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Fiber tractography (FT) using diffusion magnetic resonance imaging (dMRI) is widely used
for investigating microstructural properties of white matter (WM) fiber-bundles and for
mapping structural connections of the human brain. While studying the architectural
configuration of the brain’s circuitry with FT is not without controversy, recent progress in
acquisition, processing, modeling, analysis, and visualization of dMRI data pushes forward
the reliability in reconstructingWMpathways.Despitebeingawareof thewell-knownpitfalls
in analyzing dMRI data and several other limitations of FT discussed in recent literature, we
present thesuperoanterior fasciculus (SAF), anovelbilateral fiber tract in the frontal regionof
the human brain that—to the best of our knowledge—has not been documented. The SAF
hasasimilar shape to theanteriorpart of thecingulumbundle,but it is locatedmore frontally.
To minimize the possibility that these FT findings are based on acquisition or processing
artifacts, different dMRI data sets and processing pipelines have been used to describe the
SAF.Furthermore,weevaluatedtheconfigurationof theSAFwithcomplementarymethods,
such as polarized light imaging (PLI) and human brain dissections. The FT results of the SAF
demonstrate a long pathway, consistent across individuals, while the human dissections
indicatefiberpathwaysconnecting thepostero-dorsalwith theantero-dorsal corticesof the
frontal lobe.

Keywords: brain, diffusion MRI, fiber tractography, dissection, polarized light imaging, neuroanatomy,
superoanterior fasciculus

INTRODUCTION

Fiber tractography (FT) based on diffusion magnetic resonance imaging (dMRI; Jeurissen
et al., 2017) is widely used for investigating microstructural properties of white matter (WM)
fiber-bundles (Alexander et al., 2017), and for mapping structural connections of the human
brain (Wakana et al., 2004; Sotiropoulos and Zalesky, 2017). Since the first endeavors of FT
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(Basser et al., 1994, 2000; Conturo et al., 1999; Jones et al.,
1999; Mori et al., 1999; Catani et al., 2002), many studies
have contributed to the improvement of data quality and
the level of detail. Recent advances in MRI hardware and
acquisition (Anderson, 2005; Moeller et al., 2010; Setsompop
et al., 2013, 2018; Sotiropoulos et al., 2013; Andersson et al.,
2016) have improved significantly dMRI data in terms of
spatial resolution, angular resolution signal-to-noise ratio,
and geometrical distortion reduction. Additionally, notable
developments in data processing have reduced errors from
the individuals’ head motion (Leemans and Jones, 2009), data
outliers (Chang et al., 2005; Pannek et al., 2012; Collier
et al., 2015; Tax et al., 2015), eddy currents (Andersson
and Sotiropoulos, 2015, 2016; Andersson et al., 2016), EPI
distortions (Andersson et al., 2003), Gibbs-ringing (Perrone
et al., 2015; Kellner et al., 2016; Veraart et al., 2016), and
other data artifacts, like drift of the diffusion signal (Vos et al.,
2017). Besides the traditional diffusion tensor model, more
sophisticated methods have been developed to resolve crossing
fibers (Lin et al., 2003; Tuch, 2004; Tournier et al., 2004; Wu and
Alexander, 2007; Dell’Acqua et al., 2013; Tax et al., 2014; Jensen
et al., 2016). Together, all these improvements allow for more
reliable FT results, thereby resolving complex fiber architecture,
smaller branches of fiber bundles or minor fiber-pathways
(Tournier et al., 2008). Although dMRI based tractography
is a promising technique, there are many well-known pitfalls
and limitations in acquiring and analyzing dMRI data (Jones
and Cercignani, 2010; Jones et al., 2013b; O’Donnell and
Pasternak, 2015). Thus, dMRI is an indirect approach for
measuring the underlying WM pathway properties, as it is
an approximation of the average diffusion within a given
voxel. Modeling the diffusion results in a proxy of main
directions, and thus the exact architecture of the pathways
cannot be determined unambiguously. The modeling errors
can cause tracts to stop prematurely or jump from one WM
structure to another, resulting in false negative or false positive
connections. The strength of connectivity, when assessed via
probabilistic FT, is unreliable due to its sensitivity to data quality
(Mesri et al., 2016).

Despite recent efforts to increase the accuracy of FT by
either pruning the tractograms using anatomical information
(Smith et al., 2012; Roine et al., 2015) or by including
microstructural information to disambiguate between
pathways (Smith et al., 2013), the International Society for
Magnetic Resonance in Medicine (ISMRM) Tractography
Challenge in 2015 demonstrated that some data-processing
pipelines could result in large errors as the reconstructed
tracts produced an average ratio of 1:4 in false positive-
false negative connections and 45% in bundle overlap
when compared with pre-defined, ground-truth streamlines
(Maier-Hein et al., 2017).

In another study, the sensitivity (true connections) and
specificity (avoidance of false connections) of dMRI tractography
was investigated by combining tracer studies and high quality
dMRI data (Thomas et al., 2014). This research showed
a sensitivity-specificity trade-off, i.e., the number of true
connections increased simultaneously with the number of false

connections. Additionally, the anatomical accuracy of the tracts
depended on the studied pathway, the acquisition and the
processing pipeline. This stresses the fact that comparing results
across studies can suffer from the differences in acquisition
settings and processing methods. Therefore, reconstructing fiber
pathways from dMRI FT should be performed with great care
and additional support from other methods is welcome.

