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H I G H L I G H T S

• A comprehensive set of energy storage
and conversion devices were mod-
elled.

• Conversion devices were mapped to
multi-network energy flows using
matrices.

• Energy storage and conversion devices
were decomposed and sequentially
optimised.

• Interactions between multi-energy
network operation limits were de-
monstrated.

• Impact of energy conversion devices
on PV-battery systems was in-
vestigated.
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A B S T R A C T

An optimal coordinated operation model of comprehensive energy storage and conversion devices was built by
considering interdependency in a multi-vector energy community, to achieve an overall optimum. The model
determined the storage size, the operation strategies of energy storage and conversion devices and scenario
analysis was further conducted. The proposed sequential method solved the complex mixed-integer nonlinear
programming (MINLP) problem by decomposing the multi-energy system into a subsystem of conversion devices
and a PV-battery subsystem, which reduced the computation complexity. Firstly, electricity, heat and gas net-
works were modelled in an integrated manner and with a suitable level of detail for operational purposes. The
integrated electrical-hydraulic-thermal-gas flow equations imposed by multi-energy networks were formulated
as equality constraints in the optimization. The optimal operation of conversion technologies with increasing
net-load variability on the consumer load profiles was determined. Secondly, the design and operation of PV-
battery systems was investigated to provide economic incentives for storage owners. The total costs, the self-
consumption ratio (SCR), the internal return rate (IRR) of PV-battery systems were calculated. In scenario
analysis, interactions between multi-energy network operation limits as well as the impact of energy conversion
devices on PV-battery systems were demonstrated. It showed that the option of Combined Heat and Power (CHP)
was advantageous without considering PV-battery systems using 2016 financial data. However, considering the
profit of PV-battery systems and the declining grid electricity carbon intensity, the option of heat pumps was
advantageous and may be a favorable option in the long term.
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1. Introduction

Multi-vector energy systems considering electricity, gas, heat,
cooling, hydrogen and other energy vector synergies, contribute to the
local energy consumption of renewable energy and improve energy
system flexibility [1]. The design and operation of the multi-vector
energy system is to identify the optimal combination of energy supply,
conversion and storage technologies as well as the network infra-
structure required to meet the estimated energy demand and its future
evolution. Integrated design and operation of multi-energy systems is
beneficial compared to the independent development practiced by in-
dividual sectors today, since it takes into account synergies between the
different energy vectors, which will facilitate an increasing penetration
of renewable energy [2,3].

Energy storage systems have been proposed as a means of bridging
gaps in renewable energy output on a range of timescales. The use of
battery energy storage systems (BESS) in combination with PV systems
is expected to become a widely applied energy storage solution for
residences [4] and communities [5]. The benefit of the PV-battery
system was to shift off-peak electricity, consume or shift surplus PV
electricity. The battery sizing is a key part of the PV-battery system
design process, given that the profitability of the battery is affected by
its size. The selection of the optimal battery size involves a trade-off
between the battery capacity and price [6] as well as network con-
straints [7]. There is an extensive literature on BESS charge/discharge
scheduling for residential buildings that are coupled with solar PV
systems [8]. Self-consumption becomes an important driver of solar

adoption in markets around the world, which describes how much of
the locally generated electricity was consumed on-site (both for
matching instantaneous demand as well as for storing) [9]. McKenna
et al.’s study focussed on average levels of PV self-consumption in the
UK, but in the absence of ‘enabling technologies’ such as batteries or
electric vehicles [9]. Linssen et al. investigated the influence of the
temporal resolution of the input load and PV profiles on the self-con-
sumption for a PV-battery system [10]. For commercial buildings,
Mariaud et al. investigated the integrated optimization of photovoltaic
and battery storage systems [11]. Critical aspects which could affect
energy storage revenue which have not been examined include sig-
nificant changes in patterns of demand as a result of wide spread uptake
of electric vehicles, heat pumps or demand side response. The impact of
heat pumps on the levelised cost and the profitability of community
batteries was simply conducted by McKenna et al. [12], but without PV-
battery coupling and detailed network operational studies. Battery
storage in residential areas to alleviate the impacts of heat pumps was
conducted by Pimm et al. [13], but without further cost benefit ana-
lysis. Yu et al. investigated the optimal sizing of energy storage system
at building level with Combined Heat and Power (CHP) [14], without
considering PV or heat pumps.

Regarding energy conversion devices (such as gas-fired CHP, gas
boilers and heat pumps), Mashayekh et al. proposed a mixed integer
linear programming approach for optimal distributed energy resource
portfolio, sizing, and placement in multi-energy microgrids [15]. The
optimal scheduling of smart homes’ energy consumption was studied
using a mixed integer linear programming (MILP) approach by Zhang

Nomenclature

Acronyms

PV photovoltaic
BESS battery energy storage systems
PVB PV-battery systems
CHP Combined Heat and Power
CAPEX capital expenditure
OPEX operating expenditure
IRR internal return rate
SCR self-consumption ratio
SSR self-sufficiency ratio
SOC state of charge
TOU time-of-use

Variables

V voltage (V)
θ voltage angle (rad)
P electrical real power (MWe)
Q electrical reactive power (MVar)
Φ heat power (MWth)
m mass flow rate within each pipe (kg/s) in heat networks
Ts supply temperature at a node in the supply network (°C)
Tr return temperature at a node after mixing in the return

network (°C)
Eout matrix of end-use demand (e.g., electrical power and heat

power) at the conversion components
E in matrix of input electrical power and gas flow at the con-

version components
efficiency matrix of conversion devices

M permutation matrix
PPV electric power generated from PV (MW)
PPV load electric power supplied to the load from PV (MW)
PPV BESS electric power charging to the battery from PV (MW)

PPV grid electric power exported to the grid from PV (MW)
PBESS

charge maximum rate at which the battery device consumed
electricity when recharging (MW)

PBESS
discharge maximum rate at which the battery device generated

electricity when discharging (MW)
PBESS

rated rated power of the battery inverter (MW)
EBESS

rated rated storage capacity of the battery (MWh)
PPV

rated rated peak power of the PV system (MW)
Pimport imported grid electric power (MW)
Pgrid grid electric power to the load (MW)
Pimport

limit limit of imported electric power from the main grid
Pexport

limit limit of exported electric power to the main grid
Ctotal total lifetime annualized cost
COPEX annual operating expenditure (OPEX)
CCAPEX up-front capital expenditure (CAPEX) of system devices
CO&M operating and maintenance costs of devices (O&M cost)
LFn levelised factor over n years
Ce electricity spot price (£/MWh)
Cg natural gas price (£/MWh)
Ccarbon carbon price (£/tonne)
CBESS

E energy-capacity-determined cost for a battery (£/MWh)
CBESS

P power-capacity-determined cost for a battery (£/MW)
CPV

capex capital cost of a PV panel (£/MW)
CPV

export PV export feed-in tariff (£/MWh)
CPV

subsidy subsidy price of electricity generated from PV (£/MWh)
carbon footprints (gCO2/kWh)

vg natural gas flow rate (m3/h)
p gas pressure at each node (bar)

