X → Y as,

f(1) = 2, f(2) = 3, f(3) = f(4) = 1.

Clearly f is continuous as ∀B ∈ τY we have that f−1(B) ∈ τX . In fact

f−1({2}) = {1} ∈ τX and f−1({1, 2, 3}) = {1, 2, 3, 4} ∈ τX .

Definition 1.1.9. A function f : X → Y defined between two topological

spaces (X, τX) and (Y, τY ) is called a homeomorphism if f has the following

properties:

(i): f is a bijection (i.e. surjective and injective),

(ii): f is continuous,

(iii): f−1 is continuous.

Example 1.1.7. Let us look at the function f : X → Y acting over the

topological spaces (X, τX), (Y, τY ) whereX = {1, 2}, τX = {∅, {1}, {2}, {1, 2}},

Y = {3, 4}, τY = {∅, {3}, {4}, {3, 4}} with f defined as,

f(1) = 4, f(2) = 3.

Firstly, f is injective as f(x) = f(y) implies x = y. Secondly, f is surjective

as f−1(3) = 2, f−1(4) = 1 ∈ X. Thirdly, both f and f−1 are continuous. To

see this for f we have that

f−1({3}) = {2} ∈ τX , f−1({4}) = {1} ∈ τX , (1.3)
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where in this case f−1(B) is the preimage of the set {3}. For f−1 we have

that
(
f−1

)−1
({1}) = {1} ,

(
f−1

)−1
({2}) = {1},∈ τY . Actually all functions

are continuous given how τX is defined.

We now need to define what we mean by a basis for a topological space.

Definition 1.1.10. (Basis) If X is a set, a basis for a topology τ on X is a

collection of subsets of X which belong to τ (called basis elements, that we

indicate by B) satisfying the following properties:

(i): For each x ∈ X, there exists at least one basis element B containing x.

(ii): If x belongs to the intersection of two elements B1 and B2, then there

exist a third element B3 containing x such that B3 ⊂ B1 ∩B2.

Example 1.1.8. Consider X and τX as given in Example 1.1.6 then B =

{{1}, {2}} forms a topological basis.

Definition 1.1.11. Let (M, τ) be a topological Hausdorff space with a count-

able basis. Then M is called a manifold if there exists a positive integer n, such

that for each p ∈ M there exists an open neighborhood U (i.e. U belongs to

τ and x ∈ U) and a continuous map f : U → Rn which is a homeomorphism

onto its image f(U). The natural number n is called the dimension of the

manifold. (Note that the dimension n is always uniquely determined, even if

we omit the proof).

A chart (U,ϕ) is a bijective map ϕ : U → V , where V ⊂ Rn is an open set in

Rn and U is an open set in a topological manifold (X, τX).

The inverse map ϕ−1 : V → X is an injection from an open domain V into

X. There is a one-to-one correspondence between points in U ⊂ X and arrays
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(x1, . . . , xn) ∈ V ⊂ Rn given by the maps ϕ and ϕ−1.

x ∈ U ⊂ X,ϕ(x) = (x1, ..., xn) ∈ V ⊂ Rn.

The numbers ϕ(x) = (x1, ..., xn) are coordinates of a point x ∈ U ⊂ X. A

chart ϕ on U ⊂ X is a coordinate system on X.

Definition 1.1.12. An atlas A for a topological space (X, τX) is a collection

{(Vα, ϕα) | α ∈ A},

indexed by a set A, of charts on X such that ⋃α∈A Vα = X.

Definition 1.1.13. Consider two sets Uα and Uβ such that Uα∩Uβ 6= ∅ and any

point x ∈ Uα∩Uβ with the two coordinate descriptions: ϕα(x) = (x1
α, ..., xn

α)

and ϕβ(x) = (x1
β, ..., xn

β). The transition map is defined as

Ψαβ = ϕα ◦ ϕβ−1(x1
β, ..., xn

β) : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ),

we call the function

(x1
β, ..., xn

β) 7→ (x1
α, ..., xn

α)

the change of coordinates between charts ϕα and ϕβ, or transition functions

form coordinates (x1
β, ..., xn

β) to coordinates (x1
α, ..., xn

α). Since transition go

from a subset of Rn to another subset of Rn, by smooth we mean the standard

regularity in Rn.

If each transition function is a smooth map, then the atlas is called a smooth

atlas, and the manifold itself is called smooth. Alternatively, one could require
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that the transition maps have only r continuous derivatives in which case the

atlas is said to be Cr.

Definition 1.1.14. A differentiable or smooth manifold X is a topological set

endowed with a smooth atlas.

From the above definition we understand that a n-dimensional manifold X is

locally homeomorphic to the space Rn for some n with the standard Euclidean

topology even if it could be not globally homeomorphic to Rn.

Example 1.1.9. (Stereographic projection)

Consider the unit sphere S1.

We have that U1 = S1 \ {N} and ϕ1 : U1 → R, P 7→ x where x is the first

component of the point of intersection between the x-axis with the line passing

from N and P ∈ S1 \ {N} (represented by Qi := (xi, 0) in the above picture).

Similarly let us define U2 = S1 \ {S} and ϕ2 : U2 → R, P 7→ x. Thus we

have that U1 ∪ U2 = S1 and the atlas is A = {(U1, ϕ1), (U2, ϕ2)}. S1 is locally

homeomorphic to R2, but not globally homeomorphic (in fact there does not

exist any chart ϕ : S1 → R).
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Definition 1.1.15. A chart (U, f) on X is said to be compatible with a Cr-

atlas A if the union A∪ (U, f) is a Cr-atlas. A Cr-atlas is said to be maximal

if it contains all the charts that are compatible with it. It is important to note

also that charts in the same atlas cannot have different dimensions.

Example 1.1.10. Let us consider M = R with the standard topology of open

sets and define f : R→ R, f(x) = −x3.

The function f clearly is bijective, however inspecting the derivatives of the

inverse we see that, f−1(x) = −x1/3. Computing the derivatives of the inverse

we need that the inverse is differentiable everywhere. Let us choose to compute

the differentiation at 0

f−1(0)′ = lim
h→0

f−1(0 + h)− f−1(0)
h

= lim
h→0

−h 1
3

h
= lim

h→0

(
− 1
h

2
3

)
. (1.4)

Since the limit is not finite, the inverse is not differentiable on R, thus f is

not a diffeomorphism. But the bijective function g(x) = x defined on R is a

diffeomorphism as its inverse, which is g, is C∞.

Example 1.1.11. The Euclidean Rn is made into a n-dimensional smooth

manifold using the identity chart. The complex coordinate space Cn becomes

a 2n-dimensional smooth manifold via the chart Cn → R2n replacing every

complex coordinate zj by the pair of real coordinates (Re zj , Im zj).

Example 1.1.12. (Open subset of Rn) Any open subset O of Rn is a smooth

manifold of dimension n. One possible atlas is A = (O, ϕ) , where ϕ is the

identity map. Of course one possible choice of O is Rn itself.
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1.2 Vectors, Co-Vectors and the Tangent Space

In this section we will expand on Vectors, Co-vectors and the Tangent Spaces

which are essential to defining structures in the study of Riemannian and Sub-

Riemannian geometries that we will encounter later on.

Definition 1.2.1. If M is a smooth manifold, we define a curve in M to be a

continuous map γ : I →M , where I ⊂ R is an interval.

Example 1.2.1. Let the unit circle S1 = {(x, y) ∈ R2| x2 + y2 = 1} be our

manifold. Then the map γ : (0, 2π) → S1 defined as γ(t) = (sin t, cos t) is a

curve.

Definition 1.2.2 (Tangent vector at a point p). Let M be a differentiable

manifold and for a point p ∈ M we denote by ε(p) the set of differentiable

real-valued functions defined locally around p. Let p ∈ M , then a tangent

vector γp at p is a map γp : ε(p)→ R such that

(i) γp(λ · f + µ · g) = λγp(f) + µγp(g),

(ii) γp(f · g) = γp(f)g(p) + γp(g)f(p),

for all λ, µ ∈ R and f, g ∈ ε(p). The set of tangent vectors at p is called the

tangent space at p and denoted by TpM . The Tangent space itself has the

structure of a n-dimensional vector space (same as the dimension of M).

Definition 1.2.3. (Differential) Let ϕ : M → M̃ be a smooth map of smooth

manifolds. Given some p ∈M , the differential of ϕ at p is a linear map

dϕp : TpM → Tϕ(p)M̃

from the tangent space of M at p to the tangent space of M̃ at ϕ(p) defined
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as

dϕ(p)(γ′(0)) = (ϕ ◦ γ)′(0).

Here γ is a curve in M with γ(0) = p.

For manifolds in Rn we can compute the tangent vector as follows.

Definition 1.2.4. Let M be a n-smooth manifold and fix any point p in M .

Assume γ : I → M is a C1-curve such that γ(0) = p with ε(p) the set of

differentiable functions at p. The tangent vector to the curve γ at t = 0 is

defined as the function:

γ̇(0) : ε(p)→ R; γ̇(0)f := d(f ◦ γ)
dt

∣∣∣∣∣
t=0
, f ∈ ε(p). (1.5)

The tangent vector acts on smooth functions by

(f ◦ γ)′(t0) = d

dt

∣∣∣∣∣
t0

(f ◦ γ) = dfγ
′(t0), (1.6)

where df is the differential defined Definition 1.2.3. So we see that γ′(t0) is the

derivation at γ(t0) obtained by taking the derivative at a function along γ.

Definition 1.2.5. The tangent bundle on a n-dimensional differentiable man-

ifold M is defined as

TM = {(p, v)| p ∈M, v ∈ TpM}. (1.7)

TM is a vector space with dim 2n. If we take the tangent bundle of Rn we get
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TRn = {(p, v) | p ∈ Rn, v ∈ Rn} ∼= R2n. (1.8)

Example 1.2.2. The tangent bundle on unit circle S1 = {p = (x, y) ∈

R2| x2 + y2 = 1} is,

TS1 = {(p, v) | p ∈ S1, v ∈ TpS1}. (1.9)

As we can see the tangent space to unit circle at the p is the set TpS1 = R. In

fact TpS1 is the tangent line at p and this can be identified as mathbbR And

so the tangent bundle can be seen as,

TS1 = {(p, v) | p ∈ S1, v ∈ R} ∼= S1 × R, (1.10)

which can be visualized as an infinite cylinder on R3. See [36] for details.

Definition 1.2.6. A co-vector at p ∈M (where M is the manifold) is a linear

map ω : TpM → R. The space of all co-vectors at p is a vector space and is

the dual space of TpM denoted as T ∗pM and is known as the cotangent space.

Example 1.2.3. The cotangent space of the manifold S1 at p is the set of

linear maps ω : TpS1 ∼= R→ R.

Definition 1.2.7. A smooth vector field X on a manifold M is a linear map

X : C∞(M)→ C∞(M) such that X is a derivation:

X(fg) = fX(g) +X(f)g ∀f, g ∈ C∞(M).

Lemma 1.2.1. Let X, Y be two smooth vector fields on a manifold M. Then
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the map

[X, Y ] : C∞(M)→ C∞(M), f 7→ X(Y (f))− Y (X(f))

is a vector field.

Proof. Clearly the map [X, Y ] is R-linear. We need to check that it has the

correct derivation property. Pick two functions f, g ∈ C∞(M). Then

[X, Y ](fg) = X(Y (fg))− Y (X(fg)) (1.11)

= X(Y (f)g + fY (g))− Y (X(f)g + fX(g)) (1.12)

= X(Y (f))g + Y (f)X(g) +X(f)Y (g) + fX(Y (g)) (1.13)

− Y (X(f))g −X(f)Y (g)− Y (f)X(g)− fY (X(g)) (1.14)

= X(Y (f))g − Y (X(f))g + fX(Y (g))− fY (X(g)) (1.15)

= ([X, Y ](f))g + f([X, Y ](g)). (1.16)

Example 1.2.4. An example of two vector fields X and Y in R2 are

X(p) =
(
y

x

)
, Y (p) =

(
−y
x

)
∀p = (x, y) ∈ R2.

They act on smooth functions f : R2 → R as

X(p)(f) = y
∂f

∂x
+ x

∂f

∂y
and Y (p)(f) = −y ∂f

∂x
+ x

∂f

∂y
. (1.17)

Moreover they satisfy the chain rule defined in Definition 1.2.7 since

X(fg) = y
∂(fg)
∂x

+x ∂(fg)
∂y

= y
∂f

∂x
g+y ∂g

∂x
f+x∂f

∂x
g+x∂g

∂x
f = fX(g)+X(f)g,

(1.18)
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and similarly this holds for Y .

Therefore the X and Y defined in (1.17) are vector fields according to Defini-

tion 1.2.7.

From now on we will always indicate the vector fields as in 1.17, omitting to

recall every time how they act on smooth functions and omitting to check the

validity of the chain rule.

The bracket [X, Y ] can be evaluated as following as the action on the smooth

function f : R2 → R, as

[X, Y ]f = X(Y (f))− Y (X(f)) (1.19)

then,

X(Y f) =
(
y
∂

∂x
+ x

∂

∂y

)(
−y ∂f

∂x
+ x

∂f

∂y

)

= −y2 fxx + y fy − x fx + x2 fx2x2 and

Y (Xf) =
(
−y ∂

∂y
+ x

∂

∂y

)(
∂f

∂x
+ x

∂

∂y

)

= −y2 fxx − y fy + x fx + x2 fyy.

Now, we obtain:

[X, Y ]f =
(
−2x ∂

∂x
+ 2y ∂

∂y

)
f,
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which can be written as

[X, Y ] =

 −2x

2y

 .

Remark 1.2.1. Recall that the differential defined in Definition 1.2.3 can also

be defined as

dϕp(X)(f) = X(f ◦ ϕ), ∀f ∈ C∞(M̃).
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Chapter 2

Riemannian and

Sub-Riemannian Geometries

2.1 Riemannian Manifolds

In this section we introduce Riemannian geometry. These structures are widely

studied in various areas of mathematics including topology, differential geom-

etry and mechanics. They form the basis to understanding abstract surfaces

hence their importance to analytical mathematicians. In this section various

works we will be citing include [36] and [45]. For further details see [2] and

[14].

Definition 2.1.1. Let M be an n−smooth manifold. We define a Riemannian

metric g which associates to every point P ∈M an inner product gP : TPM ×

TPM → R by (Q1, Q2) 7→ 〈Q1, Q2〉P . In other words, for each P ∈ M , the

metric gP satisfies the following conditions:

1. gP (aQ1 +bQ2, Q) = a gP (Q1, Q)+b gP (Q2, Q), ∀ Q1, Q2, Q ∈ TPM and

25
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a, b ∈ R,

2. gP (Q, aQ1 +bQ2) = a gP (Q,Q1)+b gP (Q,Q2), ∀ Q,Q1, Q2 ∈ TPM and

a, b ∈ R,

3. gP (Q1, Q2) = gP (Q2, Q1), ∀ Q1, Q2 ∈ TPM ,

4. gP (Q,Q) ≥ 0 ∀ Q ∈ TPM and

5. gP (Q,Q) = 0 ⇐⇒ Q = 0.

Definition 2.1.2. A manifold with a given Riemannian metric g is known as

a Riemannian manifold. Riemannian manifolds are usually denoted as (M, g).

Definition 2.1.3. Let (M, g), (M̃, g̃) be two Riemannian manifolds. An isom-

etry between M and M̃ is a diffeomorphism ϕ : M → M̃ whose differential is a

linear isometry between the corresponding tangent spaces, with inner product

i.e.:

gp(v, w) = g̃p(Dϕp(v), Dϕp(w)) ∀p ∈M and v, w ∈ TpM.

where Df is the usual differential defined by using charts in Definition 1.2.3.

For a formal definition see [35].

If there exists an isometry between two Riemannian manifolds (M, g), (M̃, g̃)

we say that that the two manifolds are isometric.

Definition 2.1.4. (Co-ordinate Representations) Given a vector v ∈ V we

can write this as a linear combination of basis vectors as follows,

v =
∑
i

viei = [e1 · · · en]


v1

...

vn

 .
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Cartesian coordinates on Rn and coordinates on a manifold have superscripts

xj as they are coordinate coefficients; coordinates vector fields can be the

defined as,

∂i = ∂

∂xi
.

They also form a basis for the tangent space. If we define a dual space ei for

the dual space V ∗ as ei(ej) = δij. The dual 1-forms dxi satisfy dxj(∂i) = δij

and consequently form the natural dual basis for the cotangent space.

