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SUMMARY 

The 13°N segment of the Mid-Atlantic Ridge is an example of a morphologically well-studied slow 

spreading ridge segment populated with oceanic core complexes (OCCs). In this paper we present the results 

of a ~200 km-long 2D seismic and gravity transect through this segment, the bounding fracture zones to the 

south and the ridge discontinuity to the north. We use this transect to consider the two end-member models 

of OCC evolution in which one, referred to as the Segment-scale model, implies they are interconnected with 

their detachments being part of a single segment-long feature, and the other, the Localised model, that each 

OCC is structurally isolated.  

We show, using the 7.5 km s
-1

 velocity contour as the base of crust marker, that the crust is 

consistently relatively thin ridge-parallel, at ~5 km-thick on average, and that, beneath the OCCs, the Moho 

marks the top of a velocity gradient transition into the mantle, rather than a distinct velocity discontinuity.  

Although each OCC is not traversed in an identical structural location, they show a different crustal velocity-

density structure with depth, with along axis variations in this structure mirrored by the bathymetric deeps 

between them. Older OCCs have a contrasting velocity-depth signature to the currently active 13°20’N OCC. 

The 13°20’N OCC is distinct in that it does not show higher relative velocity at shallower crustal depth like 
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its neighbours, while the 13°30’N OCC has an apparently thinner crust. Our combined P-wave seismic 

travel-time tomography and gravity forward modelling suggests that the OCCs of the 13°N segment are not 

interconnected at depth. To the north of the 13°30’N OCC, our modelling also suggests that the crust is being 

magmatically refreshed, or that the ridge axis is currently undergoing magmatic accretion with an associated 

ridge tip propagation occurring across the ridge discontinuity that marks its northern edge. 

The profile also crosses the Marathon and Mercurius fracture zones that mark the southern limit of 

the 13°N segment and the southern ridge-transform intersection outside corner. Along profile, Marathon 

fracture zone offsets younger (~1 My vs. ~8 My) oceanic crust than Mercurius fracture zone (~8 My vs. ~11 

My). When considered in combination, both seismic and gravity modelling suggest crustal thinning in the 

direct vicinity of the bathymetric valley of Marathon fracture zone, coupled with a region of low density that, 

most likely, reflects serpentinisation of the uppermost mantle. In addition, the crust captured between 

fracture zones appears relatively rotated about an E-W axis and uplifted to the north, with the upwards 

motion accommodated on the northern lateral edge of the bathymetric depression rather than in its centre. 

Both the outside corner and the crust bounded by fracture zones have velocity-depth characteristics similar to 

that of the 13°N segment OCCs rather than normally-accreted oceanic crust, particularly in the upper-to-

middle crust.  

Overall, our results support the Localised model of OCC evolution and suggest that fracture zones 

do not become locked immediately on transform-to-fracture transition as current models dictate. 

 

Key words: controlled-source seismology; crustal imaging; crustal structure; mid-ocean ridge processes. 

 

1. INTRODUCTION 

Mid-ocean ridges characterise the Earth’s oceans and are associated with a shallow seafloor, high heat and 

fluid flow, and seismicity; and mark the locations where new oceanic lithosphere is created. Transform faults 

offset the ridge axes, and fracture zones trace their relict past to the continental margins. As more surveys are 

undertaken, it is becoming increasingly clear that the mid-ocean ridge setting accommodates a diversity of 

processes operating over a broad range of inter-related scales and time frames, with crustal formation not 

being a solely magmatically-driven process as was once thought. 

 

1.1 Oceanic core complexes 

Since the discovery of domal corrugated surfaces at slow-spreading mid-ocean ridges (Cann et al., 1997), our 

understanding of how seafloor spreading works has undergone major conceptual step-changes in response to 

the ever-increasing number of high-resolution seabed morphological studies. These domal surfaces, or 

oceanic core complexes (OCCs) as they have become known, are hypothesised to represent the unroofed 

plutonic and partially serpentinised mantle footwalls of large-offset normal detachment faults, that appear to 

accommodate much of the plate separation. These detachment faults are thought to cross-cut the entire crust, 

exhuming in their footwalls a crustal section typically in the form of a non-corrugated blocky massif, and 

then, in the domal OCC, mantle rocks intruded by plutonic gabbros (e.g. Tucholke and Lin, 1994; Cann et 
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al., 1997; Tucholke et al., 1998; MacLeod et al., 2009; Sauter et al., 2013). The domed detachment surface is 

commonly striated, corrugated in the spreading direction, interpreted as a slip surface that is exhuming a 

section of the lower crust from beneath the median valley, bounded by blocky topography with widely-

spaced and back-tilted fault blocks (Smith et al., 2006), and accommodates asymmetric oceanic crustal 

creation (Escartin et al., 2008).  

Lithological studies of OCCs show that they expose a diverse assemblage of eruptive, plutonic and 

mantle-derived ultramafic rocks that are highly altered and deformed (MacLeod et al., 2002; Escartin et al., 

2003; Dick et al., 2008; Escartin et al., 2017), suggesting not only a complex pattern of deformation, but also 

that significant fluid circulation is focused along the detachment. The link between deformation and 

hydrothermal activity is supported at the Mid-Atlantic Ridge (MAR) by patterns of local seismicity and the 

locations of observed hydrothermal venting (Escartin et al., 2008), with hydrothermal deposits also observed 

on OCCs regarded as extinct and preserved in off-axis settings (Escartin et al., 2017).  

Although it is likely that the corrugated upper surfaces of OCCs represent the exposure of steeply-

dipping detachments that root at depth beneath the median valley, the link has not been proven, although it is 

supported to some extent by palaeomagnetic studies that show significant footwall rotation (e.g. Morris et 

al., 2009; MacLeod et al., 2011), seismic imaging (e.g. Ranero and Reston, 1999; 2011; Canales et al., 2004) 

and locations and focal mechanisms of microseismicity (e.g. Parnell-Turner et al., 2017). The primary 

evidence to date is based on P-wave travel-time tomographic inversion of two 2D wide-angle seismic 

profiles, and passive microseismicity monitoring near the TAG hydrothermal field (deMartin et al., 2007; 

Zhao et al., 2012). Here, a steeply-dipping band of hypocentres is inferred to mark a fault that flattens 

abruptly upwards, but does not directly image the detachment rollover, prove the continuity between steep 

and shallow zones or show the lateral extent of the detachment.  

Reston and Ranero (2011) noted that the Atlantis Massif detachment disappeared northwards 

(towards the segment middle) beneath fault blocks rafted out of the median valley, and suggested that many 

oceanic detachments did the same, so that OCCs represent locations where a detachment breaks the surface, 

being covered in the intervening regions by thin-skinned rider blocks of volcanic seafloor. They proposed 

that the transition from OCC to sub-seafloor detachment, buried beneath these rider blocks, resulted from 

increased volcanic infill and less hydration-weakening of the slip surface moving away from the segment 

end, a hypothesis supported by numerical simulations (Choi and Buck, 2012), and noted that the detachment 

might either extend for the whole segment or die out laterally as magmatic centres were approached. Oceanic 

detachment faults can, therefore, be regarded as essentially continuous, long-lasting features, linked in the 

sub-surface, active on a segment scale and controlling at least 50% of the total divergence.  

Since the early 1990s there has been debate over whether segmentation is controlled top-down by 

faulting or bottom-up by mantle upwelling (Mutter and Karson, 1992; Tucholke and Lin, 1994; Tucholke et 

al., 1997). Consequently, if segment-scale detachments control spreading and mantle upwelling within whole 

segments (e.g. Smith et al., 2008; Reston and Ranero, 2011; Tani et al., 2015; Reston, 2018) they could 

influence patterns of ridge segmentation, and be exceptionally long-lived (Cann and Smith, 2005; Escartin et 

al., 2008; Smith et al., 2008; Schouten et al., 2010; Reston and Ranero, 2011). 
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In an alternative view, MacLeod et al. (2009) see OCCs as spatially restricted, structurally isolated, 

ephemeral features that are switched on and off by variations in local magma delivery and where slip 

continues as a result of the progressive waning of magma supply to below half that needed to generate a 

continuous igneous crustal layer to accommodate on-going spreading. In this model, plate separation 

becomes progressively more asymmetric and the detachment migrates towards and across the axial valley, 

such that renewed magmatism is intruded into the detachment footwall and ultimately overwhelms it. 

Spreading becomes strongly asymmetric between such a localised OCC and its conjugate, but not along a 

whole spreading segment, with spatially restricted transfer zones accommodating the along-strike variation 

in strain distribution. 

Spreading rate asymmetry has been documented at all OCCs studied to date (e.g. Searle et al., 2003; 

Okino et al., 2004; Baines et al. 2008; Dick et al., 2008; Grimes et al., 2008) so is clearly an inherent process 

in detachment fault development. If detachments continue along the entire segment length, they are likely to 

dominate spreading processes to the extent of controlling the locus of mantle upwelling and the position of 

the spreading axis (e.g. Mitchell et al., 1998), with faulting controlling segmentation (Mutter and Karson, 

1992) rather than the other way around (Tucholke and Lin, 1994; Tucholke et al., 1997). In this case, the 

detachment could be long-lived, with spreading becoming highly asymmetric (Reston, 2018). In contrast, if 

detachments are spatially limited and ephemeral, spreading asymmetry may similarly be restricted to the life 

span of the detachment.  