Subscripts and superscripts

e electricity
h heat
g gas
con conversion device
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et al. [16]. An integrated energy systems model that was capable of
simultaneously optimizing the design, selection and operation of dis-
tributed energy technologies in commercial buildings was showcased
by Acha et al. [17]. The performance of various conversion devices
portfolios was compared by means of primary energy consumption by
Noussan et al. [18]. A two-stage stochastic programming model for the
optimal design of distributed energy systems was presented by Zhou
et al. [19], without considering electricity, heat and gas network energy
flows. An optimal coordinated energy dispatch method for a multi-en-
ergy microgrid was proposed by Li and Xu [20], considering a com-
prehensive set of components. Various flexible conversion and storage
devices to maximize flexibility in communities was presented by Good
and Mancarella [21]. A multi-energy microgrid sizing model of con-
version devices and PV-battery systems using mixed integer linear
programming in DER-CAM tool [22], without the detailed energy net-
work studies for operational perspective. Unfortunately, most studies
failed to model the thermal energy flows explicitly, and only energy
balance constraints were included [23]. There were a few studies that
include the electrical power flow and heat transfer equations, and
hence the physical and operational constraints of electrical and
heating/cooling networks can be modelled [24,25]. Morvaj et al. pre-
sented an integrated optimization that incorporates the optimal design
and operation of distributed energy systems combined with electrical
grid constraints and the design of district heating networks, but without
considering battery energy storage [24]. Overall, in most of optimiza-
tion models and tools, either the set of components was not compre-
hensive and without a systematic formulation or the detailed network
analysis was not conducted by taking into account detailed multi-en-
ergy network topologies and locations of energy conversion technolo-
gies to calculate network operational variables and losses.

In previous models and tools, detailed network analysis was not
conducted by taking into account detailed multi-energy network
topologies and locations of generators and energy conversion technol-
ogies to calculate network operational variables and losses. In Geidl and
Andersson’s energy hub model [26], heating networks were not con-
sidered and all the thermal demands are assumed to be met locally at
each hub [27]. In the authors’ combined analysis model [2,3], elec-
tricity, heat and gas networks were modelled in an integrated manner
and with a suitable level of detail for operational purposes. The classical
power flow algorithm was extended to use for electrical networks to the
multi-energy case, by making use of a whole-system matrix approach
that can map conversion devices to locations across different energy
networks, suitable for automatic implementations. The results of heat
network analysis were validated using SINCAL software and the results

of electrical network analysis were validated using IPSA software [28].
Aiming at the interdependency between energy storage and conversion
devices, this paper built an optimal coordinated operation model of
storage and conversion devices in multi-energy systems. The core
electrical-hydraulic-thermal model [2,3] and the code were consistently
used in this paper, which served as a validation of the proposed opti-
mization model. A real case study of a multi-vector district energy
system at the University of Manchester was conducted to illustrate the
capability of the operation tool. The model comprised two parts:

1. A whole-system optimal operation model was developed for energy
conversion devices in multi-vector energy systems, taken into ac-
count multi-vector network interactions. By using whole-system
matrices, the coupled electrical power, heat power and gas flow
equations linked by various energy conversion devices were mod-
elled as an integrated whole. These integrated electrical-hydraulic-
thermal-gas flow equations imposed by multi-energy networks was
formulated as equality constraints in the optimization. The case
study quantified the impact of carbon footprints of grid electricity,
energy prices and carbon prices on the operation of energy con-
version devices.

2. The design and operation of PV-battery systems was investigated to
provide economic incentives for storage owners by taking into ac-
count the impact of the integration of conversion devices on the
consumer load profiles. The annualized capital expenditure (CAPEX)
and annual operating expenditure (OPEX), the self-consumption
ratio (SCR), internal return rate (IRR) of PV-battery systems were
calculated. The optimization model calculated for each time step the
optimal power flows between the PV system, the battery, the grid
and the load.

Accordingly, the main contribution of this paper was to fill the gap
that the automatic integration of many different kinds of conversion
devices and the detailed multi-network operational analysis was not
conducted simultaneously in the current optimization. In this paper,
electricity, heat and gas networks were modelled in an integrated
manner and with a suitable level of detail for operational purposes, by
making use of a whole-system matrix approach that can map conver-
sion devices to locations across different energy networks, suitable for
automatic implementations. The optimization problem including a
significant number of devices and network operational constraints, was
formatted as a complex mixed-integer nonlinear programming (MINLP)
problem. The proposed sequential method solved the problem by de-
composing the multi-energy system into a subsystem of conversion

Fig. 1. Schematic of electrical, heat and gas networks with high density of conversion and storage devices.
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devices and a subsystem of renewables and storage, which significantly
reduced the computation complexity.

2. Whole-system modelling of multi-energy networks

A schematic of electrical, heat and gas networks with high density of
storage and conversion devices is shown in Fig. 1. By using analogues of
power flow analysis, multi-energy flow analysis of natural gas and heat
networks were formulated. The independent electrical network model,
heat network model (hydraulic and thermal model), gas network model
and the model of conversion devices such as turbine generators, CHP,
gas boilers and heat pumps were described in the authors’ previous
papers [2,3]. A variety of energy conversion devices were system-
atically modelled using a unified matrix approach, to achieve a whole-
system matrix analysis of multi-vector systems.

A template for handling input and output data needed for the op-
timization has been developed in an Excel spreadsheet interface, which
is available in the link [29]. More specifically, the Tabs used for input
data in the spreadsheet are shown in Appendix A.

The main outputs provided by the optimization model are:

• hourly electrical and heat power (MW) output profiles of the in-
stalled technologies;

• battery size (MWh) and its subsequent operation strategy;
• electric power (MW) exchanged between the microgrid and the

main grid in time series;
• OPEX comprises fuel cost, carbon cost and operation and main-

tenance (O&M) cost;
• voltages, active and reactive power, and losses in the electrical

network;
• mass flow rates, supply and return temperatures, heat power, and

losses in the heat network;
• gas flow rates, nodal pressures, and losses in the gas network.

2.1. Integrated electrical-hydraulic-thermal-gas equality constraints

Based on the integrated multi-vector energy flow analysis [2,3], the
optimization problem for optimal operation was formulated. In the
power flow, only the electrical power at the slack node is unknown. In
the optimal energy flow, the heat and electrical power generated from
all sources were unknown, as shown in Fig. 2.

Conversion devices allow flows of energy between multi-energy
networks. The electrical power generated from the conversion devices
at each node are functions of another network. No single network can
be analyzed without taking into account the other network. The com-
bined active and reactive power (electricity), hydraulic and thermal
(heat), and hydraulic (gas) equations for electrical, heat and gas

networks are expressed as [3]

=
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=
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where P is active power (MW), Q is reactive power (MVar). V is the
voltage magnitude (p.u.), θ is the voltage angle (rad). Ne is the number
of busbars in the electricity network; = +Y G jBij ij ij is the admittance
that relates current injection at a busbar to the busbar voltage, i and j
are busbar numbers. The electrical network incidence matrix Ae is used
to form the admittance matrix Y [30,31]. A is the network incidence
matrix that relates the nodes to the branches. The subscript e represents
electricity network.

For heat flows, Cp is the specific heat of water (J kg−1 °C−1),
Cp = 4.182 × 10−3 MJ kg−1 °C−1. m is the vector of the mass flow (kg/
s) within each pipe. The subscript h represents heat network. Φ is the
vector of heat power (MW) consumed or supplied at each node. Ts is the
supply temperature; To is the outlet temperature (temperature at the
outlet of each node before mixing in the return network) and Tr is the
return temperature. The subscript s represents supply network and the
subscript r represents return network. B is the loop incidence matrix that
relates the loops to the branches. K is the vector of the resistance
coefficients of each pipe. C is a matrix of coefficients and b is a column
vector of solutions formed in the thermal model (details were described
in [28]).

For gas flows, vg is the vector of the gas flow rate within each pipe
(m3/h), and the subscript g represents gas network. vq is the vector of the
gas flow through each node injected from a source or discharged to a
load, and the subscript q represents nodal variables.