Given coordinates x(p) = (x1, ..., xn) on an open set U of M we can construct

bilinear forms dxi · dxj. Also if M a has a Riemannian metric g then we can

write

g = gp(∂i, ∂j)dxi · dxj

as

(v, w) = g(∂i(v)dxi, ∂j(w)dxj) = g(∂i, ∂j)dxi(v) · dxj(w).

The functions g(∂i, ∂j) are denoted by gij. This gives us a representation of

g in local coordinates as a positive definite symmetric matrix with entries

parameterized over U .

Any finite dimensional vector space M with an inner product becomes a Rie-

mannian manifold by declaring, as with Euclidean space, that

gp(v, w) = v · w. (2.1)

Example 2.1.1. The canonical metric on Rn in the identity chart is

g = δji dx
idxj =

∑
i

(dxi)2.
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In the next example we express the standard metric in R2 using polar coordi-

nates.

Example 2.1.2. Using coordinate representations on R2 - (half line) we also

have the polar coordinates (r, θ). In these coordinates the canonical metric

looks like

g = dr2 + r2dθ2,

So we have that

grr = 1, grθ = gθr = 0 , gθθ = r2.

To see this recall that

x = r cos(θ), y = r sin(θ).

Thus

dx = cos θdr +−r sin θdθ, dy = sin θdr + r cos(θ)dθ,

which gives

g = dx2 + dy2

= d(r cos θ)2 + d(r sin θ)2

= (cos θdr − r sin θdθ)2 + (sin θdr + r cos θdθ)2

= (cos2 θ + sin2 θ)dr2 + (r2 sin2 θ + r2 cos2 θ)dθ2

+ (−2r cos θ sin θ + 2r sin θ cos θ)drdθ

= dr2 + r2dθ2. (2.2)
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Remark 2.1.1. The Riemannian metric defined as above is a metric tensor.

If we treat the metric tensor in any given coordinate system as a matrix, then

it is positive definite if all its eigenvalues are positive, and invertible if all its

eigenvalues are non-zero, and this property is independent of the coordinate

system. The metric tensor is Riemannian whenever its representation as a

matrix is positive definite.

Now we will go on to define what Riemannian distance means, however before

this we need to go through some preliminary definitions.

Definition 2.1.5. (Absolute continuity) A function f : [0, T ] → R is abso-

lutely continuous if and only if given ε > 0, there exists some δ > 0 such

that
n∑
i=1
|f(yi)− f(xi)| < ε,

where {[xi, yi] : i = 1, ..., n} is any finite set of mutually disjoint subintervals

of [0, T ] with
n∑
i=1
|yi − xi| < δ.

Alternatively this can stated by using an equivalent definition. For a real

valued function f on a compact interval [a, b] has a derivative ḟ almost every-

where, the derivative is Lebesgue integrable, and

f(x) = f(a) +
ˆ x

a

ḟ(t)dt,

for all x ∈ [a, b]

This property is very useful to define the length of absolutely continuous curves

as follows.
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Definition 2.1.6. Let (M, g) be a Riemannian manifold and γ : [0, T ] → M

an absolutely continuous curve, we call length of the curve the following real

functional

L(γ) =
T̂

0

gγ(t)(γ̇(t), γ̇(t))1/2dt. (2.3)

Definition 2.1.7. Let (M, g) be a Riemannian manifold and x, y ∈ M , the

(Riemannian) distance d : M × M → [0,+∞] between these two points is

defined as

d(x, y) = inf{L(γ) | γ absolutely continuous joining x to y}.

Definition 2.1.8. (Geodesics) A curve γ : [a, b]→M , where M is a Rieman-

nian manifold is called a (minimizing) geodesic if

L(γ) = d(γ(a), γ(b)).

Example 2.1.3. The straight line γ(t) = at + b is a minimizing geodesic on

the Euclidean space Rn.

Definition 2.1.9. (Completeness) A Riemannian manifold M is called com-

plete if every Cauchy sequence in M with respect to the Riemannian distance

d is convergent (with respect to d) to a point in the manifold M .

For instance Rn is complete, but also the union of two disjoint spheres is

complete.

Theorem 2.1.1. Let (M, g) be a Riemannian manifold and p0 ∈ M , for any

ε > 0, there exists a neighborhood U of p0 such that for any p ∈ U there exists

a unique minimizing geodesic, joining p0 to p with length less or equal to ε.
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Moreover, if the Riemannian manifold M is complete, then there always exists

at least a geodesic joining any pair of points. [27]

We will look at how we compute the geodesics for certain spaces later on in

the thesis.

2.2 Sub-Riemannian Manifolds

Sub-Riemannian geometries are a certain type of generalization of Riemannian

geometries widely studied in Analysis.In this section we will look at some

classical definitions from [40], [36], [27] and [19].

Definition 2.2.1. Let M be a n-dimensional manifold and r ≤ n, a r-

dimensional distribution H is a sub-bundle of the tangent bundle, i.e.

H = {(p, v)|p ∈M, v ∈ H(p)},

where H(p) is a r-dimensional subspace of the tangent space at the point p.

Definition 2.2.2. (Sub-Riemannian metric). Let M be a manifold and H ⊂

TM a distribution, a sub-Riemannian metric on M is a Riemannian metric

defined on the fibers of the subbundle H.

Definition 2.2.3. (Sub-Riemannian geometry). A sub-Riemannian geometry

is the triple (M,H, g) where M is a smooth manifold, H is a distribution, and

g is a Riemannian metric defined on H.

For more details see [8] and [9].

Definition 2.2.4. (Horizontal curves). Let (M,H, g) be a sub-Riemannian
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geometry and γ : [0, T ]→M an absolutely continuous curve, we say that γ is

a horizontal curve if and only if

γ′(t) ∈ Hγ(t), for a.e. t ∈ [0, T ].

For more details see [3] and [15].

Definition 2.2.5. We call the Carnot-Carathéodory distance associated to

the Sub-Riemannian geometry (M,H, g) the function d : M ×M → [0,+∞],

defined by

dCC(p, q) = inf{L(γ)|γ a horizontal curve connecting p to q},

where L(γ) is the length defined in (2.3). Note that L(γ) is well defined for

all the horizontal curves and only for those (in fact g is defined only on H).

Let us consider a family of vector fields X = {X1, ..., Xm} spanning some

distribution H ⊂ TM , the associated Lie algebra is the set of all the brackets

between the vector fields of the family.

Let us now introduce the notion of a step of a bracket-generating distribution.

Let L be a family of vector fields, we write:

L1 := Span({Z = X|X ∈ H}),

L2 := Span({Z = [X, Y ]|X, Y ∈ L1}),

. . . . . . . . . . . . . . . . . . . . . . . . ,

Li := Span({Z = [X, Y ]|X ∈ H, Y ∈ Li−1}),

(2.4)

Let us denote Li(p) as the vector space to Li evaluated at point p ∈M . Note

we call k- length bracket all the vector field defined recursively as [X, Y ] with
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X ∈ H and Y (k − 1)-length bracket, where the 1-length bracket vector fields

are the elements of the form [X1, X2] for X1, X2 ∈ H.

Definition 2.2.6. Let M be a smooth manifold and H a distribution defined

on M . We say that the distribution is bracket-generating if and only if, at any

point, the Lie algebra L(X) spans the whole tangent space.

In the following definition and theorem we see that there is a bracket generating

condition which is key to our understanding of sub-Riemannian geometry.

Definition 2.2.7. (Hörmander condition). We say that a sub-Riemannian

geometry satisfies the Hörmander condition if and only if the associated dis-

tribution is bracket generating.

The following theorem is the main theorem of the chapter and asserts that

the condition of bracket generating being satisfied coupled with connectedness

implies that the manifold is horizontally path connected. The theorem was

first demonstrated by Rashevskii in [46] and later proved by Chow in [21].

Theorem 2.2.1. (Chow’s Theorem) Let M be a smooth manifold and H a

bracket generating distribution defined on M . If M is connected, then there

exists a horizontal curve joining any two given points of M .

Proof. We omit the proof here. For a proof see [40].

Example 2.2.1. (Heisenberg group). We call 1-dimensional exponential Heisen-

berg group or also canonical Heisenberg group, the sub- Riemannian geometry

induced by the vector fields,
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X(x, y, z) =


1

0
−y
2

 , Y (x, y, z) =


0

1

x
2

 . (2.5)

Looking at the commutator we see that

[X, Y ](f) =
(
∂

∂x
− y

2
∂

∂t

)(
∂f

∂y
+ x

2
∂f

∂z

)
−
(
∂

∂y
+ x

2
∂

∂z

)(
∂f

∂x
− y

2
∂f

∂z

)
= ∂f

∂z
,

(2.6)

so we can see that

[X, Y ](x, y, z) =


0

0

1

 , (2.7)

then X(p) and Y (p) taken together with the associated commutator [X, Y ](p)

span the space R3 (i.e. span(X(p), Y (p), [X, Y ](p) = R3) at any point p =

(x, y, z). Chow’s Theorem guarantees we can connect any point to any other

by a horizontal path.

We learn from Chow’s Theorem that if a sub-Riemannian geometry satisfies the

Hörmander condition then this implies that the Carnot-Carathéodory distance

is always finite. The reverse implication (i.e. that a finite distance implies the

Hörmander conditon) requires a stronger regularity of the distribution. It is

only satisfied in the case that the distribution is analytic, but not in general

when it is smooth.
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Example 2.2.2. Look at the sub-Riemannian metric generated by the 2-

dimensional vector fields,

X(x, y) =

1

0

 , Y (x, y) =

 0

a(x)

 . (2.8)

with a ∈ C∞(R) such that a(x) = 0,if x ≤ 0,and a(x) > 0, x > 0. The

corresponding sub-Riemannian distance is finite. Nevertheless, the associated

distribution is not bracket generating. In fact, if x ≤ 0, then

Y (x, y) =

0

0

 (2.9)

and so Span(L(X, Y )(p)) =Span(X(p)) 6= R2.

Example 2.2.3. Let X and Y be as in the Example 2.2.2, but with a(x) = 1

if x ≥ 0,and a(x) = 0 if x < 0. In this case a /∈ C∞(R), however we can

use this example in order to investigate the previous one. On the half-plane

x < 0, as we can move only in one direction the spanned distribution is not

bracket generating. Nevertheless, it is easy to write explicitly the associated

Carnot-Caratheódory distance, that is

d((x, y), (x′, y′) =



√
|x− y|2 + |x′ − y′|2, if x ≥ 0, x′ ≥ 0,

|x|+ |x′|+ |y − y′|, if x < 0, x′ < 0,

|x|
√
|x′|2 + |y − y′|2, if x < 0, x′ ≥ 0,

|x′|
√
|x|2 + |y − y′|2, if x ≥ 0, x′ < 0.

(2.10)

It is clear to see that d(x, y) is a finite distance.
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Definition 2.2.8. (Step of a distribution). Let X = {X1, ..., Xm} be a family

of vector fields defined on a smooth manifold M and H the distribution gen-

erated by X1, . . . , Xm. Given p ∈M , we call the step of the distribution H at

the point p, and we indicate by k(p), the smallest natural number such that

k(p)⋃
i=1
Li−1(p) = TpM. (2.11)

Example 2.2.4. The Heisenberg group (see Def 2.2.1) is associated to a

bracket generating distribution with step equal to 2 at any point.

Example 2.2.5. The Grushin plane (see Example 2.5.1) is associated to a

bracket generating with step 2 at the origin, and with step 1 otherwise .

We will now include a proof (from Gromov [32]) for a particular type of Sub-

Riemannian geometry with reference to Chow’s theorem. We will see the

Heisenberg group in more detail later on Section 2.4. We now look at the

1-dimensional Heisenberg group given in Example 2.2.1, endowed with the

standard Euclidean metric on R2.

If we look at the 1-form

η := dz − 1
2(xdy − ydx).

So we write the Hn as the n-dimensional Heisenberg group. Referring to Defi-

nition 2.2.4, we can see that a curve γ : [0, T ]→ R3 is H1 if and only if

η(γ(t)) = 0, for t a.e. t ∈ [0, T ].

In the proof of Gromov he uses an equivalent definition of the Hesienberg
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group, however we will look at a proof incorporating the above definition. So

we state a reconfiguration of Chow’s Theorem in this particular case.

Theorem 2.2.2. Given two points in R3, there exists an absolutely continuous

H1-horizontal curve joining them.

Proof. Let p = (x1, y1, z1) and q = (x2, y2, z2) be two given points of R3. Let

γ̃(t) = (x(t), y(t)) be a plane curve joining (x1, y1) to (x2, y2). For the sake of

simplicity assume that T = 1.

Remark that we can look only at the absolutely continuous curves with con-

stant curvature, i.e. we can assume that

ˆ
γ̃

xdy =
ˆ 1

0
x(t)ẏ(t)dt = 1

2

ˆ 1

0
(x(t)ẏ(t)− ẋ(t)y(t))dt = C,

for some C ∈ R.

Then we can define a curve in R3, setting γ(t) = (x(t), y(t), z(t)), where the

third-coordinate is given by

z(t) = z1 + 1
2

ˆ t

0
(x(s)ẏ(s)− ẋ(s)y(s))ds.

Obviously γ is an absolutely continuous curve in R3. Moreover, since z(0) = z1

and z(1) = z1C, choosing C = z1z2, then γ joins p to q. In order to conclude

the proof, we need only to observe that, for a.e. t ∈ [0, 1], it holds η(γ(t)) = 0

and so γ is a H1-horizontal curve.
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2.3 Geodesics

We will take a deeper look at geodesics and how they are derived. In the Rie-

mannian case the minimising geodesic must satisfy the Euler-Lagrange equa-

tions. Geodesics can be applied in solving many problems within calculus of

variations. We recall the definition of geodesics (see Definition 2.1.8 in the

Riemannian case).

Definition 2.3.1. Geodesics in Sub-Riemannian manifolds are curves γ :

[a, b]→M where the following are satisfied:

1. γ is an horizontal curve, i.e. γ is absolutely continuous and

γ̇(t) ∈ Hγ(t), a.e. t ∈ [a, b],

(see Definition 2.2.4).

2. L(γ) = d(P,Q), where γ(a) = P , γ(b) = Q and where L(γ) is defined by

(2.3).

To compute geodesics we use the so called geodesic equation and to define that

we need to introduce the cometric associated to the Riemannian metric. From

now on we denote our Sub-Riemannian geometry as
(
M,H, 〈., .〉

)
.

Definition 2.3.2 ([40]). A cometric β : T ∗M → TM on
(
M,H, 〈., .〉

)
a Sub-

Riemannian manifold is uniquely defined by the following conditions:

1. Im(βP ) = HP ,

2. p(Q) =
〈
βP (p), Q

〉
P
, ∀ p ∈ T ∗PM ∀ Q ∈ HP where P ∈M .

Definition 2.3.3. Given a cometric (., .)P on the cotangent bundle T ∗PM , we
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can define a sub-Riemannian Hamiltonian as follows:

H(P,Q) = 1
2 〈P, P 〉Q, where P ∈M and Q ∈ T ∗M. (2.12)

Remark 2.3.1. Consider we have the admissible curve γ : [a, b]→M , i.e.:

γ̇(t) ∈ Hγ(t) a.e. t ∈ [a, b],

then we can write:

1
2 ‖γ̇(t)‖2

γ(t) := 1
2
〈
γ̇(t), γ̇(t)

〉
γ(t)

= 1
2 〈P, P 〉γ(t), with P = γ̇(t)

= H(Q,P ).

Proof. The proof of the previous relation is easily comes from the definition of

the cometric as follows:

γ(t) is admissible ⇔ γ̇(t) ∈ Hγ(t) = Im(βγ(t)) (by Definition 2.3.2),

⇔ ∃ Q ∈ T ∗γ(t)M s.t. βγ(t)(P ) = γ̇(t).

From Definition 2.3.2 we know that:

p(P̃ ) =
〈
βγ(t)(P ), P̃

〉
Q
, ∀ Q ∈ T ∗PM ∀ P̃ ∈ HQ.
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Take v := γ(t), then:

p(P̃ ) =
〈
βγ(t)(Q), γ̇(t)

〉
γ(t)

=
〈
γ̇(t)(Q), γ̇(t)

〉
γ(t)

=
∥∥∥γ̇(t)

∥∥∥2
.

Thus, we have:
1
2
∥∥∥γ̇(t)

∥∥∥2
= H(P,Q).

