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Abstract

Mental and neuro-developmental disorders such as depression, bipolar disorder,
and autism spectrum disorder (ASD) are critical healthcare issues which
affect a large number of people. Depression, according to the World Health
Organisation, is the largest cause of disability worldwide and affects more than
300 million people. Bipolar disorder affects more than 60 million individuals
worldwide. ASD, meanwhile, affects more than 1 in 100 people in the UK. Not
only do these disorders adversely affect the quality of life of affected individuals,
they also have a significant economic impact.

While brute-force approaches are potentially useful for learning new features
which could be representative of these disorders, such approaches may not be
best suited for developing robust screening methods. This is due to a myriad
of confounding factors, such as the age, gender, cultural background, and
socio-economic status, which can affect social signals of individuals in a similar
way as the symptoms of these disorders. Brute-force approaches may learn to
exploit effects of these confounding factors on social signals in place of effects
due to mental and neuro-developmental disorders.

The main objective of this thesis is to develop, investigate, and propose
computational methods to screen for mental and neuro-developmental disorders
in accordance with descriptions given in the Diagnostic and Statistical Manual
(DSM). The DSM manual is a guidebook published by the American Psychiatric
Association which offers common language on mental disorders. Our motivation
is to alleviate, to an extent, the possibility of machine learning algorithms
picking up one of the confounding factors to optimise performance for the
dataset — something which we do not find uncommon in research literature.

To this end, we introduce three new methods for automated screening
for depression from audio/visual recordings, namely: turbulence features,
craniofacial movement features, and Fisher Vector based representation of
speech spectra. We surmise that psychomotor changes due to depression lead
to uniqueness in an individual’s speech pattern which manifest as sudden and
erratic changes in speech feature contours. The efficacy of these features is
demonstrated as part of our solution to Audio/Visual Emotion Challenge 2017
(AVEC 2017) on Depression severity prediction. We also detail a methodology
to quantify specific craniofacial movements, which we hypothesised could be
indicative of psychomotor retardation, and hence depression. The efficacy of
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craniofacial movement features is demonstrated using datasets from the 2014
and 2017 editions of AVEC Depression severity prediction challenges. Finally,
using the dataset provided as part of AVEC 2016 Depression classification
challenge, we demonstrate that differences between speech of individuals with
and without depression can be quantified effectively using the Fisher Vector
representation of speech spectra.

For our work on automated screening of bipolar disorder, we propose
methods to classify individuals with bipolar disorder into states of remission,
hypo-mania, and mania. Here, we surmise that like depression, individuals
with different levels of mania have certain uniqueness to their social signals.
Based on this understanding, we propose the use of turbulence features for
audio/visual social signals (i.e. speech and facial expressions). We also propose
the use of Fisher Vectors to create a unified representation of speech in terms of
prosody, voice quality, and speech spectra. These methods have been proposed
as part of our solution to the AVEC 2018 Bipolar disorder challenge.

In addition, we find that the task of automated screening for ASD is much
more complicated. Here, confounding factors can easily overwhelm socials
signals which are affected by ASD. We discuss, in the light of research literature
and our experimental analysis, that significant collaborative work is required
between computer scientists and clinicians to discern social signals which are
robust to common confounding factors.
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Chapter 1

Introduction

In this chapter, we provide a gentle introduction to the field of Social Signal
Processing (SSP) and briefly discuss its generic process flow diagram which
can be followed to develop automated screening methods. We then summarise
some of the outstanding challenges in the field and our motivation for pursuing
research in social signal processing. We follow this by listing the contributions
of our work and finish the chapter by presenting the outline for the rest of this
thesis.

1.1 Social Signal Processing and Automated
Screening

SSP is a relatively new research and technological domain which deals with
automated extraction and processing of social signals with the aim to provide
social intelligence to computers [3]. It is unique in the sense that it overlaps
multiple disciplines such as computer science, engineering, and human sciences.
SSP finds applications in augmented reality, gaming, marketing, and healthcare
amongst many more, however, our focus in this thesis will be on the application
of SSP in healthcare.