Nonetheless, being aware of the recognized issues, we present
the description of a novel fiber tract, the superoanterior
fasciculus (SAF), in the frontal lobe which—to the best of our
knowledge—has not been documented before with dMRI based
tractography with this level of detail. The tract is slightly curved
and follows the same arc profile of the cingulum bundle, but is
locatedmore frontally and above the frontal part of the cingulum;
it can be found in both hemispheres.

Traditionally, the description of new WM fiber bundles
went through several stages. For example, WM histology and
bundle degeneration studies (Dejerine and Dejerine-Klumpke,
1895) and dissection (Ludwig and Klingler, 1956; Heimer,
1983) studies supported the presence of a structure in post
mortem brains, which was confirmed later via dMRI-based
FT in the living human brain. Conturo et al. (1999) laid
the foundations for selection and analysis of tracts based on
‘‘region of interest (ROI)’’, which opened up a new era of
tract-based investigations from neuroscience (Lebel et al., 2008;
Thiebaut de Schotten et al., 2011a, 2012) to clinical applications
(Thiebaut de Schotten et al., 2005; Bartolomeo et al., 2007;
Deprez et al., 2012). The access to large samples made the
construction of in vivo WM tract atlases and guidelines feasible
(Mori et al., 2005; Wakana et al., 2007; Hua et al., 2008). In
this work, we reconstruct the proposed structure using specific
ROIs along with modeling of the diffusion MR signal based on
constrained spherical deconvolution (CSD; Tournier et al., 2004;
Tournier et al., 2007).

To minimize the possibility that these findings are based
on acquisition or processing artifacts, we used datasets from
different projects: young Adult human connectome project
(HCP; Glasser et al., 2013; Sotiropoulos et al., 2013; Van
Essen et al., 2013), Avon Longitudinal Study of Parents and
Children (ALSPAC; Golding, 2004), Multiple Acquisitions for
Standardization of Structural Imaging Validation and Evaluation
(MASSIVE; Froeling et al., 2017), an in-house dataset (Jeurissen
et al., 2011), and robust processing pipelines to show these
trajectories. While the main focus of this research was
based on dMRI, we complemented our findings with other
non-MRI techniques, such as polarized light imaging (PLI)
microscopy (Axer et al., 2011) and human brain dissections.
Preliminary results of this work on the SAF have been
presented at the 2015 ISMRM meeting in Toronto, ON, Canada
(Heemskerk et al., 2015).

MATERIALS AND METHODS

In the methods section, we describe first the datasets that
were used for the investigation. We then explain the dMRI
processing, FT and analysis steps. Finally, we describe the PLI
and dissection methods.
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Diffusion MRI
Datasets
Four dMRI datasets acquired on different platforms were used
to study the tract. The datasets represent a large diversity in
data quality and number of samples, which helps to generalize
the conclusions.

Dataset 1
Minimally processed dMRI data from the HCP S500 release
were used. Briefly, the data were acquired with a 1.25 mm
isotropic voxel size; three shells with b = 1,000, 2,000 and
3,000 s/mm2 in 90 DW volumes and six non-weighted images
per shell. Every participant for whom all the 90 b = 1,000 s/mm2

and 90 b = 3,000 s/mm2 images were available along with
all 18 b = 0 s/mm2 volumes, and were not listed among
participants with known anatomical anomalies or data quality
issues were included in the analysis. The IDs of the excluded
participants are listed on the HCP wiki page (HCP wiki, 2018).
The selection resulted in 409 healthy participants (243 females
and 166 males), between the age of 22 and 36 years. Low b-value
images were analyzed with DTI and CSD models separately
using 90 b = 1,000 s/mm2 and nine unweighted volumes,
while the higher b-shell was processed with CSD only using
90 b = 3,000 s/mm2 and 18 unweighted volumes. For a subset
of 10 participants we also analyzed the b = 1,000 s/mm2,
2,000 s/mm2 and 3,000 s/mm2 shells with both CSD and
DTI models.

Dataset 2
Ten dMRI datasets were used from the ALSPAC
cohort, each consisting of 30 diffusion gradients with
b = 1,200 s/mm2, and 2.4 mm isotropic voxel size as described by
Björnholm et al. (2017).

Dataset 3
The dataset is described in the work of Jeurissen et al. (2011).
In summary, one participant’s dMRI consisted of 60 diffusion
directions, 2.4 mm isotropic voxel size (resampled to 1 mm
isotropic) and b = 3,000 s/mm2.

Dataset 4
The dataset from theMASSIVE (Froeling et al., 2017) acquisition
was used. In short, we used a subset of 22 b = 0 s/mm2 volumes
and 250 b = 3,000 s/mm2 volumes and an isotropic resolution of
2.5 mm3 of one participants.

Image Processing and Signal Modeling
All datasets were preprocessed with ExploreDTI v.4.8.6 (Leemans
and Jones, 2009; Leemans et al., 2009), except for the
HCP dataset, which was already preprocessed (see Dataset
1 below). Further modeling (DTI and CSD) and defining ROI
configurations were also performed with ExploreDTI.

