Environmental influences on the stable carbon isotopic composition of Devonian and Early Carboniferous land plants

Zhenzhu Wan, Thomas J. Algeo, Patricia G. Gensel, Stephen E. Scheckler, William E. Stein, Walter L. Cressler III, Christopher M. Berry, Honghe Xu, Harold D. Rowe, and Peter E. Sauer

a Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013, USA
b State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
c State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
d Department of Biology, University of North Carolina, Chapel Hill, NC 27599 USA
e Depts. of Biological Sciences and Geosciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0406, USA
f Department of Biological Sciences, SUNY Binghamton, Binghamton, NY 13901, USA
Francis Harvey Green Library, West Chester University, West Chester, PA 19383, USA
h Department of Earth Sciences, Cardiff University, Cardiff CF10 3YE, Wales, UK
i State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Nanjing 210008, China
j Bureau of Economic Geology, University of Texas at Austin, Austin, TX 78713-8924 USA
Abstract

Systematic analysis of the stable carbon isotopic composition of fossil land plants ($\delta^{13}C_p$) has the potential to offer new insights regarding paleoclimate variation and plant-environment interactions in early terrestrial ecosystems. $\delta^{13}C_p$ was measured for 190 fossil plant specimens belonging to 10 genera of Early to Late Devonian age (Archaeopteris, Drepanophycus, Haskinsia, Leclercqia, Pertica, Psilophyton, Rhacophyton, Sawdonia, Tetraxylopteris, and Wattieza) and 2 genera of Early Carboniferous age (Genselia and Rhodeopteridium) collected from sites located mainly in the Appalachian Basin (22-30 °S paleolatitude). For the full carbon-isotopic dataset ($n = 309$), $\delta^{13}C_p$ ranges from -20.3% to -30.5% with a mean of -25.5%, similar to values for modern C$_3$ land plants. In addition to a secular trend, $\delta^{13}C_p$ exhibits both intra- and intergeneric variation. Intrageneric variation is expressed as a small (mean 0.45 ‰) ^{13}C-enrichment of leaves and spines relative to stems that may reflect differential compound-specific compositions. Intergeneric variation is expressed as a much larger (to $\sim 5 \%$) spread in the mean $\delta^{13}C_p$ values of coeval plant genera that was probably controlled by taxon-specific habitat preferences and local environmental humidity. Among Early Devonian taxa, Sawdonia yielded the most ^{13}C-depleted values ($-27.1\pm1.7 \%$), reflecting lower water-use efficiency that was probably related to growth in wetter habitats, and Leclercqia, Haskinsia, and Psilophyton yielded the most ^{13}C-
enriched values (−23.0±1.6 ‰, −22.3±1.3 ‰, and −24.8±1.6 ‰, respectively), reflecting higher water-use efficiency probably related to growth in drier habitats.

Keywords: water-use efficiency; early plants; canopy effect; Archaeopteris; Drepanophycus; Sawdonia

1. Introduction

The Devonian was a period of revolutionary changes in terrestrial floras, landscapes, and continental climates (Algeo et al., 1995, 2001; Gibling and Davies, 2012; Gibling et al., 2014). Although bryophytes (non-vascular plants) had appeared during the mid-Ordovician and tracheophytes (vascular plants) by the late Silurian (Wellman et al., 2003; Steemans et al., 2009), the continents remained sparsely vegetated until the Devonian. That period witnessed major morphological adaptations and diversifications among vascular land plants as well as order-of-magnitude increases in the complexity and geographic extent of terrestrial ecosystems (Gensel and Edwards, 2001; Taylor et al., 2009). Early Devonian land plants were mostly small (heights of no more than a few tens of centimeters), shallowly rooted where known, and limited to moist lowland habitats (Xue et al., 2016). By the end-Devonian, vascular land plants had evolved leaves, complex root systems, secondary supporting tissues (leading to tree stature), and desiccation-resistant reproductive propagules (seeds) that facilitated their spread into drier upland habitats (Mosbrugger, 1990; Driese et al., 1997; Gerrienne et al., 2004; Meyer-Berthaud et al., 2010; Hao and Xue, 2013a; Silvestro et al., 2015). [Note: “upland” is a general term signifying land lying above the level of local stream flow and flooding.] These changes
resulted in an increase in organic carbon burial, a rise of O$_2$ and a drawdown of CO$_2$ in the atmosphere, and global climatic cooling, setting the stage for the Late Paleozoic Ice Age that began in the Early Carboniferous (Algeo et al., 1995, 2001; Berner, 1997; Le Hir et al., 2011).

The stable carbon isotopic composition of plants ($\delta^{13}C_p$) differs from that of their carbon source (atmospheric CO$_2$) owing to photosynthetic fractionation (Farquhar et al., 1982, 1989). Modern C$_3$ plants fix carbon via the Calvin-Benson cycle with an average fractionation of ca. $-20 \, \%$, yielding organic material with a $\delta^{13}C$ value of $-26\pm5 \, \%$ (Raven et al., 2004). Devonian vascular land plants are thought to have been exclusively C$_3$ plants (Taylor et al., 2009), and their carbon isotopic compositions are therefore likely to have been controlled by the same climatic and environmental factors as for modern C$_3$ plants (e.g., temperature, humidity, and atmospheric pCO$_2$ and $\delta^{13}C_{CO2}$). To date, the carbon isotopic compositions of specific Devonian terrestrial plant fossils (as opposed to bulk sedimentary organic carbon) have been investigated in only a few studies of fungi (Boyce et al., 2007), lichens (Fletcher et al., 2004), liverworts (Graham et al., 2010), and vascular plants (Beerling et al., 2002; Feng et al., 2014).

The present study is the first systematic investigation of carbon isotopic variation among a large group of Devonian and Early Carboniferous vascular land plants and represents by far the largest such analytical dataset to date. We made 309 measurements of $\delta^{13}C_p$ ($p =$ plant) on 190 unique specimens of fossil plants belonging to 12 widespread genera of Early Devonian to Early Carboniferous age (Table S1). Our goals in this study were to (1) characterize $\delta^{13}C_p$ variation for each fossil plant taxon, (2) investigate time-independent $\delta^{13}C_p$ variation within and among taxa that might reflect large-scale geographic (e.g., paleolatitudinal) or local environmental influences, and (3) use these patterns of variation to draw inferences concerning
the ecology of individual early land plant taxa. Here, we show that there are significant
differences in $\delta^{13}C_p$ between the 12 genera of this study that are probably of primary (in vivo)
origin, and that were most likely related to local humidity and habitat preferences among early
vascular land plants.

2. Fossil plant taxonomy and paleoecology

2.1. Fossil plant taxa

The fossil plants analyzed in this study belong to 12 different genera of tracheophytes,
representing early members of the lycophyte and euphyllophyte lineages (Fig. 1A). All of the
fossil plants in this study have been the subject of at least partial morphological reconstructions
(Fig. 1B). Although many fossil specimens were identified to the species level, we conducted
our evaluation of $\delta^{13}C_p$ variation at the genus level owing to (1) lack of species assignments for
about half of the individual specimens, (2) uncertainty in some species-level assignments, and
(3) the impracticability of analyzing carbon-isotopic patterns in a dataset with excessive splitting
into species. Among the 12 genera analyzed, 10 have overlapping ranges extending through
part or all of the Devonian (Archaeopteris, Drepanophycus, Haskinsia, Leclercqia, Pertica,
Psilophyton, Rhacophyton, Sawdonia, Tetraxylopteris, and Wattieza) and two are entirely of
Early Carboniferous age (Genselia and Rhodeopteridium; Fig. 2). A brief summary of the key
anatomical features and paleoecologic/geographic characteristics of each genus follows:

Sawdonia (Dawson) Hueber is one of the early zosterophyllopsids, belonging to the
Lycophyta. This plant is pseudomonopodially branched with circinate tips; reniform sporangia
are borne along the sides of some stems and anatomy consists of an exarch haplostele (Hueber,
110 1971; Rayner, 1983; Gensel et al., 1975; Taylor et al., 2009; Gensel and Berry, 2016). It was widespread during the Early Devonian (Gensel, 1992; Kenrick and Crane, 1997; Gensel and Berry, 2016) but is also found in the Late Devonian (Hueber and Grierson, 1961). Our dataset includes both S. ornata and S. acanthotheca, although most specimens were not distinguished at the species level.

Drepanophycus Göppert belongs to the Drepanophycaceae, sister to other lineages of Lycopsida (Kenrick and Crane, 1997). Stems range from several millimeters to centimeters in diameter and from several centimeters to a meter in length. Leaves are unbranched falcate microphylls up to several millimeters long with a single prominent middle vascular thread, and they were arranged spirally or randomly on the stem. Reniform sporangia occur on short stalks between the leaves (Li and Edwards, 1995; Li et al., 2000). However, this genus exhibits considerable variation in leaf morphology and may be in need of revision. This taxon had a creeping to erect and sometimes dichotomizing rhizomatous growth habit. It existed through most of the Devonian Period and is found in eastern Canada, northeastern USA, China, Russia, and Europe (Stubblefield and Banks, 1978; Gensel and Berry, 2001; Xu et al., 2013). About half of the specimens used in the present study belong to *D. spinaeformis*, and the remainder were not distinguished at the species level.