As the name suggests, SSP focuses on social signals exhibited by human
beings. Let us therefore formally introduce social signals. Vinciarelli et al., who
are credited with coining the term social signal processing, define a social signal
as ‘a communicative or informative signal that, either directly or indirectly,
provides information about social facts, namely social interactions, social
emotions, social attitudes, or social relations’ [3,4]. A social interaction is based
on exchange of communicative and informative signals. A communicative signal
is the one in which a person tries to convey to another, where as an informative
signal is one which is actually conveyed. According to Vinciarelli et al., social
interactions are most meaningful when communicative and informative signals
convey identical information. As we shall discuss later in this thesis, individuals
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Figure 1.1: Generic process flow in social signal processing

who suffer from mental and neuro-developmental disorders often lack the ability
to have meaningful social interactions since their social signals are impaired.

In its most generic form, SSP consists of the following set of procedures [5]:
data acquisition, person detection, behavioural cues extraction, and social
interaction interpretation, as illustrated in Figure 1.1. Here, the first two
blocks are mostly concerned with computer science and engineering, whereas
the last two require integration of knowledge from human sciences as well.

Data acquisition is the process of acquiring social signals which represent
the social interaction between subject(s) and can be gathered using cameras,
microphones, and wearable devices. Person detection is the process of discrimi-
nating between the intended subjects from the clutter within the acquired data.
This requires the use of algorithms for facial recognition, speaker identification,
tracking, and noise cancellation amongst others.

While the step of person detection enables one to collect data from the
intended subject, one is often required to extract/compute relevant social
signals for the task at hand. Here, background knowledge is often required
from the field of human science so that only relevant social signals are extracted
and stored for further processing. Some examples of most commonly used
social signals include facial expressions, speech prosody, head movement, body
posture, and hand gestures. Using these, many aspects of human behaviour can
be inferred [4–6]. In a computational framework, one typically applies signal
processing algorithms on raw data to extract these social signals. The final step
is to train machine learning models for linking the extracted behavioural cues
with meaningful interpretations from human sciences. For example, consider
the task of emotion recognition where one can use background knowledge from
Ekman’s work on basic human emotions [7] to link facial expressions with
emotions of anger, happiness, sadness, or surprise [8].

When SSP methods are used to identify behavioural symptoms of health
related issues, the application of SSP falls into the category of automated screen-
ing methods. Unsurprisingly, SSP has quickly gained interest and recognition
amongst researchers working in the fields of computer science, engineering, and
human sciences especially for development of automated screening methods.
In fact, from 2013 through 2017, annual competitions were organised for auto-
mated screening of depression using the platform of European Social Signal
Processing Network (SSPNet) [9–14].

While the term SSP was popularised through SSPNet, especially by means
of annual competitions under the umbrella of SSPNet, we note that this field
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also exists under the name of Affective Computing (AC) [15], which predates
SSP. In fact, we find that multiple researchers have attempted to propose
different names for essentially the same field. For example, Narayanan et al.
proposed the name ‘Behavioral Signal Processing’ in [16], whereas Valstar et
al. [17] propose the name ‘Behaviomedics’. In order to avoid further confusion
between SSP and AC, in this thesis we shall refer to them jointly as SSP/AC.

1.2 Mental and Neuro-developmental Disorders

The Diagnostic and Statistical Manual of Mental Disorders (DSM) [18] is a
reference book published by the American Psychiatric Association which offers a
common language for the codification of mental disorders. The manual provides
standard diagnostic criteria for various types of disorders, which include major
depressive disorder (commonly known as depression), autism spectrum disorder
(commonly known as autism), bipolar disorder, post-traumatic stress disorder,
and schizophrenia amongst many others.

The DSM-5 manual (the latest edition) defines a mental disorder as a
‘syndrome characterized by clinically significant disturbance in an individual’s
cognition, emotion regulation, or behaviour that reflects a dysfunction in the
psychological, biological, or developmental processes underlying mental func-
tioning’. Meanwhile, neuro-developmental disorders are defined as an umbrella
term for a group of conditions which start becoming apparent in the develop-
mental phase of a child. According to the DSM-5, the neuro-developmental
disorders are ‘a group of conditions with onset in the developmental period.
The disorders typically manifest early in development, often before the child
enters grade school, and are characterized by developmental deficits that pro-
duce impairments of personal, social, academic, or occupational functioning.
The range of developmental deficits varies from very specific limitations of
learning or control of executive functions to global impairments of social skills
or intelligence’. Relevant to this thesis, depression and bipolar disorder are
considered mental disorders, whereas ASD is considered a neuro-developmental
disorder.