2.2. Efficiency matrix

The efficiency of a piece of infrastructure is a measure of the energy
input versus the energy output. From the input data, multi-network
incidence matrices that relate the numbering of conversion device nodes
to corresponding network nodes and one whole-system multi-energy

Fig. 2. Unknown input of conversion devices in optimal operation.
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conversion efficiency matrix are generated automatically [3].
Schematic of the relation between conversion devices and multi-

energy networks is shown in Fig. 3. Based on various energy vectors
that the conversion device nodes are linked, conversion devices at
nodes numbering 1, 2, 3 and 4 could be gas generator, CHP, heat pump
and gas boiler respectively. In the multi-energy efficiency matrix ,
there are as many columns as transformations, for example, three col-
umns in the case of gas to electricity, gas to heat, electricity to heat.
There are as many rows as the number of conversion devices in the
district. Each element of the matrix is the relevant conversion efficiency
from one energy vector to another energy vector.

2.3. Permutation matrices

A numbering approach using permutation matrix operation has
been used to model the topology of different networks and their lin-
kages through conversion devices. Permutation matrix is formed from
the node numbering of conversion devices in input data. Following
Fig. 3, the numbering of conversion devices mapping to their corre-
sponding multi-vector energy networks is shown in Table 1.

For instance, (1 4) represents a conversion device numbering 1 is
mapped to local numbering 4 in its electrical network. The permutation
of the numbering of conversion devices to the electrical network is
expressed as

= (1 4)(2 5)(3 3)e (2)

A permutation matrix is a matrix obtained by permuting the rows of
an ×n n identity matrix according to some permutation of the numbers
1 to n. Every row and column therefore contains precisely a single 1
with 0 s everywhere else, and every permutation corresponds to a un-
ique permutation matrix [32].

The permutation matrix Me for the electricity vector is then formed
accordingly. There are as many columns as electricity busbars.
Elements shown in Eq. (2) are put as 1 in the permutation matrix Me,
while all the other elements are put as zero. Thus, the electricity per-
mutation matrix mapping conversion devices to the electrical network
is formed as

=M
0 0
0 0

0 1 0
0 0 1

0 0
0 0

1 0 0
0 0 0

e

(3)

The permutation matrices for heat and gas vectors are then formed
similarly. Through this, the electrical power, heat power and gas flow of
each conversion device is mapped to its located multi-vector energy
network. The electrical power in the electricity network for this ex-
ample is expressed as

= = = =P M P

P
P
P
P
P

P
P
P
P

P
P
P

( )

0 0
0 0

0 0
0 0

0 0
1 0
0 1

1 0
0 0
0 0

0
0

con
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e

e

e

e

e

e
T

con
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1

2

3

4

5

1

2

3

4

3

1

2 (4)

2.4. Mapping of conversion devices to multi-energy networks

By using the multi-energy efficiency matrix and the permutation
matrix M , the models of conversion devices are automatically in-
corporated in the terms P v, , q of the multi-vector flow equation (1).
Let us denote the matrix of end-use demand (e.g., electrical power and
heat power) at the conversion devices as Eout. The matrix of input
electrical power and gas flows at the conversion devices is denoted as
E in. The matrices , E in and Eout have the same dimension, e.g.,

×N 3con , where Ncon is the number of total conversion devices. The
elements Eij

in are equal to the elements Eij
out divided by the

corresponding element of the conversion efficiency matrix ijH .

=E E /ij
in

ij
out

ijH (5)

where i is the node numbering of conversion devices, j is the column
index. In the example of Fig. 3 and Table 1, for , the columns com-
prise ge, gh, eh (gas to electricity, gas to heat, electricity to heat, respec-
tively). For E in, the columns comprise gas, gas, electricity. For Eout, the
columns comprise electricity, heat, heat. For example, the electrical
power from a conversion device Pcon_i is determined by Φcon_i.

=P /con i con i con i e h_ _ _ ,H (6)

where con i e h_ ,H is the electricity-to-heat efficiency of a conversion
device such as a heat pump.

A flowchart describing the integration of conversion device models
into the multi-vector network equations is shown in Fig. 4 [3]. Con-
version devices at nodes that coupled multiple energy networks were
described using efficiency matrix. The input and output vectors of
conversion devices were then mapped to corresponding network
equations using permutation matrices.

2.5. Energy flows of PV-battery systems

The optimization model is indexed by the sets (d, t), where d is the
set of days in a year (1 ≤ d≤ 365) and t is the set representing the hour
periods in each day (1 ≤ h≤ 24). As the power from the PV system can
be consumed directly or via the battery energy storage systems (BESS)
or fed into the grid, the different power flows have to satisfy the fol-
lowing constraint as well.

+ + =P d t P d t P d t P d t( , ) ( , ) ( , ) ( , )PV load PV BESS PV grid PV (7)

where P d t( , )PV is the electric power generated from PV (kW).
P d t( , )PV load is the electric power supplied to the load from PV (kW).
P d t( , )PV BESS is the electric power charging to the battery from PV
(kW). P d t( , )PV grid is the electric power exported to the grid from PV
(kW).

The load balance equation ensures that the load can be satisfied by
the PV, by the battery or by the grid.

+ + =P d t P d t P d t P d t P d t( , ) ( , ) ( , ) ( , ) ( , )BESS
discharge

BESS
charge

PV grid load (8)

where PBESS
charge is charging rate (kW) – the maximum rate at which the

battery device consumed electricity when recharging. PBESS
discharge is dis-

charging rate (kW) – the maximum rate at which the battery device
generated electricity when discharging.

Substituting Eq. (7) into Eq. (8),

+ + + + =P P P P P P PBESS
discharge

BESS
charge

PV load PV BESS PV grid grid load (9)

Energy flows of PV to the load, the battery and the grid depend on
the value of PV generation and the load as shown in Fig. 5. The priority
of energy flows from PV is: 1. PV → load, 2.PV → BESS, 3.PV → grid.

Fig. 3. Schematic of numberings of conversion devices.
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When the PV electricity is surplus for the load, the program optimises
the proportion of PV electricity charged to the battery and exported to
the grid.

Three parts of energy flows from PV generation to the load are
expressed using decision variables PBESS

charge or PBESS
dischargeas shown in

Table 2, and details are discussed as follows

• If the generated power of PV is smaller than the load, then PV

electricity is all supplied to the load.
• If the generated power of PV is larger than the load and the surplus

does not exceed the battery charging limit, then the PV to BESS
charging rate PPV BESS is equal to the surplus P PPV load. Otherwise,
PPV BESS is equal to the battery maximum charging power PBESS

charge.
Hence, PPV BESS is expressed as min P P P{ , }PV PV load BESS

charge , since the
expression =P P PPV BESS PV load does not include the case that the
surplus PV may exceed the battery charging limit at that period and
the expression =P PPV BESS BESS

charge does not include the case that a
proportion of the battery charging power may come from the grid
electricity.

• If there is surplus PV electricity after charging to BESS, then the
exported power from PV PPV grid is equal to net PV generated power
P PPV load subtracting PPV BESS. Otherwise, PPV grid is equal to zero.

The arbitrage of the battery was gained from the difference between
grid electricity price when storing electricity and discharging elec-
tricity. For PV-battery systems, the surplus PV electricity was charged
to the battery and then discharged in the evening peak price period. The
extra benefit of the PV-battery coupling (PPV BESS) was gained from the
difference between the cheap PV FiT export tariff and the grid elec-
tricity price of discharging the stored surplus PV electricity.