Leclercqia Banks, Bonamo and Grierson is a member of the Protolepidodendraceae (Lycophyta) (Gensel and Kasper, 2005; Gensel and Albright, 2006). It is a slender, herbaceous plant, with distinctive leaves that typically exhibit five divisions and that bear sporangia on their upper surface. At least some species exhibit hook-shaped leaves that may have allowed a vine-like climbing habit (Xu et al., 2011). *Leclercqia* is distinguished in being a homosporous plant
with a ligule; ligules otherwise are found only in heterosporous taxa (Grierson and Bonamo, 1979; Bonamo et al., 1988; Taylor et al., 2009; Benca et al., 2014). It existed from the late Early to the Middle Devonian and has a particularly wide distribution, being found in North America, Europe, Africa, Australia, and China (Banks et al., 1972; Bonamo et al., 1988; Meyer-Berthaud et al., 2003; Taylor et al., 2009; Xu et al., 2011; Prestianni et al., 2012; Benca et al., 2014). It was present mainly in warm, dry climates (Berry, 1994; Meyer-Berthaud et al., 2003), although some studies have claimed a wider environmental range (Xu and Wang, 2008). Our dataset includes both L. complexa and L. andrewsii, although half of the specimens were not distinguished at the species level.

Haskinsia Grierson and Banks is a herbaceous lycopsid (Bonamo et al., 1988; Xu et al., 2008; Yang et al., 2008; Taylor et al., 2009). It was once regarded as a species of Drepanophycus but was later placed with the Protolepidodendrales because of the presence of petiolate deltoid-shaped sporophylls (Grierson and Banks, 1983; Berry and Edwards, 1996; Xu and Berry, 2008). This taxon was widespread during the Middle to early Late Devonian age, being known from North America, South America, Russia, and China; it had wide environmental tolerances, thriving in both warm tropical and cool temperate conditions (Xu et al., 2008). The relatively small number of specimens in our dataset includes H. hastata, H. sagittata, and specimens not identified at the species level.

Psilophyton (Dawson) Hueber is one of the best-known members of the trimerophyte grade of basal euphyllophytes (Andrews et al., 1968; Banks et al., 1975; Doran et al., 1978; Trant and Gensel, 1985; Stein, 1993; Gerrienne 1995, 1997). The plant consists of a main axis and multiply divided lateral branches, some of which terminate in pairs of fusiform sporangia.
Stem anatomy, where known, is a centrarch haplostele. Intrageneric variation in sporangial length and in the presence and type of emergences is significant (Doran, 1980; Gerrienne, 1995; Taylor et al., 2009). Psilophyton was widespread in the Early to earliest Middle Devonian and has been found in the northeastern United States (Maine and New York), Canada (Quebec and New Brunswick), Belgium, the Czech Republic, and Yunnan, China (Taylor et al., 2009; Gensel, 2017). The most common species in our dataset is *P. princeps*, although specimens of *P. crenulatum, P. dawsonsii, and P. forbesii* are also present, as well as some specimens not identified at the species level.

Pertica Kasper and Andrews is also a basal euphyllophyte (Kasper and Andrews, 1972; Granoff et al., 1976). It exhibits a dominant main stem with regularly arranged lateral branches, organized either in a tight spiral or a four ranked/decussate pattern. Lateral branch morphology varies from equally dichotomous to a more pseudomonopodial pattern. These plants bore numerous fusiform sporangia in dense clusters on ultimate branchlets (Kasper and Andrews, 1972; Granoff et al., 1976; Taylor et al., 2009). *Pertica* existed from the Early to the Middle Devonian, with occurrences known from northern Maine, New Brunswick, and Quebec. Our dataset consists mainly of the species *P. varia* along with some specimens not identified at the species level.

Wattieza refers to compression fossils belonging to the order Pseudosporochnales within the class Cladoxylopsida (Leclercq and Banks, 1962; Gensel et al., 2001; Berry and Fairon-Demaret, 2002). Pseudosporochnaleans are all similar in their adult forms, consisting of small to large trees with a main trunk bearing a dense crown of frond-like branches. Instead of leaves, the branches bear densely ramified ultimate appendages with either terminally erect
(Pseudosporochnus) or reflexed (Wattieza) sporangia. The specimens analyzed for this study, which came from the West Cave Mountain and Steenberg/South Mountain quarries in New York, possessed key characteristics of Pseudosporochnaleans including distinctive clusters of sclerotic cells (Leclercq and Banks, 1962; Gensel et al., 2001; Berry and Faron-Demaret, 2002) but lacked sporangia. However, a recent study of new South Mountain specimens identified them as Wattieza and linked them to the fossil tree trunks known as Eospermatopteris (Stein et al., 2007). Pseudosporochnaleans existed from the Middle to early Late Devonian in Europe, Venezuela, North America, and possibly China (Gensel and Andrews, 1984; Taylor et al., 2009).

Rhacophyton Crépin belongs to the order of Rhacophytales sensu Taylor et al. (2009; n.b., assigned to Rhacophytaceae or Protopteridales by others). According to Andrews and Phillips (1968), this plant grew to ~1-m-tall bushes, and its foliage consisted of a main axis bearing pairs of lateral branches that fork twice basally. Two of the lateral branches were multiply divided and terminated in elongate sporangia, and the other two extended further and bore higher-order branches. In some cases, the fertile branches were produced as second-order units on first-order laterals. The stem anatomy of the lateral branches consisted of clepsydroid primary xylem surrounded in some instances by a limited amount of secondary xylem. Rhacophyton existed during the Late Devonian and has been found in North America, Europe, possibly Bear Island (New Brunswick), and western Siberia (Andrews and Phillips, 1968; Cornet et al., 1977; Dittrich et al., 1983; Cressler, 1999, 2006; Taylor et al., 2009). Our dataset includes a few specimens identified as R. ceratangium although the majority were not identified at the species level.
Rhodeopteridium (Presl) Zimmermann (formerly Rhodea Presl) is a genus based mainly on foliage compression/impression fossils that is thought to represent an early seed plant (Jennings, 1976). Pinnately compound leaves terminate in barely laminate ends (Read, 1955). Similar fossil leaves with well-preserved petioles are known from early seed ferns of Late Mississippian (Chesterian) age in Illinois (Jennings, 1976). Most specimens are of Early Carboniferous (Tournaisian-Namurian A) age, but it may extend into the basal late Carboniferous. None of the small number of Rhodeopteridium specimens in our dataset was identified at the species level.

Tetraxylopteris Beck is an aneurophytalean progymnosperm (Beck, 1957; Bonamo and Banks, 1967; Scheckler and Banks, 1971; Hammond and Berry, 2005). It is characterized by a main stem with extensive secondary xylem and bearing several orders of laterals in a decussate pattern, each with a four-armed vascular strand. In fertile regions, second-order laterals dichotomize twice, and each division bears pinnately arranged clusters of sporangia. Tetraxylopteris existed during the Givetian and early Frasnian. To date, it is known from only two areas: the Catskill Delta in New York, and the Campo Chico Formation in northwestern Venezuela. A few of our specimens are assigned to T. schmidtii but most were not identified at the species level.

Archaeopteris (Dawson) Stur belongs to the Archaeopteridalean progymnosperms. It was a tall tree similar to some modern conifers, but it had pseudomonopodial branching in the lateral branch system (Beck, 1962) and laminate leaves with helices or decussate patterns of leaf attachment (Scheckler, 1978). Some ultimate clusters of leaves appear cone-like, bearing sporangia on their adaxial surfaces, but all species are thought to have been free-sporing and
heterosporous. *Archaeopteris* is usually preserved as impression and compression fossils, and its fossilized trunks, named *Callixylon* when found separately, exhibit extensive secondary xylem. It ranged from the latest Middle to Late Devonian, with a number of different species being known from localities in North America, Russia, Europe, Morocco, China, Australia, and Colombia (Beck and Wight, 1988; Cressler, 1999, 2006; Meyer-Berthaud et al., 1999; Berry et al., 2000). By the middle of the late Frasnian, monospecific archaeopterid forests had become the dominant vegetation type in lowland areas and coastal settings over a vast geographic area (Algeo et al., 2001). About one third of the 51 specimens in our dataset are assigned to various species, including *A. fissilis*, *A. halliana*, *A. jacksonii*, *A. macilenta*, and *A. rogersii*, although most specimens were not identified at the species level.

Genselia Knaus may have been a seed fern (Knaus, 1995; Taylor et al., 2009). This genus has bipinnate compound leaves, non-bifurcate rachises, and in some, bifurcations at the tip of stems, terminating in elongated sporangia (Knaus, 1994, 1995; Skog and Gensel, 1980; Taylor et al., 2009). It is found in the Lower Carboniferous Pocono and Price Formations of Pennsylvania, Maryland, West Virginia and Virginia, in the Appalachian Basin of North America. None of the *Genselia* specimens in our dataset was identified at the species level.

2.2. Paleoclimate and paleoenvironments

The locales from which fossil plants in this study were collected have a quasi-global distribution (Fig. 3A), although a large majority of the analyses (n = 289 of 309, or 93 % of the total dataset) are of specimens from the Appalachian Basin or other areas in eastern North America, at locales ranging from southwestern Virginia in the south to the Gaspé Peninsula of
Québec in the north (Fig. 3B). Laurentia (Paleozoic North America) drifted northward during the Devonian Period (416-359 Ma), causing the Appalachian Basin to shift from ~40–35 °S in the Early Devonian to ~30–25 °S in the Late Devonian (van der Voo, 1988, 1993). Thus, many of the present study locales moved from the humid temperate zone into the dry subtropical zone during this interval. However, this shift occurred at tectonic timescales (i.e., over a ~50-Myr interval) and was monotonic in direction (i.e., did not reverse), so any regional climate changes induced by plate motion during this interval are likely to have been slow and steady. More rapid climate changes (i.e., at timescales of a few million years or less) are likely to have had non-plate-tectonic causes. Most of the remaining fossil plant specimens (n = 20, 7 % of total) are from a few sites in northwestern China (Xu et al., 2015; Zheng et al., 2016) and Venezuela (Berry, 1994; Berry and Edwards, 1996).