Dataset 1
Briefly, FSL (Jenkinson et al., 2012) tools topup (Andersson et al.,
2003) and eddy (Andersson and Sotiropoulos, 2016) were used to
correct for head motion and geometrical distortions arise from
eddy currents and susceptibility artifacts. Finally, the DWIs were
aligned to the structural T1 image. For the full description, see

the work of Sotiropoulos et al. (2013). DTI estimation of the
low b-value shell for the full population was performed using
REKINDLE (Tax et al., 2015). The fiber orientation distribution
(FOD) in each voxel was estimated using CSD (Tournier et al.,
2004, 2007) with the recursive calibration method (peak ratio
threshold = 0.01; Tax et al., 2014) with maximum harmonic
degree of Lmax = 8, in the high and low b-value shells
separately. For a subset of 10 subjects, we performed additional
analyses to test the effects of b-value and choice of diffusion
modeling. For this, we used the following settings: (a) CSD with
b = 2,000 s/mm2; (b) CSD with b = 1,000 s/mm2; (c) CSD with
Lmax = 6; (d) CSD with calibration of the response function based
on FA > 0.8; and (e) DTI estimation using REKINDLE.

Dataset 2
Motion-distortion correction and Gaussian anisotropic
smoothing (Van Hecke et al., 2010) were performed with
ExploreDTI. The FOD in each voxel was estimated using CSD
with recursive calibration (peak ratio threshold = 0.01) and
Lmax = 8.

Dataset 3
Motion-distortion correction was performed with ExploreDTI.
The dataset was resampled to 1 mm isotropic voxel size to
increase the level of detail (Dyrby et al., 2014). FODs were
estimated using CSD with recursive calibration (peak ratio
threshold = 0.01), Lmax = 8.

Dataset 4
Dataset 4 was motion, distortion corrected and resampled to
1 mm isotropic voxel size. Similar to the previous datasets, the
FOD was estimated using CSD with recursive calibration (peak
ratio threshold = 0.01), Lmax = 8.

Fiber Tractography
For all four datasets, the deterministic FT framework of Jeurissen
et al. (2011) was used for the CSD approach, with the following
parameter settings: FOD threshold = 0.1, angle deviation = 45◦,
step size = 1 mm and minimal tract length = 20 mm. Whole-
brain FT was performed with uniform distribution of seed points
defined at a 2 mm resolution. For DTI based FT, the settings
are: step size = 1 mm, minimal tract length = 20 mm, angle
deviation = 45◦, FA seed and tracking threshold of 0.2 and
uniform seed point resolution of 2 mm.

ROI Configuration for Reconstructing the SAF
Automated, large-scale tract selection on the HCP dataset was
obtained by atlas-based tractography segmentation (Lebel et al.,
2008). On the template dataset, we defined 4 Boolean ‘‘AND’’ and
‘‘NOT’’ ROIs: 2 axial AND, 1 sagittal NOT and 1 coronal NOT
ROIs (Figure 1). The 2 axial AND ROIs were placed as follows:
the first one was located at the height of approximately half the
genu of the corpus callosum (CC) and the second ROI was placed
10 slices (equals to 12.5 mm in the HCP dataset) superior. Both
AND ROIs included the medial frontal area and excluded the
cingulum. A NOT ROI was placed midsagittal to exclude fiber
pathways from the CC. Additionally, one coronal NOT ROI was
placed posterior of the frontal lobe and below the CC to exclude
fibers from the inferior fronto-occipital fasciculus (iFOF).
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FIGURE 1 | Positions of the two AND (in green) and two NOT (in red)
regions of interest (ROIs) are shown with a direction encoded color (DEC)-FA
map. This ROI configuration was used for the tract selection of the
superoanterior fasciculus (SAF) in both hemispheres.

Consistency Evaluation of the SAF
Within Cohort
For each of the 409 participants from the HCP cohort, the
visitation mask of the reconstructed SAF was normalized to the
Montreal Neurological Institute (MNI) template (Fonov et al.,
2011), using the transform functions provided by the HCP team.
The resulting map was thresholded at 1 and binarized. The group
map displays the fraction of participants for whom the tract mask
of the SAF is present in each voxel of the MNI space.

Across Acquisition Protocols
The tractography results of participants from the four different
datasets were compared to investigate the consistency of the SAF
configuration across different acquisition methods.

Across Processing Settings
We evaluated the effects of different processing settings on the
tractography results for 10 subjects of the HCP dataset.

Polarized Light Microscopy
PLI is a microscopy method that uses the birefringent properties
of myelin sheath to quantify the main fiber orientation in
histological sections (Larsen et al., 2007). In this work, we used
data previously involved in the investigation of the anterior
cingulum (Axer et al., 2011). One of the studied brains was
sectioned as to expose the area of interest but was not investigated
previously. For details on acquisition and processing see the
corresponding study (Axer et al., 2011). Briefly, a 4% aqueous
formalin-fixed human brain was macroscopically dissected and
a 1.5 cm thick slab of the medio-frontal brain including the
anterior cingulum bundle was cut in four blocks. Each of
these four blocks were serially sliced and analyzed. Sections
were obtained with a cryostat microtome (CM3050 S, Leica
Microsystems, Bensheim, Germany) at a thickness of 100 µm.