2.6. Self-consumption definition and metrics

The economic incentive to install a solar PV system depends in-
creasingly on using PV generation on-site (‘self-consumption’) rather
than receiving payments from generating electricity and exporting it to
the grid. There is, however, remarkably little empirical evidence on
self-consumption [9]. A battery offers the opportunity to match the PV
energy supply with the respective load profile and thus significantly
increase the self-consumption ratio (SCR) and the self-sufficiency ratio
(SSR) [33].

The share of self-consumption is defined as the ratio of energy
which is generated by the PV system and directly used at the installa-
tion site (EPV,used) to the total amount of energy generated (EPV,gen).

= =

=
+

SCR self consumed PV electricity
total electricity generation from PV

E
E

P P
P

PV used

PV gen

PV load PV BESS

PV

,

,

(10)

The degree of self-sufficiency is defined as the ratio of energy which
is generated by the PV system and directly used at the installation site
(EPV,used) to the total amount of energy used by the household. The SSR
describes energy independency of the PV-battery systems in the com-
munity.

= =

=
+

SSR self consumed PV electricity
total electricity demand

E
E

P P
P

PV used

load

PV load PV BESS

load

,

(11)

The ratio of battery capacity to PV power determines the increase in
self-consumption. By increasing the self-consumption quota, the elec-
tricity generated from the PV-battery system may compete with the
costs for electricity from the grid.

Table 1
Numbering of conversion devices mapping to the corresponding multi-net-
works.

Conversion device
No.

No. in electrical
network

No. in heat
network

No. in gas
network

1 e4 – g5
2 e5 h3 g4
3 e3 h5 –
4 – h2 g3

Fig. 4. Flowchart of the integration of conversion device models into the multi-
vector network equations.

Grid 

PV 

Load 

Battery 

PV 1.load 

PV 2.BESS 

PV 3.grid 

Fig. 5. Schematic of energy flows of PV to the load, the battery and the grid.

Table 2
Energy flows of a PV-battery system with relation to PV generated power and the load.

Conditions PPV load PPV BESS PPV grid

>P PPV load Pload min P P P{ , }PV PV load BESS
charge P P PPV PV load PV BESS

P PPV load PPV 0 0
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3. Whole-system optimal coordinated operation

3.1. Framework of optimization

As an extension to the combined analysis of multi-energy flows, a
whole-system optimization method of multi-vector energy systems was
developed. The optimal operation of energy conversion devices in
multi-vector energy systems is modelled, taken into account multi-
vector network interactions. In the formulation of optimal operation,
the integrated electrical-hydraulic-thermal-gas equations was included
as equality constraints. An overview of generic optimization model of a
multi-vector energy system is shown as Fig. 6, consisting of inputs de-
scribing the system, constraints defining the behavior of the system and
the output which gives the performance of the system [24].

3.2. Interdependency between energy storage and conversion devices

The term net load refers to the system demand minus the local
generation from variable resources. For off-grid solar PV systems, the
net load uncertainty is the main factor that controls its operation and
planning. Therefore, the need for energy storage is essential to mitigate
this uncertainty. The optimization aims at quantifying BESS capacity
required and the operation strategy to effectively manage net load
fluctuations.

On one hand, the inevitable penetration of variable generation and
electrification of heat and transport leads to increasingly variable op-
eration of thermal dispatchable generators. On the other hand, the in-
tegration of heating and cooling devices (e.g. CHP, gas boilers, heat
pumps, air conditioners, absorption chillers) is expected to have a
major impact on consumer load profiles. In this paper, the optimal
operation of energy storage and conversion devices considering inter-
dependency in multi-vector energy systems was studied as shown in
Fig. 7. Specifically, the impact of increasing net-load variability on the
design and operation of cost optimized PV-battery systems was as-
sessed.

The coordination is operated by an Aggregator, run by the two
subsystems comprising conversion devices and PV-battery systems. The
Aggregator is a technical and commercial intermediary enabler that
allows conversion devices and PV-battery systems to communicate. The
Aggregator schedules the conversion devices and energy storage sys-
tems to maximize the income received without exceeding the multi-
energy network operational limits. This is achieved by requesting the
BESS to change the charging/discharging schedule to maximize

arbitrage revenue based on the optimal output of conversion devices.
Additional income is obtained for the additional electricity self-con-
sumption in coordination. The additional income obtained is allocated
so that both subsystems have an economic incentive to be operated in a
coordinated manner [34].

The system devices are scheduled in “last-in, first-off” operation and
the BESS is connected last. The operation of the Aggregator is described
as follows [34]:

1. The Aggregator receives from conversion devices their anticipated
outputs and the anticipated charge/discharge schedule from the
BESS. Conversion devices make their projections based on heat and
power load forecasts. Energy storage systems make their projections
considering the electricity time-of-use (TOU) tariff and the predic-
tion of PV generation.

2. The Aggregator assesses whether the multi-energy network opera-
tional rating is exceeded by the anticipated outputs. If the limit is
not exceeded, the Aggregator accepts the anticipated outputs and
takes no further action. If the limit is exceeded, the Aggregator runs
an optimization algorithm to schedule conversion devices and the
energy storage systems, as described in Step 3.

3. The optimization algorithm has an objective function (Eqs. (12) and
(13)) to minimize the total cost to meet electricity and heat demand.
Eq. (12) is relative to the income of conversion devices and Eq. (13)
refers to the income of the energy storage systems.

3.3. Sequential method

The optimization can be decomposed into sequential modelling of
conversion devices and PV-battery systems. Sequential method was
proposed in the authors’ previous work [2] and was also used in Ref.
[35]. In the sequential mode as shown in Fig. 8, only one iteration

Fig. 6. Overview of the optimization of multi-vector energy systems.

CHP 
Heat pumps 
(Air conditioner) 
(Power to gas) 
…

Multi-vector 
conversion devices 

PV 
(Wind) 
BESS 
(Thermal storage) 
(electric vehicle) 
… 

Renewables & Storage increasing 
net-load 
variability 

increasingly 
variable 
operation

Gas boilers 

Fig. 7. Interdependency and coordination between renewables, energy storage
and conversion devices.
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between conversion devices and PV battery systems was used when the
operation of conversion devices is inflexible such as without thermal
storage. The framework does not include all these considerations in a
single mathematical model, as this may be computationally challenging
or infeasible [25]. The operation of conversion devices (including
economic dispatch and power flow) was optimized to minimize the
total operating expenditure (including fuel cost, carbon cost and
maintenance cost) and the optimal electric power generation or con-
sumption was obtained. In this approach, the electric power generation
or consumption of conversion devices was provided as an input to the
optimization of PV-battery system model. In this modelling, the total
annualized cost of conversion devices was minimized and afterwards
the total annualized cost of PV-battery systems was minimized. The red
(dashed) line indicates the sequential link of conversion devices and
PV-battery systems. The sequential approach does not consider the PV-
battery systems constraints while optimising the conversion devices
systems. Hence, a disadvantage of this modelling is that the PV-battery
operation does not influence the operation of conversion devices, as the
modelling of conversion devices is carried out before the PV-battery
systems modelling. Furthermore, the sequential method is limited to
multi-energy systems that purchase a significant fraction of their elec-
tricity from the electricity grid. For example, if a system had a large
power plant capable of producing electricity at a lower price than the
grid, then it would fulfill the entire electricity requirements before the
PV-battery step is reached, and thus the PV system would never be
used.