The depositional environments in which the 12 fossil plant taxa of the present study grew ranged from coastal deltas to upper floodplains, with the former being the most common environment. Coastal deltas are represented, for example, by most of the fossil-plant-bearing strata of the Emsian Battery Point Formation in Gaspé Bay, Quebec, and the more western portions of the Emsian-lower Eifelian Campbellton Formation in New Brunswick (Griffing et al., 2000; Hotton et al., 2001; Kennedy et al., 2012, 2013). Especially at Gaspé Bay, paleocurrent data document mainly seaward transport of sediment by rivers, and multistory sandstone bodies are interpreted as deposits of high-sinuosity river channels (Griffing et al., 2000). Closer to the coastline, bidirectional cross-bedding records tidal influence (Bridge, 2000; Griffing et al., 2000) and some trace fossils (e.g., Diplocraterion) may represent brackish conditions within estuaries (Lawrence, 1986). Deltaic processes are evidenced by a complex stratigraphic
architecture of levees and crevasse splays, freshwater lakes and marshes, lacustrine deltas, brackish marshes and interdistributary bays, and sandy and muddy tidal flats (Griffing et al., 2000).

Coastal wetlands apparently developed frequently during the late Givetian to early Frasnian, especially at times of relatively high sea level, which resulted in marine incursions into generally terrestrial environments (Baird and Brett, 2008). Multiple wetland subenvironments are represented by stacked dark meter-thick sandstones at Riverside Quarry, Gilboa (Stein et al., 2012), dark siltstones and shales at Blenheim, Gilboa (Banks et al., 1972), and lighter gray to yellowish-brown sandstones at Manorkill Falls, Gilboa (Driese et al., 1997). Similar environments developed in the Late Devonian, as in the Famennian Hampshire Formation at Elkins, West Virginia (Scheckler, 1986a). In these settings, trees and understory plants appear to have had limited root penetration. During the Late Devonian, wetland floral diversity was relatively limited: Archaeopteris and Rhacophyton were endemic, although other taxa (especially arborescent lycophytes) occupied peri-swamp habitats and were washed in during floods and storms (Scheckler, 1986a). By the Tournaisian, coastal swamp habitats were increasingly dominated by lycophytes (Scheckler, 1986b; Rygel et al., 2006; Gensel and Pigg, 2010).

Upper floodplain settings are represented by fine-grained, multistory sandstone bodies and red mudstones in fining-upward successions lacking any evidence of marine influence. These deposits represent wide, meandering upland river channels and overbank (floodplain) deposits that were subject to frequent wet-dry cycles, e.g., through seasonal flooding (Cressler, 1999, 2006; Cressler et al., 2010). Examples of this type of environment are found in the
Famennian Duncannon Member of the Catskill Formation at Red Hill, Pennsylvania.

Taphonomic observations indicate that both fossil plants and animals lived close to their sites of deposition. Fossil plant remains are often found in reduced lenses of greenish-gray mudstone, probably representing floodplain pond deposits related to major channel avulsion events (Cressler, 1999, 2006; Cressler et al., 2010).

3. Methods

The study specimens consist of well-preserved compression fossils of whole plants or parts of plants (i.e., stems, branches, and/or leaves) that are intact or nearly so (Fig. 4). All specimens were inspected using a binocular microscope to verify the state of fossil preservation, and a subset was examined using scanning electron microscopy. We initially bulk macerated each plant fossil in acid baths, yielding bulk organic material that was undifferentiated by plant anatomical parts. These specimens were digested successively in hydrochloric acid (HCl) and hydrofluoric acid (HF), with three rinses in distilled water between dissolution steps. We subsequently sampled the plant fossils by peeling pieces of organic material from the surface of each compression fossil, permitting us to analyze specific anatomical parts of each plant (e.g., stems, leaves, spines, and sporangia). These specimens were treated individually with HCl and HF, as needed, to remove rock matrix adhering to the organic material. Organic fragments were picked out of the residue, rinsed in distilled water, dried, and inspected under a binocular microscope to verify the removal of all impurities.

Carbon isotopic analyses were performed using EA-IRMS systems at the Stable Isotope Research Facility (SIRF) of the Department of Earth and Atmospheric Sciences of Indiana.
University, Bloomington (IU) and the Department of Earth and Environmental Sciences of the University of Texas at Arlington (UTA). Analytical protocols were similar in the two laboratories: powdered samples were weighed into silver capsules that were acidified repeatedly with 6% sulfurous acid (H_2SO_3) in order to remove carbonate phases. Samples were analyzed using a Costech 4010 elemental analyzer interfaced with a Thermo Finnigan Conflo III device to a Thermo Finnigan Delta Plus XP isotope ratio mass spectrometer (IRMS). All isotopic results are reported in per mille (‰) variation relative to VPDB. At UTA, the average standard deviation was 0.04 ‰ for both the USGS-24 standard ($\delta^{13}\text{C} = -16.049 \text{‰}$) and unknowns. At IU, the average standard deviation was 0.06 ‰ for Acetanilides #1, #2, and #3, and Corn starch #1 (Schimmelmann et al., 2016) and unknowns. Interlaboratory calibration was undertaken by analyzing a common set of 12 samples at both IU and UTA. The co-analyzed samples yielded a correlation (r^2) of 0.997 with an offset of 0.21 ‰ between the two labs, which was corrected for in the integrated C-isotope dataset by averaging the difference (i.e., by reducing UTA values by 0.10 ‰ and increasing IU values by 0.10 ‰).

4. Results

4.1. General results

In this study, we generated a total of 309 analyses of plant $\delta^{13}\text{C}$ from 190 unique plant specimens (Table S1). The number of analyses per taxon varied considerably: the four most analyzed taxa were Archaeopteris (80 analyses of 51 unique specimens), Drepanophycus (40/21), Rhacophyton (33/18), and Tetraxylopteris (31/21) (Table 1). About half of the specimens were analyzed twice, mostly to generate paired $\delta^{13}\text{C}$ values for different anatomical
parts (e.g., stems and leaves) but sometimes to check on the reproducibility of results for the same anatomical part of a single specimen. A handful of specimens were analyzed three or more times. The full dataset of 309 analyses yielded a mean $\delta^{13}C_p$ of -25.5‰ with a standard deviation of 1.8‰ and a range from -20.3‰ to -30.5‰. Individual taxa yielded mean $\delta^{13}C_p$ ranging from -22.3 ± 1.3‰ for Haskinsia to -27.3 ± 1.7‰ for Sawdonia (Table 1).

The full $\delta^{13}C_p$ dataset exhibits a distinct secular pattern (as reflected in a LOWESS curve) that is dominated by a long-term shift toward higher $\delta^{13}C_p$ values through most of the Devonian and Early Carboniferous (note: this secular pattern is not shown and will not be considered here because it is the focus of a companion paper that is in preparation). To determine the non-secular component of total $\delta^{13}C_p$ variation, we calculated the difference between each $\delta^{13}C_p$ value and the age-equivalent mean for the full $\delta^{13}C_p$ dataset as given by the LOWESS curve, i.e., $\Delta^{13}C_p$ (Fig. 5). Thus, a fossil specimen with a $\Delta^{13}C_p$ of 0‰ has a carbon-isotopic composition identical to the LOWESS mean for the $\delta^{13}C_p$ dataset at a given time, and positive and negative $\Delta^{13}C_p$ values represent ^{13}C enrichment and depletion of the specimen, respectively, relative to the age-equivalent LOWESS mean value. In this manner, the overall tendency of each fossil plant taxon toward ^{13}C enrichment or depletion can be evaluated independently of long-term secular variation in the $\delta^{13}C_p$ dataset (Fig. 6). The non-secular variance in our $\delta^{13}C_p$ dataset has two components: (1) variance among different plant taxa (‘intergeneric variation’), and (2) variance within individual taxa (‘intragenic variation’). The proportion of total variance in the $\Delta^{13}C_p$ dataset represented by intragenic variance (i.e., $\sigma^2_{intra} / \sigma^2_{total}$) was calculated as:

$$
(\sum_{i=1}^{12} [\Sigma(X-\mu)^2/N_i])/[\Sigma(X-\mu)^2/N_t]
$$

(1)
where \(X \) is the \(\Delta^{13}C_p \) for a given fossil specimen, \(\mu_i \) is the mean \(\Delta^{13}C_p \) for a given plant genus \(i \), and \(\mu_t \) is the mean \(\Delta^{13}C_p \) for all fossil specimens. The numerator of the equation sums the variances of the 12 fossil plant genera (\(\sum_{i=1}^{12} \)) calculated separately (i.e., \([\Sigma(X-\mu_i)^2 / N_i])\), and it is divided by the total variance for all fossil specimens (i.e., \([\Sigma(X-\mu_t)^2 / N_t])\) to yield the fraction of total variance attributable to intrageneric variance (70%); the remainder (30%) represents intergeneric variance. Below, we analyze intrageneric and intergeneric patterns of variation as a function of possible taxonomic, anatomical, geographic, and environmental controls (Tables 2-3). Note that this analysis is conducted on the basis of \(\Delta^{13}C_p \) values (Table S1), i.e., the deviations from the long-term secular \(\delta^{13}C_p \) trend (Fig. 6), and is thus independent of the secular component of variance in the \(\delta^{13}C_p \) dataset.

We considered the possibility of a geographic gradient in \(\Delta^{13}C_p \), e.g., along a paleolatitudinal transect. Modern plants show a distinct latitudinal gradient in \(\delta^{13}C_p \) that is a function of temperature and precipitation influences (Diefendorf et al., 2010) and/or light levels (Kohn, 2010). However, the high proportion (>90%) of specimens from the Appalachian Basin in this study (Figs. 2-3) leads to a clustering of data within a relatively narrow range of paleolatitudes, resulting in our inability to identify any significant paleolatitudinal trends. A more robust test of geographic influences on Devonian fossil plant \(\delta^{13}C \) will require a larger dataset covering a wider range of paleolatitudes.