To get the Hamilton equations we first need to introduce momentum.

Definition 2.3.4. Let M be n−smooth manifold and Xa be a vector field on

M , we define a linear function PXa := Pa on the cotangent bundle, where:

Pa : T ∗M → R with (P,Q) 7→ p
(
Xa(P )

)
, ∀ P ∈M, Q ∈ T ∗PM. (2.13)

This function Pa is called a momentum function.

If we have the expression for the vector field Xa in coordinate as:

Xa(P ) =
∑
i

X i
a(P )

(
∂

∂xi

)
,

then, we can write the following expression:

pa(x, p) =
∑
i

X i
a(P )pi,

where Pi = P ∂
∂xi

are the momentum functions for the coordinate vector fields.

Note that xi and pi from the coordinate system on the tangent bundle T ∗M
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are called canonical coordinates.

Let us define

gab(P ) =
〈
Xa(P ), Xb(P )

〉
P
, (2.14)

to be the matrix of inner products defined by our distribution frame H. Con-

sider gab(P ) to be the inverse matrix of gab. We can see that gab is a n × n

matrix-valued function defined in some open set of M .

Propostion 2.3.1. Let Pa and gab be the functions on the cotangent bundle

T ∗M defined respectively by (2.13) and (2.14), which are induced by the local

distribution {Xa}, then we have:

H(P,Q) = 1
2
∑
a,b

gab(P )Pa(P,Q)Pb(P,Q).

In order for us to compute the geodesic equations associated with the Hamilto-

nian differential equations using the canonical coordinate (xi, pi) we can write:

ẋi = ∂H

∂pi
and ṗi = −∂H

∂xi
. (2.15)

Definition 2.3.5. The Hamiltonian differential Equations (2.15) are called

normal geodesic equations.

Theorem 2.3.1. (Normal geodesics) Let ζ(t) =
(
γ(t), p(t)

)
be a solution of

the Hamiltonian differential equations on the cotangent bundle T ∗M for a sub-

Riemannian Hamiltonian H and consider γ(t) be its projection to M . Then,

every sufficiently short length of γ is a minimizing sub-Riemannian geodesic.

Moreover, γ can be considered as the unique minimizing geodesic that joins the

endpoints.

For a detailed proof see [40].
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Theorem 2.3.2. [40] Let M be a smooth manifold and H a bracket generating

distribution. Then

• local existence: for any p ∈ M there exists a neighborhood U of p such

that, for any q ∈ U , there exists a geodesic joining p to q;

• global existence: if moreover M is connected and complete w.r.t. the sub-

Riemannian metric induced by H, for any pair of points p, q ∈ M there

exists a geodesic joining p to q.

For the Riemannian case it is known that the geodesics are locally unique. In

the sub Riemannian this is generally not true (not even locally). We will see

this later on in the case of the Grushin plane.

2.4 Carnot Groups

In this section we will elaborate on a particular class of Riemannian structures

known as Carnot groups. They can be viewed however from a Lie algebra

viewpoint which we will expand on. For further details see [19], [40] and [13].

To see more examples of Carnot group such as the Engel group see [17].

To define Carnot groups we first have to define what Lie algebras are.

Definition 2.4.1. A Lie group G is a smooth manifold M , that is also a

group in the algebraic sense, with the property that the multiplication map

f : M ×M →M and the inversion g : M →M , given by

f(x, y) = xy, g(x) = x−1

are both continuous.
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Definition 2.4.2. (Abstract Lie Algebra) A real vector space (V, ·) equipped

with an operation [·, ·] : V ×V → V is said to be a Lie algebra if the following

relations hold:

(i)[λX + µY, Z] = λ[X,Z] + µ[Y, Z], (Bi-linear)

(ii)[X, Y ] = −[Y,X]

(iii)[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0 (cyclic permutation)

for all X, Y, Z ∈ V and λ, µ ∈ R.

The equation (iii) is called the Jacobi identity.

Example 2.4.1. The vector space R3 equipped with the cross product,

[X, Y ] = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1) (2.16)

is an example of Lie Algebra as it satisfies the conditions in Definition 2.4.2.

Proof. To prove the first condition let us take X = (x1, x2, x3), Y = (y1, y2, y3)

and Z = (z1, z2, z3)

[λX + µY, Z] = [(λx1 + µy1, λx2 + µy2, λx3 + µy3), (z1, z2, z3)]

=
(

(λx2+µy2)z3−(λx3+µy3)z2, (λx3+µy3)z1−(λx1+µy1)z3, (λx1+µy1)z2−(λx2+µy2)z1

)

= (λ(x2z3 − x3z2), λ(x3z1 − x1z3), λ(x1z2 − x2z1))

+(µ(y2z3 − y3z2), µ(y3z1 − y1z3), µ(y1z2 − y2z1)) = λ[X,Z] + µ[Y, Z].
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The proof of the second condition is fairly trivial since

[X, Y ] = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1) =

−(−(x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1)) = −[Y,X].

To prove that the third condition holds we simply plug in our X, Y and Z

and we see a cancellation of terms on the right hand side when we add the

equations below together,

[X, [Y, Z]] =
(
x2(y1z2−y2z1)−x3(y3z1−y1z3), x3(y2z3−y3z2)−x1(y1z2−y2z1),

x1(y3z1 − y1z3)− x2(y2z3 − y3z2)
)
,

[Z, [X, Y ]] =
(
z2(x1y2−x2y1)−z3(x3y1−x1y3), z3(x2y3−x3y2)−z1(x1y2−x2y1),

z1(x3y1 − x1y3)− z2(x2y3 − x3y2)
)
,

[Y, [Z,X]] =
(
y2(z1x2−z2x1)−y3(z3x1−z1x3), y3(z2x3−z3x2)−y1(z1x2−z2x1),

y1(z3x1 − z1x3)− y2(z2x3 − z3x2)
)
.

Definition 2.4.3. Let M be a smooth manifold. For two vector fields X, Y ∈
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C∞(TpM) we define the Lie bracket [X, Y ] : C∞(M)→ R of X and Y by

[X, Y ](f) = X(Y (f))− Y (X(f)), ∀f ∈ C∞(M). (2.17)

Note that the Lie bracket is an operation that satisfies the definition of the

abstract Lie algebra where V is equal to tangent space of M at the point p.

Example 2.4.2. The vector space of n × n real matrices is a Lie algebra

equipped with the Lie bracket defined in Definition 2.4.3. It’s clear to see all

n× n matrices X, Y and Z satisfy the first two conditions in Definition 2.4.2.

We prove the Jacobi identity as follows

[
X, [Y, Z]

]
+
[
Y, [Z,X]

]
+
[
Z, [X, Y ]

]
= [X, Y Z − ZY ] + [Y, ZX −XZ]

+[Z,XY − Y X]

= XY Z −XZY − Y ZX + ZY X

+Y ZA− Y XZ − ZXY +XZY

+ZXY − ZY X −XY Z + Y XZ

= 0.

Before we can highlight the connection between a Lie group and its Lie Algebra

we first introduce the notion of left translations and invariant translations.

Definition 2.4.4. Let G be a Lie group. Then for P ∈ G, the left translation,

denoted by LP , and the right translation, denoted by RP , are respectively
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given by:

LP : G→ G with LP (Q) := P ◦Q,

RP : G→ G with RP (Q) := Q ◦ P,

where Q ∈ G.

Because we can write LP as the composition of smooth maps:

G ıP−→ G×G m−→ G,

where ıP (Q) = (P,Q) and m is the left multiplication, it implies that LP is

smooth. In fact LP is a diffeomorphism of G, since LP−1 is the smooth inverse

of LP . The same is true for the right translation RP : G→ G. Note that if G

is not abelian in general LP 6= RP so we will usually use LP .

Remark 2.4.1. Note that if G1,G2 are smooth manifolds, f : G1 → G2 is a

diffeomorphism and df : TG1 → TG2 is the differential of f , then

df
(
[X, Y ]

)
=

[
df(X), df(Y )

]
. (2.18)

Definition 2.4.5. Let G be a Lie group, a vector field X on G is called

left-invariant if it is invariant under all left translations, i.e. for any P,Q ∈ G:

dLP
(
X(Q)

)
= X(P ◦Q). (2.19)

Similarly, a vector field X is called right invariant if for any P ∈ G we have:

dRP

(
X(Q)

)
= X(Q ◦ P ).
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Definition 2.4.6 (The Lie algebra of a Lie group). The space g of all left-

invariant vector fields on a Lie group G endowed with the standard Lie bracket

is called Lie algebra of the Lie group G.

Before giving the definition of Carnot group we introduce the concept of nilpo-

tent Lie algebra.

Definition 2.4.7 (Nilpotent Lie algebra). A Lie algebra g of a Lie group G

(see Definition 2.4.1) is called nilpotent of step k if there exists k ∈ N \ {0}

and a decomposition

g = g(1) ⊕ · · · ⊕ g(k), (2.20)

where

g(1) = g1 ≤ g,

g(n+1) =
[
g1, g

(n)
]
, n ∈ N \ {0},

and

[
g1, g

(n)
]

:=
{

[X, Y ] : X ∈ g1, Y ∈ g(n)
}
,

for n = 1, . . . , k and g(k+1) = {0}.

Definition 2.4.8. A group G is called Carnot group (also called stratified

group of step k), if it is a connected Lie group whose Lie algebra is nilpotent

of step k. The identity of the group is the vector (0, 0, 0).

Example 2.4.3. (Heisenberg group) The Heisenberg group introduced in Ex-

ample 2.2.1 is endowed with the group law for H1 is given by:

P ◦Q =
(
x1 + x̃1, x2 + x̃1, x3 + x̃3 + 1

2 (x1x̃2 − x̃1x2)
)
,
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for all P = (x1, x2, x3), Q = (x̃1, x̃2, x̃3) ∈ R3. The Heisenberg group is an

example of a Carnot group, a non-commutative nilpotent Lie group with strat-

ified Lie algebra

g = g1 ⊕ g2, (2.21)

where g1 is 2-dimensional and is generated by the vectors X and Y, and g2 is

1-dimensional where g2 = span{[X, Y ]}, given in Example 2.2.1.

We next show how to check thatX and Y are exactly the ones given in Example

2.2.1. Since a Lie group is also a manifold, one can always associate to the Lie

algebra g a tangent space at the origin (the identity of the group).

Definition 2.4.9 (Left-invariant translations). Using left-translations one can

define the tangent space at any other point p. Then one can easily identify a

basis of left invariant vector fields as

Xi = dLp(ei),

where Lp is the left-translation given in Definition 2.4.4, df is the differential

defined in Definition 1.2.3 and ei are the standard Euclidean basis vectors.

Theorem 2.4.1. Let G be a Lie group and g be its Lie algebra. Then the

following statements are satisfied:

1. g is a vector space and the function

φ : g → TeG,

X → φ(X) := X(e)

is isomorphism between g and the tangent space TeG (see Definition

1.2.2) to G at the identity e of G. As a consequence, dim g = dim TeG =
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dim G.

2. g with the commutation operation is a Lie algebra.

For a proof see [13].

Theorem 2.4.1 together with the function left-translation allows us to compute

the left-invariant vector fields for any X(P ) ∈ G. Take X(e) ∈ TeG, then we

can define a corresponding vector X(P ) ∈ TPG as

X(P ) :=
(
dLP

)(
X(e)

)
, P ∈ G, (2.22)

where LP is the left-translations, see Definition 2.4.4.

Example 2.4.4 (Left-invariant vector fields in the Heisenberg group H1). As

the left-invariant vector fields for TeH1 we choose e1, e2, e3 standard Euclidean

3-dimensional basis. In order to compute the left-invariant vectors for H1, let

us fix a point P = (x1, x2, x3) ∈ H1 and consider the curve γ̃ : [0, 1] → H1

defined as

γ̃(t) = f
(
γ(t)

)
,

where γ : [0, 1]→ H1 satisfies

γ(0) = e = (0, 0, 0),

γ̇(0) = X(e),

with X(e) respectively equal to e1, e2 and then e3, given f : H1 → H1 then

(df)e
(
X(e)

)
:= d

dt
γ̃(t)

∣∣∣∣∣
t=0

.

Choose as function f the left-translations LP : G → G with LP (Q) = P ◦ Q
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and consider X(e) = ei, for i = 1, 2, 3, we have

γ̃i(t) = LP
(
γi(t)

)
,

˙̃γi(0) = (dLP )(ei),

for i = 1, 2, 3.

Now, let us find the left translations with P = (x1, x2, x3)

LP
(
γ(t)

)
= (x1, x2, x3) ◦

(
γ1(t), γ2(t), γ3(t)

)

=
(
x1 + γ1(t), x2 + γ2(t), x3 + γ3(t) + 1

2
(
x1γ2(t)− x2γ1(t)

))
.

To obtain the left-invariant vector fields we need to differentiate the left trans-

lations, so fix p = (x1, x2, x3), then

(
dLP (X(e)) =

(
γ̇1(0), γ̇2(0), γ̇3(0) + 1

2
(
x1γ̇2(0)− x2γ̇1(0)

))
,

where γ̇(0) = X. Hence, the left-invariant vector field X1(P ) corresponding to

e1 = (1, 0, 0) is

X1(P ) = (dLP )(1, 0, 0)

=
(

1, 0,−x2

2

)

= ∂

∂x1
− x2

2
∂

∂x3
.

Similarly, the left-invariant vector field X2(P ) corresponding to e2 = (0, 1, 0)
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in TeH1 is:

X2(P ) = (dLP )(0, 1, 0)

=
(

0, 1, x1

2

)

= ∂

∂x2
+ x2

2
∂

∂x3
.

Finally, the left-invariant vector field X3(P ) corresponding to e3 = (0, 0, 1) in

TeH1 is:

X3(P ) = (dLP )(0, 0, 1)

= (0, 0, 1)

= ∂

∂x3
.

which are the three vector fields we’d expect to compute from Example 2.2.1.

Definition 2.4.10. (Dilation) For λ > 0 family of dilations on g is a family

of maps ∆λ : g→ g defined as dilations,

∆λ(X) = λjX ∀X ∈ g(i), (2.23)

where g(i) is the i-layer of the stratification defined in (2.21) and the element

of the Lie algebra are identified with vector fields by Theorem 2.4.1.

Example 2.4.5. (Heisenberg group) Dilations for the Heisenberg group in

Example 1.23 can be represented as,
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∆λ(X) = λX =


λ

0
−λy

2

 , ∆λ(Y ) = λY =


0

λ

λx

2

 and ∆λ(Z) = λ2Z =


0

0

λ2

 .

Once we have some dilations on the Lie algebra g we can induce a natural

rescaling also on the group G by using the exponential map (see [37] for defi-

nition of exponential map).

Definition 2.4.11. We define δλ : G→ G as

δλ(x) = exp ◦∆λ ◦ exp−1(x), (2.24)

where exp: g → G is the exponential map. This gives a rescaling that is

coherent with the manifold structure defined on the Lie groups.

Arising from this we have that following lemma.

Lemma 2.4.1. Given a Carnot group and the family of dilations δλ (defined

above) on G consider a horizontal curve γ (see Definition 2.2.4), then the curve

η := δλ(γ),

is still horizontal and the horizontal velocity satisfies

αη = λαγ.

For proof see [13].

Example 2.4.6. In the Heisenberg group in Example 2.4.5 we have that the
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dilation defined in (2.24) are

δλ(x, y, z) = (λx, λy, λ2z),

one can easily check the validity of Lemma 2.4.1.

2.5 Grushin spaces

Grushin spaces are very important geometries associated to Hörmander vector

fields. We refer to [41] for properties and to [27] for properties and applications

of the Grushin spaces. Grushin spaces are not Carnot groups since they do

not have any group structure as it is not possible to associate to them a Lie

group structure, therefore “standard” Lie group translations are not defined.

We are going to use our new notion of generalised translations to the specific

case of Grushin spaces and in particular the Grushin plane.

A generalised Grushin space can be defined as follows.

Definition 2.5.1. Let (x, y) ∈ Gn
α ' Rn = Rg × Rh, where g, h ≥ 1 are

integers and n = g+h. For a given real number α > 0, let us define the vector

fields in Rn,

Xi(x, y) = ∂

∂xi
, i = 1, ..., g, Yj(x, y) = |x|α ∂

∂yj
, j = 1, ..., h.