1.3 Problem Description

Conventional methods for screening of mental and neuro-developmental dis-
orders are based on subjective reports from either patients themselves, their
family members, or in the best case scenario, by a clinician [19]. Subjective
reports typically exist in the form of multiple choice questions (MCQ) style
questionnaires. Some of these questionnaires are administered by a clinician
as the patient is interviewed, while others questionnaires are meant to be
self-administered by the patient themselves. For example, the Hamilton Rating
Scale for Depression (HRSD) [20] is a clinician-administered questionnaire
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which is used to provide an indication of depression. Meanwhile, the Patient
Health Questionnaire (PHQ-8) [21] is an example of self-administered question-
naire which provides an indication of depression. Similarly, the Young Mania
Rating Scale (YMRS) [22] is used to provide an indication of mania severity
for individuals with bipolar disorder. It is typically administered by a clinician,
although a self-administered version also exists [23].

Regardless of the chosen option, that is, self-administered or clinician-
administered, both are prone to bias and, therefore, inconsistencies. Self-
assessment based questionnaires essentially rely on individuals to honestly
report their symptomatic behaviour. This may not always be true. In fact, for
the dataset provided as part of Audio/Visual Emotion Challenge 2017 [13], we
note that certain subjects fill in the PHQ-8 questionnaire in such a way that
their accumulative score is zero – which may show that they have excellent
mental health – but in the interview transcripts these subjects go on to
discuss their battles with depression and post-traumatic stress disorder in the
past [24]. Meanwhile, Snowden et al. [25] details how behavioural observations
by clinicians are also prone to bias – be it intentional or inadvertent – which may
compromise their clinical judgement. They argue that differences in clinical
training and experience can also adversely affect the homogeneity of clinical
opinions, meaning that inconsistencies can occur in clinician-administered
questionnaires as well.

According to Bedi et al. [26], psychiatry lacks the capacity to diagnose
and subsequently treat mental illnesses due to the absence of objective clinical
tests which one finds part of the routine process in other fields of medicine.
Furthermore, the lack of systematic and efficient methods to incorporate
behavioural cues, which are strong indicators of psychological disorders, is
also a major hindrance for the screening process [27]. However, as noted
by Solomon et al. [28], despite the inherent flaws of current methods, these
methods at least provide a reasonable quantifiable standard to measure the
mental and behavioural state of patients. This information can be used for
the development of automated screening methods.

1.4 Motivation

As discussed in the previous section, conventional methods for screening of
mental and neuro-developmental disorders depend almost entirely on either
patients reporting their behaviour or clinicians observing the patients’ be-
haviour as they interact with them. In fact, the lack of systematic ways of
incorporating behavioural observations has hampered the capacity of clinicians
to diagnose and treat serious mental illnesses [25].

Recent success in human behaviour understanding by virtue of advance-
ments in the field of SSP/AC [4,5,17,29] has led researchers from this commu-
nity to advocate the development and subsequent use of automated screening
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methods. It is reminded here that automated screening methods refer to
computational frameworks which can recognise various aspects of human be-
haviour by processing information conveyed by their social signals such as
facial expressions, speech, head motion, and body gestures amongst others.

Automated screening methods have a huge potential to transform healthcare
especially for diagnosing serious mental illnesses. Some of the benefits of
using automated screening methods in addition to conventional screening
methods include objectivity, repeatability, information processing power, and
interpretability.

One of the main benefits of automated screening methods is that they can
provide objective measurements, which are not affected by subjective bias
from clinicians or patients. Another attraction of computerised automation is
repeatability. Once the performance of a particular method is found satisfactory,
the method can be replicated any given number of times, consistently providing
reproducible results. Moreover, advances in the field mean that computer
algorithms have the ability to simultaneously track changes in multiple social
signals which may be affected by mental and neuro-developmental disorders,
something which even clinicians may not be able to do due to human limitations.
Finally, these methods can be designed to be interpretable so that they can
provide empirical feedback to research domains of psychiatry and psychology.

1.5 Thesis Contributions and Results

In this section, we summarise the contributions of our thesis, which has been
organised such that each subsection details the contribution from a chapter.

1.5.1 Limitations and Challenges in Automated Screening

We conducted a literature survey to understand the inherent limitations that
exist, and challenges which need to be overcome for developing automated
methods. While a discussion is provided in Section 3.5, we summarise key
contributions of our survey as follows:

∙ A major hindrance for research towards the development of automated
screening methods for mental and neuro-developmental disorders is lim-
ited availability of datasets. This is a result of ethical restrictions which
while permitting some researchers to collect and use data, do not per-
mit them to share data with other researchers, mostly due to privacy
concerns.