4.2. Intrageneric variation in plant \(\delta^{13}C \)

For a subset of specimens (\(n = 32 \)), we analyzed carbon from both the stem and the leaf or spine (not interpreted as a leaf homologue) of the fossil plant, allowing us to evaluate
variation in $\delta^{13}C_p$ as a function of plant anatomy. The assessment of anatomical variation was made for 6 plant genera (Table 3). Among these genera, four showed higher $\delta^{13}C_p$ for leaves/spines than for stems, although the difference was statistically significant (based on a Student's t-test) only for Sawdonia, which yielded the largest $\Delta^{13}C_{(spine-stem)}$ value of any genus (1.6 ‰). The relatively small number of analyses per genus was a factor limiting the statistical significance of these results for individual plant taxa. All 6 genera together ($n = 32$) yielded a mean leaf/spine-vs-stem difference of 0.45 ‰, which is statistically significant ($p(\alpha) = 0.01$; Table 3). These results suggest that fossil plant leaves and spines are systematically slightly enriched in ^{13}C relative to stems of the same fossil plant specimen (as seen in 29 out of 32 of the paired analyses).

4.3. Intergeneric variation in plant $\delta^{13}C$

The 12 fossil plant genera of this study exhibit systematic differences in $\Delta^{13}C_p$ (Fig. 7). Three taxa yielded mean $\Delta^{13}C_p$ values that are significantly higher than the age-equivalent LOWESS mean: Haskinsia (+2.4±1.5 ‰; $n = 4$), Leclercqia (+1.8±1.0 ‰; $n = 24$), and Psilophyton (+0.9±1.5 ‰; $n = 25$), and one taxon yielded a significantly lower mean value: Sawdonia (-1.2±1.8 ‰; $n = 28$) (note: for all, $p(\alpha) \leq 0.01$; Student’s t-test; Table 2). The remaining eight taxa have mean $\Delta^{13}C_p$ values within ±0.5 ‰ of the average for the dataset as a whole, among which only Archaeopteris yielded a significantly different mean (-0.4±1.2 ‰; $p(\alpha) = 0.002$), mainly as a result of the exceptionally large number of analyses of this taxon ($n = 80$; Table 2). However, the result for Archaeopteris must be viewed cautiously because there are relatively few coeval Late Devonian taxa in our dataset from which to construct the LOWESS mean trend.
Thus, we consider only *Haskinsia, Leclercqia, Psilophyton*, and *Sawdonia* to deviate significantly in $\Delta^{13}C_p$ from age-equivalent LOWESS mean values.

The critical time interval of our dataset for evaluating interspecific $\Delta^{13}C_p$ variation is the late Early through late Middle Devonian (~405-385 Ma), during which 6 of the 12 plant taxa analyzed in this study have largely overlapping stratigraphic ranges. The overlap in stratigraphic ranges facilitates intergeneric comparisons, and, not coincidentally, all four of the taxa showing large deviations from mean LOWESS $\delta^{13}C_p$ values are present in this interval, with three taxa showing 13C-enriched values (*Haskinsia, Leclercqia, and Psilophyton*) and one showing 13C-depleted values (*Sawdonia*) (see above). Importantly, the offsets in $\delta^{13}C_p$ between these taxa are relatively constant despite an overall increase in mean LOWESS $\delta^{13}C_p$ of ~3 ‰ from the late Early Devonian to the late Middle Devonian (*Algeo et al., in preparation*). We attribute these taxon-specific differences in 13C enrichment to local environmental controls (see Section 5.3).

In contrast, the 6 plant genera analyzed from the early Late Devonian to Early Carboniferous (~385-345 Ma) have only partially overlapping stratigraphic ranges, with no more than 2 taxa present in any given time window. The more limited dataset for this time interval renders uncertain evaluation of deviations in $\Delta^{13}C_p$ from the mean LOWESS trend (thus our caution with regard to interpreting *Archaeopteris* $\Delta^{13}C_p$ values).

5. Discussion

5.1. Robustness of plant $\delta^{13}C$ proxy

The fossil plant specimens used in this project were preserved as compressions of stems, branches, leaves and spines (*Fig. 4A-B*). During the carbonization process, most water
and volatile organic compounds in the plant tissue were lost, and the remaining material was
preserved as a black organic film that consists largely of carbon (Guo et al., 2010). Even though
compressed as flat layers, many fossils show well-preserved cell-scale anatomical features such
as tracheids (Fig. 4C) and cuticle (Fig. 4D). These observations confirm that pre-burial bacterial
decay of these relatively resistant tissues was limited in the specimens that were selected for
carbon-isotopic analysis in this study.

Vascular land plants exhibit internal carbon isotopic variation, commonly with a >5 ‰
range in $\delta^{13}C$ among their constituent compounds (O'Leary, 1988; Pate and Arthur, 1998).
Although most types of compounds decay rapidly in the burial environment, the surviving
compounds generally retain their characteristic carbon isotopic compositions (Benner et al.,
1987). Cellulose and lignin are among the most resistant compound types and commonly
dominate the terrestrial organic fraction preserved in sedimentary rocks (Arens et al., 2000),
especially in compression fossils of the type analyzed in this study. Cellulose is up to \~3 ‰
heavier and lignin up to \~4 ‰ lighter than bulk plant $\delta^{13}C$ (Benner et al., 1987; O'Leary, 1988;
Marino and McElroy, 1991; Badeck et al., 2005). Biomarker analysis of plant compression fossils
typically yields a range of alkanes, alkenes, benzenes, pristenes, and polysaccharides derived in
large part from decay of these primary compounds (e.g., Gupta et al., 2007), so a part of the
variance in the $\Delta \delta^{13}C_P$ of an individual taxon in our dataset may reflect specimen-specific
variation in the proportions of cellulose versus lignin and their derivatives (Arens et al., 2000).

Burial diagenesis can potentially modify the $\delta^{13}C$ composition of organic material
through thermal cracking and release of methane at high temperatures (i.e., >160 °C, or beyond
the 'oil window'; Faure and Mensing, 2005). The released methane is depleted in ^{13}C by 10-
30 ‰, resulting in a small increase in the δ¹³C of the remaining kerogen (generally <1 ‰). The thermal maturity of Devonian sediments in the central Appalachian Basin exhibits a strong lateral gradient: maturity is high on the eastern basin margin (Ro >2.0; T >160 °C) but low to moderate on the western basin margin (Ro <1.0; T <100 °C) (Obermajer et al., 1997; Milici and Swezey, 2006; Rowan, 2006; Repetski et al., 2008). In our study areas in eastern New York and central West Virginia, the maximum burial depths of Upper Devonian strata were from ~4 to 10 km, with peak burial temperatures estimated to have been between ~150 and 170 °C (Friedman and Sanders, 1982; Dorobek, 1989; Repetski et al., 2008). Thermal maturity is also variable in New Brunswick and the Gaspé Peninsula of Québec in eastern Canada. There, some Devonian strata have been buried just a few kilometers (Heroux et al., 1979), whereas other units have experienced maximum burial depths up to 12 km (Utting and Hamblin, 1991), yielding peak burial temperature estimates ranging from ~50 to 280 °C (Bertrand and Malo, 2001; Chi et al., 2001). We tested the possibility of burial thermal effects on our dataset by plotting δ¹³Cp against inferred maximum burial depths, but this yielded almost no correlation (r = +0.03; n = 309; p(α) >0.5). We are cognizant that the carbon isotopic compositions of our plant fossils may have been influenced by bacterial and thermal decay. However, the δ¹³Cp values of a single taxon at a specific outcrop tend to be relatively consistent in our dataset (mostly showing <1 ‰ variation), indicating a general lack of random diagenetic effects on the plant fossils during burial.

5.2. Sources of anatomical variation in plant δ¹³C
Among modern plants, different plant parts exhibit systematic differences in carbon isotopic compositions. Based on a compilation of >400 plant taxa, leaves are on average 0.96‰ and 1.91‰ more depleted in 13C than roots and woody stems, respectively (Badeck et al., 2005). This pattern is strong but not universal as ~10% of the taxa examined in that study yielded leaf δ^{13}C greater than stem δ^{13}C. This pattern appears to be independent of climatic conditions, as plants from semi-arid habitats also exhibit leaf δ^{13}C lower than stem δ^{13}C (by an average of 1.51±0.42‰) (Nilson and Sharifi, 1997). The origin of these differences is not known with certainty: two leading ideas relate it to carbon-isotopic fractionation in generating different types of organic compounds (see Section 5.1), or preferential release of 13C-enriched respiratory CO$_2$ from leaves (Badeck et al., 2005).

In our dataset, leaves and spines are somewhat 13C-enriched relative to stems (by 0.45‰ on average; Table 3; see Section 4.2). If the δ^{13}C values of leaves and spines were originally lower than that of stems by ~1-2‰ in Devonian plants, then burial decay must have caused a relative shift of +1.5 to +2.5‰ in leaf/spine δ^{13}C relative to stem δ^{13}C. Such a shift might have occurred owing to a greater loss of lipids and/or increase in cellulose-derived compounds in the carbonized residue of leaves and spines relative to stems during the fossilization process. Further investigation will be needed to validate the existence and significance of internal δ^{13}C variation in Devonian and Carboniferous fossil plants.