If a detachment controls mantle upwelling, it is also likely to influence the generation of melt 

beneath the ridge and to continually capture it to form the lower gabbroic portion of newly accreted 

magmatic crust in its footwall. These gabbros will be exhumed within the footwall and should form an 

integral part of the OCC (Ildefonse et al., 2007; Olive et al., 2010; Schouten et al., 2010). In contrast, if melt 

is only captured and emplaced into the footwall once the detachment root had migrated across the median 

valley, little gabbro would be expected beneath developing OCCs. Seismic velocity anomalies at the off-axis 

OCCs of the inactive Atlantis Massif, Dante's Domes and Kane Megamullion have been interpreted in terms 

of the distribution of gabbros and partially serpentinised peridotites in the detachment footwall and 

termination (Canales et al., 2008), which supports the latter model in which magmatism plays a role in the 

abandonment of the detachment. 

These two models, first postulated by Smith et al. (2006; 2008) and which may actually be end 

members, have profoundly different implications for the mode of formation of oceanic lithosphere: one (here 

termed the Segment-scale model) implies a single, laterally extensive long-lived detachment fault that results 

in most of the lithosphere within an OCC-hosting segment being formed by detachment spreading and uplift 

of mafic and ultramafic rocks; and the other (here termed the Localised model) implies that lithospheric 

formation driven by extension along detachments, is restricted to the locations of each OCC, with each being 

structurally isolated. Both models can explain the observed seafloor morphology, however they make 

different predictions about the distribution of gabbros within actively evolving OCCs, and this may make 

them distinguishable based on seismic velocity and density. 
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To understand how oceanic detachment faults and OCCs initiate and evolve and, thus, distinguish 

between these two models, whole crustal imaging is required. To date, the detachment systems at Atlantis 

Massif and south of the Kane transform fault along the MAR are amongst the best studied, having been 

surveyed and sampled using deep-sea vehicles (Blackman et al., 2001; Karson et al., 2006; Dick et al., 2008; 

Tucholke et al., 2013), drilled in the case of Atlantis Massif (Ildefonse et al., 2007; Blackman and Collins, 

2010; Blackman et al., 2006; 2011; Frueh-Green et al., 2016), and seismically imaged to a range of crustal 

depths and resolutions (Canales et al., 2004; Canales et al., 2008; Xu et al., 2009; Blackman and Collins, 

2010; Canales, 2010; Henig et al., 2012; Harding et al., 2016). In the Kane area the multiple detachments are 

considered to be fossilised, and at Atlantis Massif the detachment is considered to be inactive, with 

microseismicity suggesting that an active rift valley bounding fault is currently dissecting its corrugated 

surface (Collins et al., 2012).  

At the ultra-slow spreading (<7 mm y
-1

) Mid-Cayman Spreading Centre (MCSC) both the currently 

active Mt Dent OCC and relic OCCs off-axis have been recently studied by active-source wide-angle seismic 

imaging (Harding et al., 2017; van Avendonk et al., 2017; Grevemeyer et al., 2018a). These studies show 

that the currently active hydrothermal systems are underlain by higher velocities in the shallower parts of the 

crust and that its formation is dominated by periods of magma-poor and magma-rich accretion 

asymmetrically building a generally quite thin (2-4 km) crust. Despite their distinct difference in spreading 

rate, the OCCs of the MAR and MCSC have similar morphologies and seafloor lithologies as a comparison 

between the studies of Escartin et al. (2017; and references therein) and Hayman et al., (2011 and references 

therein) demonstrate. 

 

1.2 Transform faults and fracture zones 

The relationship between the ridge axis and the transform fault-fracture zone intersection at segment ends, 

and our understanding of transform faults and fracture zones themselves is less well understood, primarily 

due to fewer observations which comprise mostly low resolution 1D or 2D wide-angle seismic profiles such 

as, in the Atlantic: Whitmarsh and Calvert (1986) at Charlie-Gibbs fracture zone (FZ); Detrick and Purdy 

(1980) and Cormier et al. (1984) at the Kane FZ; Ludwig and Rabinowitz (1980) and Detrick et al. (1982) at 

Vema FZ; Minshull et al. (1991; 1995) at Blake FZ; and Fox et al. (1976) and Sinha and Louden (1983) at 

Oceanographer FZ, with the crustal structure of north Atlantic fracture zones reviewed by White et al. (1984) 

and Detrick et al. (1993). At the East Pacific Rise examples include: the Quebrada, Discovery and Gofar 

transform faults (Roland et al., 2012); and Clipperton FZ (van Avendonk et al., 1998; 2001); and the SW 

Indian Ridge, the Atlantis II FZ (Müller et al., 2000). In contrast, seabed morphology and sampling studies 

are more common (e.g. Pockalny et al., 1988; Tucholke and Schouten 1988). 

Transform faults that offset ridge segments are characterised by valleys tens of kilometres wide, 

whose depth increases as a function of offset distance between the adjacent ridge segment ends. White et al. 

(1984) consider the transform valley to reflect the isostatic response of a thin underlying crust, while Collette 

(1974) and Pockalny et al. (1996) also consider the role of down-faulting due to the thermal contrast between 

older and younger lithosphere on their opposite sides as part of on-going plate spreading. A transverse ridge 
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is often captured on one side of the transform valley as observed, for example, at the Vema FZ. There the 

large ridge exposes significant quantities of serpentinised peridotite suggesting not only that they represent a 

significant fluid flow path to the deeper crust and upper mantle, but also that density driven buoyancy 

contributes to their elevation (Bonatti, 1976; 1978). Since normal seafloor fabric continues across these 

fracture zone ridges, Pockalny et al. (1996) suggest that they represent the flexural result of trans-tensional 

extension. 

While the shallow bathymetry of the inside corners of ridge-transform-fracture zone intersections is 

thought to be dynamically supported, and a consequence of opposing plate decoupling across the transform 

(e.g. Searle and Laughton, 1977; Severinghaus and Macdonald, 1988; Blackman and Forsyth, 1991), the 

lithosphere of the outside corner is thought to be locked to that across the fracture zone, with lithospheres of 

different ages strongly coupled (e.g. Tuzo Wilson, 1965). Although not common, OCC-like massif features 

have been observed in the inside corner high position (Reston et al., 2002), with similar features mirrored in 

the outside corner. These massifs are thought to originate by dissection of the inside corner massif by rifting 

associated with a ridge axis jump, since they both share matching patterns of corrugations on their surfaces 

and are very similar in dimensions and morphological characteristics. The dissection may be the result of 

propagation of the spreading axis immediately adjacent, or a new spreading axis forming as a result of 

readjustment of a non-transform ridge axis discontinuity into either a transform offset or an overlapping 

spreading centre (Reston et al., 2002).  

 

1.3 This study 

A number of seismic studies have been undertaken at the MAR, including the ridge segments between 33°N 

-35°N (Canales et al., 2000; Hooft et al., 2000; Hosford et al., 2001; Hussenoeder et al., 2002), 21°N-23°N 

(Dannowski et al., 2010; 2018), the Lucky Strike segment (Singh et al., 2006; Combier et al., 2015; Seher et 

al., 2010a,b,c), and the Rainbow segment (Canales et al., 2017; Dunn et al., 2017). To investigate the sub-

surface structure of OCCs and test the Segment-scale vs. Localised models of OCC along-axis continuity, 

three research cruises to the 13°N area of the MAR were undertaken, all on the RRS James Cook. Cruises 

JC102 (Peirce, 2014a) and JC109 (Peirce, 2014b) undertook a local microseismicity passive ocean-bottom 

seismograph (OBS) deployment and recovery. The results of this passive imaging have been reported by 

Parnell-Turner et al. (2017). Cruise JC132 (Reston and Peirce, 2016) undertook active-source seismic (wide-

angle refraction and multichannel reflection), and shipboard gravity, magnetic, and swath bathymetry 

imaging, together with autonomous underwater vehicle (AUV) near-seabed swath bathymetry and magnetic 

surveying. The combined shipboard and near-seabed magnetics were reported by Searle et al. (2016), and 

their detail analysis is discussed in Searle et al. (2018). 

Here we describe the results of modelling seismic and gravity data along an ~200 km-long 2D 

transect (henceforth referred to as Profile R – Fig. 1) traversing, south-to-north, both the Mercurius and 

Marathon FZs, the southern outside corner of the 13°N segment, the Ashadze Complex, OCCs located at 

13°20’N and 13°30’N on the western ridge flank, the ridge axis deviation in trend centred at 13°35’N, and 

the youngest oceanic crust of the eastern ridge flank to the north. This 2D profile also traversed through the 
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3D tomographic seismic grid acquired over the 13°20’N and 13°30’N OCCs (henceforth referred to as 1320 

and 1330 – Fig. 1) during the same cruise, to specifically determine their internal structure and the geometry 

of the detachment surface. The results of the 3D tomography-based modelling have been reported by Simão 

et al. (2016), and will be published elsewhere (forthcoming Simão et al., 2018).  