In this thesis we concentrate on the specific case of the so called Grushin plane,

where α = 1 and g = 1 = h. In the literature on Grushin spaces the modulus

is used for spaces greater than 1, however in the simplest first case x is used

and not the modulus. See the next example.
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Example 2.5.1. (The Grushin plane G2) We take as underlying manifold of

G2 the R2 plane, with coordinates x, y and consider the sub-Riemannian metric

defined by the vector fields

X(x, y) =

1

0

 , Y (x, y) =

0

x

 , ∀(x, y) ∈ R2. (2.25)

These vector fields span the tangent space everywhere, except along the line

x = 0. Consider the commutator:

X3(x, y) := [X, Y ](x, y) =

0

1

 , ∀(x, y) ∈ R2, (2.26)

Then X and Y taken together with the associated commutator X3 = [X, Y ]

span the whole tangent space at any point, so the Hörmander condition holds

and Chow’s Theorem applies.

Even if Grushin spaces are not Carnot groups (as there exists no associated

group law that satisfies the conditions necessary for it to be a Lie algebra),

one can introduce a natural rescaling in these geometries that we call again

dilations. We will look at this in greater details in Section 4.2.1, highlighting

how the rescaling is coherent with the manifold structure in the Grushin plane.

Definition 2.5.2. In the Grushin space the dilations δλ : G2 → G2 are defined

as

δλ(x, y) =
(
λx, λ2y

)
.

This scaling defined above is natural in the geometry since it respects horizontal

curves and the associated Carnot-Carathéodory distance. In fact, consider an
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horizontal curve γ = (γ1, γ2) : [0, T ] → G2 with horizontal velocity α =

(α1, α2), that means

γ̇(t) =
(
α1(t), α2(t)γ1(t)

)
, a.e. t ∈ [0, T ].

If we now consider the Euclidean rescaled curve defined as η(t) := λ γ(t) for

t ∈ [0, T ], in general η is not everywhere horizontal. If we instead consider

the rescaled curve defined as η(t) := δλ(t) then η is still horizontal and its

horizontal velocity αη rescales as one could expect, i.e.

αη = λα. (2.27)

In fact one can explicitly compute the velocity of η, that is

η̇(t) =
(
λγ̇1(t), λ2γ̇2(t)

)
= λ

(
α1(t), α2(t)

(
λγ1(t)

))
= λ

(
α1(t), α2(t)η1(t)

)
.

By recalling that the Carnot-Carathéodory distance is defined as the minimum

length of horizontal curves joining two given points, the previous rescaling

property implies the following result.

Lemma 2.5.1. Let us consider two points p, q ∈ G2 and the correspond-

ing Carnot-Carathéodory distance dCC(p, q) defined in the Grushin plane (see

Definition 2.2.5). Assume that δλ are the anisotropic dilations introduced in

Definition 2.5.2. Then

dCC (δλ(p), δλ(q)) = λdCC
(
p, q

)
, ∀p, q ∈ G2

Proof. To show the lemma it is enough to remark that any horizontal curve

η joining the points δλ(p) to δλ(q) can be written as η = δλ(γ) for some γ
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horizontal curve joining p to q (in fact it is enough to choose γ = δ1/λ(η)).

Then (2.27) implies the lemma.

Roberto Monti in his PhD thesis [41] neatly proved a very important estimate

for the Carnot-Carathédory distance in Grushin spaces, by introducing the so

called box distance. Next we report the result but written directly in the case

of the Grushin plane.

Theorem 2.5.1. Let λ > 0 and p, q ∈ R2 and dCC(p, q) the Carnot-Carathéodory

defined in Definition 2.2.5, then there exists c ≥ 1 such that for all p = (x, y)

and q = (ξ, η) ∈ R2 with |x| ≥ |ξ|

dCC(p, q) ≤ |x− ξ|+ |y − η|
|x|

≤ c dCC(p, q), if |x|2 ≥ λ|y − η|, (2.28)

and

dCC(p, q) ≤ |x− ξ|+ |y − η|
1
2 ≤ c dCC(p, q), if |x|2 < λ|y − η|, (2.29)

where p = (x, y) and q = (ξ, η)

For proof see [41].

This estimate will be extremely useful in Section 4.6.

The previous result tells that the Carnot-Carathédory distance in Grushin

spaces is globally equivalent to the so called box-distance that we indicate by

dbox(p, q), i.e.
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dbox(p, q) =


|x− ξ|+ |y − η|

|x|
, if |x|2 ≥ |y − η|,

|x− ξ|+ |y − η|
1
2 , if |x|2 < |y − η|.

It is easy to show that also the box-distance rescales well in the sense that

dbox (δλ(p), δλ(q)) = λdbox
(
p, q

)
.

We conclude the section by the picture of the box-ball centred in the origin

with radius 1, i.e.

Bbox :=
{
p ∈ R2 | dbox(p, 0) ≤ 1

}
.

That can be found easily as the points (x, y) solving

1 ≥


|x|+ |y|

|x|
, x2 ≥ |y|,

|x|+ |y| 12 , x2 < |y|.

see the following pictures.
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Figure 2.1: In the picture we represent the two different graphs appearing in the
definition of the box-distance together with the constrain |x|2 = |y|.
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Figure 2.2: The Grushin box-ball centred in the origin and with radius 1.
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Chapter 3

Generalised translations and

generalised periodic sets

3.1 Translations and periodicity along vector

fields.

Translations are usually associated to geometrical structures where one can

define a vector space structure or at least a group law. Here we introduce

a new idea for translating along vector fields, that can be applied to very

general geometries where nor a vector space nor an algebraic structure are

defined. The possibility to define periodic structures on these spaces lead

to many important application, e.g. the possibility to study homogenization

problems in this setting (e.g. see Part III). In particular this notion can be

applied to Riemannian and sub-Riemannian manifolds.

Wherever you have a group structure you can translate a point w.r.t another

point (i.e. w.r.t another group element) trivially by using the group law.

61
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Instead in our case we translate points along waves which are uniquely deter-

mined by a fixed (integer) constant velocity. Usually (e.g. in Carnot groups)

this has an important dimensional consequence; in fact we define the transla-

tion in a n-dimensional space, but depend only on m parameters with m < n

(see the equivalence between generalised translations and horizontal transla-

tions in Lemma 4.1.4). In the Grushin plane this idea also works better.

We introduce the main definitions of the thesis with many examples.

Our setting is now the geometry of vector fields, then we consider a family

of m vector fields X = {X1, . . . , Xm} which, for sake of simplicity, we always

assume defined on Rn, with usually m ≤ n. Note that one could introduce

the same notion starting from vector fields defined on a generic n-dimensional

manifold but in this thesis we do not consider this more generic case. The

vector fields will be assumed to be at least locally Lipschitz, though in our

examples they are usually smooth.

3.1.1 Main definition and examples.

First we need to recall the notion of X -lines used in [7] (see also [6] for more

properties), which are curves with velocity constant along the directions of the

given vector fields. More precisely, recall that an absolutely continuous curve

x : [0, T ]→ Rn is called horizontal whenever the velocity at almost every time

belongs to the span generated by the vector fields at the corresponding point,

i.e.

ẋ(t) =
m∑
i=1

αi(t)Xi(x(t)), a.e. t ∈ [0, T ]. (3.1)

The m-valued measurable function α : [0, T ] → Rm is called the horizontal

velocity and represents the velocity of a horizontal curve w.r.t. the given
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family of vector fields (See Definition 2.2.4).

Definition 3.1.1 (X -lines). An horizontal curve l : [0, T ] → Rn is called

X -line if the m-valued horizontal velocity α is constant, i.e.

l̇(t) =
m∑
i=1

αiXi(l(t)), a.e. t ∈ [0, T ], (3.2)

for some constants α1, . . . , αm ∈ R.

Given a constant horizontal velocity α and a starting point x ∈ Rn there exists

a unique X -line solving (3.2) since we have required for the vector fields to be

at least locally Lipschitz. It is important to remark that,(recalling Chow’s

Theorem see Theorem 2.2.1), whenever the vector fields X = {X1, . . . , Xm}

satisfy the Hörmander condition, a horizontal curve between any two given

points x and y always exist while this is not anymore true if we restrict our

attention to X -lines: in fact the set of points that one can reach starting from

x is a m-dimensional object in Rn. We can now introduce the main notion of

the paper.

Definition 3.1.2 (Generalised translations). Given X = {X1, . . . , Xm} family

of vector fields, assume that the vector fields are at least locally Lipschitz and

a point x ∈ Rn and a constant α ∈ Rm with m ≤ n, the generalised translation

(or translation along vector fields) of the point x in the direction induced by

α is defined as the following point:

τα(x) = lαx (1), (3.3)

where lαx (·) is the unique solution of (3.2) with initial condition lαx (0) = x and

horizontal constant velocity α ∈ Rm.
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In the Euclidean case, if assume m = n and the vector fields Xi = ei are the

standard Euclidean basis, then we get back the usual translations: in fact the

Euclidean X -lines are the usual straight lines l(t) = α t+x, thus τα(x) = x+α.

Remark 3.1.1. Note that, unlike the usual translations, we are not translating

a point w.r.t. another point but a point along selected set of directions (i.e. a

point belonging to the set of solutions to our (3.3)).

Lemma 3.1.1. Given some constant α ∈ Rm, the generalised translation

τα : Rn → Rn is always bijective and the inverse function is τ−1
α = τ−α.

Proof. Consider the X -line xα : [0, 1] → Rn and define the curve η(t) =

xα(1− t). Trivially η(0) = τα(x) while η(1) = xα(0) = x. Moreover

η̇(t) = −ẋα(1− t) = −σ(xα(1− t))α = σ(η(t))(−α),

where σ is the n×m matrix whose columns are the vector fields of the family

X . Thus η = l−αy where y = τα(x). Recalling that η(1) = x, we have proved

that τ−α
(
τα(x)

)
= x. Swapping α and −α, we prove that τα ◦ τ−α = identity

map = τα ◦ τ−α.

We next compute explicitly the generalised translations in some easy but still

quite interesting cases.

Example 3.1.1 (Translations in one direction in the Euclidean RN). On RN

we consider the vector field X = ei, for some fixed i = 1, . . . , N . Then the

generalised translation of a point x ∈ RN w.r.t. to the direction induced by

α ∈ R is

τα(x) = (0, . . . , xi + α, 0 . . . , 0), (3.4)
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where xi indicates the i-components of the point x. Thus the generalised

translations coincide with the standard translations in the fixed i-direction.

Example 3.1.2 (Rotational geometry). On R2 we consider the the vector field

X(x, y) =
(
y

−x

)
, for (x, y) ∈ R2.

Solving the Equation (3.2) for the X -lines with horizontal velocity α ∈ R and

initial condition (x, y) ∈ R2, we find

l1(t) = y sin(α t) + x cos(α t),

and

l2(t) = −x sin(αt) + y cos(α t).

Set t = 1, we deduce

τα(x, y) = (y sinα + x cosα,−x sinα + y cosα) ∈ R2. (3.5)

This means that in this case we translate a point along the circle centred at

the origin and passing from that point to another with an angle equal to α.

The next two examples are the the main focus of the thesis: the Heisenberg

group and the Grushin plane.

Example 3.1.3 (1-dimensional Heisenberg group). Recall the 1-dimensional

Heisenberg group H1 given in Example 2.2.1. Solving (3.2) with initial condi-

tions l(0) = (x, y, z) and imposing
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l̇1(t) = α1,

l̇2(t) = α2,

l̇3(t) = −α1l̇2(t) + α2l̇1(t),

(3.6)

then we can write explicitly the generalised translation of a point (x, y, z) w.r.t.

α = (α1, α2) ∈ R2 as

τα(x, y, z) =
(
α1 + x, α2 + y, z + α1y − α2x

2

)
. (3.7)

Example 3.1.4 (Grushin plane). For all (x, y) ∈ R2, consider the two vector

fields given in Example 2.5.1. In this case, the X -lines can be found solving

l̇(t) =
(
l̇1(t)
l̇2(t)

)
=

1 0

0 l2(t)


(
α1

α2

)
, (3.8)

with starting point (x, y). Then the solution to Equation (3.8) is


l1(t) = α1t+ x,

l2(t) = α1α2

2 t2 + α2t+ y.

(3.9)

Hence the generalised translations in the Grushin plane are

τα(x, y) =
(
α1 + x,

α1α2

2 + α2x+ y

)
. (3.10)

Remark 3.1.2. Different from the case of the Heisenberg group, in the case

of the Grushin plane the translation parameter α has the same dimension of

the space i.e. they are both 2-dimensions.
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3.1.2 Periodic sets

Using the previous translations along vector fields we introduce an associated

notion of periodicity for sets.

Definition 3.1.3 (Periodic sets). Given X = {X1, . . . , Xm} family of vector

fields, a positive real number T and a set Ω ⊆ RN , we say that Ω is generalised

periodic (or simply X -periodic) with period T if and only if

τTk(x) ∈ Ω, ∀x ∈ Ω and ∀ k ∈ Zm, (3.11)

where τTk(x) are the generalised translation defined by (3.3) with α = Tk.

Usually the period T will be chosen as the smallest positive number such that

property (3.11) holds true.

Note that, in the Euclidean case, X is the standard Euclidean basis on RN ,

then the previous notion coincides with the standard notion of periodicity with

period T .

The following remark is useful later on the thesis

Remark 3.1.3. Note that (3.11) is true if and only if the following holds,

τTk1 ◦ · · · ◦ τTkN
(x) ∈ Ω, ∀x ∈ Ω. (3.12)

In fact (3.12) implies (3.11) trivially by choosing N = 1. To prove the reverse

implication we prove using induction. For the case N = 1 we have equality.
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Assume true for N now we have to prove for N + 1. Take

y = τTk1 ◦ · · · ◦ τTkN
(x) ∈ Ω.

As y ∈ Ω and then by definition τTkN+1(y) ∈ Ω.

Next we give some examples of generalised periodic sets in different geometries.

Example 3.1.5 (Periodic sets in R2 translating only in one direction). Look

at the R2 with the vector field X = e1 and the corresponding generalised

translation defined in Example 3.1.1. We define the cube Q0 =
[
−1
2 ,

1
2

]
×
[
−1
2 ,

1
2

]
and the translated sets:

Qk = τ2k
(
Q0
)

=
[
2k + −1

2 , 2k + 1
2

]
×
[
−1
2 ,

1
2

]
, ∀ k ∈ Z.

The set Ω = ⋃
k∈Z

Qk and its complementary set Ωc are both Ω X1-periodic with

period T = 2. Note that Ωc and Ω are not periodic in the standard sense in

R2 since they are not periodic w.r.t. the vertical direction.

Figure 3.1: A set periodic only in the x-direction.

Example 3.1.6 (Periodic sets in the rotational geometry). We consider now

the vector field on R2 defined in Example 3.1.2 and the corresponding gen-

eralised translation. Since the X -lines are circle centred in the origin and

passing trough the starting point, then the periodic set need to have some
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radial symmetry. We next present several examples generalised periodic sets

in this specific geometry.

Note that all the complements of the given sets are generalised periodic as well

with the same period T .

Figure 3.2: A set which is generalised periodic for every period T ∈ R.

Figure 3.3: Given Q1 =
{
r ≤ 1, π3 ≤ θ ≤ 2π

3
}

and Q2 =
{
r ≤ 1, 4π

3 ≤ θ ≤ 5π
3
}

(defined in polar coordinates), then the set Ω = Q1∪Q2 is generalised periodic with
period T = π.
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Figure 3.4: A perforated domain with non-overlapping holes that is also generalised
periodic with period T = π

2 .

Next we give two lemmas which are very useful to easily construct (gener-

alised) periodic sets as both union of holes or perforated domains (i.e. their

complements) in many different geometries.

Lemma 3.1.2. Consider a simply connected bounded set B ⊂ RN and define

Ω :=
⋃

k∈Zm

τTk
(
B
)
,

where τT k(x) are the generalised translations with period T given in (3.3).

Assume that

∀ k, h ∈ Zm, ∃ z ∈ Zm such that τTk
(
τTh(x)

)
= τTz(x). (3.13)

Then Ω is (generalised) periodic with period T .

Proof. Given any x ∈ Ω we need to show that τTh(x) ∈ Ω ∀h ∈ Zm. If x ∈ Ω

then there exists some k̃ ∈ Zm and some y ∈ B such that x = τT k̃(y). Then

τTh(x) = τTh(τT k̃(y)) = τT z̃(y),
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for some z̃ ∈ Zm by (3.13). Then τTh(x) ∈ τT z̃(B) ⊆ Ω.

Similarly one can prove that the complement is itself a periodic set.