5.3. Sources of intergeneric variance in plant δ^{13}C

5.3.1. Water-use efficiency
One mechanism that can lead to systematic differences in $\delta^{13}C$ values between plant taxa is differences in water-use efficiency (WUE): plants that grow in wet habitats do not need to limit water loss and, hence, tend to open their stomata more widely in order to maximize CO$_2$ uptake at the cost of low water-use efficiency. This process leads to maximum internal-leaf pCO$_2$ and maximum carbon isotope discrimination (i.e., lower $\delta^{13}C_p$) (Farquhar et al., 1989). In contrast, plants that grow in drier habitats are forced to limit water loss through their stomata (i.e., higher water-use efficiency), leading to less CO$_2$ uptake, lower internal-leaf pCO$_2$, and reduced carbon-isotope discrimination (i.e., higher $\delta^{13}C_p$) as a result of a larger fraction of internal-leaf CO$_2$ being utilized in photosynthesis (Farquhar et al., 1989).

The carbon isotopic composition of modern C$_3$ land plants exhibits a strong negative relationship to mean annual precipitation (MAP) (Miller et al., 2001; Liu et al., 2005; Roden et al., 2005; Diefendorf et al., 2010; Kohn, 2010). An increase in MAP from 0 to 1000 mm yr$^{-1}$ correlates with a ~4-5 ‰ depletion in $\delta^{13}C_p$, although this relationship is non-linear because $\delta^{13}C_p$ becomes less sensitive to changes in precipitation at high MAP (Diefendorf et al., 2010). This relationship exists because land plants are more commonly water-limited than carbon-limited and have a strong incentive to engage in greater water-use efficiency where water is scarce (Bacon, 2004; Macfarlane et al., 2004). Plants tend to reduce stomatal conductance in arid regions in order to conserve water, which causes a larger proportion of the CO$_2$ that diffuses into the leaf to be used in photosynthesis, resulting in reduced fractionation (relative to the atmospheric carbon source) and heavier $\delta^{13}C_p$ values (Farquhar et al., 1989; Brugnoli and Lauteri, 1991; Poss et al., 2000). The opposite pattern is found in humid regions, causing $\delta^{13}C_p$
values to become lighter. This relationship accounts for ~55 % of $\delta^{13}\text{C}$ variance among modern
C$_3$ plants (Diefendorf et al., 2010).

A fundamental divide exists between species with high hydraulic conductivity and low
embolism resistance and those with low hydraulic conductivity and high embolism resistance
(Wilson, 2016). Mapping of hydraulic ecospace shows that the high-conductivity/low-safety-
margin domain was occupied by many early vascular land plants, including trimerophytes,
lycophytes, cladoxylopsids, and sphenopsids, all of which developed tracheids with scalariform
pits that maximized hydraulic conductivity (Wilson and Knoll, 2010; Wilson and Fischer, 2011;
Wilson, 2013, 2016). For some plants, this strategy was associated with perennially wet
habitats in which the danger of desiccation was limited, e.g., as for arborescent lycophytes and
other plants that inhabited tropical lowland swamps during the Carboniferous Period. For
other plants, this hydraulic mechanism was associated with an ecological strategy based on
rapid growth and generational overturn (known as ‘live fast, die young’), which possibly
included all of the zosterophyllophytes and basal euphylllophytes of the present study. For
example, Psilophyton dawsonii may have grown rapidly, as suggested by xylem with large pits
similar to that of some modern small ferns whose aerial vegetative structures rarely persist for
more than a year (Wilson, 2016). An additional factor in the high conductivity of early vascular
plants was high atmospheric CO$_2$ levels, which permitted smaller and less numerous stomata
(thus minimizing some types of cavitation hazards) and generally higher water-use efficiency
(Sperry, 2003).

It has been suggested that early land plants were mostly generalists, occupying a wide
range of habitats (Spicer, 1989; Meyer-Berthaud et al., 2003). However, the systematic
variation in $\Delta^{13}C_p$ among Devonian plant taxa observed in this study (Fig. 7), if due to environmental controls, implies that some early vascular land plants may have been more specific in their habitat preferences than previously thought. Wetter habitats may have been favored by most zosterophyllophytes, which typically had small, shallow root systems (Gensel et al., 2001; Xue, 2012). Sawdonia exhibits the relatively most ^{13}C-depleted compositions among the 12 study taxa (Fig. 7). It occupied a wide range of environments but was most common along the margins of interdistributary basins in lower delta plain settings (Griffing et al., 2000; Hotton et al., 2001; Kennedy et al., 2012). Sedimentologic investigations have not established for certain whether these basins were inundated mainly with brackish (Hotton et al., 2001) or fresh waters (Kennedy et al., 2012). The low $\Delta^{13}C_p$ compositions of Sawdonia documented in the present study are more consistent with fresh waters, because C$_3$ plants growing in coastal salt marshes or in areas of elevated groundwater salinity tend to become ^{13}C-enriched rather than ^{13}C-depleted (Brugnoli and Lauteri, 1991; Malamud-Roam and Ingram, 2001).

Drier habitats may have been occupied by some of the plant taxa examined in this study. In particular, Leclercqia, Haskinsia, and, to a lesser degree, Psilophyton exhibit ^{13}C-enriched compositions consistent with higher water-use efficiency (Fig. 7). This inference is supported by the anatomical features of these plants. The morphologies of Leclercqia and Haskinsia are similar to modern Lycopodium s.l., which often grows in seasonally dry habitats (Fernandez et al., 2008). In these taxa, densely crowded and overlapping leaves can create a boundary layer effect that is effective at minimizing water loss during gas exchange, and which is therefore favored in dry habitats. In addition, the leaves of Leclercqia and Haskinsia partially
enclosed the sporangia, protecting them from drying out (Meyer-Berthaud et al., 2003; Gensel and Kasper, 2005; Gensel and Albright, 2006). Certain features in *Psilophyton* may have adapted it to sunny, seasonally dry habitats, e.g., forked cylindrical lateral branchlets and a prominent outer cortex of axial fibers that provided mechanical support (possibly against wilting) and UV protection (via the high lignin content of fibrous cell walls) (Trant and Gensel, 1985; Gerrienne, 1995, 1997). These 13C-enriched taxa may have grown where soils were better drained, e.g., on river levees or in upper floodplain settings that were further inland and somewhat drier than coastal environments, as proposed for *Psilophyton* (Hotton et al., 2001).

In areas of limited precipitation, increases in soil salinity can exert a strong influence on δ^{13}C$_{p}$. Experimental and in-situ studies of modern C$_{3}$ plants have shown that δ^{13}C$_{p}$ increases by 2-5 ‰ with rising soil salinity (Brugnoli and Lauteri, 1991; Poss et al., 2000; Winter and Holtum, 2005). A similar effect is observed in coastal salt marshes, where the δ^{13}C$_{p}$ of C$_{3}$ marsh plants increases by several per mille with rising watermass salinity (Malamud-Roam and Ingram, 2001; Cloern et al., 2002). This effect is linked to the need to conserve water in more saline environments, leading to reduced stomatal conductance and photosynthetic fractionation and, thus, higher δ^{13}C$_{p}$ values (Farquhar et al., 1989; Brugnoli and Lauteri, 1991; Poss et al., 2000).

However, there is no evidence that any early vascular land plant grew in saline soils or brackish-water environments (Kennedy et al., 2012), and our results are consistent with this inference. The apparent water-use efficiencies of our fossil plant taxa suggested by their Δ^{13}C$_{p}$ values (Fig. 7) correspond well with predictions of habitat preference based on paleoecological analyses (see Section 5.4). Further carbon isotopic study of early vascular land plants may prove invaluable in helping to define their habitat preferences.
5.3.2. Forest understory δ^{13}C gradient

A second environmental factor that can lead to systematic differences in δ^{13}C values between plant taxa is vertical δ^{13}C$_{CO_2}$ variation in the forest understory atmosphere. Forests are characterized by a higher rate of soil respiration than most other vegetation biomes (Raich and Tufekciogul, 2000), as well as by more limited airmass exchange than in open landscapes owing to the sheltering effects of a closed canopy (Feigenwinter et al., 2004). This combination of factors results in elevated pCO$_2$ in the forest understory atmosphere along with a significant vertical δ^{13}C$_{CO_2}$ gradient (Jackson et al., 1993). At 0.5 m above the forest floor, up to ~20 % of CO$_2$ is soil-derived (Da Silveira et al., 1989), exposing low-growing plants to strongly 13C-depleted (~28 to ~25 ‰) soil-respired CO$_2$ (Farquhar et al., 1989; Jackson et al., 1993). As a consequence, CO$_2$ in the forest understory atmosphere may be up to ~3-5 ‰ depleted relative to CO$_2$ in the open atmosphere, and this isotopic signature can be transferred to understory plants (Schleser and Jayasekera, 1985; Flanagan et al., 1996). In modern forests, >50 % of δ^{13}C variance in understory plants is linked to local variations in δ^{13}C$_{CO_2}$ (Da Silveira et al., 1989).

'Canopy effects' are unlikely to have played any role in the intergeneric differences in Δ^{13}C$_p$ of the present study. The largest differences in Δ^{13}C$_p$ values are seen among Early and early Middle Devonian plants that existed prior to the first forests (Fig. 6). These early plants grew in patchy floral communities consisting largely of clonal vegetation whose shoots would have lacked any capacity to limit airmass exchange (Gensel and Edwards, 2001; Edwards and Richardson, 2004), and whose limited productivity did not generate high excess soil pCO$_2$ (Mora et al., 1996; Elick et al., 1998). The appearance of the first forests during the late Givetian to
early Frasnian (Decomeix et al., 2011; Stein et al., 2012; Berry and Marshall, 2015), an event known as ‘afforestation’ (Scheckler, 2001), resulted in denser floral communities with closed canopies formed by large leafy trees that, for the first time, would have generated understory niches with varying environmental characteristics. In our dataset, the only co-existing Late Devonian taxa that have the potential to exhibit $\Delta^{13}C_p$ differences due to a ‘canopy effect’ are Archaeopteris, a canopy tree, and Rhacophyton, a much smaller woody bush (Fig. 1). However, Rhacophyton yields $\Delta^{13}C_p$ values that are on average ~1.5 ‰ heavier than those of Archaeopteris (Fig. 6), which is the opposite of the pattern expected for canopy-versus-understory plants. We infer that the higher $\Delta^{13}C_p$ values of Rhacophyton are more likely due to its preference for dry habitats, leading to enhanced water-use efficiency (see Section 5.3.1).