 

2. GEOLOGICAL SETTING 

An extensive region of OCCs exists at 13°N on the MAR and includes two located at 13°20’N and 13°30’N 

(Fig. 1) that are thought to be in the active and dying stages of evolution and development respectively; two 

further OCCs, together called the Ashadze Complex (centred at 13°05’N), are considered to be relict (e.g. 

Cherkashov et al., 2008). A number of OCCs are also fossilised in the bathymetry off-axis and a prominent 

inside corner high exists at the southern ridge-transform intersection, being the shallowest, but spatially 

restricted, seabed within the 13°N region.  

The OCCs of the 13°N segment have been surveyed with shipboard multibeam bathymetry, gravity 

and magnetic surveying (e.g. Smith et al., 2006; 2008; Mallows and Searle, 2012), imaged with TOBI near-

bottom side-scan sonar, sampled with dredges and a seabed rock-drill (e.g. Searle et al., 2007a,b; MacLeod 

et al., 2009), surveyed and sampled using an ROV to map seabed morphology and lithology (e.g. Escartin et 

al., 2017), and show the characteristic features expected of an OCC (Escartin and Canales, 2011) which, 

heading from off-axis to on-axis, are:  

 an outward-tilted breakaway ridge;  

 a blocky massif comprising a crustal section; 

 a domal and striated massif of mantle and plutonic rocks; and 

 a bounding hanging wall cut-off towards the MAR axis.  

Both the Segment-scale and Localised detachment hypotheses are based on observations from this area (e.g. 

Smith et al., 2008; MacLeod et al., 2009; Schouten et al., 2010; Escartin et al., 2017). 

The 1320 and 1330 OCCs are located on the western flank of the MAR axial rift valley and were 

first identified by Smith et al. (2006) from shipboard geophysical surveys, in a section of the ridge axis that 

is characterised by reduced melt supply. These OCCs are ~7 km and ~12 km-wide along axis respectively, 

and are ~5.5 km and ~8 km-long in the spreading direction demonstrating that extension, at a half-rate of 12 

km My
-1

, may have been on-going along each detachment for ~0.5 My and ~0.7 My, assuming symmetrical 

spreading. Tectonic interpretation of near-bottom sonar imagery suggests that the 1320 detachment may still 

be active, whereas the 1330 detachment may be dying or inactive, given the observed propagation of 

adjacent volcanic ridges to the north, volcanic craters surrounding the 1330 OCC and an apparent 

termination of the detachment fault (MacLeod et al., 2009; Mallows and Searle, 2012). 

Dredging, seafloor sampling with ROVs, and sub-seafloor rock drilling at these detachment faults 

has yielded a wide range of lithologies consistent with the exposure of normally deep-seated rocks (gabbro 

and peridotite) in addition to basalts, and deformed fault rocks and mass-wasted rubble (MacLeod et al., 

2009; Pertsev et al., 2009; Escartin et al., 2017). Geochemical analysis of the recovered basalts reveals a 
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change in magmatic activity from a magma-poor phase at the initiation of detachment faulting, to a more 

magma-rich phase at the present time (Wilson et al., 2013). 

Several active and extinct hydrothermal fields have been found within the 13°N segment (Fig. 1), 

including on the exposed 1320 and 1330 detachment surfaces (Fig. 2 – Beltenev et al., 2007; Cherkashov et 

al., 2010b; 2013; 2016; Pertsev et al., 2012; Bortnikov et al., 2015). The 1330 vents have been dated at up to 

~100 ky in age and show no apparent age progression with location in the direction of spreading, with older 

deposits found near the axis and active sites more than 5 km off-axis (Cherkashov et al., 2010a). 

The 13°N segment is bounded to the south by a double transform-fracture zone system (Marathon 

and Mercurius FZs - separated by ~50 km in an along-axis direction) and to the north by the Fifteen-Twenty 

FZ. The 1330 OCC lies in the equivalent location of an inside corner, with respect to a deviation in trend in 

ridge axis morphology. Together these features make this region the ideal target for studying not only ridge 

segment evolution, but also the crustal structure and setting of OCCs.  

 

3. DATA ACQUISITION AND PROCESSING 

Profile R was acquired during RRS James Cook research cruise JC132 (Reston and Peirce, 2016) which took 

place in January and February 2016, with port calls in Mindelo (Cape Verde) and Port of Spain (Trinidad 

and Tobago) where, in the latter case, an absolute gravity base station was also re-established.  

 

3.1    Swath bathymetry data 

A hull-mounted Simrad EM120 multibeam echo sounder acquired depth soundings throughout JC132. The 

water column sound velocity was also measured, centrally within the study area to a depth of ~4 km, to 

calibrate the swath system and inform ray-trace modelling of water waves for OBS relocation purposes, and 

inclusion of the water column in each seismic model.  

The swath bathymetry dataset was cleaned to remove bad soundings, merged with swath data from 

previous cruises (JC102 – Peirce, 2014a; JC109 – Peirce, 2014b; JC007 – Searle et al., 2007c) and gridded at 

~100 m node spacing for the entire study area (Fig. 1), and at ~4 m in the vicinity of the OCCs (Fig. 2), the 

latter made possible by the high density of repeat transects. Figure 2 shows where Profile R traverses each of 

the 1320, 1330 and Ashadze Complex OCCs, together with a seabed morphological reference context 

showing, in particular, the location of the domal surface, upper massif, breakaway and regions of recent 

volcanism at the seabed surrounding the 1320 and 1330 OCCs (after Mallows and Searle, 2012). Given the 

seismic Fresnel zone width (~1 km) at their average seabed depth, Profile R traverses the OCCs at, or in the 

vicinity of, the centre of the exposed detachment fault (Ashadze), the breakaway (1320), and just after 

breakaway (1330) based on the interpretations of Smith et al. (2008) and MacLeod et al. (2009). To the north 

of 1330, Profile R crosses a region of young volcanic features on the seabed and the ridge-axis neovolcanic 

zone. Figure 3 shows that, to the south, the profile crosses the apparent volcanic abyssal hill fabric of the 

outside corner (cf. Fig. 1), the >4500 m-deep sediment-filled Marathon FZ that also contains an off-profile 

ridge-like feature that rises above the current level of sediment infill (Fig. 3d), ~8 Ma oceanic crust and, 

finally, the >10 km-wide, flat sedimented terrain of the Mercurius FZ (Fig. 3c). 
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The main tectonic features of the 13°N segment are summarised in Fig. 1, with active and inactive 

hydrothermal vents (InterRidge Vents Database v3.4 - https://vents-data.interridge.org/) and earthquakes of 

magnitude greater than 3.0 Mb that have occurred since 1980 (United States Geological Survey Earthquake 

Hazard Program - https://earthquake.usgs.gov/earthquakes/) shown for reference. 

 

3.2    Seismic data source 

Contemporaneous acquisition of WA and MCS data was enacted with a 60 s shot interval to prevent water 

wave wrap-around interfering with first arriving phases recorded by the OBSs, whilst still achieving a 

reasonable MCS reflection data fold. The seismic source consisted of a 12 Bolt airgun array, with a 

combined volume of 4300 in
3
 (70.5 l), towed 8 m below the sea surface and fired at 2000 psi (142 bar).  

 

3.3    MCS data acquisition and processing 

MCS reflection data were recorded solely for the purpose of imaging the thickness of any sediment cover on 

the older crust south of the Marathon FZ and within the fracture zones themselves, to inform initial seismic 

model construction required for WA travel time pick inversion. The MCS data were acquired using a 3 km-

long, 240-channel streamer with 12.5 m group interval, which was towed at 10 m depth. At the average ship 

speed of ~4.5 kn, a shot spacing of ~150 m yielded a maximum theoretical fold of 10. Given this relatively 

low fold, traces were re-sorted into 25 m super-bins, which increased the average fold of cover from 10 to 

~40 and significantly improved the reflectivity of the intra-sediment and basement reflectors (Fig. 3b). MCS 

data processing involved application of pre-stack Kirchhoff time migration and normal move-out correction 

with a velocity of 1500 m s
-1

 and stacking, followed by post-stack spiking deconvolution to reduce source 

signature reverberation, since the airgun array was tuned for deep crustal WA acquisition primarily, and was 

inherently reverberative as a consequence, given the larger chambered airguns that comprised the array. The 

fully processed data from the MCS profiles within the 13°N WA grid, acquired with a different airgun array 

design and shot firing rate, will be published separately. 

In this study, the MCS section is used solely to locate and measure the thickness of any sediment 

cover (Fig. 3b) and it shows that little-to-no sediment cover exists along the entire length of Profile R. 

However, the section does also reveal the contrasting structures of the Mercurius (Fig. 3c) and Marathon 

(Fig. 3d) FZs, with the former having a thicker sequence of layered accumulated sediment and the latter 

being intersected closer to the ridge-axis such that sediment has had less time to accumulate. It is appropriate 

to comment on the observed features in the MCS section at this point, since they are of a scale unresolvable 

by the WA data and its modelling.  