3.4. Objective function

Multi-objective programming represents a very useful general-
ization of mono objective approaches, which helps to incorporate the
different stakeholder points of view that need to be considered. In ad-
dition to the first objective related to the total operating expenditure
(OPEX), the second objective related to carbon emissions was con-
sidered in the objective function. The impact of whether or not con-
sidering carbon prices on conversion devices was investigated.
Similarly, other objective function such as voltage deviation, loss and
reliability could be readily applied too and consistently with the op-
timal operation model proposed. The presented work could be con-
sidered as a simple form of multi-objective function using weight

method, while a full set of Pareto optimal solutions would need to be
run to address the more complicated multi-objective optimization in
future work. In Pareto optimal solutions, no improvement is possible in
any objective without sacrificing at least one of the other objective
functions. The so-called Pareto frontier, represents the set of optimal
points that can be considered to be optimal in terms of one or both of
the two objectives [36].

3.4.1. Conversion devices
The objective function is to minimize the operating expenditure

(OPEX) of conversion devices, which includes the cost of fuel con-
sumed, the cost of carbon and the operating and maintenance costs of
the components (O&M cost). The fuel cost is calculated as the cost of
electricity and gas purchased from the network minus the revenue from
electricity sold to the grid [37–39].

= + + + +C C P C v C P C v COpex DER e import g g

fuelcost

carbon e import carbon g g

carboncost

O M&total total

(12)

where Ce—electricity spot price (£/MWh), Pimport—imported electric
power (MW), Cg—natural gas price (£/MWh), vgtotal—total consumed
natural gas flow rate (m3/h). e—electricity carbon footprints (gCO2/
kWh), g—gas carbon footprints (gCO2/kWh), Ccarbon—carbon price
(£/tonne). CO&M—O&M costs including fixed share of O&M and the
variable O&M costs; fuel costs are not included.

3.4.2. PV-battery systems
The objective function is to minimize the overall cost of PV-battery

systems, which consists of annuitized investment cost associated with
storage assets and the annual operating cost shown as Eq. (13), which
includes:

• annualized capital expenditure (CAPEX) of PV-battery systems;
• annual operating expenditure (OPEX).

= +MinC LF C Ctotal PVB n Capex BESS Opex PVB_ _ _ (13)

where Ctotal_PVB—lifetime annualized cost of PV-battery systems,
COPEX_PVB—annual OPEX of PV-battery systems including O&M and fuel
costs, CCAPEX_BESS—up-front CAPEX cost of BESS. LFn—the levelised
factor over n years, = +

+LFn
d d

d
(1 )

(1 ) 1
n

n [37], where d is the discount rate, n

Electricity and heat load profiles

Optimal operation of conversion devices

Calculate electricity net load profile based on 
electric power outputs of conversion devices  

Design and operation of PV-battery systems 
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lifetime, efficiency 
of each conversion 
device 
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• Time-of-use 
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Fig. 8. Flowchart of sequential method of optimal operation of conversion devices and PV-battery systems.
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is devices’ lifetime (years).
The CAPEX of BESS is expressed as

= +C C E C PCapex BESS BESS
E

BESS
rated

BESS
P

BESS
rated

(14)

where CBESS
E denotes the energy-capacity-determined cost for a battery

and EBESS
rated is the rated storage capacity of the battery. CBESS

P denotes the
power-capacity-determined cost for a battery and PBESS

rated is the rated
power of the battery inverter. The capacity itself is calculated as the
power rating multiplied by the number of hours that it is assumed to
operate at full power. CPV

capexis the capital cost of a PV panel per kW and
PPV

rated is the rated peak power of the PV system. A certain percentage of
planning capacity reserve margin (typically 5–15%) is considered
above the demand requirements to account for unexpected system
events [40].

The annual revenue comprises the arbitrage revenue from the bat-
tery and the revenue of the electricity replaced by the PV, electricity
exported to the main grid and the PV subsidy. The energy arbitrage
from the battery is achieved by: 1. shifting electricity consuming from
lower price to higher price; 2. using cheap surplus electricity generated
from PV that would otherwise be exported to the grid.

The OPEX equals the cost of grid electricity consumed Pgrid, which is
expressed as

=C P d t C t( , ) ( )opex PVB
d t

grid e
( , ) (15)

Following Eq. (9) and taking Pgrid at the left side,

= +P P P P P P P( ) ( )grid load PV load BESS
charge

BESS
discharge

PV BESS PV grid

(16)

Hence, the OPEX of the PV-battery system is written as Eq. (17). The
electricity consumed by the original load Ploadis constant and is thus not
considered. The cost is divided into three parts: 1. load consumption
which is reduced by the PV self-consumption; 2. energy charge and
discharge from the battery which is reduced by using cheap surplus
electricity generated from PV; 3. cost reduction of the PV electricity
export to the grid and the subsidy of the PV installation.

=

+

C P P C t

P P P C t

C P C P

( ) ( )

( ) ( )

opex PVB
d t

load PV load e
load

BESS
charge

BESS
discharge

PV BESS e
BESS

PV
export

d t PV grid PV
subsidy

d t PV

PV

( , )

( , ) ( , )
(17)

where CPV
export is the PV export feed-in tariff (£/kWh). CPV

subsidy is the
subsidy price of electricity generated from PV (£/kWh). Following
Table 2, when >P PPV load, = =P P P,PV load load PV BESS
min P P P{ , }PV PV load BESS

charge , =P P P PPV grid PV PV load PV BESS; when
P PPV load, =PPV load = =P P P, 0, 0.PV PV BESS PV grid

3.5. Constraints

A binding or an active inequality constraint is an inequality con-
straint that is satisfied exactly [41]. A few inequality constraints of node
temperatures and voltages may be binding or active during the opti-
mization search process.

3.5.1. Conversion devices

(1) Equality constraints

By using whole-system matrices, the coupled electrical power, heat
power and gas flow equations linked by various energy conversion
devices were modelled as an integrated whole. These integrated elec-
trical-hydraulic-thermal-gas flow equations imposed by multi-energy
networks was formulated as equality constraints in the optimization.

The equality constraints were formed by multi-vector energy flow
balance Eq. (1) based on whole-system matrices modelling. The input
and output of conversion devices coupled multi-vector networks were
modelled by their efficiency matrix and permutation matrices.

(2) Conversion device constraints

Installed capacities of all conversion devices must be between their
lower bound and upper bound. The electrical or heat power outputs has
to be smaller than or equal to the installed capacity

P P Pcon i
min

con i con i
max

con i
min

con i con i
max

_ _ _

_ _ _ (18)

where Pcon i_ and con i_ are the electric power or heat power output of
conversion device i. The subscript con represents a conversion device
generating electricity or heat.

(3) Electricity network constraints

Busbar voltage magnitudes must be kept at acceptable levels. The
voltage tolerance of (+10%/−6%) for the LV network is not breached
at any busbar. The generated electric power from generators re-
presented by Pgeni and Qgeni must be restricted by its lower and upper
limits. The power carrying capacity of feeders (Pij) through any branch
ij must be well within the maximum thermal capacity of the lines.

=
=

=
=

V V V i N
P P P i N

Q Q Q i N
P P i j N

, 1, ,
, 1, ,

, 1, ,
| | , , 1, ,

i
min

i i
max

e

geni
min

geni geni
max

ge

geni
min

geni geni
max

ge

ij ij
max

e (19)

where Ne is the number of busbars, Nge is the number of generators.

(4) Heat network constraints

Supply and return temperatures at each node were set within limits:

T T T
T T T

s
min

s s
max

r
min

r r
max (20)

The mass flow rate within each pipe in the heat network was set to
be within minimum and maximum limits:

m m mmin max (21)

(5) Gas network constraints

The gas pressure at each node was set within limits:

p p pg
min

g g
max

(22)

The gas flow rate within each pipe was set within limits:

v v vg
min

g g
max (23)

where vg is the vector of the gas flow rate within each pipe (m3/h).