5.4. Relationship of $\delta^{13}C$ to habitat preferences of early vascular plants

Although it has been proposed that early land plants were mostly generalists (Spicer, 1989; Meyer-Berthaud et al., 2003), the carbon-isotopic evidence of the present study suggests that Devonian and Early Carboniferous plant taxa varied considerably in their habitat preferences. Systematic interspecific differences in $\Delta^{13}C_p$ among the 12 taxa examined (Fig. 7) were probably controlled mainly by water-use efficiency, related to humidity levels at their sites of growth (see Section 5.3.1). To illustrate inferred differences in habitat, we have generated reconstructions of Early, Middle, and Late Devonian terrestrial ecosystems (Fig. 8A-C). These reconstructions focus on the distributions of the 12 plant genera of the present study, with the spatial distribution of each taxon shown to conform to its relative water-use efficiency as inferred from taxon-specific differences in $\Delta^{13}C_p$.
Our reconstructions of Devonian land-plant habitats were informed by the findings of earlier studies of terrestrial ecosystems. One consideration in habitat reconstruction is the in-situ versus transported character of land plant fossils. Most plant fossils have been transported prior to final deposition and burial (e.g., Pratt and van Heerde, 2017), although fossils that consist of intact stems and leaves and are well-preserved suggest limited transport distances (Hotton et al., 2001; Allen and Gastaldo, 2006; Kennedy et al., 2012; Gastaldo, 2016). Nearly all of the fossil plant specimens of the present study are well-preserved and relatively intact, often consisting of complete stems, twigs or leaves, and more rarely of dense intertangled mats of vegetation. Thus, it is unlikely that they were transported long distances prior to burial (cf. Berry and Edwards, 1996; Gastaldo, 2016; Pratt and van Heerde, 2017). Such fossils are considered to be 'parautochthonous', i.e., transported to only a limited degree and thus useful for environmental interpretations of their growth habitat (Hotton et al., 2001; Allen and Gastaldo, 2006; Kennedy et al., 2012).

During the Early to Middle Devonian, land plants were concentrated in coastal delta and lower floodplain habitats (Hotton et al., 2001). From the Middle Devonian, land plants began to penetrate more deeply into continental interiors and increasingly occupied upper floodplain settings (Algeo et al., 1995; Berry et al., 2000; Berry and Fairon-Demaret, 2001; Cressler et al., 2010; Retallack and Huang, 2011). However, the upland regions of continental interiors remained mostly devoid of vegetation until the advent of seed plants in the latest Devonian to Early Carboniferous (Algeo and Scheckler, 1998; Decombeix et al., 2011). Early to Middle Devonian plants appear to exhibit a wider range of $\Delta \delta^{13}C_p$ variation than Late Devonian to Early Carboniferous plants. This pattern may reflect greater environmental variation in Early-Middle
Devonian terrestrial habitats. During this early stage of landscape colonization, higher land plants had probably densely colonized some areas (e.g., delta plains) and sparsely colonized others (e.g., upland floodplains), while leaving broad continental interiors largely unvegetated. As a consequence of this mosaic floral distribution, land areas may have exhibited substantial spatial variation in environmental characteristics (e.g., humidity, soil development, albedo, etc.) (cf. Edwards and Richardson, 2004).

Early Devonian terrestrial ecosystems (Fig. 8A) have been analyzed in studies of the Emsian-age Battery Point Formation on the Gaspé Peninsula of Québec and the Campbellton Formation in New Brunswick. Facies A of the Cap-aux-Os Member of the Battery Point Formation contains unimodal paleocurrent indicators in coastal delta-plain facies that have been interpreted as crevasse splay or storm washover deposits (Hotton et al., 2001). The most common taxon in this setting is Sawdonia, which is inferred to have lived close to the shoreline on the margins of interdistributary basins that were subject to frequent flooding. Hotton et al. (2001) inferred that flooding events introduced brackish or marine waters, but Kennedy et al. (2012) inferred that similar occurrences of Sawdonia in the Campbellton Formation existed in fully freshwater habitats. Facies B of the Cap-aux-Os Member represents prograding fluvial channel deposits, hence mainly freshwater conditions, although some of the sandstones contain asymmetric bimodal cross-bedding indicative of tidal influence (Hotton et al., 2001). This facies contains abundant Pertica and Drepanophycus (as well as other taxa not analyzed in this study) that are thought to have grown along lower floodplain channel margins, whereas Psilophyton was inferred to have occupied an equivalent habitat somewhat further upstream. Similar assemblages containing Pertica, Drepanophycus, Psilophyton, and Leclercqia have been
reported from coastal delta plain and freshwater fluvial deposits of the Campbellton Formation in New Brunswick (Kennedy et al., 2012) and the Trout Valley Formation of Maine (Allen and Gastaldo, 2006).

Early Devonian vascular plants were dominantly ground-hugging rhizomatous lycophytes (Sawdonia, Drepanophycus, Leclercqia, Haskinsia) and shrubby trimerophytes (Psilophyton, Pertica), mostly with heights of <1 m (Fig. 1B; Algeo and Scheckler, 1998). Many Early Devonian plants grew in dense monospecific stands, facilitated by predominantly rhizomatous growth strategies, allowing local resource domination (Fig. 8A; DiMichele and Hook, 1992; Xue, 2012). However, mixtures of plant fossil debris in many formations imply that such patchiness was relatively local, and that there was considerable taxonomic heterogeneity in Early Devonian landscapes at a slightly larger spatial scale (Allen and Gastaldo, 2006; Cressler et al., 2010; Gastaldo, 2016). This pattern may reflect habitat specialization ('floral partitioning') on the basis of environmental variability in soil moisture, nutrient levels, or environmental characteristics such as frequency of flooding or other disturbances (Allen and Gastaldo, 2006; Greb et al., 2006).

By the late Middle Devonian (Givetian; Fig. 8B), the development of secondary supporting tissues resulted in an increase in average plant heights and the development of the earliest forests in coastal wetland regions (DiMichele and Hook, 1992; Greb et al., 2006; Mintz et al., 2010; Stein et al., 2012; Berry and Marshall, 2015). Shrubby stands of aneurophytalean progymnosperms, lycopsids, cladoxylopsids, and zosterophyllophytes were widespread in lowland areas (Fig. 8B; Berry and Fairon-Demaret, 2001; Xue et al., 2018). Early forests consisted of the cladoxylopsid tree Eospermatoperis with an understory flora that included
lycopsids and aneurophtalean progymnosperm shrubs such as *Tetraxylopteris* (Driese et al., 1997; Stein et al., 2007, 2012; Mintz et al., 2010; Xu et al., 2017). The rapid global spread of forests may have been linked to archaeopteridalean progymnosperm trees with laminate leaves and deep root systems. The appearance of early members of this clade in the early Givetian is signaled by the microspore *Geminospora lemurata* and the megaspore *Contagisporites optivus* (Marshall, 1996; Turnau, 2014), and their widespread presence in mid to late Givetian landscapes is attested by specimens of *Svalbardia* or proto-*Archaeopteris* (Berry, 2008).

Late Devonian landscapes were dominated by dense monospecific stands of *Archaeopteris*, with *Rhacophyton* and other shrubby plants either occupying open terrain or present as understory elements in forests (Fig. 8C). Archaeopterid progymnosperms formed extensive forests in both lower and upper floodplain environments (Scheckler, 1986a; Beck and Wight, 1988; Meyer-Berthaud et al., 1999), and *Archaeopteris* is thought to have generally favored dry riparian habitats (Cressler, 1999, 2006; Retallack and Huang, 2011). *Rhacophyton* grew as a bushy understory plant in forests subject to frequent ground fires (Cressler, 2001, 2006), although it also flourished in peat wetlands (Greb et al., 2006). The earliest known seed plants became established in the mid-Famennian as small bushy colonizers in disturbed habitats, but they did not become important members of terrestrial ecosystems until the Carboniferous (Scheckler, 1986b; Streel et al., 2000; Decombeix et al., 2011).

5.5. Middle/Late Devonian floral turnover
Floral turnovers were a regular feature of early Devonian plant communities owing to the rapid pace of evolutionary innovation at that time (Cascales-Miñana et al., 2010). The rhyniophytes, which, as the earliest tracheophyte clade, were morphologically simple, peaked in dominance during the Late Silurian and earliest Devonian (Lochkovian). By the Early Devonian, the zosterophyllophytes had evolved lateral sporangia, pseudomonopodial branching, and a rhizomatous habit, establishing them as the most morphologically complex, diverse, and abundant clade (Gensel, 1992; Edwards and Richardson, 2004; Cascales-Miñana and Meyer-Berthaud, 2015). They peaked during the mid to late Early Devonian (Pragian-Emsian) but gradually declined as lycophytes and basal euphyllophytes gained in importance during the early Middle Devonian (Eifelian) (Hao and Xue, 2013b; Cascales-Miñana and Meyer-Berthaud, 2015). Among other innovations, basal euphyllophytes developed planate or laminate lateral branched systems resembling proto-leaves (Gerrienne et al., 2014). The turnovers among these clades appear to have been competitive replacements that were not clearly linked to any specific climatic or tectonic event (Cascales-Miñana and Meyer-Berthaud, 2015).