Aqueous mounting medium AquatexTM (Merck, Darmstadt,
Germany) was used for mounting. The histological sections
were placed between two coupled crossed polars which can be
rotated. Birefringence in the tissue is able to twist some of
the light so that it can pass through the second polarizer and
be imaged. The orientation of the nerve fibers influences the
transmission of plane-polarized light at different azimuths. A
CCD camera (Axiocam HR, Carl Zeiss, Göttingen, Germany,
basic resolution of 1,388 × 1,040 pixel) was used to capture
the light. The brain slices were digitized under azimuths
from 0 to 80◦ using two polars only. These sequences were
used to estimate the inclination of fibers (in z-direction). The
same slices were digitized under azimuths from 0 to 160◦ in
steps of 20◦ using a quarter wave plate additionally. These
sequences were used to estimate the direction of the fibers in
xy-direction.

Dissection (Paris)
Post-mortem brain dissection was performed in the laboratory
of neuroanatomy of Lariboisière Hospital in Paris, France by two
neurosurgeons (EM, FCorr).

Five human cerebral hemispheres, obtained from fresh
autopsy, were fixed in 10% formalin solution for at least
3 weeks. These specimens were frozen at −18◦C for 2 weeks
and then unfrozen at room temperature. This process (Klingler
technique’s; Klingler, 1935) induces water crystallization in the
brain tissue that, by spreading along the WM fibers, facilitates
visualization and dissection of the subcortical WM fibers.

The dissection was performed with light microscopy (OPMI
pico, Carl Zeiss, Inc., Oberkochen, Germany) and video recorded
with a high-resolution digital camera (Karl Storz GmbH,
Tuttlingen, Germany).

Initial observation of the configurational shape of sulci and
gyri of the mesial cortical surface of frontal lobe was always
performed before dissection. The dissection always started from
the cingulate fibers extending to the entire mesial and lateral
surface of the frontal lobe.

Dissection (Trento)
Dissections below were performed by three neurosurgeons (SS,
FCors, and AB) in the context of the Structural and Functional
Connectivity Lab (SFC-Lab) Project, which was approved by
the Ethical Committee of the Azienda Provinciale per i Servizi
Sanitari (APSS) of Trento, Italy.

Three right hemispheres were prepared for Klingler’s
dissection (Klingler, 1935) according to the protocol previously
reported (Sarubbo et al., 2015; De Benedictis et al., 2014, 2016). It
starts with an injection of formalin 10% in carotids and vertebral
arteries, then an immersion in formalin 10% for 40 days,
and finally the progressive freezing at −80◦ and de-freezing
procedure. After the first de-frost process and removal of
arachnoids and vessels, we started the micro-dissection under
microscope with 4× magnification with wooden spatulas,
approaching at the medial and ventral WM of the frontal lobe
from the latero-dorsal cortical surface and leaving intact the gray
matter at the tip of the gyri exposed to highlight the territories
of terminations.
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RESULTS

Tract Description
The architectural configuration of the SAF is shown in Figure 2
where dataset 3 was used with CSD based FT. The complex
fiber architecture in the frontal area can be appreciated from the
FODs overlaid on the sagittal view in Figures 2A–C with the
dotted yellow line identifying the interface between regions with
locally different dominant fiber populations [‘‘blue’’ vs. ‘‘green’’
on the principal direction encoded color (DEC) map]. A medial
and frontal view of the bilateral tract configuration is given in

Figures 2D,E, respectively. Note that the SAF resembles the
trajectory of the cingulum bundle (in red) but it is located more
anteriorly, superiorly, and laterally.

The SAF group composite map of the HCP participants
(dataset 1) using CSD modeling with b = 3,000 s/mm2

is shown in Figure 3. Again, the bilateral tracts follow
a similar trajectory as the cingulum, but more frontally
[i.e., in front of the cingulate sulcus or within the superior
frontal gyrus (SFG)] and slightly more laterally. The SAF
pathways appear to spread from the rostrum of the CC to
the ascending ramus of the cingulate sulcus and are medial

FIGURE 2 | Location of the SAF: the axial (A) and sagittal (B) view of part of the region that intersects the SAF (blue region indicated by the arrows). The complex
fiber architecture in this area can be appreciated from the fiber orientation distributions (FODs) overlaid on the sagittal view in (C) with the dotted yellow line identifying
the interface between regions with different dominant fiber populations (“blue” vs. “green” on the DEC-FA map). Sagittal (D) and coronal (E) views of the SAF
configuration. For displaying purposes, only one of the bilateral SAFs is shown. The cingulum bundle is shown in red to provide anatomical reference. Grayscale
background is the T1-weighted magnetic resonance imaging (MRI) of the subject.
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FIGURE 3 | SAF probability map in 1 mm Montreal Neurological Institute (MNI) stereotaxic space from 409 subjects of the Human Connectome Project (HCP)
cohort in sagittal view. Constrained spherical deconvolution (CSD) modeling with recursive calibration was used on the high b-value data. The % indicates the
fraction of subjects for which the tract is present in a given voxel.

to the corona radiata. Supplementary Figures S1, S2 show
the population level map using the same ROIs, but with
the 1,000 s/mm2 b-value dataset and modeled with DTI and
CSD, respectively.