3.5.2. PV-battery systems
Degradation of the battery is not considered, though it could be

considered in future work in this area [4]. The battery constraints are
expressed as follows:

i. the charge/discharge rate must be within the battery power rating.

P d t P
P d t P

0 ( , )
0 ( , )

BESS
charge

BESS
rated

BESS
discharge

BESS
rated (24)

In the meantime, the battery discharging rate cannot exceed the
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load minus the supply from the PV, plus the electric power limit ex-
ported to the grid.

+P d t max P P P( , ) ( , 0)BESS
discharge

load PV export
limit (25)

where Pexport
limit is the limit of exported electric power to the main grid.

The charging is organized by setting an upper demand limit on the
grid [42]. The charging rate plus the load may not exceed this limit.
Following Eq. (8),

= +P d t P d t P d t P P P( , ) ( , ) ( , )grid BESS
charge

BESS
discharge

PV load import
limit (26)

where is Pimport
limit the limit of imported electric power from the main grid.

The battery cannot be charged and discharged simultaneously,
which is expressed as Eq. (27). However, taken into account the char-
ging and discharging efficiency in Eq. (28), this constraint (27) is
proved to be redundant. Under normal operating conditions the model
has no incentive for simultaneous charging and discharging and
therefore constraint will limit either PBESS

charge or PBESS
discharge to the maximum

rated power of the battery inverter PBESS
rated [43].

=P d t P d t( , ) ( , ) 0BESS
charge

BESS
discharge (27)

ii. stored energy balance constraints [44]

= +E d t E d t P d t P d t t( , ) ( , 1) ( ( , ) ( , )/ )BESS BESS c BESS
charge

BESS
discharge

d

(28)

where c is the battery charging efficiency and d is the discharging
efficiency. If the data resolution is half an hour, then t is equal to 1/2.

iii. the storage content at the first time step of the optimization period
to the minimum state of change in percent of the rated capacity
[43].

= =E d E d t SOC E( , 0) ( , )BESS BESS end min BESS
rated (29)

where SOC represents the State of Charge of the battery. tend is the
last time step in the battery daily operation.

iv. constraints associated with the amount of energy that can be stored

SOC E E d t SOC E( , )min BESS
rated

BESS max BESS
rated (30)

3.6. Solutions

The variables are the unknowns in the optimization model. The
vector of variables for conversion devices is

=x V P m T T v[ | | ]con con gs r
T

(31)

where Pcon and con are the outputs (electric power and heat power) of
conversion devices. The subscript con represents a conversion device
generating electricity or heat.

Assuming the resolution is tint hour, then the total snapshots in a day
Nt is equal to 24/tint. The decision variables of the PV-battery system
optimization model are visualized as shown in Fig. 9. In the figure, x
denotes variables in power (kW) and y denotes variables in energy
(kWh). SOC represents the State of Charge of the battery.

The proposed sequential method was used to solve the optimal
operation problem by decomposing the multi-energy system into a
subsystem of conversion devices and a subsystem of renewables and

storage. The MINLP problem was decomposed as a nonlinear pro-
gramming (NLP) problem and a mixed integer linear programming
(MIP) problem, which significantly reduced the computation com-
plexity and set the basis for applying further optimization techniques
using the decomposition-coordination strategy. The model was mod-
elled with MATLAB language and solved by fmincon solver using the
interior-point algorithm, which has an advantage in solving the com-
plex non-linear optimization problem. By defining a set of optimisation
variables from the model parameters, the solver was used to determine
the set of values that return the minimum value of the objective func-
tion. The MATLAB fmincon solver was chosen due to its availability as a
ready to integrate the authors’ combined analysis tool seamlessly. Other
Commercial optimization software such as IBM iLog CPLEX, Dash FICO
Xpress, GAMS, Gurobi are equally applicable. Parallel computation was
adopted to accelerate the converging process, which shortened the
running time significantly. In addition, in the configuration of para-
meters, the precision requirement of the heat network equality con-
straints (10 −3) is lower than the electric power flow equality con-
straints (10 −6).

4. Case study

Data were gathered to apply the model to a real multi-vector district
at the University of Manchester (see details in [3]).

4.1. Time series input data

The time series input data for electrical and heat loads for each
building in electricity and heat networks are known from monitored
COHERENT demand data [45], with half hourly resolution. The elec-
trical and heat loads for the buildings in annual peak days as shown in
Fig. 10 is taken as exemplificative to run the methodology. The elec-
trical loads at buildings for one ring main only (busbars 1–12) was
presented. The electrical peak loads occur between 09:00 and 16:00,
that is, at times when a university building with teaching and research
facilities will reach the higher occupancy levels and usage. The annual
load factor is taken as 0.66 [46]. The Manchester district includes heat
networks whereby centralized boiler plants deliver heat to multiple
buildings (nodes 1–20) through buried pipework.

4.2. Scenarios

Energy conversion technologies allow multi-energy exchanges be-
tween buildings through the integrated 6.6 kV (13 nodes) electricity
network, 85 °C (36 nodes) heat network, and 37 nodes gas network. For
heat load, buildings in the district heating network located in area A
were supplied by 2 district level conversion devices, other 13 buildings
in area B were directly supplied by 13 local gas boilers. The modeled
number of devices is equal to the number of existing devices. Utilizing
or expanding the heat network with the use of CHP or large scale heat
pumps may presents an opportunity for increasing the efficiency of heat
and electricity supply to the district. The following scenarios with the
variation of conversion devices in supply side were therefore conducted
as shown in Table 3. Since gas boilers did not link electricity and heat
networks, Scenario 1 was considered as a non-integrated system and
was set as a base scenario. Using time series data, the model in-
vestigated the impact of a variety of technology options to the elec-
trical, heat and gas networks.

Fig. 9. Schematic of decision variables of optimal
design and operation of the BESS.
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4.3. Financial data

4.3.1. Market data
The UK economy 7 tariff is a two-tier time-of-use tariff, one for 7 h’

off-peak period and the other hours for the peak period. It could be seen
that the off-peak tariff is about 6.03 p/kWh between the 7 h
(23:00–7:00). The peak is charged at about 16.24 p/kWh between the
other hours (7:00–23:00) [44]. Recently, the first three-tier TOU tariff
was launched in the UK by Green Energy. This tariff is known as ‘TIDE’,
and on April 2018 its three tiers are an overnight off-peak rate of 6.41
p/kWh between 23:00 and 06:00, an evening peak rate on weekdays
only of 29.99 p/kWh between 16:00 and 19:00, and a midpeak rate of
14.02 p/kWh at all other times, as shown in Fig. 15 [47].

Natural gas prices as shown in Table 4 are obtained from National
grid using base case data [48]. Carbon price as shown in Table 4 is
obtained from National grid using base case data [48], where, 1
therm = 29.3 kWh. The carbon footprints for natural gas and grid
electricity is also shown in Table 2 [49]. It has to be highlighted that
static emission factors have been applied here for illustrative purposes.

4.3.2. Conversion device data
The costs and other parameters of conversion devices are shown as

Table 5 [50]. The unit MW is used both for electric generation capacity
and heat production capacity. The size unit of gas boilers was MWh, and
the size units of CHP units and heat pumps were MWe. In Scenario 1,
capacities of central gas boilers are 6.2 MWh and 4.8 MWh. In Scenario
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Fig. 10. Building loads in electrical and heat networks in annual peak days for this case study.

Table 3
Scenarios with the various conversion devices at district levels.

District-level supply for
area A

+ Building-level supply for
area B

Scenario 1 (base) District level gas boilers + Local gas boilers
Scenario 2 District level CHP + Local gas boilers
Scenario 3 District level heat pumps + Local gas boilers

Table 4
Energy prices, carbon footprints and carbon price.