Lemma 3.1.3. Under the assumptions of Lemma 3.1.2, and assuming in ad-

dition that τTk : Rn → Rn is bijective for all k ∈ Zm and that for all x ∈ Rn

∃ k̃ ∈ Zm such that τ−1
Tk (x) = τ

T k̃
(x). (3.14)

Then

Ωc = Rn \
⋃
k∈Z

Bk,

is (generalised) periodic with period T .

Proof. We need to show that for all x ∈ Ωc and for all k ∈ Zm, τTk(x) ∈ Ωc.

By using the definition of the complement of a set and the negation of a logic

implication, this is equivalent to showing that

τTk(x) ∈ Ω ⇒ x ∈ Ω.

Now τTk(x) ∈ Ω means that τTk(x) = τTh(y) for some y ∈ B and for some

h ∈ Zm. Applying the inverse function τ−1
Tk to both the sides and combining

conditions (3.13) and (4.2) we can conclude

x = τ−1
Tk

(
τTh(x)

)
= τ

T k̃

(
τTh(x)

)
= τTz(x),

for some z ∈ Zm; thus x ∈ Ω.
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Remark 3.1.4. The generalised translations given in Definition 3.1.2 always

satisfy condition (3.14) (see Lemma 3.1.1) while in general condition (3.13)

may not be satisfied (as we will see in some of the following examples).

For the generalised translations defined in Examples 3.1.1 and 3.1.2 both con-

ditions (3.13) and (3.14) are satisfied and thus the lemmas apply. In fact, e.g.

for Ex. 3.1.2 translating twice, we get:

τTk1

(
τTk2(x, y)

)
= τTk1

(
y sin(Tk2)+x cos(Tk2),−x sin(Tk1)+y cos(Tk2) =

)
=
(
y sin

(
T (k1+k2)

)
+x cos

(
T (k1+k2)

)
,−x sin

(
T (k1+k2)

)
+y cos

(
T (k1+k2)

))
.

In this case τ−1
Tk = τ−Tk. Then it is very easy to build periodic sets just

translating any given compact and simply connected domain radially. Still

most of the time one would get as domain a “fat” ring (see Fig 3.2). To get

more interesting examples translating radially we need to select the period T

as an angle such that the translations do not overlap (the translations of the

set are disjoint) and moreover

Ω =
⋃
k∈Z

τTk
(
B
)

= τTk1

(
B
)
∪ · · · ∪ τTkn

(
B
)
,

for some finite number n ∈ N. In the above picture for Example 3.1.2 the

period will be the angle between any two consecutive centres. (Any smaller

translated ball B would also give a periodic set Ω).

As already remarked unfortunately the generalised translations given in Defi-

nition 3.1.2 do not always satisfy conditions (3.13). This is due to the fact that

if we connect 3 points by X -lines in general a X -line connecting the first point

to the third point may not exist. We will show this explicitly in the following
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Figure 3.5: Here the ball B centred at (1,0) is translated using the rotational
geometry through a period T = π

4 .

two examples.

Example 3.1.7. In the case of the Heisenberg group (see Example 3.1.3)

assumption (3.13) is not true. In fact, using formula (3.7), we can check

τT (k1,k2)
(
τT (h1,h2)(x, y, z)

)
=(

T (k1 + h1) + x, T (k2 + h2) + y, z + T (k1 + h1)y − T (k2 + h2)x
2 + T 2(k1h2 − k2h1)

2

)
,

which is not equal to τT (z1,z2)(x, y, z) for any z1, z2 ∈ Z and for all T >

0, as T 2(k1h2−k2h1)
2 6= 0 for all k1h2 6= k2h1. Nevertheless we will show in

Section 4.1 that we can still apply the previous lemmas to build periodic sets

in the Heisenberg group by, either using Lie group’s translations or applying

the generalised translations twice. The two strategies will generate different

periodic sets.

Example 3.1.8. In the case of the Grushin plane (see Example 3.1.4) assump-
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tion (3.13) is not true. In fact:

τTk(τTh(x̃)) = (x+T (h1+k1), Th1h2+Tk1k2+T (h2+k2)x+T 2h1k2+y) 6= τT (k+h)(x̃).

(3.15)

for all T 2h1k2 6= 0. Therefore there does not exist a k̃ ∈ Z2 as required in

assumption (3.13) due to the extra term T 2h1k2.

In the next two sections we will study in detail the cases of Hörmander vector

fields. In particular we will first study the case of the Heisenberg group and

more general Carnot groups, comparing our notion with the usual translation

in Lie groups. Then we will look at the case of Grushin spaces which are the

real focus of the thesis.



Chapter 4

Translations in Grushin spaces,

perforated domains and tilings

4.1 The case of the Heisenberg group.

The n-dimensional Heisenberg group Hn is a step 2 sub-Riemannian geometry

defined on R2n+1, where in addition to the manifold structure one can introduce

a Lie group structure. For sake of simplicity we here concentrate on the 1-

dimensional case which can be defined as R3 endowed with the group law

(x, y, z) ◦ (x′, y′, z′) =
(
x+ x′, y + y′, z + z′ + x y′ − y x′

2

)
, (4.1)

for every (x, y, z), (x′, y′, z′) ∈ H1 ≡ R3 (see Example 2.4.3).

Note that due to the non-Euclidean term in the third component, the group

law is non commutative. To this Lie group structure, one can associate the

left-invariant vector fields already introduced in Example 3.1.3, which generate

75
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the first layer of the stratified Lie algebra while the second layer is generated by

the left-invariant vector fields Z =
[
X1, X2

]
(see Example 2.2.1 and Definition

2.4.4). For a more intrinsic definition of the Heisenberg group starting from the

Hausdorff-Campbell formula, the left-invariant vector fields and other proper-

ties, we refer the reader to [19] and Section 2.4. Using the group structure one

can define the following group-translations.

Definition 4.1.1 (Group-translations and group periodicity). Given a point

g = (x, y, z) ∈ H1 and integers k = (k1, k2, k3) ∈ Z3, we call group-translations

or simply H1-translations the following family of functions:

τH
1

g′ (g) := g′ ◦ g ∈ H1. (4.2)

A set Ω ⊂ H1 is said group-periodic or simply H1-periodic if and only if

τH
1

2 k

(
Ω
)
⊂ Ω for all k ∈ 2Z3. (4.3)

The choice of fixing the period T = 2 is related to the condition (3.13). In

fact, the smallest T > 0 such that the composition of two group translations

is still a group translation is 2. The previous definition has been broadly used

in this setting, e.g. see [31] [11].

Lemma 4.1.1 (Property group translations). Consider the group translations

in the Heisenberg group defined in (4.2), then the following properties are

trivially true:

1. τH1
g1 ◦ τ

H1
g2 = τH

1
g1◦g2 ,

2. τH1
g is a bijective function and

(
τH

1
g

)−1
= τH

1

g−1 .

Then Lemmas 3.1.2 and 3.1.3 both hold true, since 2 k ◦ 2h ∈ Zm for all
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k, h ∈ Zm as one can easily check:

2k ◦ 2h = (2 k1 + 2h1, 2 k2 + 2h2, 2 k3 + 2h3 + 2 k2h1 − 2 k1h2).

Recall also that k−1 = −k. Note that, taking T = 1 we would have the

problem that k ◦ h does not belong to Z3; thus the choice of T = 2. We have

that 2k ◦ 2h is in 2Z3, not in Z3 due to the fact that 2Z3 is subgroup of the

Heisenberg group, however Z3 is not.

Using Lemmas 3.1.2 and 3.1.3 one can build many periodic domains in the

Heisenberg groups. For example, taking the simply connected and compact

starting set

B =
{

(x, y, z) ∈ R3|x2 + y2 + z2 =
(

1
3

)2}
,

we get the periodic sets Ω = ⋃
k∈Z3

B and Ωc shown in Figure 4.1.

As already briefly remarked in Example 3.1.3 in the 1-dimensional Heisenberg

group one can also define generalised translations. We need now to investigate

the relations between group-translations and generalised translations.

An easy computation shows that:

τ(α1,α2)(x, y, z) = τH
1

(α1,α2,0)(x, y, z), (4.4)

where τ(α1,α2) are the generalised translations defined in (3.7) while τH1

(α1,α2,0)

are the group-translation we define in (4.2).

To recover τH1

(α1,α2,α3) one should consider the generalised translations w.r.t. to

X, Y and Z = [X, Y ], but the corresponding curve would not be in general an

admissible curve in H1 since the direction Z is not allowed (since it does not

belong to the distribution H =span(X, Y ), see Example 2.2.1 and Definition
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Figure 4.1: Both the union of the balls and the compliment set are H1-periodic
sets (i.e. in the sense of group periodicity).

2.4.4).

Therefore one can see that group-periodicity implies periodicity w.r.t. gener-

alised translations by simply taking k3 = 0 in definition (4.3) while the reverse

is obviously not true.

So how can we construct periodic sets in H1 without using the stronger as-

sumption of group periodicity?

Remark 4.1.1. Note that the group translations translate w.r.t points and

in H1 are 3-dimensional. Thus the translations in H1 depend on 3 parameters.

The translations along vector fields only depend upon 2 parameters since they

are only 2 vector fields, (in fact the distribution in H1 is 2-dimensional only).

Still the translation along vector fields coincide with the group translations
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with k3 = 0. These are called the ”horizontal” group translations and have

been used (iterated more than once) to replace the 3-dimensional group trans-

lation to study homogenization in [11] and [48] (respectively in H1 in the first

paper and in more general carnot groups in the second paper)

Lemma 4.1.2. Let us consider α, β ∈ R2 and the corresponding generalised

translations defined in Equation (3.7) (or equivalently horizontal translations

in the sense of Equation (4.4)), then there exists γ ∈ R3 such that.

τα
(
τβ(x, y, z)

)
= τγ

H1(x, y, z), ∀ (x, y, z) ∈ H1 ≡ R3. (4.5)

Proof. Let’s compute the left hand side of (4.5), we get

τα
(
τβ(x, y, z) = τα

(
β1 + x, β2 + y, z + β1y − β2x

2

)
=

=
(
α1 + β1 + x, α2 + β2, z + β1y − β2x

2 + α1(β2 + y)− α2(β1 + x)
2

)

=
(
α1 + β1 + x, α2 + β2 + y, z + (α1 + β1)y − (α2 + β2)x

2 + α1β2 − α2β1

2

)
.

Now take

α1 + β1 = γ1, α2 + β2 = γ2 and α1β2 − α2β1

2 = γ3

and (4.5) is proved.

Therefore the composition of any two generalised translations is a group trans-

lation. This holds as it satisfies conditions (3.13) and (3.14)(See Lemma 4.1.1).
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So applying twice the generalised translations do we get the same periodic sets

that using group-translations? and if not, can we use Lemmas 3.1.2 and 3.1.3

to build periodic sets? In the next two propositions we will show that actually

the answer is negative to both the questions. To prove both we will use the

same idea; the main problems arise when we restrict the translations to only

integer directions. From now on we will consider integer translations of period

T = 2, i.e.

τ2(k1,k2)(x, y, z) =
(

2k1 + x, 2k2 + y, z + k1y − k2x

)
. (4.6)

We now answer our first question.

Lemma 4.1.3. The group-translations defined by (4.2) and the horizontal (or

generalised) translations applied twice are not equivalent. This means that it

is possible to find k̃ ∈ Z3 such that for all k1, k2, k3, k4 ∈ Z

τ2(k1,k2) ◦ τ2(k3,k4)(x, y, z) 6= τH
1

2k̃ (x, y, z),

where τ2k are defined in (4.6) and τH
1

2k̃
are defined in (4.2) and for some

(x, y, z) ∈ H1

To prove this Lemma we are going to use a famous Theorem from number

theory, namely Diophantine’s Theorem.

Proof. Using (4.4) we can deduce

τ2(k1,k2) ◦ τ2(k3,k4) = τH
1

2(k3,k4)◦2(k1,k2) = τH
1

2(k̃1,k̃2,k̃3). (4.7)

We want to show that such, choosing in a suitable way k̃1, k̃2, k̃3 ∈ Z , then

such k1, k2, k3, k4 ∈ Z do not exist. For (4.7) to be true we need to be able to



4.1. The case of the Heisenberg group. 81

solve the following system:



2k̃1 = 2(k1 + k3),

2k̃2 = 2(k2 + k4),

2k̃3 =
(

2k22k3 − 2k12k4

2

)
= 2(k2k3 − k1k4).

(4.8)

which simplifies to



k̃1 = k1 + k3,

k̃2 = k2 + k4,

k̃3 = k2k3 − k1k4.

(4.9)

Then we can take

k1 = k3 − k̃1 and k2 = k4 − k̃2,

which, substituting these into the expression for k̃3, we find that

k̃3 = (k4 − k̃2)k3 − (k3 − k̃1)k4 = k̃1k4 − k̃2k3.

Now a solution may exist for all k1, k2, k3, k4 ∈ R, however we need something

stronger (i.e. integer solutions). To prove that there are not solutions in Z we

only need to find one counter example.

Since

k̃3 = k4k̃1 − k3k̃2 = k4k̃1 + k̃2(−k3) (4.10)

we can use number theory to find a criterion for the existence of integer so-
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lutions. In particular we will use the following result for the linear Diophan-

tine equation. We recall that a linear Diophantine equation has the form

ax+ by = c, where a, b and c are given integers.

Theorem 4.1.1 (Diophantine’s equation[4]). Given the equation

ax+ by = c, (4.11)

let a, b be integers and let d = gcd(a, b) (where gcd(·, ·) denotes the greatest

common denominator between any two integers). The Equation (4.11) has

solutions if and only if d divides c.

In our case the variables are x = k2, y = k1 and −k3 are the coefficients are

the integers a = k̃1, b = k̃2 and c = k̃3.

Then if for example we take k̃1 = 6, k̃2 = 3 and k̃3 = 7, we see that gcd(k̃1, k̃2) =

3. However this does not divide 7 = k̃3. Then Diophantine’s theorem tells us

that there does not exist integer solutions.

Since condition (3.13) is not satisfied, we cannot use Lemmas 3.1.2 and 3.1.3 to

build generalised periodic sets in H1. We can still build interesting perforated

domains not necessarily periodic as we will do later in the Grushin plane.

4.1.1 The case of Carnot groups

In Carnot groups, one can define periodicity by considering the left translationsLg :

G→ G given by

Lg(x) = g ◦ x,

exactly as in the case of the Heisenberg group.
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Definition 4.1.2 (Group-translation and group-periodicity). We indicate the

group-translations of period T by τGTk for k ∈ ZN and T ∈ R, i.e. τGTk : G→ G

as τGTk(x) = (Tk) ◦ x.

A set Ω ⊆ RN ≡ G is called group-periodic (or simply G-periodic) with period

T , if and only if,

τGTk(x) ∈ Ω, ∀ x ∈ Ω and k ∈ ZN .

We will fix the period T = 2 for coherence with the Heisenberg case and the

literature on the subject (see [13]) but this does not affect the conclusions.

We now consider the m horizontal left-invariant vector fields which span the

first layer of the Lie algebra g1 (where m = dimg1). For more details on this

point see Section 2.4.6. In canonical coordinate the left-invariant vector fields

have the following structure, see [19]:

Xj(x) = ∂

∂xj
+

n∑
i=m+1

aij(x) ∂

∂xj
, j = 1, . . . ,m.

In particular we report the following result from [48].

Lemma 4.1.4. Let Ω be an open subset of a Carnot group G, then for every

point x ∈ Ω there exists a point x0 ∈ G and a finite number of group actions

generated by elements of the form (k, 0), k ∈ Zm that are applied to x0 give x.

For proof see [48].

We conclude by remarking that to recover the group-translations by using

the generalised translations one needs to consider as family of vector fields all

the N left-vector fields spanning the whole g Lie algebra and not only the

horizontal one.
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4.2 Generalised translation in Grushin spaces

In Example 3.1.4 we have computed the generalised translations in the Grushin

plane. Here we report the explicit formulation once more, for the convenience

of the reader:

τα(x, y) =
(
α1 + x,

α1α2

2 + α2x+ y

)
. (4.12)

Lemma 4.2.1. Let us consider the generalised translations in the Grushin

plane defined in (4.12), then we can always find some β, γ ∈ R2 such that

τβ(τγ(x, y)) 6= τα(x, y), ∀α, x, y ∈ R2 (4.13)

Proof. Multiplying out the left hand side of the equation we see that

τβ

(
γ1 +x,

γ1γ2

2 +γ2x+y

)
=
(
β1 +γ1 +x,

β1β2

2 +β2(γ1 +x) + γ1γ2

2 +γ2x+y

)

=
(
β1 + γ1 + x,

β1β2

2 + γ1γ2

2 + (β2 + γ2)x+ β2γ1 + y

)
.