Tract Consistency
Across Participants
The percentage overlap map in Figure 3 and Supplementary
Figure S2 show that the main portion of the SAF is present for
90% of the participants, which is in the same range as other
tracts (Thiebaut de Schotten et al., 2011b). The extent of the
reconstructed SAF varied substantially across participants (see
Figure 4). For some, a very extended and broad structure was
found (Figure 4, bottom row), while in others we found only a
narrow portion of the SAF (Figure 4, top row). The length of
the streamlines also varied across participants, but also within
the same individual. It is often observed that streamlines stop
abruptly due to the absence of a corresponding FOD peak larger
than the predefined threshold.

Across Data Acquisitions
Figure 5 reveals that the SAF was present in all samples that we
analyzed. This observation excludes the possibility that the SAF
is merely a scanner-specific artifact. While there are differences
in acquisition settings between the different acquisition sites,
there is no impact on the extent of the SAF. An example
is shown in Figure 6, where the effect of using different
b-values for the data acquisition on the SAF reconstruction is
depicted. Low b-values result in less complex FODs leading to
shorter and fewer streamlines, but CSD based modeling can still
reveal the SAF configuration. CSD based tract coverage from
low b-value data shows large overlap with the high b-value

based CSD tracts, revealing that proper modeling of crossing
fibers is imperative for reconstruction of the SAF. This can be
appreciated as well in the population map in Supplementary
Figure S2, in which DTI based FT cannot deal with complex fiber
pathway configurations.

Across Processing Strategies
Modeling and processing steps also affected the extent of the
reconstructed SAF (Figure 7). DTI analysis (Figure 7A) resulted
in either no pathways at all or in some spurious ones. CSD-based
modeling showed either shorter SAF pathways (Lmax = 6,
Figure 7C) or minor variations (FA calibration, Figure 7D).
According to the population-level maps in Supplementary
Figure S1, DTI-based reconstructions of the SAF cover only
the most frontal parts of the tract, which is also depicted in
Figure 2 with the blue color. In this location of the SAF, the
locally dominant direction of diffusion is tangential with the SAF,
irrespective of any other crossing pathways. Clearly the biggest
impact on showing the SAF configuration was the modeling of
crossing fibers, in our example using CSD over DTI.

PLI
Figure 8 shows the ensemble of the four blocks color-coded by
the main in-plane orientation per voxel. In the ROI of where
the SAF is expected, a variety of colors and therefore locally
dominant orientations were present. Nonetheless, a similar
shape (indicated by the white arrows) as with tractography can
be appreciated.

Dissection (Paris)
We were able to isolate, in four of the five specimens, a
series of fibers spreading over from the cingulate fibers that
seemed to have the same anteroposterior orientation as the
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FIGURE 4 | Consistency within the HCP cohort. The right SAF and cingulum is depicted in sagittal view for nine subjects from the HCP dataset highlighting the
large variability in extent of the SAF. The cingulum is shown in red to provide anatomical reference. Tracts are plotted on top of the DEC-FA map.

FT results of the SAF. These fibers were located above the
cingulum in correspondence with the frontal gyrus (Figure 9).
The careful dissection of the fiber complex revealed several
different fibers: U-shaped fibers from cingulate, U-shaped fibers
belonging to SFG and more lateral fibers from corona radiata
(Figure 9). All of them had a vertical orientation; therefore,
no correspondence to the anteroposterior orientation of the
putative SAF.

Dissection (Trento)
After exploration of the sulco-gyral anatomy (Figure 10A) we
proceeded with a gentle peel out of the gray matter of the depth
and lateral surface of all the gyri of the dorsal portion of the
frontal and parietal lobes (Figure 10B). Then we removed the

U-fibers connecting the most anterior thirds of the middle and
superior frontal gyri, at the level of the superior frontal sulcus
(SFS; Figure 10C). After a progressive and cautious removal of
the U-fibers connecting the lateral and medial cortices facing
at the border of the SFS, we exposed a thin layer of fibers
with an antero-posterior course (in all the three hemispheres
dissected; Figure 10D). We followed back with a gentle micro-
dissection this layer of fibers exposing the posterior territories
of terminations within the dorsal third of the pre-central gyrus.
Anteriorly we exposed this thin bundle with an arching course,
that follows the physiologic curvature of the frontal anterior
cortices, and we exposed the territories of terminations within:
the frontal pole, the fronto-orbital cortex and the fronto-orbito-
lateral cortex.
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FIGURE 5 | Consistency across acquisition protocols. For all four datasets an example of the SAF configuration is shown in sagittal view: right SAF and right
cingulum for (A) dataset 1 and (B) dataset 3. Left SAF and left cingulum is shown for (C) dataset 2 and (D) dataset 4. The cingulum is shown in red to provide
anatomical reference. Tracts are plotted on top of the DEC-FA map.

FIGURE 6 | Consistency of the SAF configuration across acquisition strategies for the same subject of the HCP cohort using CSD based fiber tractography (FT).
The effect of using different b-values is shown in the sagittal view, other settings are identical: (A) b = 1,000 s/mm2; (B) b = 2,000 s/mm2 and (C) b = 3,000 s/mm2.
Trajectories of the SAF are plotted on top of the DEC-FA map.