Marathon FZ contains an out-of-plane feature (Fig. 3d) that we attribute to a basement fragment or 

small transverse ridge, captured within and on the southern side of this fracture zone, immediately to the 

west of Profile R (Fig. 3a), similar to that observed at the Vema FZ (Lagabrielle et al., 1992). Within the 

Mercurius FZ (Fig. 3c) the intra-sediment layering reveals the relative motion between the north and south 

sides of this FZ, with the arcuate up-lapping nature of the deeper layers on the northern side suggesting a 

degree of relative uplift of the younger lithosphere, which does not appear to have continued to the present 
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day. Within the Marathon FZ, similar sediment layering is imaged, with uplift of the younger lithospheric 

side continuing along the northern side of the valley until much more recently. The outside corner itself has a 

curved characteristic, while the older lithosphere captured between the FZs has a shallower topographic 

gradient to the south than to the north which suggests a more rotational block-like aspect. 

 

3.4    WA seismic dataset 

WA seismic data were recorded by 14 OBSs deployed between ~7 km and 15 km apart along-profile 

depending on the seabed topography, with the largest intra-OBS gap being located at the Marathon FZ due to 

the greater water depth there exceeding the maximum instrument operational depth. In addition, data 

recorded by four further OBSs (7, 9, 11 & 13 – Fig. 3a) deployed along a co-incident profile within the 3D 

grid survey (Fig. 1 – Simão et al., 2016 and forthcoming Simão et al., 2018) were also included in the Profile 

R modelling. Each OBS recorded data at 4 ms (250 Hz) sampling interval from a hydrophone, vertical 

geophone, and two horizontal geophone components, over 60s trace lengths. Instrument-seabed coupling and 

variations in seabed topography control the signal-to-noise ratio (SNR) and the primary travel time 

characteristics of seismic phases recorded by each instrument.  

Figure 4 shows two example WA record sections from OBSs 12 and 68. For OBS 12 (Fig. 4a & b) 

located on the southern flank of the 1320 OCC, distinct first arriving phases, identified as crustal P-wave 

refracted arrivals (Pg), are observed to offsets of ~30 km to the north and south of the instrument location, 

with the variation in arrival time largely reflecting the variation in seabed topography along profile. There is 

little equivocal evidence for mantle refracted arrivals (Pn – e.g. OBS 68 - Fig. 4c & d) or Moho reflections 

(PmP). This characteristic is shared by all OBSs located south of OBS 12 to the north flank of Marathon FZ, 

sited on lithosphere less than ~1 My-old. Each OBS located on 8 My-old lithosphere between FZs recorded 

arrivals out to offsets of ~60 km for shots fired from the south, while for shots fired to the north of these 

instruments arrivals were recorded only to offsets of ~30 km. Similarly, secondary arriving S-waves are also 

only observed on record sections for OBSs located south of Marathon FZ. 

 

3.5    Potential field data acquisition 

Gravity data were acquired port-to-port using a Lacoste & Romberg Micro-G Air-Sea gravimeter. These data 

were processed, incorporating Eötvös and drift corrections, and tied to absolute stations to calculate the free-

air anomaly (FAA – Fig. 5c). For the region to the north of the Marathon FZ, where there are numerous 

intersecting profiles from all three cruises (JC102 – Peirce, 2014a; JC109 – Peirce, 2014b; JC132 – Reston 

and Peirce, 2016) that were all acquired with the same gravimeter, cross-over analysis gives an average 

dataset uncertainty of ±5-10 mGal depending on location, surveying speed and sea state. Magnetic data were 

acquired only during JC132 (Reston and Peirce, 2016) with a SeaSpy magnetometer, deployed only during 

seismic surveying. These data were processed to apply a lay-back correction for tow cable length behind 

vessel and filtered to remove spikes resulting from cable pick-up of ship-generated electrical noise, and the 

airgun firing electrical pulses. Finally, the International Geomagnetic Reference Field (v12 – Thébault et al., 

2015), calculated for the work area, was subtracted to provide the total field magnetic anomaly (Fig. 5e), 
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which was further reduced to the pole (Fig. 5f) to better reveal the positive and negative magnetisation 

pattern. Here, the magnetic data are used solely to inform seismic model interpretation and their processing 

and detailed interpretation are published in Searle et al. (2018). The gravity data will be used to test the 

uniqueness of the best-fit seismic model and will be discussed further in Section 6. 

 

4. 2D MODELLING 

4.1    WA seismic data modelling 

First arrival travel times were picked, wherever possible using unfiltered data, from the hydrophone record 

for each instrument, as this displayed the highest SNR. Pick phases were assigned based on the offset and 

apparent velocity of the arrivals. A pick uncertainty of 50 ms, calculated based on instrumentation and shot 

location errors, was assigned for each sub-seabed travelling phase regardless of shot-receiver offset and, 

thus. turning depth. Approximately 7600 first arrival travel time picks were made. 

The FAST method of Zelt and Barton (1998) was used for 2D inversion modelling. The model 

seabed interface was created by sampling the bathymetry data at 0.25 km intervals along profile, and 

projecting these and the OBS and shot locations into kilometre-space relative to a model 0,0 located at 11° 

56.76’N / 44° 58.2’W. The model was discretised on a 0.25 km by 0.25 km uniform square mesh, which 

remained constant throughout modelling. Prior to inversion, OBS instrument locations on the seabed along-

profile were accurately determined by forward ray-trace modelling, using rayinvr (Zelt and Ellis 1988; Zelt 

and Smith 1992), of the water wave arrivals (Pw) using a water column velocity structure defined by sound 

velocity profiles.  

Since no sediment cover of any significant thickness was observed along profile, the initial inversion 

model had a simple 1D velocity-depth profile applied beneath the seabed (Fig. 6a), increasing from 2.5 km s
-

1
 at the seabed to 7.5 km s

-1
 at ~5 km sub-seabed. Below this, the velocity was increased to 8.5 km s

-1
 at ~10 

km sub-sea surface to represent a constant-depth Moho, although no first-order velocity discontinuity was 

imposed. This starting model was chosen to enable the greatest degree of modelling freedom without unduly 

biasing the inversion outcome by applying any preconceived idea of crustal structure.  

Modelling comprised one run of five non-linear inversion iterations followed by one run of three 

iterations, with the inversion cell size reduced between runs, and the model outcome of the first run used as 

the starting model for the second. During the first run, 1.0 km by 1.0 km inversion cells were used to develop 

the larger-scale velocity structure of the model (Fig. 6b). For the second run, 0.5 km by 0.5 km inversion 

cells particularly refined the velocity structure beneath the OCCs (Fig. 6c), resulting in a final root mean 

square travel time misfit of 135 ms, equivalent to a 
2
 of ~5.3, and an improvement from a 

2
 of ~21.4 of the 

first run (Fig. 6b). 

On initial inspection, the final inversion velocity model (Fig. 6c) displays a velocity structure with 

features that mirror the seabed topography of the OCCs, with higher velocity at shallow crustal level beneath 

the Ashadze Complex and 1330 OCC, but not beneath the 1320 OCC. Similarly, crustal thinning is observed 

to the north and south edges of the Ashadze Complex, and beneath the 1330 OCC itself, while the outside 

corner reveals a relatively thicker crust than elsewhere along profile. 
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As often noted in inversions, acquisition geometry-related smearing is observed but is limited 

primarily to a region beneath the southern flank of the Ashadze Complex. An apparent velocity inversion in 

the lower crust beneath the 1320 OCC is also interpreted as a modelling artefact. Also noteworthy is the 

region of mantle-type velocity at shallower depth, relative to the surrounding crust, beneath the southern 

flank of the Marathon FZ, rather than beneath the fracture zone itself. The features of this model, henceforth 

called the inversion model, and their interpretation will be considered in Section 5. 

 

4.2    Inversion model resolution testing 

Checkerboard testing of the inversion model, adopting the approach of Zelt (1998), was used to determine 

the smallest structures and velocity variations resolvable by the acquisition geometry and model 

parameterisation (Fig. 7). A velocity perturbation checkerboard pattern was added to the inversion model and 

then synthetic travel times were calculated using the shot-receiver offsets of the observed travel time picks. 

Random Gaussian noise was then added to these synthetic travel times corresponding to the pick 

uncertainties, prior to their inversion using the same parameters as those used to derive the inversion model 

itself.  

In addition to investigating the resolution in terms of scale of feature and velocity error bound, we 

also investigated if the imposed checkerboard pattern in itself affects the resolution outcome, or imposes a 

form of aliasing. In all tests, a full suite of patterns was tested that included aligned patterns vertically 

(columns) and horizontally (rows), alternation of the polarity of the checkerboard velocity (positive and 

negative), half shifts in cells (across rows and down columns) and all possible combinations thereof – 16 

patterns in total; and all applied to a broad range of cell sizes of different vertical and horizontal sizes, and 

scales (expressed as %) of velocity perturbation. What this testing shows is that there is a significant 

difference in outcome between imposed patterns, that leads to the conclusion that the pattern chosen has a 

significant control over the recovery in itself. Here we show the “at best” outcomes of the test process for the 

upper crust (Figs 7a-c), to mid-crustal depth (Figs 7d-f), and throughout the crust as a whole along the entire 

profile (Figs 7g-i), where the outcomes (demonstrated by the semblance – Zelt, 1998) are masked by the ray 

coverage. We adopt Zelt’s (1998) semblance threshold of 0.7 to define the parts of the model that are 

considered to be well resolved. However, semblance can be misleading as it is dependent on the operator 

radius. We use an operator radius set to the checkerboard cell size, which is larger than both the forward cell 

size (0.25 km x 0.25 km) and inverse cell size (first run - 1.0 km x 1.0 km; second run – 0.5 km x 0.5 km). 