The Givetian/Frasnian (Middle/Late Devonian) transition appears to mark another major floral turnover (Raymond and Metz, 1995; Silvestro et al., 2015). During this event, primitive spore-bearing plants such as zosterophyllophytes experienced high extinction rates (Cascales-Miñana and Meyer-Berthaud, 2014) and euphyllophytes, including both lignophytes and non-lignophytes, underwent a major diversification (Xue et al., 2018). Among the taxa of the present study, the euphyllophytes Psilophyton and Pertica declined in the Emsian-Eifelian, and the zosterophyllophytes and lycopsids Drepanophycus, Sawdonia, Leclercqia, and Haskinsia...
declined in the Givetian (Fig. 2). Although some of these taxa (e.g., *Drepanophycus*) persisted through the Famennian, their relative importance in the Late Devonian was greatly reduced. This floral turnover is even more apparent in palynomorph assemblages, which exhibit a sharp decline in diversity and rapid turnover at the Middle/Late Givetian boundary across Russia and eastern Europe and, to a lesser degree, in France, although it has not reported to date from North America (*Obukhovskaya, 2000; Turnau, 2014*).

One important aspect of the Givetian-Frasnian floral turnover was the appearance and diversification of arborescent (tree-sized) lycophytes and lignophytes (*Wang et al., 2005; Galtier and Meyer-Berthaud, 2006; Meyer-Berthaud et al., 2010; Decombeix et al., 2011*). In this study, the Givetian/Frasnian transition is marked by short-lived arborescent taxa such as *Wattieza* and *Tetraxylopteris*, after which longer-ranging arborescent taxa such as *Archaeopteris* became dominant in the Late Devonian (Fig. 2). The evolutionary development of trees led directly to the first forests, which were of Givetian (late Middle Devonian) to earliest Frasnian (early Late Devonian) age. They were dominated by tree-sized pseudosporochnalean cladoxylopsids such as *Wattiezia/Eospermatoperis* with an understory that included aneurophytaleans such as *Tetraxylopteris*, as well as possibly herbaceous and arborescent lycopsids (*Driese et al., 1997; Stein et al., 2007, 2012; Mintz et al., 2010*). The known distribution of pseudosporochnalean forests is mostly limited to the Euramerican continental block, but they were succeeded by archaeopterid-dominated forests on all continents during the later Frasnian to Famennian (*Scheckler, 1986a, 2001*). The advent of forests probably generated selective pressures on terrestrial plants either to evolve larger size or to adapt to a shaded understory. The near-simultaneous appearance of woody supporting tissues and tree-sized stature among
arborescent lycophytes, sphenopsids, and lignophytes may imply the first strategy (Mosbrugger, 1990; Meyer-Berthaud et al., 2010). Less certain, due to difficulties in sampling, is what might be inferred about plant evolution in the understory. Nevertheless, the spread of forests likely had multifaceted, profound and irreversible consequences for both terrestrial floral communities and global climate conditions.

6. Conclusions

Carbon-isotopic variation among 12 genera of Devonian-Early Carboniferous vascular land plants provides insights into their habitat preferences and water-use efficiencies. A total of 309 analyses of 190 unique specimens yielded $\delta^{13}C_p$ values ranging from $-20.3\,\%\text{ o}$ to $-30.5\,\%\text{ o}$ with a mean of $-25.5\,\%\text{ o}$, similar to the range and mean of $\delta^{13}C$ values for modern C_3 land plants. *Sawdonia* yielded the most ^{13}C-depleted values (mean $-27.1\pm1.7\,\%\text{ o}; n = 28$), reflecting lower water-use efficiency that was probably related to growth in wetter habitats such as lower delta plains. Because salt-marsh vegetation is typically ^{13}C-enriched, the strongly ^{13}C-depleted composition of *Sawdonia* is suggestive of growth in freshwater habitats. In contrast, *Leclercqia*, *Haskinsia*, and *Psilophyton* yielded relatively ^{13}C-enriched values (means $-23.0\pm1.6\,\%\text{ o}$, $-22.3\pm1.3\,\%\text{ o}$, and $-24.8\pm1.6\,\%\text{ o}$, respectively), reflecting higher water-use efficiency related to growth in drier habitats such as upper floodplains. This inference is supported by anatomical adaptations to drier conditions exhibited by these taxa, e.g., related to leaf arrangement and structure. A large majority of our specimens (>90 %) are from the Appalachian Basin of eastern North America, precluding effective assessment of large-scale geographic patterns of carbon-isotopic variation in these fossil plant taxa. This study
demonstrates that investigations of the carbon-isotopic composition of well-preserved plant
fossils have the potential to yield insights regarding habitat preferences and ecosystem
structure in paleofloral communities.

Acknowledgments

Thanks to the Peabody Museum of Yale University, the State Museum of New York, and
the Smithsonian Institution for access to their paleobotanical collections. ZZW thanks Xinda Hu,
Teng Teng, and N. Doug Rowe for field assistance. This study was supported by graduate
research grants to ZZW from the American Association of Petroleum Geologists, the Geological
Society of America, the Paleontological Society, the Society for Sedimentary Geology, and the
University of Cincinnati Research Council.

References

between the evolution of land plants, weathering processes, and marine anoxic events.
Phil. Trans. Royal Society (B) 353, 113-130.

events and biotic crises: “rooted” in the evolution of vascular land plants? GSA Today 5(3),
45 & 64-66.

weathering processes and global chemical fluxes during the Middle and Late Devonian. In:

Banks, H.P., Leclercq, S.M, Hueber, F.M., 1975. Anatomy and morphology of *Psilophyton dawsoni*, sp. n. from the Late Lower Devonian of Quebec (Gaspé) and Ontario, Canada. Palaeontogr. Amer. 8(48), 77-127.

Invade the Land: Evolutionary and Environmental Perspectives, Columbia Univ. Press, New York, pp. 179-212.

Leclercq, S., Banks, H.P., 1962. *Pseudosporochnus nodosus* sp. nov., a Middle Devonian plant with cladoxylalean affinities. Palaeontographica (B) 110, 1-34.

Repetski, J.E., Ryder, R.T., Weary, D.J., Harris A.G., Trippi, M.H., 2008. Thermal maturity patterns (CAI and %R₀) in Upper Ordovician and Devonian rocks of the Appalachian Basin:

Tables

Table 1. Summary of carbon isotope analyses by taxon and plant part

Table 2. Mean differences in $\Delta^{13}C_p$ by taxon

Table 3. Differences in $\delta^{13}C_p$ between anatomical parts of individual specimens

Table S1. Stable carbon isotope compositions of Devonian-Carboniferous fossil plant specimens
Table 1. Summary of carbon isotope analyses by taxon and plant part

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Number of specimens</th>
<th>Number of carbon isotope analyses</th>
<th>Mean $\delta^{13}C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archaeopteris</td>
<td>51</td>
<td>36</td>
<td>17</td>
</tr>
<tr>
<td>Drepanophycus</td>
<td>21</td>
<td>23</td>
<td>7</td>
</tr>
<tr>
<td>Genselia</td>
<td>9</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Haskinsia</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Leclercqia</td>
<td>13</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Pertica</td>
<td>11</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Wattieza</td>
<td>8</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Rhacophyton</td>
<td>18</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>Rhodeopteridium</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sawdonia</td>
<td>14</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td>Tetraxylopteris</td>
<td>21</td>
<td>19</td>
<td>2</td>
</tr>
</tbody>
</table>

| Total / Average | 190 | 168 | 25 | 14 | 102 | 309 | -25.30 | -25.18 | -25.62 | -25.87 | -25.50 |

Notes: Indet. = indeterminate. Avg. = average (of stem + leaf + spine + indet. mean values).
Table 2. Mean differences in Δ^{13}C$_p$ by taxon

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Number of analyses</th>
<th>mean (‰)</th>
<th>st. dev. (‰)</th>
<th>s.e. (‰)</th>
<th>Student's t</th>
<th>p(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archaeopteris</td>
<td>80</td>
<td>-0.38</td>
<td>1.18</td>
<td>0.13</td>
<td>3.05</td>
<td>0.002</td>
</tr>
<tr>
<td>Drepanophycus</td>
<td>40</td>
<td>-0.26</td>
<td>1.08</td>
<td>0.17</td>
<td>1.32</td>
<td>0.189</td>
</tr>
<tr>
<td>Genselia</td>
<td>10</td>
<td>0.37</td>
<td>1.12</td>
<td>0.36</td>
<td>0.69</td>
<td>0.492</td>
</tr>
<tr>
<td>Haskinsia</td>
<td>4</td>
<td>2.41</td>
<td>1.48</td>
<td>0.74</td>
<td>3.31</td>
<td>0.001</td>
</tr>
<tr>
<td>Leclercia</td>
<td>24</td>
<td>1.81</td>
<td>1.02</td>
<td>0.21</td>
<td>6.57</td>
<td>0.001</td>
</tr>
<tr>
<td>Pertica</td>
<td>20</td>
<td>0.40</td>
<td>0.56</td>
<td>0.12</td>
<td>1.06</td>
<td>0.292</td>
</tr>
<tr>
<td>Wattieza</td>
<td>11</td>
<td>-0.51</td>
<td>0.49</td>
<td>0.15</td>
<td>1.28</td>
<td>0.201</td>
</tr>
<tr>
<td>Psilophyton</td>
<td>25</td>
<td>0.94</td>
<td>1.55</td>
<td>0.31</td>
<td>3.22</td>
<td>0.001</td>
</tr>
<tr>
<td>Rhacophyton</td>
<td>33</td>
<td>0.23</td>
<td>1.32</td>
<td>0.23</td>
<td>0.65</td>
<td>0.517</td>
</tr>
<tr>
<td>Rhodeopteridium</td>
<td>3</td>
<td>0.41</td>
<td>0.89</td>
<td>0.51</td>
<td>0.42</td>
<td>0.677</td>
</tr>
<tr>
<td>Sawdonia</td>
<td>28</td>
<td>-1.22</td>
<td>1.81</td>
<td>0.34</td>
<td>5.02</td>
<td>0.001</td>
</tr>
<tr>
<td>Tetraxylopteris</td>
<td>31</td>
<td>-0.05</td>
<td>1.35</td>
<td>0.24</td>
<td>0.37</td>
<td>0.714</td>
</tr>
</tbody>
</table>