It was not possible to follow these fibers further back
(i.e., behind the central sulcus) in any of the specimen because:
(1) we did not find clear signs of continuity; and (2) the dense
and intermingled crossing area with the vertical fibers ascending
and descending to the pre- and post-central gyri.

This thin layer of fibers is located in the most medial
and dorsal portion of frontal WM and connects the

postero-dorsal with the antero-dorsal cortices of the
frontal lobe (Figure 11A). We performed also the micro-
dissection of the most ventral components of the superior
longitudinal fascicle (namely, SLF II and III; Figures 11B–D),
accordingly to the recent description by Fernández-Miranda
et al. (2015); these SLF components occupy the medio-
dorsal and ventral WM of the frontal lobe and are clearly
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FIGURE 7 | Consistency of the SAF configuration across different modeling and processing strategies for the same subject of the HCP cohort. In (A), the DTI model
was used, resulting in only few and likely spurious tract pathways, whereas the CSD models in (B–D) produce similar and plausible SAF trajectories, but with
differences due to processing settings: (B) recursive calibration and Lmax = 8; (C) recursive calibration and Lmax = 6; and (D) FA calibration and Lmax = 8. Tracts are
plotted on top of the DEC-FA map and shown sagittal.

distinguishable from the SAF fibers by location, direction
and course.

DISCUSSION

By taking advantage of advanced dMRI methodology, we
have identified a consistent bilateral pathway, referred to as
the SAF, via FT in the frontal lobe, which has not been
described before (Catani et al., 2012; Makris et al., 2005;
Thiebaut de Schotten et al., 2011b). Reproducibility across
multiple participants, different data samples and acquisition
settings boosted our confidence that this finding is not based on
imaging artifacts.

FT shows that the SAF can be consistently reconstructed with
FT. However, the presence of a long association fiber is not
fully supported by dissection, which necessitates hypothesizing
about why this pathway is still found with FT. An explanation
could be that a series of consecutive U-shaped fibers that
connect adjacent gyri emerge to form a long pathway (see
Figures 8, 12). This possibility is supported by the work of

Maldonado et al. (2012), where they propose that the dorsal
component of SLF is primarily composed of U-shaped fibers.
However, dissection also revealed a distinct WM structure with
the same orientation as the proposed fiber bundle after the
explicit removal of U-fibers. One may argue that the fibers
are part of the dorsal component of the SLF system (i.e., SLF
I), but considering the common anatomical definitions and
the territories of termination of the SLF, it is unlikely the
case. Figures 11C,D highlights the different and well-known
components of the SLF. Important to note that this regions
is challenging for FT and dissection as well due to the
high number of crossings with the descending and ascending
(i.e., vertical) pathways.

Independent investigations are still necessary to decide
whether the suggested structure is indeed a new one or a
component of an already defined tract. A possible description
based on new nomenclature that it is part of the large dorsal
system of horizontal fibers connecting frontal and parietal
cortices as a branch of the mesial longitudinal system (MesLS;
Mandonnet et al., 2018), which can be further divided into
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FIGURE 8 | Polarized light imaging (PLI) results. (A) Four separate blocks of the same brain sliced in sagittal plane, where the fiber orientation maps are depicted
correspond to the (B) color scheme circle. White arrows are indicating the location of the proposed pathway. Part (C) shows an example of formalin fixed human
cadaver brain.

an inner branch, which is the cingulum per se and an
outer branch, the SAF. Note, such an outer branch is close
to what Wang et al. (2016) named as supracingulate or
paracingulate pathways. Supplementary Figure S3 shows the
population of the SAF map CSD based modeling and high
b-value data along with the cingulum from the JHU-ICBM
DTI based WM atlas (Mori et al., 2005; Wakana et al., 2007;
Hua et al., 2008) demonstrating that the SAF is not part of
the cingulum.

While the agreement between dissection and FT is imperfect,
it is important to describe the structure and recognize its
occurrence. First, as this is a consistent finding, other researchers
will likely discover and investigate the presence of this FT
structure. Second, investigating the structural properties of
the sub-compartments can improve the understanding of the
U-fibers and rule out false structures, which were accidentally
reconstructed from U-fibers. Third, this adds to the discussion
of the value of FT, thereby raising additional awareness of the
pitfalls of FT (Jones and Cercignani, 2010; Parker et al., 2013;
O’Donnell and Pasternak, 2015), and the concerns in the field of
connectomics (Hagmann et al., 2010; Fornito et al., 2013; Zalesky
et al., 2016).

In the following sections, we will discuss that our FT results
are plausible from the point of dMRI-based tractography, place
our results in the context of other FT and dissection studies,
provide suggestions for future investigations, and stimulate the
debate about the validity of dMRI-based FT.

Diffusion MRI
Recent developments in acquisition and data processing boosted
the reliability of dMRI and increased the inherently low
accuracy of mapping WM pathways with FT. The investigations

in solving crossing fibers were imperative, as the reported
structure would not or hardly be detected since the main
diffusion direction here is along the forceps (see Figure 2).
However, one of the pitfalls of dMRI is that it is an indirect
measure of the underlying WM pathways and reflects the net
displacement of water molecules along all structures within
a large voxel. Different structural architectures can lead to
the same diffusion profile (Jbabdi and Johansen-Berg, 2011),
making it hard to reconstruct unambiguously the intrinsic
fiber arrangement.