Equating terms with the right hand side of (4.13) we see that

(
β1 +γ1 +x,

β1β2

2 + γ1γ2

2 +(β2 +γ2)x+β2γ1 +y

)
=
(
α1 +x,

α1α2

2 +α2x+y

)
.

(4.14)

For equality to hold ∀x, y in the first component we require that β1 + γ1 = α1.

Equating x terms in the second component we require that β2 + γ2 = α2.

However for equality to hold we also require that α1α2 = β1β2 + γ1γ2 + 2β2γ1,

which holds only in the case β1γ2 = β2γ1 and thus (4.13) does not hold for all

β1γ2 6= β2γ1.
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We have already remarked that to construct generalised periodic sets in the

Grushin space is very hard due to the fact that the composition of two gener-

alised translations is not a generalised translation anymore (see Lemma 4.2.1).

Still, similarly to the Heisenberg case, if we take the composition of 3 different

translations this cannot written in the form of a generalised translation, as you

can see in the following lemma.

As in the case for the Heisenberg translations we choose our period to be T = 2

and only focus on integer translations α = k ∈ Z2 , i.e.

τα(x, y) =
(
α1 + x,

α1α2

2 + α2x+ y

)
= (2k1 + x, 2k1k2 + k2x+ y) = τ2k(x, y).

(4.15)

Lemma 4.2.2. The translation defined in (4.15) has an inverse translation

and the inverse translation satisfies property (3.14) .

Proof. Taking the translation along the negative of the vector k we see that

τ−2k(τ2k(x, y)) = τ−2k(2k1 + x, 2k1k2 + 2k2x+ y),

which means

(2k1 − 2k1 + x, 2k1k2 − 2k2(2k1 + x) + 2k1k2 + 2k2x+ y) = (x, y),

Similarly τ2k(τ−2k(x, y)) = (x, y). Thus the inverse of τ2k is simply τ−2k.

Remark 4.2.1. From Lemma 4.2.1 we can see that τ2k does not satisfy prop-

erty (3.14).
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4.2.1 Translations and rescaling in the Grushin plane

Even though the Grushin spaces are not Carnot groups, it is still possible to

define a natural scaling. We show that our new notion of translations behaves

well w.r.t natural rescaling defined in the geometry.

Definition 4.2.1. A rescaling δλ is a natural scaling in the geometry whenever

the following property holds: ∀ horizontal curves γ : [a, b]→ Rn (see Definition

2.2.4) the rescaled curve defined by

η := δλ(γ),

with λ ∈ R, is still horizontal and the horizontal velocity rescales according to

λ, in the sense that

αη = λαγ,

where αγ and αη are the Rm valued (measurable) functions such that

γ̇(t) =
m∑
i=1

αi
γ(t)Xi(γ(t)), a.e. t ∈ [a, b],

and

η̇(t) =
m∑
i=1

αi
η(t)Xi(η(t)), a.e. t ∈ [a, b].

Note that in the case of Carnot groups a rescaling always exists. This natural

rescaling also exists in the Grushin spaces (see Definition 2.5.2).

Example 4.2.1. It is very well known that in the Euclidean case

τλα(x) = x+ λα.
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Now we show how the generalised translations behave well w.r.t the geometrical

scaling.

Lemma 4.2.3 (Generalised translation under rescaling). Let us assume that

there exists a δλ : Rn → Rn such that for all horizontal curves γ, if the curve

η := δλ(γ) satisfies the following rescaling property

αη = λαγ,

then

τα(δλ(x)) = δλ(τα(x)).

For proof see [28].

Recalling the Grushin dilations (see Definition 2.5.2) we see that

δλ(x, y) =
(
λx, λ2y

)
,

this scaling is natural since it respects horizontal curves and the associated

Carnot-Carathéodory distance. In fact, consider an horizontal curve γ with

horizontal velocity α = (α1, α2) that means that

γ̇(t) =
(
α1(t), α2(t)γ1(t)

)
.

(Note that in this case the horizontal velocity is a R2-valued measurable func-

tion).

Remark 4.2.2. In the space R2 with the structure of the Grushin plane, if

we consider the Euclidean rescaled curve defined as η := λ γ, in general η is
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not anymore horizontal, while, if we consider the rescaled curve defined as

ξ = δλ(γ) then ξ is still horizontal and

ẋi(t) =
(
λγ̇1(t), λ2γ̇2(t)

)
= λ

(
α1(t), α2(t)ξ1(t)

)
.

This means that the horizontal velocity of ξ is equal to λα, and the horizontal

velocity rescaling is exactly the same as the total velocity for the Euclidean

case.

This implies that:

dCC (δλ(x, y)) = λdCC
(
(x, y)

)
.

As seen earlier, even though the Grushin plane is not a Carnot group, it is

possible to define a rescaling coherent with the underlying geometry

δλ(x, y) =
(
λx.λ2 y

)
. (4.16)

Recalling the estimate for the Carnot-Carathéodory distance and the box dis-

tance, (see Definition 2.5.1), it is easy to see that the Carnot-Carathéodory

distance and the box distance both scale according to dilations defined in the

geometry.
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4.3 Construction of perforated domains with

non overlapping holes in the Grushin plane.

In this section we will use generalised translations to build an interesting class

of perforated domains with non overlapping holes in the Grushin plane. We

will first show how to find a special class of starting balls which never overlap

once translated. Then we will generalise this to diamonds, in this case finding

such an optimal class of compact and simply connected sets that can be used

to build perforated domains with non overlapping holes.

4.4 Construction of Grushin perforated sets

by translations of (Euclidean) balls

The following theorem is one of our main results.

Theorem 4.4.1. Consider the set

Ω := R2\
⋃
k∈Z2

Bk,

where Bk := τ2k(B) with τ2k integer generalised translation defined in Equation

(4.14) and B is a 2-dimensional (Euclidean) closed ball of radius r and centred

at some point of the form

(
a+ 1

2 , b
)
, where a, b ∈ Z.
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Moreover we assume the following condition on the radius:

r <
1

2
√

2
.

Then Ω is a Grushin perforated domain with non overlapping holes.

Proof. All balls considered here are closed (so that Ω is open). We want to

prove that

Bk ∩Bh = τ2k(B) ∩ τ2h(B) = ∅, ∀ k, h ∈ Z2 with k 6= h.

To apply the generalised translations we consider the following coordinates, as

follows:


x = x̃+ 2k1 ⇐⇒ x̃ = x− 2k1,

y = ỹ + 2k1k2 + 2k2x̃ ⇐⇒ ỹ = y + 2k1k2 − 2k2x.

(4.17)

Instead of proving directly the result we want to give a more constructive proof

to highlight why and how the condition on the centre and the critical radius

are found. This will also give an idea on how we found the structure of the

center and conditions for the radius.

Therefore we start translating the following ball (that does not satisfy the

conditions on the centre and radius). In particular we start translating the

ball

B =
{

(x, y) ∈ R2 : (x− 2)2 + y2 ≤ 1
4

}
.

Then for k = (k1, k2) ∈ Z2 we get

Bk = τ2k(B) =
{

(x, y) ∈ R2 : (x− 2k1 − 2)2 + (y + 2k1k2 − 2k2x)2 ≤ 1
4

}
,

(4.18)
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and for h = (h1, h2) ∈ Z2

Bh = τ2h(B) =
{

(x, y) ∈ R2 : (x− 2h1 − 2)2 + (y + 2h1h2 − 2h2x)2 ≤ 1
4

}
.

(4.19)

We want to show that for any (h1, h2) 6= (k1, k2) the intersection is empty.

Note that for all U, V ∈ R:

U2 + V 2 = 1
4 =⇒ U2 ≤ 1

4 ,

which gives the restriction −1
2 ≤ U ≤ 1

2; so from (4.18) taking U = x−2k1−2

and V = y + 2k1k2 − 2k2x we see that

−1
2 ≤ x− 2k1 − 2 ≤ 1

2 ,

which implies

2k1 + 1
2 ≤ x ≤ 2k1 + 3

2 , (4.20)

whenever x ∈ Bk. Similarly using (4.19) one can deduce that the same in-

equality holds for h1, i.e.

2h1 + 1
2 ≤ x ≤ 2h1 + 3

2 . (4.21)

We now proceed in following steps.

Step1: We show that the regions defined by (4.20) and (4.21) overlap if and

only if k1 = h1. This implies that Bk ∩Bh 6= ∅ =⇒ k1 = h1.

One implication is obvious, so we need only to show that, if the two regions

overlap, that implies k1 = h1 or, equivalently, that whenever k1 6= h1, the two
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regions do not overlap.

Assume that k1 6= h1 then without loss of generality:

k1 > h1 =⇒ k1 − h1 ≥ 1 =⇒ 2k1 − 2h1 ≥ 2.

Assume there exist some x satisfying both (4.18) and (4.19), then we have the

following chain of inequalities,

x ≤ 2h1 + 3
2 < 2h1 + 2 ≤ 2k1 < 2k1 + 1

2 ≤ x, (4.22)

then x < x which is impossible. This implies the two regions defined in (4.18)

and (4.19) intersect only if k1 = h1, which implies Bk ∩Bh 6= ∅ =⇒ k1 = h1.

Step 2: We now show that the translations of the ball initially centred at the

point
(

3
2 , 0

)
with radius r < 1

2
√

2 do not intersect.

Consider the two translated balls Bk and Bh defined, respectively, in (4.18)

and (4.19) with k = (k1,k2), h = (h1, h2) ∈ Z2 and lets look for the intersection

points.

By Step 1 we can assume k1 = h1. Then Bh can be written as the set of points

(x, y) satisfying

(x− 2k1 − 2)2 + (y + 2k1h2 − 2h2x)2 ≤ 1
4 .
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Then every point (x, y) ∈ Bk ∩Bh needs to satisfy the following system:


(x− 2k1 − 2)2 + (y + 2k1k2 − 2k2x)2 ≤ 1

4 ,

(x− 2k1 − 2)2 + (y + 2k1h2 − 2h2x)2 ≤ 1
4 .

(4.23)

Subtracting the two inequalities we find that for an intersection to exist the

following equality must hold

y2 + 4k2
1k

2
2 + 4k2

2x
2 + 4k1k2y − 4k2xy − 8k1k

2
2xy

2

− y2 − 4k2
1h

2
2 − 4h2

2x
2 − 4k1h2 + 4h2xy + 8k1h

2
2x = 0. (4.24)

Rearranging similar terms, Equation (4.24) can be written as

k2
1(k2

2−h2
2)+(k2

2−h2
2)x2−k1(k2−h2)y−(k2−h2)xy−2k1(k2

2−h2
2) = 0. (4.25)

Note that we can assume k2 6= h2 since we are already in the assumption

k1 = h1 (Otherwise we would be trivially comparing the case when we have

(k1, k2) = (h1, h2)). Dividing (4.25) through k2 − h2 6= 0 we get

(k2 + h2)x2 − (2k1(k2 + h2) + y)x+ (k2
1(k2 + h2) + k1y) = 0. (4.26)

To show that Equation (4.26) has real solutions, we consider the equation as

a second order equation in the variable x and we compute the discriminant.

The discriminant is ∆ = b2 − 4ac with a = (k2 + h2), b = −(2k1(k2 + h2) + y)

and c = (k2
1(k2 + h2) + k1y). Then

∆ = 4k2
1(k2 + h2)2 + 4k1y(k2 + h2) + y2 − 4k2

1(k2 + h2)2 − 4k1y(k2 + h2) = y2.
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Since ∆ = b2−4ac = y2 ≥ 0 this implies that in general there are real solutions.

Are there any restriction on the starting ball that we can make to prevent the

existence of those solutions (and hence prevent a non-empty overlapping)?

To find those restriction we need to look at the exact solutions.

Solving Equation (4.26) we use the standard formula for quadratic equations,

thus assuming k2 6= −h2 the solutions are:

x1,2 = −(−(2k1(k2 + h2) + y))±
√
y2

2(k2 + h2) = k1 + y ± |y|
2(k2 + h2) . (4.27)

We will explore later the case where we have k2 = −h2. Note that for all

y ∈ R, the solutions expressed in (4.27) can be written as


x1 = k1,

x2 = k1 + 2y
2(k2 + h2) ,

(4.28)

and the two solutions coincide whenever y = 0 (in fact in that case we have

that the discriminant vanishes).
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Step 3: We first consider the solution x = k1. Remember we are in the case

that k1 = h1 and r = 1
2 .

Substituting x1 = k1 into (4.23) we get

(k1 − 2k1 − 2)2 + (y + 2k1k2 − 2k2k1)2 = (k1 + 2)2 + y2 ≤ 1
4 . (4.29)

Now we need to understand for what values of k1 do there exist solutions for

equation (4.29). Taking the discriminant of (4.29) we find out that whenever

k1 ∈ Z\ {−2} we have

∆ = −4
(

(k1 + 2)2 − 1
4

)
< 0, (4.30)

since (k1 + 2)2 ≥ 1 > 1
2 (which is true as |k1 + 2| ≥ 1) implies (k1 + 2)2 − 1

4 >

1
4 > 0.

This means that ∀ k1 ∈ Z\ {−2} we have no real solutions.

It remains for us to look at the case k1 = −2.

Regardless of k2,h2, when k2 = −2 we get

(−2 + 4− 2)2 + y2 = 1
4 ,

which implies

y = ±1
2 .

Then in this case we have proved that all balls overlap and their boundaries

intersect always in the same two points (−2, 1/2) and (−2,−1/2) (see Figure

4.2). To prevent intersections occurring along this line we need that the radius
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Figure 4.2: The intersections occur along the line x = k1 = −2 with starting ball
B =

{
(x, y) ∈ R2 : (x− 2)2 + y2 ≤ 1

4

}
.

is strictly less than 1
2 . This proves that the radius 1

2 is so far ”optimal”: in fact

whenever r > 1
2 there is an overlapping, when r = 1

2 the overlapping lies only

on the boundary and when r < 1
2 this overlapping does not occur. It remains

to prove that no other overlapping occurs in the case r < 1
2 .

Step 4: We now look at the other possible solution x2 in (4.28), i.e.

x = k1 + y

k2 + h2
, k2 6= −h2. (4.31)

Here we find that we need a further restriction on the radius r. Following the

ideas in Step 3, we now substitute (4.31) in

(
x− 2k1 −

3
2

)2
+ (y + 2k1k2 − 2k2x)2 = r2, (4.32)
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Figure 4.3: The intersection along x = −2 no longer occurs.

where we have the restriction on r given by r < 1
2 .

Using solution (4.31) into Equation (4.32) we get

(
k1 + y

(k2 + h2) − 2k1 −
3
2

)2

+
(
y + 2k1k2 − 2k2

(
k1 + y

(k2 + h2)

))2

= r2,

which implies

(
y

(k2 + h2) −
(
k1 + 3

2

))2

+
(
y − 2k2y

(k2 + h2)

)2

= r2,

which implies

y2

(k2 + h2)2 −
2(k1 + 3

2)
(k2 + h2)y + (k1 + 3

2)2 + y2 (h2 − k2)2

(k2 + h2)2 = r2,

which finally gives

(
(h2 − k2)2 + 1

(k2 + h2)2

)
y2 −

2(k1 + 3
2)

k2 + h2
y +

((
k1 + 3

2

)2

− r2
)

= 0. (4.33)
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We now look at Equation (4.33) as a quadratic equation in y and compute the

corresponding discriminant ∆ = b2 − 4ac with

a = (h2 − k2)2 + 1
(k2 + h2)2 , b = −

2(k1 + 3
2)

(k2 + h2) and c =
((
k1 + 3

2

)2
− r2

)
.

Thus we obtain

∆ = b2 − 4ac =
4
(
k1 + 3

2

)2

(k2 + h2)2 − 4
(

(h2 − k2)2 + 1
(k2 + h2)2

)((
k1 + 3

2

)2
− r2

)

= −4(h2 − k2)2

(k2 + h2)2

((
k1 + 3

2

)2
− r2

)
+ 4 r2

(k2 + h2)2

= − 4
(k2 + h2)2

(
(h2 − k2)2

((
k1 + 3

2

)2
− r2

)
− r2

)
.