Figures 7d-f show that, for an applied ±5% velocity anomaly, structures larger than 5 km x 2 km 

should be resolvable to ~6 km-depth below sea level (bsl) between 50-180 km along-model distance, and 

particularly well resolved within ~2-3 km sub-seabed where the semblance threshold of 0.7 is exceeded (Fig. 

7f). Within the upper few kilometres of the crust, structures as small as 2 km x 2 km should be resolvable 

with a ±10% velocity limitation (Figs 7a-c), where ray coverage (as indicatively represented by the cell hit 

count – Fig. 6d) is highest, particularly beneath the 1320, 1330 OCCs, Ashadze Complex and the outside 

corner. Over this crustal depth range, the choice of the applied pattern had a particularly high influence over 

the outcome, together with there also being a clear trade-off between scale of applied cell size and scale of 
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applied velocity perturbation dictating the resolution achievable. Between Mercurius FZ and 180 km along-

model distance, structures larger than 10 km x 2 km with a ±5% velocity anomaly should be resolvable at 

lower crust and uppermost mantle depths. Ray coverage and the recovery of the imposed checkerboard are 

consistently poorest below 8 km bsl to the north of 80 km along-model distance, reflecting the apparent 

absence of longer-offset observed arrivals and, consequently, that marks the depth to which the model may 

be interpreted with any confidence. Overall, though, the resolution testing indicates that the internal velocity 

structure of each OCC should be independently resolvable and, consequently, so should their along-ridge-

axis inter-relationship. 

 

4.3    Gravity anomaly modelling 

The observed free-air gravity anomaly (FAA – Fig. 5c) provides an independent test of velocity model 

uniqueness and gives additional constraint on poorly resolved regions. However, given that Profile R runs 

from ~11.5 My-old lithosphere in the south to effectively 0 My-old lithosphere north of ~75 km model 

distance, crossing two fracture zones, the ridge-axis thermal anomaly was calculated and subtracted from the 

FAA using the approach outlined in Peirce et al. (2001) and Peirce and Navin (2002), following the method 

of Forsyth (after Phipps Morgan and Forsyth, 1988, as developed from Forsyth and Wilson, 1984). When 

applied in addition to the mantle Bouguer anomaly (MBA) approach of Parker (1972), this results in the 

residual mantle Bouguer anomaly (RMBA – Fig. 5d). To calculate the MBA a constant crustal thickness of 5 

km was assumed beneath the swath-defined (down-sampled to match the lateral resolution of the FAA 

anomaly) seabed (Fig. 5b), with sea water, crust and mantle densities of 1035, 2700 and 3300 kg m
-3

 

respectively. 

The inversion model was converted into a density model consisting of 2D polygons with upper and 

lower boundaries based on the 4.5, 5.5, 6.5 and 7.5 km s
-1

 velocity contours, considered indicative of 

traditional oceanic crustal layering (White et al. 1992), and where model edge effects were prevented by 

extending the density structure for 1000 km beyond the model limits. As part of testing, the veracity of 

suspected inversion artefacts was also investigated at this point, particularly those located at 115,8 km 

(offset,depth co-ordinates) and 60,8 km in the model. 

As a starting point, the Carlson and Raskin (1984) standard velocity-density relationship for the 

oceanic crust was applied to construct the initial density-depth model, with a constant density defined for 

each layer within the crust, a density of 1035 kg m
-3
 assigned to the water column, and 3330 kg m

-3
 for the 

mantle. The expected free-air gravity anomaly was then calculated (Fig. 8) using grav2d, modified from the 

original programme written by J.H Luetgert based on the algorithm of Talwani et al. (1959), and compared 

to the thermally-corrected observed FAA (black line in Fig. 8c). 

Although a good fit within the ±10 mGal error in the FAA was achieved along the majority of the 

model for this constant density layered model (Fig. 8a – blue line in Figs 8c & d), within the inversion model 

sensitivity limits, suggesting that it is a good overall representation of actual crustal structure; this fit was 

only achieved by removing the apparent thinning of the crust centred at 115,8 km and 60,8 km. 

Consequently, these features are considered to be artefacts of the inversion process.  
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However, a mismatch up to ±20 mGal remains associated with Marathon FZ, the Ashadze Complex 

and, to a lesser extent, the 1320 OCC. Consequently, this density-depth model was divided into a series of 

lateral zones within which the density could be relatively adjusted, whilst still lying within the velocity error 

constraints, and modelling progressed to achieve the best fit to the observed anomaly (to within ±10 mGal 

error along the entire profile length), in particular for regions poorly constrained by seismic ray coverage. 

The best-fit density-depth model (henceforth referred to as the density model) is shown in Fig. 8b and its fit 

to the observed FAA shown in Figs 8c & 8d (red line). The features of this density model will be discussed in 

Section 5 together with the conclusions drawn from all aspects of the seismic modelling. 

 

4.4    Forward velocity modelling 

4.4.1    Inversion artefacts 

As a means of further testing the features of the inherently smoothed and interface-free inversion model it 

was converted into a forward node-specified model with distinct layer boundaries incorporated (Fig. 9b), 

using the 5.5 and 6.5 km s
-1
 velocity contours to define intra-crustal interfaces and the 7.5 km s

-1
 velocity 

contour chosen to represent the base of crust (black line boundaries in Fig. 9b). The observed travel time 

picks (Pg and Pn phases) were then point-to-point ray-traced using rayinvr (Zelt and Ellis, 1988; Zelt and 

Smith, 1992 – Fig. 9d) to first appraise the validity of phase assignment, particularly given the effect of 

variation in seabed topography on arrival trend with offset within each record section, and then to further test 

the model fit and identify likely artefacts (marked by black stars in Fig. 9d) in the inversion model. The 

result of this modelling is shown in Fig. 9d (ray diagram) and Fig. 9e (travel time pick fit) and shows a 
2
 of 

~5.5 based on ~5800 matched picks.  

Similarly, the best-fit density model was also tested using the base of its deepest blocks to 

alternatively define the Moho (white line boundaries in Fig. 9c), except in the vicinity of Marathon FZ. Here, 

the possibility that the 3100 g cm
-3
 block represents serpentinised uppermost mantle was also tested, by using 

the top of this block to represent the Moho. The result of point-to-point ray-tracing the same travel times 

through the resulting model (Fig. 10a) is shown in Fig. 9f, which shows an improvement in 
2
 to ~3.9. In 

both cases, the point-to-point ray-tracing reveals a lack of model constraint in the lower crust in the vicinity 

of Marathon FZ and the outside corner (red stars in Fig. 9d) and a general paucity of sub-Moho sampling 

arrivals to the north of Marathon FZ.  

Regardless of model definition, this ray-tracing confirms that, to the north of Marathon FZ, observed 

first arriving phases are predominantly crustal Pg arrivals and that the variation in arrival time with offset is 

primarily a function of seabed topography as expected, and not significant lateral and vertical variation in 

apparent velocity to that expected for the mantle. The Pn arrivals (blue lines in Fig. 9e; green lines in Fig. 9f) 

observed to the south of Marathon FZ are shown to originate from shots only fired to its south. This 

modelling also shows that the gravity and seismic definitions of the interface geometries are also effectively 

equivalent within the pick uncertainties. On this basis the gravity interface definition is considered more 

likely since it produces the better fit to the FAA, coupled with it being the simpler of the two solutions 

(Occam’s razor).  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article-abstract/doi/10.1093/gji/ggz074/5307889 by Acquisitions user on 18 February 2019



 

 

 

4.4.2    Moho 

The apparent absence of PmP and Pn phases to the north of the Marathon FZ may indicate that a traditional 

distinct Moho interface may not exist with there being, instead, a transition zone from crust to mantle. 

Consequently, a forward predictive ray-tracing approach, tracing all potential Pn and PmP arrivals through 

the model was also adopted, not only to test the appropriateness of the selected base of crust marker (7.5 km 

s
-1
 velocity contour), but also the likelihood that it is a distinct interface rather than a transition zone, and if 

so, where it exists. The forward model derived from the density model (henceforth known as the velocity-

depth model) was used for this testing.  

This process was undertaken in two ways: i) tracing all possible Pn and PmP ray paths through the 

model – i.e. a predictive phase identification free approach; and b) point-to-point ray-tracing the Pg arrival 

picks, reassigned as Pn phases instead – i.e. only those that satisfy a Pn pathway through the model would be 

traced. Six examples are shown in Fig. 10 for OBSs 6 (sited on the 1330 OCC), 8 (sited in between the 1320 

and 1330 OCCs), 62 (sited on the north Ashadze Complex), 65 (sited on the southern edge of south Ashadze 

Complex), 68 (sited on the outside corner adjacent to Marathon FZ), and 70 (sited on ~8 Ma inter-FZ crust).  