Impact of Modeling
The choice of diffusion signal modeling was critical as the
SAF cannot be revealed with DTI. The tract is formed mostly
from locally non-dominant fiber populations. Therefore, it
can be mapped only with techniques, which can resolve
crossing fibers. The single location where the tract is locally
dominant is the most anterior part with up-down orientation,
as depicted in blue in Figures 1A–C, and is also the only
location revealed by DTI based population level tract mapping
shown in Supplementary Figure S1. Following this line of
reasoning, yet a system of non-dominant, interwoven fiber
bundles are to be found with the help of high data quality and
advanced modeling.

Another example of mapping a challenging fiber population
without any well-known underlying architecture is showcased
in the MyConnectome project (Poldrack et al., 2015), featuring
longitudinal, high quality MRI data of a single adult male.
In a small region of the CC, an anterior–posterior oriented
set of fibers are dominating locally, yet the left-right oriented
CC fibers are still present and continuous. This rare finding
is not expected in the CC, but is remarkably strong in that
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FIGURE 9 | Dissection results in two different hemispheres and color overlays representing the proposed structure. Top row: (A) the original image and (B) possible
trajectory of the SAF overlaid in blue, the cingulum is indicated in red as the anatomical reference. Bottom row: (C) original image and (D) several U-shaped fibers
highlighted in red, which may form part of the SAF via FT.

the front-back oriented diffusion was larger than the left-right
orientated diffusion and, hence, changed the color in the DEC
map from red to green. Similar to the SAF, it is difficult
to investigate parts of pathways where the underlying FOD
profiles exhibit non-dominant peaks tangential to the pathway
of interest.

Tract Consistency
CSD tractography results obtained with low and high b-value
data show a high similarity of 90% for the core of the SAF, which
is outstanding given the fact that WM fiber bundles vary in their
size and position, especially for this is a small and inferior bundle.
Compared with other larger bundles, the similarity is in line with
previously reported overlap values of >90% (cingulum), >90%
(core CC), >75% (CC), and >75% (iFOF; Thiebaut de Schotten
et al., 2011b).

The presence of the SAF across different data samples and
acquisition settings is indicative that the results are not merely
based on acquisition artifacts. As FODs are sharper, more and
longer streamlines are found at higher b-values as this will aid the
resolving power of the different fiber populations within a voxel.
Although we can show the SAF in case of all the participants,
finding the complete trajectory is not trivial. The SAF can be
incomplete, for example, when the FOD only contains the main
peak of the crossing fibers and does not contain theminor second
peak. While we were able to determine the main part of the SAF

configuration, the dorsal terminations were hard to obtain, which
was also an issue during dissection. Future studies, especially at
higher spatial and angular resolution, may alleviate this question.

Validation
A conceptual limitation of FT (Jeurissen et al., 2017) is
the inability to resolve the functionality and directionality of
anatomical links, where the existence of a physical connection
is necessary to complete the cortical functions. Such functional
confirmation can arise from the use cortico-cortical (Matsumoto
et al., 2004, 2006, 2012) or axono-cortical evoked potentials
(Yamao et al., 2014; Mandonnet et al., 2016), generally obtained
with invasive techniques involving implants or electrodes
during surgery.

The PLI results show an overall pathway that can
resemble the presented structure; however, it is not clearly
one consistent pathway. A drawback of PLI, however,
is that it cannot distinguish between differently oriented
crossing fibers, making it hard to be unambiguous about the
exact pathway.

On the one hand, the brain dissections in this work could
not clearly verify the existence of the SAF. On the other hand,
the dissection results could not rule out the existence of the
SAF given the limitations of this approach, especially in regions
where multiple fiber systems exhibit crossing configurations. The
brain data used for the FT results in this work are obtained from
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FIGURE 10 | (A) The main sulci and gyri of the lateral frontal region of a right hemisphere are indicated, after removal of vessels, pia mater, and arachnoid
membranes. (B) Decortication of the SFG and MFG allows identifying the U fibers under the SFS (blue pin, pink circle). (C) Exposition of U-fibers between di SFG
and MFG (pink arrows). (D) Exposition of a thin layer of fibers with an antero-posterior course under the SFS (pink arrow). CS, central sulcus; IFG, inferior frontal
gyrus; IFS, inferior frontal sulcus; MFG, middle frontal gyrus; Op, opercular part of the IFG; Orb, orbital part of the IFG; PreCG, precentral gyrus; PreCS, precentral
sulcus; PostCG, postcentral gyrus; S, superior; SFS, superior frontal sulcus; SFG, superior frontal gyrus; Tr, triangular part of the IFG.

healthy volunteers. Hence, ex vivo investigations (dissection and
PLI) on the same brains were not feasible. As such, a direct
comparison was not possible.