(4.34)

As we know that (k1 + 3
2)2 ≥ 1

4 , ∀k1 ∈ Z, this implies

(
k1 + 3

2

)2
− r2 ≥ 1

4 − r
2 >

1
8 , ∀ r2 <

1
8 .

So we get that

(h2 − k2)2
((
k1 + 3

2

)2
− r2

)
− r2 >

1
8(h2 − k2)2 − r2 > 0, (4.35)

∀ r2 < 1
8 , ∀ k2, h2 ∈ Z, h2 6= k2.

(We are not interested in the case where k2 = h2 as this is the trivial case.)

The second inequality in (4.34) holds as

(h2 − k2)2 ≥ 1 =⇒ 1
8(h2 − k2)2 >

1
8 ∀ h2, k2 ∈ Z, with h2 6= k2,
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which gives
1
8(h2 − k2)2 − r2 >

1
8 − r

2 > 0, ∀ r2 <
1
8 .

Moreover, since

(h2 − k2)2
((
k1 + 3

2

)2
− r2

)
− r2 > 0,

then, for all r < 1
4 and for all k2, h2 ∈ Z with h2 6= k2, we deduce

− 4
(k2 + h2)2

(
(h2 − k2)2

((
k1 + 3

2

)2
− r2

)
− r2

)
< 0. (4.36)

So the discriminant of (4.34) is strictly negative, which means that there exist

no real solutions as soon as we assume that

r2 <
1
8 i.e. r <

1
2
√

2
.

Figure 4.4: We have an intersection along the line x = −2 + y
k2+h2

where k2 = 0
and h2 = 1,−1, with the starting ball with r2 = 1

5
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Step 5: Finally we need to consider the case k2 = −h2, always under the

assumption k1 = h1.

Looking back at (4.26) with k2 = −h2, we get

−xy + k1y = (k1 − x)y = 0.

which gives two solutions x = k1 and y = 0. We have already considered the

case x = k1 for all k2 and h2 (see Step 3). So we need to look only at the case

y = 0. Are there any two translated balls intersecting each other along the

line y = 0 under the assumption k2 = −h2?

We can assume k2 6= 0 since the case k2 = −h2 = 0 is trivial (in fact in this

case k2 = h2).

Without loss of generality, we can assume k2 < 0. In this case we can show

that actually the translated ball never intersects on the line y = 0.

Substituting y = 0 in our translated ball with the restricted on the radius

r <
1

2
√

2
, we find

(
x− 2k1 −

3
2

)2
+ (2k1k2 − 2k2x)2 = r2,

which implies (
x− 2k1 −

3
2

)2
+ 4k2

2(k1 − x)2 = r2.

Using that A2 + B2 = r2 implies always A2 ≤ r or equivalently −r ≤ A ≤ r,

we can deduce, taking A = x− 2k1 − 3
2 , that

2k1 + 3
2 − r ≤ x ≤ 2k1 + 3

2 + r, (4.37)
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and using −r ≤ B ≤ r with B = 2|k2|(k1 − x)

k1 −
r

2|k2|
≤ x ≤ k1 + r

2|k2|
. (4.38)

It remains to show that for all k1 ∈ Z the two regions identified by (4.37) and

(4.38) do not overlap.

To prove the above claim we need again to look at two cases separately.

First we assume k1 ≥ 0:

In this case

2k1 ≥ k1 ≥ 0 and r <
1

2
√

2
,

which implies
3
2 − r >

3
2 −

1
2
√

2
>

1
2
√

2
> r >

r

2|k2|
.

Thus we can conclude

2k1 + 3
2 − r > k1 + r

2|k2|
.

Referring to equations (4.37) and (4.38), then the lower bound of one region

is greater than the upper bound of the other region. Hence the two regions do

not intersect.

Now it remains to consider the case k1 < 0 that, since k1 ∈ Z, means k1 ≤ −1.

Consider first the case k1 = −1.
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The two regions become the sets of points solving:

−1
2 − r ≤ x ≤ −1

2 + r (4.39)

and

−1− r

2|k2|
≤ x ≤ −1 + r

2|k2|
. (4.40)

The two equations (4.39) and (4.40) imply

−1
2 − r > −

1
2 −

1
2
√

2
> −1 + r

2|k2|
.

Again the lower bound of one region is greater than the upper bound of the

other region. Likewise there is no overlapping in this case.

Finally we consider k1 < −1.

In this case we have no overlapping for any value of k1 ∈ Z. Hence we can

conclude that in all the cases there is no intersection of two balls along the

line y = 0. Therefore we have proved that there exists no intersections for

translated balls for any radius r satisfying r < 1
2
√

2 where the centre of the

starting ball is of the form

(
a+ 1

2 , b
)
, where a ∈ Z, b ∈ R.

Note that the critical radius is independent of the values a and b in our starting

ball. However the radius is dependent upon the fact that the x component of

the centre is at least 1
2 away from the nearest integer i.e. x = a + 1

2 with

a ∈ Z.
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Example 4.4.1. The set Ω = R2\⋃k∈Z2 τ2k(B) with

B =
{

(x, y) ∈ R2
∣∣∣∣∣
(
x− 3

2

)2

+ y2 ≤ 1
9

}

is a perforated domain with non overlapping holes (see Figure 4.6)

Figure 4.5: In the picture we show that translating the ball B the complement of
these translations is a perforated domain with non overlapping holes.

Remark 4.4.1. [Optimality of the radius r = 1
2
√

2 ] Fix a starting ball with

center of the form (a+ 1
2 , b) where a, b ∈ Z, then the radius r = 1

2
√

2 is optimal

to avoid overlapping. In fact, by repeating exactly the computations in the

previous proof, one can show that whenever r < r, the holes generated by

translating that ball do not intersect. Whenever r > r the holes have non-

empty intersection in some internal points and finally when r = r the holes

intersect only at some points on the boundary.
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4.5 Translating diamonds.

Next we show results similar to the ones in the previous section but translating

diamonds instead of balls. This will allows us to generate a large class of

perforated domains with non overlapping holes.

Figure 4.6: In the picture we show that translating the diamond D the complement
of these translations is a perforated domain with non overlapping holes, in the sense
that the holes intersect only on their boundaries.

Theorem 4.5.1. Consider the set D defined as

D =
{

(x, y) ∈ R2
∣∣∣ ∣∣∣∣∣x− 3

2

∣∣∣∣∣+ |y| ≤ 1
2

}
.

We define

Dk := τ2k(D), ∀ k ∈ Z2,

where τ2k are the translations in the Grushin plane defined in Definition 4.2.1.

Then the complementary set

Ω = R2 \ {∪k∈ZDk}
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is a perforated domain with non-overlapping holes, in the sense that the holes

intersect only on their boundaries.

Proof. The proof follows computations similar to the ones for the translated

balls in the Theorem 4.4.1. The picture (Fig 4.6) shows the statement graph-

ically, thus we omit the proof.

The previous theorem is very important since it allows us to determine an

optimal family of compact and simply connected sets. In fact any set inside

the optimal diamond determined above can be translated without the risk

that the translations have intersections; while if the set is not enclosed in the

diamond the translated sets will overlap (and to prove it formally one needs

only to repeat the computation of the proof of Theorem 4.4.1). The diamonds

intersect only along the lines defined in the second root of Equation (4.28). The

ball defined in Theorem 4.4.1 is ball of maximum radius that can be enclosed

within the diamond. This reinforce the optimality of the radius r = 1
2
√

2 (see

4.4.1). We will sum up all these remarks in the following corollary.

Corollary 4.5.1. Given any simply connected set A enclosed within the dia-

mond D defined in Theorem 4.5.1, i.e. A ⊂ D̊, (D̊ represents the interior of

the set) we define

Ω = R2 \ {∪Ak|k ∈ Z2},

where Ak = τ2k(A) and τ2k are the translations in the Grushin plane defined

in Definition 4.2.1.

Then Ω is a perforated domain with non overlapping holes.

Using the above result we can construct very interesting examples of perforated

domains with non overlapping holes. For example one can always enclose in the
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“optimal” diamond D balls rescaling according to the Grushin dilations defined

in Definition 2.5.2. An interesting choice is to create perforated domains by

translating Grushin-balls w.r.t. the Carnot-Carathéodory distance enclose in

D or also box-balls (i.e. balls w.r.t. the box-distance defined in Definition

2.5.1).

4.6 Tilings in the Grushin plane.

Tilings are an important tool in many applications, they are in particular ex-

tremely useful when studying homogenization problems and integral estimates.

(see [31],[11] but also in the proof of the Poincaré inequality in Theorem 5.0.1)

First we recall the definition of tiling.

Definition 4.6.1. A tiling is a set of disjoint open subsets Yi ⊆ Rn such that

the union of the closure of these subsets cover the whole of Rn, i.e.

⋃
i

Y i = Rn.

A pavage simply satisfies the above definition, however it differs in the sense

that the subsets Yi have to be disjoint and the closure of the union has to cover

the whole set.

Example 4.6.1. In the Euclidean plane one can build a tiling in many different

ways.

The easiest way is to just take the family of semi-closed squares of the form

Qk = [k1, 1 + k1)× [k2, 1 + k2),
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∀ k = (k1, k2) ∈ Z2 , i.e.

R2 =
⋃
k∈Z2

Qk.

Figure 4.7: A standard Euclidean tiling.

The idea of translating squares (or hypercubes in Rn) can be applied to build

tilings for the Heisenberg group and for Carnot groups by using the group-

translations. Unfortunately the same idea does not work in the case of the

Grushin plane. In fact, as we have shown in the picture of translating dia-

monds, we are not going to cover the whole space by translating a square (or

a diamond) in the Grushin space, w.r.t the translations defined in Definition

3.10.

In the Euclidean space, tilings (or nets) can be defined also by using the holes

of perforated domains. In fact in the case of periodic spherical holes, one can

build a tiling by simply connecting the centres of adjacent holes (if the holes

are not periodic or not spherical a similar construction can still be developed

for example by considering the baricenters of adjacent holes). We show this in

the following example.

Example 4.6.2. Let us consider the following perforated domain:

Ω = R\
⋃
k∈Z2

Bk,
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where Bk := B + k and B =
{

(x, y) ∈ R2|x2 + y2 ≤ 1
2

}
.

Figure 4.8: Periodic spherical holes in the Euclidean plane.

Taking the centre of each sphere Bk, we can build a tiling by joining adjacent

centres, as in the following picture:

Figure 4.9: A tiling for the Euclidean plane built using the centres of periodic
spehrical holes.

Note that in this way we get a partition of R2 which is coherent with the

geometry of the perforated set. This idea is very general and it can be applied

to construct a pavage in the Heisenberg group (as in Figure 4.1). We can apply

the same idea to the perforated domains with non-overlapping holes built in

Section 2.5 to construct a tiling in the Grushin plane.

In the case of the Euclidean translated holes we can easily show that the

distance between adjacent holes is uniformly bounded and so is the diameter



4.6. Tilings in the Grushin plane. 109

of each set of the tiling. Let us be more precise. By adjacent holes we mean

the following.

Definition 4.6.2. Given a simply connected and compact hole B ⊂ Rn and

consider the translated hole Bk = τk
(
B
)

for some k ∈ Z, the adjacent holes to

Bk are the holes Bh such that hi = ki for all i ∈ {1, . . . , n}\{j}, j ∈ {1, . . . , n}

and hj = kj+1 or hj = kj−1.

So in the case n = 2 the adjacent holes for Bk = B(k1,k2) are 4 and they are

given by the balls B(k1+1,k2), B(k1−1,k2), B(k1,k2+1) and B(k1,k2−1).

Figure 4.10: Euclidean example: the diagonal of the squares represent the diameter
of the cell.

The size of the tiling is the maximum distance between two adjacent holes.

The shortest length on which connects two holes (on the boundary) can be

easily estimated by looking at the distance between the centres of the holes

of the form B(k1,k2) and B(k1+2,k2+2). In both the tilings we have built in the

Euclidean case it is trivial to see that the sets (the squares in this case) are

all uniformly bounded since the shortest length connecting points on circles
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B(k1,k2) and B(k1+2,k2+2) is denoted by d and is always equal to

d =
√

8− 2√
2

= 2
√

2−
√

2 =
√

2.

where
√

8 is the length of the diagonal connecting the circles and we subtract

to that twice the length of the radius. If we try to connect centres of the

four adjacent holes of our Grushin perforated domain to create a tiling of the

space R2 we come across a problem. Unfortunately the sets of the tiling are

now quadrilaterals which do not have anymore a uniformly bounded diame-

ter, neither w.r.t. the Euclidean distance nor w.r.t the Carnot-Carathéodory

distance, as we will see next.

Figure 4.11: The tiling of R2 connecting 4 adjacent holes by using the Grushin
translation.
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Before giving the two results we need to introduce formally the following def-

initions.

Given a tiling {Yk} of Rn we call the Yk, cell of the tiling.

Definition 4.6.3. The Euclidean diameter of the cells Yk of a tiling is the

number

dkE = diamE(Yk) = max{|p− q||p, q ∈ Y k}.

Definition 4.6.4. The Carnot-Carathéodory (or CC) diameter is of the cells

Yk of a tiling is the number

dkCC = diamCC(Yk) = max{dCC(p, q)|p, q ∈ Y k}.

Proposition 4.6.1. Define the set

B 1
3

=
{

(x, y) ∈ R2
∣∣∣∣∣
(
x− 3

2

)2

+ y2 ≤
(

1
3

)2}
, (4.41)

and consider the translated balls Bk := τ2k(B 1
3
) by using the generalised Grushin

translations defined in (4.15), for k = (k1, k2) ∈ Z2.

Given the tiling in R2 (see Fig 4.11) built by connecting the centers of the 4

adjacent balls, the Euclidean diameter dkE is not uniformly bounded w.r.t. k.

Proof. Let Pk be the centre of the hole for k = (k1, k2 + 1) and let Qk be the

centre of the hole for k = (k1, k2) (i.e. two vertically adjacent holes). This

means

Pk =
(

3
2 + 2k1, 2k1(k2 + 1) + 3(k2 + 1)

)
,
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and

Qk =
(

3
2 + 2k1, 2k1k2 + 3k2

)
.

The Euclidean distance between Pk and Qk is

|2k1(k2 + 1) + 3(k2 + 1)− (2k1k2 + 3k2)| = |2k1 + 3|,

which becomes unbounded as k1 →∞.

Proposition 4.6.2. Define the set

B 1
3

=
{

(x, y) ∈ R2
∣∣∣∣∣
(
x− 3

2

)2

+ y2 ≤
(

1
3

)2}
,

and consider the translated Bk := τ2k(B 1
3
) by using the generalised Grushin

translations defined in (4.15), for k = (k1, k2) ∈ Z2.

Given the tiling in R2 (see Fig 4.11) by connecting the centers of the 4 adjacent

balls, the CC diameter dkCC is not uniformly bounded w.r.t. k.

Proof. Let P̃k be the centre of the hole for k = (k1 + 1, k2) and let Q̃k be the

centre of the hole for k = (k1, k2) (i.e. two horizontally adjacent holes). This

means

P̃k =
(

2(k1 + 1) + 3
2 , 2(k1 + 1)k2 + 3k2

)
,

and

Q̃k =
(

2k1 + 3
2 , 2k1k2 + 3k2

)
.

We now use Theorem 2.5.1 to estimate the Carnot-Carathéodory distance be-
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tween P̃k and Q̃k. Let x = 2(k1 +1)+ 3
2 , ξ = 2k1 + 3

2 , y = 2(k1 +1)k2 +3k2 and

η = 2k1k2 +3k2. Then we have that |x−ξ| = 2 and |y−η| = 2k2. Substituting

in the formula for Theorem 2.5.1 we get

dCC(p, q) ≤ |2|+ |2k2|
|2(k1 + 1) + 3

2 |
≤ c dCC(p, q), if

∣∣∣∣∣2(k1 + 1) + 3
2

∣∣∣∣∣
2

≥ |2k2|,

(4.42)

and

dCC(p, q) ≤ |2|+ |2k2|
1
2 ≤ c dCC(p, q), if

∣∣∣∣∣2(k1 + 1) + 3
2

∣∣∣∣∣
2

< |2k2|, (4.43)

for fixed k1 there exists sufficient enough large k2 such that

∣∣∣∣∣2(k1 + 1) + 3
2

∣∣∣∣∣
2

< |2k2|

holds. Now from the second part of the inequality (4.43) the Box distance

multiplied by a constant is a bound for |2| + |2k2|
1
2 from below. If k2 tends

towards infinity then |2| + |2k2|
1
2 also tends towards infinity, hence the box

distance explodes and so dCC .