 This modelling confirmed firstly that phase assignments are valid, that Pn arrivals are only observed 

for OBSs located on crust to the south of Marathon FZ and that PmP arrivals are only observed to the south 

of Ashadze Complex and to the north of the 1330 OCC (i.e. for the ~8 Ma crust captured between fracture 

zones and for the youngest crust of the eastern ridge flank respectively), with modelled PmP reflections 

mirroring phases observed on the record sections (Fig. 10 d & i) in these locations. The implication of this 

result is that, elsewhere, either a distinct Moho between crust and mantle is not present, instead it being a 

transition zone, or that the velocity contrast across the Moho is small, thus generating a PmP arrival 

amplitude indistinguishable above that of the background noise. Consequently, the 7.5 km s
-1

 contour can be 

regarded as marking the base of the crust where a distinct Moho exists and also the top of a gradient 

transition into the mantle beneath all of the OCCs. Secondly, this modelling also suggests that, in the vicinity 

of Marathon FZ, the inversion modelling images the base of a zone of upper mantle serpentinisation, with a 

thinner and lower velocity crust above, beneath the width of transform fault zone, in comparison to that of 

the ~1 Ma crust to the north and ~8 Ma to the south. 

 

4.4.3    Model features 

On the basis of both the seismic and gravity forward modelling, the features of the inversion model were 

reappraised to identify which were a consequence of real geological structure and which result from the 

inversion process. The crustal thinning-like features centred at 60,8 km (offset,depth) and 115,8 km model 

space (Fig. 9d – black stars) were consequently interpreted as modelling artefacts, and the velocity increase 

“bull’s eye”-like structure beneath the 1320 OCC (Fig. 9a – 152,6 km model space) was considered to be a 

compensation, resulting from a gap in the ray coverage. However, the following were considered to be real 

crustal features: 

i. an oceanic crust that is ~5 km-thick; 
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ii. crustal thinning of ~1 km in between the Ashadze Complex and the 1320 OCC; 

iii. crustal thinning of ~2 km between the 1320 and 1330 OCCs; 

iv. higher velocity anomaly at shallower crustal depth beneath the breadth of the Ashadze Complex, 

except for the southern flank; 

v. higher velocity anomaly at shallower crustal depth beneath the 1330 OCC; 

vi. higher velocity anomaly at mid-crustal depth beneath the 1320 OCC; 

vii. thicker overall crust, resulting largely from a thicker lower crust, to the north of the Marathon FZ 

beneath the outside corner;  

viii. a thinner, lower velocity crust within Marathon FZ underlain by a serpentinised uppermost mantle; 

and 

ix. sharp transition to an average crustal thickness to the south of the Marathon FZ, that corresponds to 

the southern edge of the bathymetric deep. 

 

5. VELOCITY-DEPTH MODEL CONSIDERATION 

To demonstrate the variation along-axis in crustal velocity-depth structure, a set of 1D profiles (Fig. 11) was 

extracted every 5 km from the velocity-depth model containing gravity modelling-derived interface 

adjustments (Fig. 10a) and referenced relative to the seabed since there is little-to-no sediment cover. These 

profiles reveal the average crustal thickness to be ~5 km, and that the velocity-depth profiles vary when 

compared to the standard Atlantic oceanic envelope of White et al. (1992), and the compilation of 

Grevemeyer et al. (2018b). For the purpose of model interpretation, we further divide the profiles into the 

primary tectonic domains of: i) 8 Ma inter-fracture zone crust south of Marathon FZ (Fig. 11a); ii) outside 

corner (Fig. 11b); iii) Ashadze Complex (Fig. 11c); iv) the 1320 OCC (Fig. 11d); v) the 1330 OCC (Fig. 

11e); and vi) 0-1 Ma crust of the eastern ridge-flank (Fig. 11g). 

 

5.1    8 Ma inter-fracture zone crust – 0-70 km along-model distance 

Although least well constrained by the seismic modelling, the crust to the south of Mercurius FZ is seen to 

be ~5 km-thick, consisting of an ~2 km-thick upper and middle crust (3.0-4.5 km s
-1

), and a 3 km-thick lower 

crust that reaches 7.5 km s
-1
 at the Moho, where the depth to this boundary is constrained by Pn arrivals. If 

the 7.5 km s
-1

 velocity contour is used to denote the base of crust, the uppermost mantle velocity is also 

relatively slow, at 7.6-7.8 km s
-1

, when compared to the typical Atlantic crustal envelopes (White et al. 1992; 

Grevemeyer et al., 2018b). However, within ~10 km of Marathon FZ (pink profiles in Fig. 11a), in what 

would have been an inside corner position when this crust was at the spreading ridge, higher velocities are 

observed at shallower depth sub-seabed that correspond to higher densities (Fig. 8b) and a shallowing of the 

base of the crust on the southernmost flank of Marathon FZ. The velocity-depth profiles of the southern flank 

of Marathon FZ are similar to those of 1330 and north Ashadze Complex OCCs. Therefore, the crust 

between 60-70 km model offset, although formed in an inside corner high position, appears to have OCC-

like characteristics. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article-abstract/doi/10.1093/gji/ggz074/5307889 by Acquisitions user on 18 February 2019



 

 

 The bathymetry of the inside corner shows the presence of large faults similar to those observed at 

the Rainbow vent site on the MAR further to the north (e.g. Dunn et al., 2017 and references therein), where 

they are interpreted to result from block rotation and crustal thinning, forming ridge-parallel bands. 

However, crustal thinning is not observed between Marathon and Mercurius FZ in the 13°N MAR setting. 

 

5.2    Marathon FZ – 70-80 km along-model distance 

Within Marathon FZ a region of lower velocity exists beneath the width of the FZ that extends throughout 

the crust (Fig. 10a), most likely indicative of a fractured zone rather than a single fault system. The primary 

evidence for a thinner crust beneath the surface expression of the Marathon FZ comes from the gravity 

modelling, which suggests a lower density zone ~2-3 km-deep and ~20 km-wide exists in the upper mantle 

most likely representing serpentinised peridotite (Fig. 8b), resulting from the ingress of sea water through the 

fracture zone fault system.  

 

5.3    Outside corner – 80-100 km along-model distance 

The outside corner appears to be marked by a 2-3 km increase in crustal thickness, and a crustal velocity-

depth profile similar to that of regions without OCCs. Gravity modelling (Fig. 8b) suggests a similar density-

depth profile to that of the outside corner of Mercurius FZ (model distance ~30-40 km), although the crust 

there is, on average, ~5 km-thick. The southward-dipping geometry of the contours, together with the 

arcuate-upwards pattern of MCS reflectors within both FZs (Figs 3c & d), suggests that the outside corner 

regions of both FZ-ridge intersections have undergone relative uplift, and that the lithosphere captured 

between FZs is similarly being uplifted towards the north. The arcuate-upwards reflectors within the 

northern side of the Marathon FZ valley also suggest that, as yet, this fracture zone is not entirely locked, or 

the lithospheres to the north and south are rigidly not coupled, despite being ~10-15 km from the current 

transform nodal deep/spreading ridge tip. 

 

5.4    Western ridge-flank OCC crust – 100-185 km along-model distance 

Each of the OCCs traversed show an elevated velocity at shallow levels within the crust with, in the case of 

the north Ashadze Complex (Fig. 11c) and 1330 OCC (Fig. 11e), velocities as high as 5.5 km s
-1

 at 

shallowest sub-seabed depths, implying that these OCCs are predominantly underlain by lower crustal rocks 

or serpentinised ultramafic lithologies. However, beneath the 1320 OCC (Fig. 11d) and to a lesser extent the 

south Ashadze Complex (Fig. 11c), the velocity-depth structure suggests that the upper crust is still 

predominantly comprised of more basaltic-type lithologies, although these are thinner than would be 

expected for a normal oceanic crustal succession. The density model (Fig. 8b) also supports this conclusion, 

especially so for the 1320 OCC, which shows a thickness of 2600 kg m
-3

 material beneath the seabed similar 

to that of the crust of the eastern flank that is viewed to have been formed by magmatic accretion (e.g. 

MacLeod et al., 2009).   

These contrasting velocity patterns (Fig. 10a) may reflect the differing tectonic settings in which 

Profile R crosses each OCC – close to the centre of the exposed detachment fault of the Ashadze Complex, 
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at the breakaway at 1320 OCC, and just after breakaway at 1330 OCC. Alternatively, they may suggest that 

a greater degree of lower crust/upper mantle exhumation has occurred at the north Ashadze Complex and 

1330 OCCs than at the south Ashadze Complex, or that in these settings a greater degree of serpentinisation 

has occurred. The only vent field in close proximity to Profile R is Semyenov (its lateral position is marked 

on Fig. 6c). Although 0.76 km off-profile, and considering the three-dimensionality of the seabed and the 

feature scale resolution of the velocity model at shallow crustal depth, there is no apparent low velocity or 

low density anomaly associated with this feature that might constrain a heat source. Instead, it is underlain 

by a region of higher velocity than the immediate surrounds, similar to that observed beneath the active OCC 

Mt Dent-hosted vent system at the MCSC (Harding et al., 2017; van Avendonk et al., 2017). 