Notes: bold type denotes significant values (= p(α) < 0.05); st. dev. = standard deviation; s.e. = standard error of the mean. Statistical software from Zaiontz (2014).
Table 3. Differences in $\delta^{13}C_p$ between anatomical parts of individual specimens

<table>
<thead>
<tr>
<th>No. of pairs</th>
<th>Stem $\delta^{13}C$ (%)</th>
<th>Leaf/spine $\delta^{13}C$ (%)</th>
<th>Difference $\Delta^{13}C$ (%)</th>
<th>s.e. $\delta^{13}C$ (%)</th>
<th>Student’s t</th>
<th>p(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archaeopteris</td>
<td>13</td>
<td>-0.08</td>
<td>0.33</td>
<td>0.42</td>
<td>0.20</td>
<td>1.54</td>
</tr>
<tr>
<td>Drepanophycus</td>
<td>6</td>
<td>-0.81</td>
<td>-0.12</td>
<td>0.69</td>
<td>0.30</td>
<td>1.15</td>
</tr>
<tr>
<td>Leclerqcia</td>
<td>3</td>
<td>1.75</td>
<td>1.96</td>
<td>0.21</td>
<td>0.22</td>
<td>0.45</td>
</tr>
<tr>
<td>Rhacophyton</td>
<td>4</td>
<td>0.51</td>
<td>0.05</td>
<td>-0.46</td>
<td>0.23</td>
<td>1.54</td>
</tr>
<tr>
<td>Sawdonia</td>
<td>4</td>
<td>-2.77</td>
<td>-1.22</td>
<td>1.56</td>
<td>0.21</td>
<td>2.85</td>
</tr>
<tr>
<td>Tetraxylopteris</td>
<td>2</td>
<td>0.10</td>
<td>-0.06</td>
<td>-0.16</td>
<td>0.13</td>
<td>1.25</td>
</tr>
<tr>
<td>Total</td>
<td>32</td>
<td>-0.30</td>
<td>0.15</td>
<td>0.45</td>
<td>0.14</td>
<td>2.64</td>
</tr>
</tbody>
</table>

Notes: bold type denotes significant values ($=$p(α) < 0.05); s.e. = standard error of the mean.
Figure 1. Devonian plant taxa of the present study: (A) phylogenetic relationships, and (B) morphological reconstructions. Reconstructions show full shoot system of plant except for *Tetraxylopteris* (lateral branch); open scale bars equal 10 cm and hachured scale bars equal 1 m. Sources: (A) Kenrick and Crane (1997), Hilton and Bateman (2006), and Taylor et al. (2009); (B) Sawdonia http://www.ucmp.berkeley.edu/IB181/VPL/Lyco/Lyco1.html, *Drepanophycus* (Stewart and Rothwell, 1993), *Leclercqia* (Bonamo et al., 1988), *Haskinsia* http://dinoera.com/tags/haskinsia, *Psilophyton* https://openclipart.org/detail/231687/psilophyton-princeps, *Pertica* (Kasper and Andrews, 1972), *Wattieza* (Stein et al., 2007) [note: reconstructions of European *Pseudosporochnus* are slightly different, e.g., Berry and Fairon-Demaret, 2002], *Rhacophyton* (Cornet et al., 1977), *Rhodeopteridium* (Jennings, 1976), *Tetraxylopteris* (Bonamo and Banks, 1967), *Archaeopteris* www.devoniantimes.org, and *Genselia* (Knaus, 1995).

Figure 2. Stratigraphic ages of fossil plant locales and ranges of fossil plant taxa used in this study. Marine conodont and terrestrial palynomorph zonations are from Richardson and McGregor (1986), Ziegler and Sandberg (1990), Streel et al. (2000), and Playford and Dino (2005); the timescale is from Gradstein et al. (2012). Locales: Gaspe Peninsula, Quebec, 1 = Haldimand Head, 2 = Aiguillon, Cap-aux-Os, and L'Anse-a-brilliant, and 3 = Seal Rock; New Brunswick, 1 = south shore Chaleur Bay (localities A, B, F), Dalhousie, Pin Sec Point, and
Peuplier Point, and 2 = Atholville and Restigouche; Hujiersite Fm (Xinjiang, China), 1 =
Gannaren, 2 = Hwy 217, 3 = 251 Hill, and 4 = Hujiersite. Specimens of the Oneonta,
Sonyea, Escuminac, and Pocono formations (italicized) are from multiple locales, but all fall
within the narrow age ranges shown for each unit. For plant taxa, solid bars indicate peak
abundance, open bars the full established biorange, and dashed bars uncertain extensions
of the biorange.

Figure 3. Geographic distribution of fossil plant locales, shown on Late Devonian
paleogeographic maps of (A) the world and (B) the Appalachian Basin. (A) Inset rectangle
represents area of map B; abbreviations: A = Alberta, G = Germany, O = Ontario, V =
Venezuela, X = Xinjiang, and Y = Yunnan; base map courtesy of Ron Blakey (Deep-Time
Maps). Note that Laurentia (Paleozoic North America) was rotated ~30˚ clockwise relative
to its present-day orientation (van der Voo, 1988, 1993). (B) Main fossil plant locales in
Appalachian Basin; site names are positioned either directly above or below site locales
(black dots); county names are given where multiple locales are within a small area. Dark
brown field shows approximate area of basinward progradation of shoreline from the Early
to the Late Devonian. N = present-day north; N\text{D} = Devonian north.

Figure 4. Representative study specimens: (A) *Psilophyton forbesii* stems and leaves, Emsian,
Gaspé Peninsula, Québec; (B) *Archaeopteris* sp. stems and leaves, Frasnian, West Virginia;
(C) tracheids of *Psilophyton charientos*, Emsian, New Brunswick; (D) cuticle of *Sawdonia* sp.,
Emsian, Gaspé Peninsula, Québec. All specimens were inspected using a binocular scope to
verify the state of fossil preservation, and a subset was examined using scanning electron microscopy.

Figure 5. Model of $\Delta \delta^{13}\text{C}_p\alpha$ calculations. Relative to the LOWESS curve generated from the full plant $\delta^{13}\text{C}$ dataset, some fossil plant taxa exhibit systematically higher or lower $\delta^{13}\text{C}$ values. In this example, Taxon A exhibits higher-than-average $\delta^{13}\text{C}$ (positive $\Delta \delta^{13}\text{C}_p\alpha$), Taxon B exhibits average $\delta^{13}\text{C}$ (near-zero $\Delta \delta^{13}\text{C}_p\alpha$), and Taxon C exhibits lower-than-average $\delta^{13}\text{C}$ (negative $\Delta \delta^{13}\text{C}_p\alpha$). The complete LOWESS curve for the $\delta^{13}\text{C}_p$ dataset will be published in a companion study (Algeo et al., in preparation).

Figure 6. Deviations of $\delta^{13}\text{C}$ of Devonian fossil plant specimens from the LOWESS reference curve ($\Delta \delta^{13}\text{C}_p\alpha$) plotted as a function of specimen age. For each genus, the regression of $\Delta \delta^{13}\text{C}_p\alpha$ against time is shown as a thin line; these regression lines are shown not to suggest that the $\Delta \delta^{13}\text{C}_p\alpha$ of a given taxon changes significantly with time (for most taxa, there is not enough data to generate a statistically significant time-dependent trend) but, rather, to show which taxa yield $\Delta \delta^{13}\text{C}_p\alpha$ values that are systematically higher or lower than the age-specific mean $\Delta \delta^{13}\text{C}_p\alpha$ values (0 ‰). Note that some taxa are systematically ^{13}C-enriched and others are systematically ^{13}C-depleted.

Figure 7. Deviations of $\delta^{13}\text{C}$ of Devonian fossil plants from the LOWESS reference curve ($\Delta \delta^{13}\text{C}_p\alpha$) by taxon. Open circles represent individual C-isotope analyses; red diamond, open rectangle, and horizontal bar represent the mean, standard error of the mean, and
standard deviation range, respectively, for each taxon. The dashed vertical line represents no offset from the LOWESS trend, and the yellow field represents +/-1 standard deviation for the dataset as a whole. Note that some taxa are systematically 13C-enriched and others are systematically 13C-depleted.

Figure 8. Reconstructions of the ecological distribution of the 10 Devonian vascular land plant taxa of the present study: (A) Early Devonian (Emsian), (B) Middle Devonian (Givetian), and (C) Late Devonian (late Frasnian-early Famennian). Note that actual Devonian landscapes included other vascular and non-vascular plant taxa not shown here; these reconstructions are intended to show only the relative habitat preferences of the 10 Devonian taxa of the present study. Note further that the proposed paleo-environmental distributions of these taxa shown here are consistent with, but not proven by, the available isotopic data, and that alternative models are possible. Further study of Devonian fossil plant taxa will be needed to accurately constrain their actual habitat preferences.
Figure 1

Phylogenetic relationships among fossil plant taxa of this study.
Figure 3
Figure 5
Figure 6
Figure 7