Nevertheless we manage to create a tiling of the Grushin plane by using our

perforated domains such that CC diameter of the cells is uniformly bounded.

In particular we want a tiling with the property that always at least two

adjacent holes are partially contained in each cell of the tiling. This will be

extremely useful if we want to use this geometrical partition of R2 to prove

the Poincaré inequality for the perforated domains with non overlapping holes

built in Theorem 4.4.1.

In the next picture we illustrate our tiling.
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Figure 4.12: A special rectangular tiling of the Grushin plane.

We can actually prove that, even if the Euclidean diameter of the cells of

this tiling is still not uniformly bounded (see Proposition 4.6.3), the Carnot-

Carathéodory diameter is instead uniformly bounded (see Theorem 4.6.1 be-

low).

Proposition 4.6.3. Define the set

B 1
3

=
{

(x, y) ∈ R2
∣∣∣∣∣
(
x− 3

2

)2

+ y2 ≤
(

1
3

)2}
,

and consider the translated Bk := τ2k(B 1
3
) by using the generalised Grushin

translations defined in (4.15), for k = (k1, k2) ∈ Z2.

Given the tiling in R2 (see Fig 4.12) by connecting the centers of the 2 vertically

adjacent balls, the Euclidean diameter dkE is unbounded in k.

Proof. The proof is exactly the same as for Proposition 4.6.1, in fact there we

have used the Euclidean distance between vertically adjacent holes.
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The following result is one of the main results of the thesis.

Theorem 4.6.1. Define the set

B 1
3

=
{

(x, y) ∈ R2
∣∣∣∣∣
(
x− 3

2

)2

+ y2 ≤
(

1
3

)2}
,

and consider the translated Bk := τ2k(B 1
3
) by using the generalised Grushin

translations defined in (4.15), by for k = (k1, k2) ∈ Z2.

Given the tiling in R2 (see Fig 4.12) built by connecting the centers of 2

vertically adjacent balls, the Carnot-Carathéodory diameter dkE is uniformly

bounded w.r.t k ∈ Z2.

Proof. To bound the Carnot-Carathéodory diameter we consider the distance

between centers of the balls B(k1,k2) and B(k1,k2+1)) (recall Bk = τk(B). Let us

consider

Pk =
(

3
2 + 2k1, 2k1(k2 + 1) + 3(k2 + 1)

)
,

and

Qk =
(

3
2 + 2k1, 2k1k2 + 3k2

)
.

We now use Theorem 2.5.1 to estimate the CC-distance by the box distance.

Take λ = 1 and x = 3
2 + 2k1, ξ = 3

2 + 2k1, y = 2k1(k2 + 1) + 3(k2 + 1) and

η = 2k1k2 + 3k2, then

dCC(Pk, Qk) ≤
|2k1 + 3|
|2k1 + 3

2 |
, if

∣∣∣∣∣2k1 + 3
2

∣∣∣∣∣
2

≥ |2k1 + 3|, (4.44)
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and

dCC(Pk, Qk) ≤ |2k1 + 3|
1
2 , if

∣∣∣∣∣2k1 + 3
2

∣∣∣∣∣
2

< |2k1 + 3|. (4.45)

Note that there is no dependence on k2.

We now find the restriction on k1 for (4.44) to be applied, i.e. we look for

k1 ∈ Z such that ∣∣∣∣∣2k1 + 3
2

∣∣∣∣∣
2

≥ |2k1 + 3| (4.46)

to hold true. First consider the case 2k1 + 3 ≥ 0. Hence we have that k1 ≥ −3
2 .

The inequality (4.46) becomes

4k1
2 + 6k1 + 9

4 ≥ 2k1 + 3,

which implies

4k1
2 + 4k1 −

3
4 ≥ 0.

The polynomial 4k1
2 + 4k1 − 3

4 has roots −1
2 ±

√
7

4 hence we have that 4k1
2 +

4k1 − 3
4 ≥ 0 is true ∀k1 < −1

2 −
√

7
4 and ∀k1 > −1

2 +
√

7
4 . This is considering

the case k1 ≥ −3
2 .

We now consider the case that 2k1 + 3 ≤ 0. Hence we have that k1 ≤ −3
2 .

In this case the inequality (4.46) becomes

4k1
2 + 6k1 + 9

4 ≥ −2k1 − 3,

which implies

4k1
2 + 8k1 + 21

4 ≥ 0,

which is positive for all k1, i.e. for all k1 ≤ −3
2 .
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Figure 4.13: The graph of the polynomial 4k1
2 + 4k1 − 3

4

The two integers that lie outside this region where (4.46) holds are −1, 0. So

for all k1 6= 0,−1 we can use (4.44) to get

dCC(Pk, Qk) ≤ dbox(Pk, Qk) = |2k1 + 3|
|2k1 + 3

2 |
.

Note that

|2k1 + 3|
|2k1 + 3

2 |
≤ max

k∈Z

|2k1 + 3|
|2k1 + 3

2 |
= 2.
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Figure 4.14: The graph of f(t) = |2t+ 3|
|2t+ 3

2 |
.

Then Theorem 2.5.1 shows that

dCC(Pk, Qk) ≤ 2, ∀k1 ∈ Z \ {−1, 0} and k2 ∈ Z.

Then for k1 = −1 and k2 = 0, we consider

dCC(Pk, Qk) ≤ |2k1 + 3|
1
2 .

The right hand side of the inequality is equal to 1 for k1 = −1 and is equal to
√

3 for k1 = 0.

Thus we sum up the following uniform bound:

dCC(Pk, Qk) ≤ max{2,
√

3, 1} = 2, ∀k1, k2 ∈ Z. (4.47)
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This implies that the Carnot-Carathéodory diameter of the cells of our tiling

are uniformly bound by 2.

From Theorem 4.6.1 it follows the result below, which will be key in the proof

of the Poincaré inequality in Chapter 5.

Corollary 4.6.1. Consider the perforated domain constructed in the Grushin

plane by translating the balls given in Theorem 4.4.1. We can prove that, given

a point (x, y) ∈ R2, the Carnot-Carathéodory distance between the point (x, y)

and the boundary of the nearest hole is uniformly bounded.

Proof. This follows from the fact {Yk} constructed above is a tiling of R2, i.e.⋃
k Y k = R2. Then given p ∈ R2, ∃ k such that p ∈ Yk and the CC-distance

between p and the nearest hole Bk is smaller than the diamCC(Yk). Thus by

using Theorem 4.6.1 it is uniformly bounded w.r.t. k ∈ Z2.
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Chapter 5

Poincaré Inequality

Our plan for the future is to study homogenization for perforated domains in

Grushin spaces (starting from the Grushin plane). These problems are very

hard and challenging. The first step in this direction is to prove that there

holds true some Poincaré inequality in perforated domains as the one con-

structed in Theorem 4.4.1.

Poincaré inequalities has been extensively studied in this setting. Franchi,

Gutiérrez and Wheeden [30] comprehensively studied the case in bounded sub-

set of the Grushin plane. The inequalities required for homogenization have

been proven in the Heisenberg setting (see [42]). D’Ambrosio in his paper

proves a Poincaré inequality for the a stronger class of functions (namely C1
0)

with Dirichlet boundary condition (see [25]).

The difficulty here lies on the fact that for our aimed applications to homog-

enization problems, we need a Poincaré inequality where the constant can be

uniformly bounded independently on the holes.

The idea to obtain that is to use the tilings constructed in Theorem 4.6.1 to

create a suitable partition of R2.

121
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We here give an idea on how to prove the Poincaré inequality in our setting.

The result will be published in [43].

Let Ω̂ = R2 \ ⋃k∈Z2 Bk.

We call a foliation of Dk (the rectangular partition in Fig.4.12) by curves

admissible if it satisfied the following definition:

Definition 5.0.1. (Admissible foliation) A family of curves γθ(t) is called an

admissible if and only if

1.

γθ(0) = p(θ),

γ̇θ(t) = α(θ, t)X1(γθ(t)) + β(θ, t)X2(γθ(t)),

where α, β and p are at least C1.

2. p(θ) defines a bijection from [0, 1] to ∂Bk ∩Dk.

3. ϕ : [0, 1] × [0, 1] → Dk : (θ, t) 7→ γθ(t) is a C1-diffeomorphism, i.e. a

change of coordinates.

4. There exists C1 > 0 such that

sup
[0,1]×[0,1]

(α(θ, t)2 + β(θ, t)2) < C1.

5. With J(ϕ) := det(Dϕ) there exists a constant C2 > 0 such that the
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diffeomorphism ϕ satisfies

sup
0≤s≤t≤,1 0≤θ≤1

|J(ϕ(θ, t))|
|J(ϕ(θ, s))| < C2.

We have the following result:

Theorem 5.0.1. Suppose that for each Dk as pictured in Fig.4.12 there exists

an admissible foliation such that the constants C1 > 0 and C2 > 0 in Definition

5.0.1 are bounded uniformly in k. Then there exists a constant C > 0 which

does depends only on C1 and C2 such that

ˆ
Ω̂
u2(x)dx ≤ C

ˆ
Ω̂
|DXu(x)|2dx,

for all Lebesgue-measurable functions u : Ω→ R such that the right hand side

is finite.

Remark 5.0.1. Note that this inequality is not trivial, as the Euclidean dis-

tance of a point from the nearest hole explodes and the domain Ω is unbounded.

To show that the required foliations exist: Consider the polar coordinates (i.e.

ellipsoidal coordinates) for a suitable 0 < ε << 1

ϕ(θ, t) =

 (ε+ t) cos θ

(ε+ t)k1 sin(θ)



on Dk. As k1 ≤ x ≤ k1 + 1, we can find bounded α and β which realise this

for some suitable 0 < ε << 1. Alternatively, we can replace the holes in the

definition of Ω by the ε-ellipse related to this map, extend the function by zero

up to the ellipse and show the claim for this modified geometry. More details

will be given in [43].
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Proof of the Theorem 5.0.1: We write Ω = ⋃
k∈Z2 Bk and show the estimate

separately for each Dk. By a change of variables

I :=
ˆ
Dk

(u(x))2dx =
ˆ 1

0

ˆ 1

0
(u(θ, t))2|J(ϕ(θ, t))|dθdt,

and as u(θ, 0) = 0 we get by the definition of ϕ and the Fundamental Theorem

of Calculus, that

I =
ˆ 1

0

ˆ 1

0
(u(θ, t)− u(θ, 0))2|J(ϕ(θ, t)|dθdt

=
ˆ 1

0

ˆ 1

0

(ˆ t

0
(γ̇θ(s) ·DU(θ, s)) ds

)2

|J(ϕ(θ, t))|dθdt

≤
ˆ 1

0

ˆ 1

0

(ˆ t

0

[
|γ̇θ(s)|2

]
ds

)(ˆ t

0
|DXu(θ, s)|2ds

)
|J(ϕ(θ, t))|dθdt,

where for the last inequality we have used the Cauchy-Schwartz inequality.

Using the admissibility of the foliation and the fact that the integrands are

nonnegative, we estimate

I ≤
ˆ 1

0

ˆ 1

0

ˆ t

0

[
(α(s))2 + (β(s))2︸ ︷︷ ︸

≤C1

]
ds

(ˆ t

0
|DXu(θ, s)|2ds

)
|J(ϕ(θ, t))|dθdt

≤ C1

ˆ 1

0

ˆ 1

0

ˆ 1

0
|DXu(θ, s)|2 |J(ϕ(θ, s))|

|J(ϕ(θ, s))| |J(ϕ(θ, t))|dsdθdt

= C1

ˆ 1

0


ˆ 1

0

ˆ 1

0
|DXu(θ, s)|2|J(ϕ(θ, s))| |J(ϕ(θ, t))|

|J(ϕ(θ, s))|︸ ︷︷ ︸
≤C2

dsdθ

 dt

≤ C1C2

(ˆ 1

0
dt

)ˆ 1

0

ˆ 1

0
|DXu(θ, s)|2|J(ϕ(θ, s))|

= C1C2

ˆ 1

0

ˆ 1

0
|DXu(θ, s)|2|J(ϕ(θ, s))|dsdθ = C1C2

ˆ
Dk

|DXu(θ, s)|2dx,

where the last equality comes again from the change of variables defined by ϕ.



Chapter 6

Open problems and

Applications to Homogenization

The work carried out so far has highlighted the difficulties of working in these

very degenerate geometries where there is a lack of any Lie group structure.

Our new idea to induce translations coherent with the manifold structure (by

using a special class of admissible paths, namely X -lines) has many possible

applications.

It already allowed us to build interesting structures as perforated domains with

non-overlapping holes (see Section 4.3) and non-trivial nets (or tilings) whose

size is uniformly bounded w.r.t. the Carnot-Carathéodory distance associated

to the geometry.

This leaves us with many interesting open problems where further investiga-

tions are required. In particular, at our knowledge, currently not a single

homogenization result has been proved in Grushin-type geometries. We then

used these geometrical structures to prove the Poincaré inequality

125
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The main open problem we want to investigate in the near future is to derive

homogenization results for subelliptic PDEs (e.g. the sub-Laplacian) in the

perforated domains in this geometric setting, in line with the results known in

the standard Euclidean setting and in Carnot groups. This is actually also the

motivation behind the idea of constructing the sets illustrated in the previous

chapters.

In particular we want to generalise Cioranenscu-Murat’s celebrated paper A

Strange Term Coming From Nowhere [22], we here briefly report their result.

Let Ω be an open bounded set of Rn. Consider for every ε > 0, closed subsets

T εi , 1 ≤ i ≤ n(ε), which are the “hole”. The domain Ω is defined by removing

the holes T εi from Ω, that is

Ωε = Ω\
n(ε)⋃
i=1

T εi . (6.1)

Let f ∈ L2(Ω) and consider the boundary value for the Poisson equation with

homogeneous Dirichlet boundary condition in Ωε:


∆uε = f ∈ L2(Ω), x ∈ Ωε,

uε = 0 on ∂Ωε, u ∈ H1
0 (Ωε).

Cioranenscu-Murat use a Poincaré inequality and a suitable extension of the

operator uε to prove weak convergence results for solutions uε of the effective

equation set in Ω i.e. the domain without holes.
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In the Heisenberg group similar questions have been answered by Franchi and

Tesi in [31].

We next write the result from [31]. Consider Ω ⊆ Hn ' R2n+1 a bounded

open set, then we define a sequence Ωε of periodically perforated subdomains

as follows:

Ωε =
{
p ∈ Ω : χ(δ 1

ε
(p)) = 1

}
,

where χ is the standard characteristic function on the set Ω

Franchi and Tesi consider the problem



divX(A(δ 1
ε
(x))∇ouε) = f ∈ L2(Ω), x ∈ Ωε,

∂uε
∂n

= 0 on ∂Ω \ ∂Ωε,

uε = 0, on ∂Ω ∩ ∂Ωε

where ∇o and divX are the horizontal gradient and divergence in Hn respec-

tively, and δ 1
ε

are the dilations in Hn.

The solutions uε of the problem above converges in a two-scale sense (for de-

tails see the paper) to a limit function u, that can be characterized as the

unique weak solution of a limit problem.

There are other results in this direction in both the Heisenberg group and

Carnot groups.

We want to mention that in [31] periodic perforated domains are built by using



128 Chapter6. Open problems and Applications to Homogenization

the group translation τH
1 . (see also Figure 4.1 for an example of a domain as

the ones considered in [31])).

However in [11] and [48] the authors use iterated group translations but only

horizontally, i.e. for terms of the form (h1, . . . , hm, 0, . . . , 0) ∈ RN . This means

that their approach is in the direction of our ideas: in fact we recall that

the generalised translations coincide with group translations horizontally (see

Lemma 4.1.4) but it is different since, in order to prevent overlapping, we can-

not iterate our translations in the Grushin case.

We would also like to recall the paper by M.Biroli and N. Tchou [12] that

presents a more geometrical approach. Still the results therein fail to apply to

our perforated domains since the covering assumption is not satisfied. That

is a consequence of Proposition 4.6.1 where we have proved that the distance

between centres of the holes are unbounded in the Euclidean sense.

To conclude we want to prove the result in [31] for our perforated domains

in the Grushin plane. The main ingredient in [31] is the use of a Poincaré

inequality as the one given in Chapter 5. Therefore we are cautiously optimistic

that we are not far from proving the homogenization result.
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