Perhaps the more interesting feature of the velocity-depth model (Fig. 10a) is the steepness in depth 

change of velocity between OCCs, in particular between the north Ashadze Complex and the 1320 OCC and 

at the northern edge of the 1330 OCC, which is observed from the seabed to the Moho. This pattern is 

mirrored in the density model, which provides further constraint on the crustal thickness variation between 

the 1320 and 1330 OCCs, in between which the crust thins by ~2 km. This distinction, and the contrasting 

shallow crustal structures, suggests that these OCCs are most likely independent and tectonically isolated 

features. This suggestion is supported by the pattern of magnetisation (Searle et al., 2016; 2018), and by the 

pattern of microseismicity (Parnell-Turner et al., 2017), with the deeper events nominally beneath the 1330 

OCC and the shallower ones beneath the 1320 OCC. The velocity-depth profiles (Fig. 11b) from the 

northerly part of the outside corner also share similar characteristics of those of the older/relic OCCs. 

 

5.5    Eastern ridge-flank crust – 185-210 km along-model distance 

Beneath the eastern ridge flank the ~1 My-old oceanic crust is ~6 km-thick and displays a similar velocity-

depth profile to that observed for the oldest crust in the vicinity of the Mercurius FZ. Although this region 

has the least seismic constraint along the model, gravity modelling suggests the velocity-depth profile 

observed just to the north of the 1330 OCC can be extended to the northern end of Profile R. A distinct 

Moho reflection is observed to the north of the 1330 OCC (Fig. 10i), and suggests that the crust here, 

although thin, is of a more standard structure and probably represents a region undergoing a phase of 

predominantly magma-rich formation, as evidenced by the variety of magmatic constructs at the seabed (Fig. 

2), magnetic anomaly modelling (Searle et al., 2016, 2018) and the general attenuation in seismic signal 

amplitude observed for shots fired to the north of the 1330 OCC (Figs 4a & b and Figs 10g-i). The FAA and 

RMBA (Figs 5c & d) and, to a lesser extent, magnetic anomaly (Fig. 5e) also suggest a different crustal style 

in this region, in particular suggesting that the deviation in ridge axis linear trend here, described by Mallows 

and Searle (2012) as a non-transform offset, may now be in the incipient stages of transition to a transform 

offset. Where not hosting OCCs, the crust of the 13°N region, in general, appears to display a simple velocity 

gradient structure from seabed to Moho, and a distinct Moho interface marking the base of the crust.  
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6. POTENTIAL FIELDS 

As a means of understanding the across-axis context of the two-dimensional ridge-parallel Profile R 

interpretation, the gravity and magnetic anomalies were investigated further using the data acquired 

throughout JC102, JC109 and JC132. Figure 5 shows a comparison between the seabed bathymetry (Fig. 5a), 

free-air anomaly (FAA - Fig. 5c), residual mantle Bouguer anomaly (RMBA - Fig. 5d), total field magnetic 

anomaly (TFMA - Fig. 5e) and the reduced to pole magnetic anomaly (Fig. 5f).  

The bathymetry and FAA together clearly show the asymmetry in across-ridge spreading-related 

topography with linear, north-south-trending significant bathymetric highs separated by ~24 km in the flow 

line direction between ridge flanks, which equates to a time frame of ~2 My at a half spreading rate of ~12 

mm y
-1

. These features, observed off-axis on the eastern ridge flank, lie in locations that mirror the gaps 

between extant OCCs in the western ridge flank. The RMBA on the other hand shows a relative gravity low 

to the north of the 1330 OCC consistent with, although now better defined, that observed by Smith et al. 

(2008) and Mallows and Searle (2012). RMBA anomalies at mid-ocean ridges are interpreted to reflect either 

or both density variation in the crust or mantle, with lows equated to higher temperature magma-rich 

conditions with or without a correspondingly thicker crust. For a suite of adjacent OCCs, exhuming lower 

crustal and uppermost mantle rocks to shallower levels, there should be an associated RMBA high, with a 

surrounding relative low elsewhere, associated with normally accreted crust. 

The TFMA should reveal regions of magmatic accretion during the current epoch (positive anomaly) 

or, conversely, regions where basalt rocks are replaced in the near-surface or at the seabed by those of the 

lower crust and upper mantle. In Figs 5e & f, positive regions in the vicinity of the ridge axis most likely 

equate to places where magma-rich formation is currently on-going, while negative anomalies equate to 

actively evolving mature OCCs (Searle et al., 2016, 2018). On this basis, the TFMA and reduced to pole 

magnetic anomaly suggest that magmatism may have initiated in the axial region to the west of the toe of the 

1320 OCC while, for the 1330 OCC, magmatic accretion may have initiated within and surrounding it. 

Perhaps the most interesting observation lies to the north of the 1330 OCC (180-200 km along 

profile distance), where a pair of deep TFMA lows (Fig. 5e) and a corresponding low in the RMBA (Fig. 

5c), both marked by crosses in Fig. 5, suggest that the non-transform discontinuity previously interpreted at 

this location may have evolved from a deviation in ridge linear trend into a small offset transform 

discontinuity. As a consequence, the 1330 OCC may be undergoing rifting ~20 km behind (west of) the 

seabed emergence of the detachment surface, perhaps due to an active ridge tip propagating southward.  

 

7. CONCLUSIONS 

This ridge-parallel study of the 13°N segment of the MAR aimed to investigate the crustal structure and 

inter-relationships between OCCs, extending the results of a tomographic study of the 1320 OCC (Simão et 

al. 2016 and forthcoming Simão et al. 2018) to the north and south, to investigate along axis connectivity of 

the detachment fault, and to better understand any relationship to the adjacent segment bounding fracture 
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zones to the south and the now thought-to-be transform ridge axis discontinuity, mid-segment to the north. 

From our study, we draw the following conclusions: 

1) Both the seismic and gravity models presented in this paper reveal distinct crustal structures between 

the OCCs currently in the vicinity of the western flank of the ridge axis, but with each showing 

varying degrees of elevated velocity at shallow sub-seabed depth, and contrasting density structures. 

2) The magnetic anomaly, coupled with observations of neovolcanic features on the seabed and 

attenuation of seismic arrivals, suggests that magmatism may have initiated in the axial region to the 

west of the toe of the 1320 OCC while, for the 1330 OCC, magmatism may have initiated within and 

surrounding it.  

3) The along-axis variation in velocity and density suggests that each OCC is structurally distinct and is 

exhumed along its own detachment fault, the boundary between which is marked by a thinner crust. 

For the Ashadze Complex and 1330 OCCs the velocity model suggests these detachments have 

exhumed rocks of the lower crust or serpentinised ultramafic lithologies to the seabed within the 

footwall, while for the 1320 OCC, the velocity and density models suggest that the upper crust 

comprises mainly basaltic-lithologies despite the reported exposures of gabbros and serpentinites 

(Escartin et al., 2017). 

4) The results of our combined modelling of wide-angle seismic and gravity data, and comparison of 

the resulting models with the swath bathymetry and magnetic anomaly, favours the Localised model 

of OCC evolution in which OCCs are spatially restricted, structurally isolated and ephemeral 

features that are switched on and off by variations in magma-rich and magma-poor ridge-axis 

conditions. However, it should be noted that the two closely spaced OCCs of the Ashadze Complex 

appear to exhibit similar crustal structures at depth, such that they may now be linked, although the 

north and south sections have quite distinct shallow crustal velocity and density profiles. 

5) The outside corner to the north of the Marathon FZ shows, although to a lesser extent, elevated 

velocity at shallower depth in a pattern not dissimilar to that observed beneath an OCC. 

6) The pattern of intra-sediment reflectivity within the Marathon and Mercurius FZs suggests that 

neither became locked immediately on transform-to-fracture transition. As the crust to the north of 

Marathon FZ still appears to be undergoing uplift relative to the crust on the opposite side, our 

results suggest that movement does occur across fracture zones at least until ~1 My after transition, 

this being the point at which we have imaged it. The older Mercurius FZ to the south, although 

apparently now locked, also appears to have accommodated a phase of northern relative uplift. 

7) Based on gravity modelling, Marathon FZ appears to have a thin, lower velocity crust that is 

contained to within its bathymetric footprint. Beneath the crust, a 2-3 km-deep, ~20 km-wide zone of 

lower density appears to suggest a serpentinised upper mantle. 

8) The magmatism in the vicinity of the 1330 OCC, and its apparent incipient dissection, may be 

associated with ridge tip southern propagation and readjustment of ridge geometry along-axis, with a 

corresponding evolution of a deviation in ridge linear trend into a small-offset transform 

discontinuity. 
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Figure 1. Bathymetry of the 13°N region of the Mid-Atlantic Ridge (lower panel), showing the location of Profile R 

(solid black line) and the OBSs modelled in this study (white outlined triangles), together with its intersection with a 3D 

grid of OBSs (black triangles) also deployed during JC132 (Simão et al., 2016 and forthcoming Simão et al., 2018). 