Complexity of Fiber Bundles
Interaction between FT and brain dissection methods drives
both the validation of tracts, but also the discovery of true fiber
bundles, thereby increasing our understanding of the design of
the brain’s architecture (Yeatman et al., 2014; Meola et al., 2015;
De Benedictis et al., 2016; Wu et al., 2016b; Hau et al., 2017).
Over the years, more and more (parts of) WM bundles were
revealed using FT, which were previously undetectable with the
formerly existing techniques (Jbabdi and Johansen-Berg, 2011)
such as the lateral projections of the CC, IFOF or the Aslant fiber
bundle (Thiebaut de Schotten et al., 2012). However, the validity
of some of these tracts is still debated. Yeatman et al. (2014) used
tractography to rediscover the vertical occipital fasciculus (VOF);
a bundle that caused controversies among neuroanatomists in
the 19th century. These tractography findings were further
confirmed via dissection by Wu et al. (2016c). In this context,

the identification of the SAF with FT raises similar concerns and
fuels the ongoing debate about validation with other approaches.

Other researchers have also proposed new or redefined WM
structures. Track density imaging (TDI) on 7T dMRI (Calamante
et al., 2010, 2011, 2012) recently demonstrated finer details of
thalamocortical connections (Choi et al., 2018) and revealed the
fiber system of the septum pellucidum area (Cho et al., 2015).
In both studies the super-resolution ability of the voxelwise
fiber count was used to generate images with high anatomical
contrast and therefore exposed the aforementioned bundles.
However, due to the noise sensitivity of the technique, the
validity of structures revealed by TDI remains an open question
(Dhollander et al., 2012, 2014).

In addition to new bundles, several studies have shown
subcompartments of known WM pathways, which are validated
by histology. These multi-component bundles such as the
uncinate fasciculus (Hau et al., 2017), iFOF (Sarubbo et al., 2013;
Caverzasi et al., 2014; Hau et al., 2016; Wu et al., 2016a) and SLF
(Makris et al., 2005; Kamali et al., 2014) consist of a complexity of
pathways that together form a united bundle. De Benedictis et al.
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FIGURE 11 | Dissection of a right hemisphere according to Klingler’s technique. (A) Exposition of the most ventral components of the anterior indirect component
of the SLF (SLF II and SLF III; green area). (B) Thin layer of fibers connecting the postero-dorsal with the antero-dorsal cortices of the frontal lobe (white area, red
arrow). (C) Dissection of the main components the SLF: indirect anterior (green area), indirect posterior (blue area); direct (yellow area). (D) U-fibers (blue pins), dorsal
frontal fibers (white pins), frontal terminations of the AF, respectively in the ventral premotor cortex (green pins) and the pars opercularis of the IFG (red pins). AF,
arcuate fasciculus; SLF, superior longitudinal fascicle.

FIGURE 12 | Hypothesis on how consecutive U-shaped fibers (in blue) can
form a long pathway (in red).

(2016) used amicrodissection approach to reveal and validate the
presence of both homotopic as well as heterotopic fibers in the
anterior half of the CC.

The cingulum, which has a similar shape and is in close
approximation of the SAF, is also a multi-component bundle.
The cingulum bundle consists of many short fibers as well
as longer fibers that together have many different connections
(Bajada et al., 2017). The cingulum is usually depicted as a
continuous structure using FT although thorough research is
showing a division in at least three subparts, each with their own
distinct diffusion metrics (Jones et al., 2013a; Wu et al., 2016b).
Given the similarity with the cingulum and the knowledge
that many bundles have complex and multicomponent fiber
organization, it seems plausible that the SAF also has a
multicomponent organization.

Future Directions
This study describes a new pathway identified with dMRI based
FT, called the SAF, which may have several implications in
in vivo neuroimaging studies about structural brain connectivity.
If the SAF is considered to be a genuine new brain pathway,
further research is needed to better understand the origin
and the function of this structure. Investigation of this
area at higher spatial resolution could be one avenue as
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recent work has shown that this coincides with a better
understanding of complex crossing fiber structures (Schilling
et al., 2017). This approach would then ideally be combined
with dissection. We can expect more, previously not shown
and locally non-dominant structures to be discovered as
Jeurissen et al. (2013) showed that most of the WM in the
human brain contains multiple populations. Other imaging
techniques, such as optical coherence tomography (Huang
et al., 1991) or optogenetics (Deisseroth, 2010) may provide
complementary information that could verify the existence of
the SAF.

We observed a large variability in the cross-sectional area of
the SAF and future analysis of the structure should also entail
examining common properties related to microstructure, shape,
demographics, and even changes in pathological conditions.
Furthermore, it is well-known that the frontal lobe is generally a
challenging region to investigate by most MRI methods, because
of the susceptibility induced distortions, which are further
emphasized by EPI sequences caused by the air-tissue interfaces
of the sinuses.

In the past, we have seen examples in which part of anatomical
knowledge is abandoned from the mainstream, e.g., in case of the
VOF or the IFOF. Since the influential work of Andreas Vesalius
(De humani corporis fabrica, 1543, Padua Italy) anatomists
are drawing, dissecting and reconstructing WM pathways with
increasing precision as technology advances. It would not be
unexpected if the SAF could reemerge from textbooks of human
brain anatomy in a similar way.

CONCLUSION

We have proposed the existence of the SAF in the human brain,
a new WM bundle identified with dMRI based FT. We showed
that it is consistent within several cohorts, across different
acquisition settings and processing strategies. However, there
are still uncertainties about the true underlying anatomy of the
structure as evidenced by our complementary PLI and brain
dissection findings.
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