Year Natural gas price (p/
kWh)

Carbon footprints (gCO2/kWh) Carbon price
(£/tonne)

Grid
electricity

Natural gas

2016 1.18 (34.6pence/
therm)

370 225–330 22.38

2030 2.11 (61.84pence/
therm)

100 225–330 36.11

Table 5
Costs and other parameters used for district level conversion devices.

Flexible heating options Gas fired
Boilers

Gas turbine
CHP

Large Heat
Pumps

CAPEX Fixed 42.6£/kWh 533£/kWe 497£/kWe

O&M Cost Fixed(£/MW/
year)

1420 14,200 1420

Variable
(£/MWh)

0.78 3.91 5.96

Efficiency (or COP) 91% 34% 350%
Heat-to-power ratio N/A 1/0.71 N/A
Economic service life (years) 25 25 25

Table 6
Input data with an impact on the optimization of the battery coupled with PV.

Battery cost (kW, kWh) $209/kWh in 2017 [11]
Grid electricity price 3-tier TOU tariff [47]
PV electricity export price 4.85 p/kWh [44]
PV peak power full load hours 990 h [50]
PV generation profile See [52]
Load profile See Fig. 10
PV and battery economic lifetime 20 years, 15 years [54]
Discount factor 4% [56]
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2, the district level CHP units are gas turbines with nominal electrical
capacity of 5.5 MWe. Financial data are all in GBP(£), fixed prices, at
the 2015-level and exclude value added taxes (VAT) and other taxes.
CHP units and heat pumps have much higher CAPEX and lower OPEX
comparing to gas boilers. A tariff is fixed and agreed upon at the time of
the contract, where CHP units receive this set amount for each kWh unit

of electricity generated with export tariff is 4.85 p/kWh [51].

4.3.3. PV and battery storage data
Feed-in-Tariffs (FITs) are subsidies received by owners of some low-

carbon technologies located in the UK. The FiT scheme includes a
generation tariff and export tariff. The generation tariff is paid for every
kWh of PV generated and the export tariff is paid for every kWh ex-
ported. As an example, a photovoltaic installation in 2017 obtains
£0.01915 per kWh [11]. With no battery storage and higher PV gen-
eration compared to electricity demand, the PV satisfies onsite demand
and the excess PV is sold to the grid at the cheap PV FiT export tariff
(4.85 p/kWh) [51]. These data changes do not however affect this
paper’s conclusions.

The typical PV daily generation profile was known from [52]. The
PV generation at each hour was scaled by a same value for the case
study. The useful life of the PV system is assumed to be 20 years, a
conservative estimate [53]. The PV investment cost is 1.314£/W in
2015. The PV peak power full load hours is 990 h [50]. The total annual
PV generation was calculated as the PV full load hours multiplied by the
nominal capacity of PV P990 PV

rated.
The cycle stability of the lithium-ion-based battery system is set at

5000 cycles with charge/discharge efficiency 95%. Battery storage
technologies are assumed to be maintenance free and to have a lifetime
of 15 years [54]. BNEF’s lithium-ion battery price index shows a fall
from $1000 per kWh in 2010 to $209 per kWh in 2017. Lithium-ion
battery pack prices will drop to $96 per kWh in 2025 and further drop
to $70/kWh by 2030 [55].

Input data with an impact on the optimal sizing of the battery
coupled with PV is shown in Table 6. The sizing of electrification
technologies (i.e., heat pumps, etc.) has an impact on the load profile.
The larger of the difference of peak and trough prices and the smaller of

Fig. 11. Voltage at each busbar and supply temperature at each node when a few inequality constraints were binding.
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Fig. 12. Breakdown of annual costs of various district level conversion devices in Scenarios 1–3 (units. thousand£).

Fig. 13. Comparison of annual total costs for conversion devices in Scenarios
1–3 from a range of grid electricity CO2 intensity.

Fig. 14. Voltage magnitudes at each busbar in peak load hour.
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the solar PV export price, the benefit of the battery deployment is
better.

5. Results

5.1. Conversion devices

In different cases of binding inequality constraints, voltage at each
busbar and supply temperature at each node in Scenario 3 were shown
in Fig. 11. The interactions between the electricity, heat and gas net-
works through conversion devices were thus clearly demonstrated.
No.15 was the busbar connected to the main grid; No.13 and 14 were
busbars where the district level conversion devices were located. The
low temperatures at building 6, 15 and 16 occurred due to low heat

load, which leads to low mass flow rate and then larger temperature
drop. To meet stricter voltage constraints in the electricity network, the
temperatures in the heat network may be deteriorated and vice versa.
The total operation cost changed accordingly when electrical and
thermal network constraints were binding.

The breakdown of annual costs for each scenario were presented in
Fig. 12. The impact of energy prices and carbon prices on the option of
energy conversion devices was quantified. Without considering carbon
prices, the option of CHP was advantageous comparing to other op-
tions. Considering carbon prices, the option of CHP was still advanta-
geous using 2016 financial data. However, as the carbon footprint of
grid electricity decreases significantly and the carbon price increases
notably in 2030, the option of heat pumps is comparably advantageous.

The relation between annualized total costs and carbon footprints of

Fig. 15. The profile of load minus the electric power generation of conversion devices in half-hourly time series.

Fig. 16. Optimal sizing of BESS and other indicators with the relation to the BESS price for Scenarios 1–3.
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grid electricity (100–370 gCO2/kW) was investigated for Scenarios 1–3
as shown in Fig. 13. It is shown that the total cost of CHP is lower than
heat pumps until the grid emissions factor reduces to around 130 gCO2/
kW.

To illustrate the impact of network constraints, voltage magnitudes
at each busbar in peak load hour were shown in Fig. 14. The detailed
differences in results for the considered Scenarios depend on a number
of parameters and multi-energy supply technologies. In particular, by
changing local electrical generation (e.g., by CHP) or consumption
(e.g., by heat pumps) levels, different effects on voltage and losses
profiles, which were key variables in electrical networks, can be ap-
preciated. It is shown that CHP mitigated voltage drop and heat pumps
increased voltage drop. The penetration of heat pumps in Scenario 3 led
to a noticeable voltage drop to 0.969p.u. In absolute terms, this is not
significant and still far from minimum accepted voltage drops for
medium voltage distribution networks, which is in the order of 6%, due
to the fact that the case study network is very robust. However, it may
be expected that for other networks voltage drop may be more sig-
nificant, and the model is well suitable to capture this while considering
interaction with other energy networks too.

Based on the optimal operation of gas boilers, CHP units and heat
pumps, the profiles of original electric load minus the electric power
generation of conversion devices (adding heat pump consumption or
deducting CHP generation) in half-hourly settlement periods in peak

day were simulated in Fig. 15. For better comparison using PV-battery
systems, in each scenario one of two district level conversion devices is
assumed as district level gas boilers. This paper assessed the impact of
the increasing net-load variability on cost optimized PV-battery system
design and operation.

5.2. PV-battery systems

The optimal capacity of BESS and associated costs with the relation
to BESS price were shown in Fig. 16. Here, the total income referred to
the reverse of total cost (CAPEX + OPEX). When the BESS price was
declined to be less than 150$/kWh, the income of PV-battery systems
was significantly increased due to a notable larger size of BESS in-
stallation. The penetration of heat pumps decreased the required op-
timum battery capacity. The penetration of CHP decreased the required
optimum battery capacity. The use of CHP decreased the PV self-con-
sumption ratio (SCR = 0.34), while the use of heat pumps increased the
SCR (0.99–1) and decreased the self-sufficiency ratio (SSR) since the
electricity load was increased. A larger SCR usually meant a larger in-
ternal return rate (IRR). The IRR was much lower in Scenario 2 with
CHP since most PV electricity was exported to the grid with lower tariff.