OBSs (marked by blue filled triangles) only recorded shots fired along a co-incident profile acquired as part of the 3D 

grid and were recovered prior to shooting Profile R. The locations of the 1320, 1330 and Ashadze Complex OCCs are 

labelled together with the Marathon and Mercurius fracture zones. The upper panel shows the current ridge-transform 

geometry and nomenclature adopted, together with the location of teleseismic earthquakes (black dots) and 

hydrothermal vents (red stars - active vents; blue stars - inactive). See text for details. Inset (left) shows the location of 

the work area (red box). 
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Figure 2. Bathymetry of the oceanic core complexes of the 13°N region of the Mid-Atlantic Ridge. Left panel shows 

the location of Profile R and its crossing point for each labelled OCC, together with the location of active (red stars) and 

inactive (blue stars) hydrothermal vents. The swath bathymetry data shown has a 4 m lateral resolution. Upper right 

panel shows a morphological and structural interpretation of seabed features for the 1320 and 1330 OCCs plotted at the 

same scale as the bathymetry (after Mallows and Searle, 2012), indicating that Profile R crosses these OCCs in the 

vicinity of the breakaway-upper massif. 
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Figure 3. Profile R. a) Acquisition geometry showing the bathymetry, shots fired (solid black line) and OBSs 

(triangles) projected into kilometre offset model space. OBSs annotated in italics recorded a co-incident profile from the 

3D grid and have been included in the analysis. The record section data for OBSs marked by red triangles are shown in 

Figs 4 & 10. b) Corresponding MCS record section (plotted in two-way travel time – TWTT) showing the rugged, 

generally sediment-free terrain of the ~0-1 My-age crust accommodating the OCCs (annotated), the curved bathymetry 

of the outside corner, and the Marathon and Mercurius FZs. The processing scheme is outlined in Section 3.3. c) 

Enlargement of the Mercurius FZ showing its generally flat-lying sediment infill. The deeper, older layers show an 

arcuate up-lap against the northern edge of the fracture zone, suggesting a phase of differential uplift. d) Enlargement of 

the Marathon FZ showing its thinner sediment accumulation and matching arcuate reflector pattern which, given its 

younger age, reaches the seabed and suggests differential motion is on-going. An out-of-plane basement high is also 

imaged, located to the west of the profile.  
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Figure 4. Example hydrophone record sections for OBSs 12 (a & b) and 68 (c & d). See Fig. 3a for location. Record 

sections show filtered hydrophone data plotted at a reduction velocity of 6 km s-1. Travel time picks have been plotted 

as red dots of diameter equivalent to the pick uncertainty. Crust (Pg) and water wave (Pw) phase identifications are 

annotated. The location of Marathon FZ in relation to OBS 68 is also indicated, corresponding to a significant decrease 

in signal amplitude. 
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Figure 5. Comparison of potential field anomalies with bathymetry. a) Swath bathymetry. b) Bathymetry, down-

sampled to match the lateral resolution of the FAA, used in the calculation of the RMBA. c) Free-air anomaly (FAA). 

d) Residual mantle Bouguer anomaly (RMBA). e) Total field magnetic field anomaly (TFMA). e) Reduced to the pole 

magnetic anomaly showing the pattern of positive (red) and negative (blue) magnetisation throughout the 13°N axial 

region. In particular, the ridge-axis does not consistently show the positive magnetisation pattern expected for the 

current chron. The blue dashed line locates Profile R and the stars active (red) and inactive (blue) hydrothermal vents. 

The thick white line marks Mallows and Searle’s (2012) interpreted ridge-axis location. The anomaly pairs discussed in 

the text are marked by crosses.  
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Figure 6. Inversion modelling. a) Initial model showing the 1D velocity-depth profile beneath the seabed. OBS 

locations are marked by red triangles, and prominent topographic features are annotated above. b) Interim model 

achieved after the first inversion run within an inverse cell size of 1.0 km x 1.0 km. c) Final inversion model achieved 

after a further run with a cell size of 0.5 km x 0.5 km. Vent sites are marked by stars above (red - active vents; blue - 

inactive), with their distance off-profile annotated. The Semyenov field is labelled. d) Cell hit count indicatively 

showing the areas of the model well covered with rays traced as part of the inversion process. For parts a-c) model 

velocities are contoured at 0.5 km s-1 intervals.  
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Figure 7. Resolution testing of the inversion model (cf. Fig 6c). a) Applied 2 km x 2 km 10% velocity anomaly 

checkerboard. Prominent topographic features are annotated above. b) Checkerboard recovery. c) Corresponding 

semblance, showing that the inversion process resolves features of this scale and velocity bound throughout the upper 

crust along the majority of the profile. d) Applied 5 km x 2 km 5% velocity anomaly checkerboard. e) Checkerboard 

recovery. f) Corresponding semblance, showing that the inversion process resolves features of this scale to mid-crustal 

depths for the profile to the north of Mercurius FZ. g) Applied 10 km x 2 km 5% velocity anomaly checkerboard. h) 

Checkerboard recovery. i) Corresponding semblance, showing that the inversion process resolves features of this scale 

to base of crust and uppermost mantle depths for the profile to the north of Mercurius FZ. The thin black contour in all 

panels indicates which parts of the model are well recovered using a semblance of 0.7 as the threshold criteria. All 

checkerboard recovery and semblance plots are masked showing only areas covered by ray coverage (cf. Fig 6d). 
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Figure 8. Uniqueness testing of the inversion model using the FAA. a) Model obtained by converting the inversion 

model to density using 4.5, 5.5, 6.5 and 7.5 km s-1 velocity contours to define homogeneous density blocks, with 

densities ascribed using the relationship of Carlson and Raskin (1984). The red dashed line shows the 7.5 km s-1 

velocity contour interpreted to mark the base of the crust in the inversion model. Although this model results in a good 

fit for the majority of the profile (blue line in c & d), notable misfits are observed in the vicinity of the fracture zones, 

Ashadze Complex and 1320 OCC (see annotation above). b) Best-fit density model obtained by sub-dividing the 

constant layer density model into a series of lateral blocks and adjusting the relative density. Note that the modelling 

reveals likely artefacts in the seismic model, and demonstrates that in the vicinity of Marathon FZ the crust is thinner 

and of a lower density, with a corresponding low-density region in the upper mantle. c) Calculated FAA, colour-coded 

as annotated, and with the FAA corrected for along-axis thermal anomaly shown for comparison. d) Misfit between 

calculated and observed anomalies, relative to the maximum FAA error of ±10 mGal (light grey shading), showing that 

the laterally variable density block model produces a fit within the error for the entire profile. 
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Figure 9. Model uniqueness and phase identification testing. a) Inversion model with velocity contours plotted every 

0.5 km s-1. Prominent topographic features are annotated above. Red triangles in all parts show OBS locations. b) 

Forward model derived from the inversion model using the 5.5, 6.5 and 7.5 km s-1 contours as interface boundaries, 

together with the seabed derived from the bathymetry. c) Density model block boundaries plotted on the inversion 

model. d) Forward modelling ray diagram calculated using a point-to-point approach as a check of phase identification 

of Pg (dark grey) and Pn (light grey) arrivals, and to appraise potential artefacts in the inversion model. Both the 

inversion model-derived interfaces (black) and density model-derived interfaces (blue) are traced. The areas of the 

inversion model marked by black stars are interpreted as artefacts of the inversion process. Areas marked by red stars 

show parts of the lower crust unconstrained by observed arrivals. Calculated travel times compared with the observed 

(black) for both the e) inversion-derived (Pg – red; Pn – blue) model and f) density-derived model (Pg – orange; Pn –

green). The density-derived model results in a better fit within the pick errors (2 annotated). 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article-abstract/doi/10.1093/gji/ggz074/5307889 by Acquisitions user on 18 February 2019



 

 

 

 

Figure 10. Forward ray-trace prediction of Pn and PmP arrivals for Moho identification and characteristics. a) Final 

velocity-depth model. OBS locations are shown by triangles, with the locations of those of the example record sections 

shown in d-i) highlighted in white. Six examples are chosen to reflect main tectonic region along-profile: OBSs 6 (sited 

on the 1330 OCC), 8 (sited in between the 1320 and 1330 OCCs), 62 (sited on the north Ashadze Complex), 65 (sited 

on the southern edge of south Ashadze Complex), 68 (sited on the outside corner adjacent to Marathon FZ), and 70 

(sited on ~8 Ma inter-FZ crust). Prominent topographic features are annotated above. Predictively traced b) Pn (red) and 

c) PmP (purple) ray paths calculated through the model in a). Only the seabed and Moho interfaces are plotted. d-i) 

Hydrophone record sections comparing calculated travel times against observed arrivals. All record sections are plotted 

filtered and reduced at 6 km s-1 and from south (d) to north (i). In general, this modelling, for all OBSs, shows that PmP 

arrivals are not unequivocally observed on the majority of record sections, except to the north of the 1330 OCC (i) and 

south of Marathon FZ (d), and that either the Moho is a transition zone, or if a first-order discontinuity, the velocity 

increase across it is small in amplitude. 
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Figure 11. Comparison of crustal velocity-depth structure along-profile. One-dimensional velocity-depth profiles, 

extracted at 5 km intervals through the velocity-depth model (Fig. 10a), are colour-coded with respect to setting along-

profile in all parts. a) to f) Velocity-depth profiles plotted relative to seabed depth, highlighting the range in crustal 

thickness (horizontal grey dashed lines), and compared to the standard Atlantic crustal velocity-depth envelopes of 

White et al. (1992) (grey = 0-7 Ma MAR crust) and Grevemeyer et al. (2018b) (blue dashed = MAR segment centre 

crust; green dashed = MAR segment end crust). Velocity-depth profiles are shown separately for the main tectonic 

domains identified along-profile as annotated.  
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