The arbitrage of the battery was from the difference between grid
electricity prices when storing electricity and discharging electricity.
For PV-battery systems, the surplus PV electricity may be charged to the

Fig. 17. Electric power balance for typical half-hourly time series.
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battery and then discharged in the evening when there was high de-
mand in the peak price period. The extra benefit of the PV-battery
coupling was from the difference of the grid electricity price between
the cheap PV FiT export tariff and discharging the stored surplus PV
electricity. Increased use of electric heat pumps increased the SCR from
the consumption of the mid-day surplus PV and increase arbitrage
revenue.

At BESS price 96 $/kWh, the electric power balance for half-hourly
time series was shown in Fig. 17. The histogram showed the amount of
electric power balancing by PV, BESS discharging/charging, the grid,
CHP and heat pumps. The operation strategy of BESS was charging in
the trough price period and in the case of cheap surplus PV power and
discharging in the peak price and in the evening with less or no PV.

• In Scenario 1, the surplus PV in mid-day was charged to BESS and
this electricity was discharged in the evening.

• In Scenario 2, almost all of the surplus PV electricity in the mid-day
was exported since the load in the evening was supplied by CHP.

• In Scenario 3, the majority of surplus PV electricity in the mid-day
was consumed by heat pumps.

• A large part of the battery arbitrage in Scenario 1 was to make use of
surplus PV electricity otherwise being exported. A large part of the
battery arbitrage in Scenario 3 was to make use of peak and trough
electricity prices.

At BESS price 209$/kWh using 2017 data and 96$/kWh using 2025
prediction data, the impact of BESS on net load with PV were shown in
Fig. 18. At BESS price 209$/kWh, the peak load (7:00–23:00) was
shaved at some extent. At BESS price 96$/kWh, the BESS effectively
smoothed the load curve to zero during the peak period. At other hours,
the peak net load may increase due to the battery charging power.
However, the charging is organized by setting an upper demand limit

Fig. 18. Impact of BESS on net load under different BESS prices.
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on the grid. The charging rate plus the load may not exceed this limit,
i.e., 2.5 MW in this case.

The energy flows from the PV and the SOC of BESS are shown in
Fig. 19. In Scenario 2 with CHP, most of PV electricity is exported to the
grid (PV → grid) and thus the SSR is high. In Scenario 3 with a district
level heat pump, most of PV electricity is supplied to the load directly
(PV → load) and thus the SCR is high. The State of Charge (SOC) graph
shows that the BESS in Scenario 1 is mainly charged using the mid-day
surplus PV, and the BESS in Scenario 3 is mainly charged using off-peak
electricity. The priority of energy flow from PV is: 1. PV → load,
2.PV → BESS, 3.PV → grid. When the PV electricity is surplus for the
load, the program optimizes the proportion of PV electricity charged to
BESS and exported to the grid.

The total annual costs of all storage and conversion devices for each
scenario using 2016 financial data were presented in Fig. 20, which is

equal to the total annual cost of conversion devices minus the annual
profit of PV-battery systems. In the optimal operation of PV-battery
systems, one of two district level conversion devices in each scenario
was assumed as a district level gas boiler. While two district level
conversion devices were both CHP units or heat pumps in Section 5.1
for better illustrating the impact of voltage and other operational
variables. Fig. 20 showed that after subtracting the profit of PV-battery
systems, Scenario 2 with CHP was not advantageous comparing to other
options using 2016 financial data. Considering carbon prices, Scenario
3 with heat pumps was advantageous. In conclusion, considering PV-
battery systems and the declining grid electricity carbon intensity, the
option of heat pumps turned out to be advantageous and may be a
favorable option in the long term since heat pumps generally improved
the SCR and the profit of the PV-battery system. Furthermore, the PV-
battery system mitigated the electricity network infrastructure en-
forcement caused by heat pumps.

6. Conclusions

This paper built a whole-system optimal coordinated operation
model of comprehensive storage and conversion devices in multi-vector
energy communities. Comprehensive energy storage and conversion
devices as well as detailed multi-network energy flows were modelled
using matrix formulation, and then decomposed into two subsystems
and sequentially optimized. The objective was to minimize OPEX in-
cluding fuel cost, O&M cost and carbon cost. To meet stricter voltage
constraints in the electricity network, the temperatures in the heat
network may be deteriorated and vice versa. The total operation cost
changed accordingly when electrical and thermal network constraints
were binding.

The impact of energy prices and carbon prices on energy conversion

(a) Scenario 1: District level gas boilers (b) Scenario 2: District level CHP

(c) Scenario 3: District level heat pumps
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(a) Scenario 1: District level gas boilers (b) Scenario 2: District level CHP

(c) Scenario 3: District level heat pumps
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Fig. 19. Energy flow from the PV and the SOC of BESS.
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devices was quantified. Without considering carbon prices, CHP was
advantageous comparing to other options. Considering carbon prices,
CHP was still advantageous using 2016 financial data. However, as the
carbon footprints of grid electricity decreasing significantly and the
carbon price increasing notably in 2030, the option of heat pumps
maintains comparably advantageous. It is shown that total cost of CHP
is lower than heat pumps until the grid emission factor reduces to
around 130gCO2/kW.

The income of PV-battery systems was significantly increased when
the BESS price is declined to a certain point due to a notable larger size
of BESS installation. Due to the relatively high storage costs of batteries,
direct PV self-consumption was the major impact factor on total costs.
BESS technologies facilitating self-consumption of excess solar PV
generation was demonstrated. The benefit of the PV-battery system is to
shift off-peak electricity, consume or shift surplus PV electricity, which
is influenced by the penetration level of conversion devices. Increased
conversion technologies may lead to increased commercial opportu-
nities for energy storage through price arbitrage. Increased use of
electric heat pumps increases the PV self-consumption and arbitrage
revenue of the PV-battery system.

The option of CHP was advantageous comparing to other options
without considering PV-battery systems using 2016 financial data.
However, the option of CHP was not advantageous after subtracting the
profit of PV-battery systems. It showed that heat pumps with PV-battery
systems may be a favorable option in the long term since the grid
electricity carbon intensity is declining and heat pumps improve the
SCR of PV-battery systems. It showed that for the operation of a multi-
energy district, it is of great importance to take into account the in-
terdependency of energy storage and conversion technologies, to

achieve a global optimum. The developed tool determined the optimal
operation strategies of storage and conversion devices. The interactions
between the electricity, heat and gas networks through energy storage
and conversion devices were thus clearly demonstrated.

This work presented here sets the basis for applying further opti-
mization techniques using the decomposition-coordination strategy
such as Benders decomposition method, and can then be further de-
ployed as the starting brick to test different control strategies and in-
form impact assessment as well as planning studies. Future work al-
ready planned includes the design and operation of BESS and renewable
energy supply in spatial-temporal operation at various network loca-
tions. The uncertainty of renewable energy will be quantitatively as-
sessed. It is also important to accurately incorporate the cost of cycle
aging into the optimal operation of a BESS in future work. Furthermore,
thermal storage and other emerging energy conversion technologies
such as fuel cell, concentrated solar power will be integrated. Other
future work includes development of control strategies or Information
and Communications Technology (ICT) that can be used for close-to-
real-time simulation.
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Appendix A

The Tabs used for input data and the fields of parameter data in the EXCEL spreadsheet are shown in Table 7.
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