We appreciate that ethical restrictions exist but also believe that there
is a way around this limitation: researchers who have access to pri-
vate/restricted datasets can compute audio/visual features using stan-
dard software such the openSmile toolkit [30], the COVAREP toolkit [31],
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and the OpenFace toolkit [32] and share results for their dataset. Others
can follow suit. At the end, meta-analysis can be conducted for results
obtained from multiple datasets to provide a better understanding of the
automated screening task at hand.

In fact, with this in mind, we provide detailed discussion of results for
standard feature sets as part of our work on automated screening of
Autism Spectrum Disorder in Chapter 6, especially since our dataset
cannot be shared publicly due to ethical restrictions.

∙ Among the datasets which are publicly available (under restrictions of
academic research and associated ethics), we note most contain data
from a relatively small number of subjects (see Table 3.1 as an example).
This makes it difficult to ascertain the efficacy of automated screening
methods simply because the trained models are vulnerable to the effects
of overfitting.

There is little one can do when datasets have small number of sub-
jects. Our proposed solution to this limitation is to develop automated
screening methods which are inspired from background knowledge of
psychology. We surmise that when this approach is followed, proposed
automated screening methods are likely to model traits of mental and
neuro-developmental disorders than learn datasets by brute-force.

∙ The limitation due to relatively small size of datasets is further exac-
erbated by many confounding factors which can affect social signals in
addition to possible impairments due to mental and neuro-developmental
disorders. This in turn affects the accuracy of automated screening
methods. On the basis of our literature survey, we find that the effects
of confounding have mostly been ignored in research literature.

∙ We note that while automated screening methods have great potential to
revolutionise mental health care, these methods cannot replace clinicians
under the current setup. This is simply because clinicians have access to
much more data as well as many years of training and practice.

For example, clinicians can both, watch and hear, the patient during the
interview process. Thus, clinicians have access to information about the
patient’s facial expressions, head motion, body posture, and speech. In
most cases, clinicians will also have access to the patient’s medical history,
including any medications they take. Meanwhile, datasets currently
available for development of automated screening of mental and neuro-
developmental disorders only contain information about the patient’s
face and their speech [10–13,33].

∙ As with most machine learning methods, the success of automated
screening methods is tied to the quality of data and associated labels. We
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note that labels for mental and neuro-developmental disorders are created
using either using self-administered [11, 12] or clinician-administered [33]
questionnaires, both of which are susceptible to bias and therefore have
the potential to introduce label noise.

In light of the surveyed literature, we believe that development of methods
for automated screening of mental and neurological disorders can greatly
benefit from collaboration between researchers from SSP/AC community and
clinicians.

1.5.2 Automated Screening for Depression

Chapter 4 of this thesis is dedicated to the task of automated screening for
depression. Here we introduce three new approaches for the task of automated
depression screening from audio-visual recordings, namely; turbulence features,
craniofacial movement features, and Fisher Vector encoding of spectral low-
level descriptors (LLDs). The efficacy of these methods is demonstrated
using datasets from 2014, 2016, and 2017 editions of the AVEC challenge on
depression screening. We summarise the key contributions of our work as
follows:

∙ We surmise that psychomotor changes due to depression lead to unique-
ness in an individual’s speech pattern which manifest as sudden and
erratic changes in speech feature contours. To this end, we propose a
novel set of temporal features, which we called turbulence features, to
quantify fluctuations in the feature contours of speech features.

The efficacy of turbulence features was demonstrated as part of our solu-
tion for the AVEC 2017 depression severity prediction sub-challenge [13],
where we stood 6th overall in the competition, beating the challenge
baseline [34]. Amongst various voice quality and prosody features which
were part of our investigation, we found turbulence features computed
for pitch feature contour to be most useful for the task of automated
depression screening.

∙ We detailed a methodology to quantify specific craniofacial movements,
which we hypothesised could be indicative of psychomotor retardation
and hence depression.

The efficacy of these features was tested in terms of the value of Pearson’s
correlation coefficient [35] with respect to depression severity. We used
three sets of recordings from two publicly available datasets from AVEC
challenges on depression severity prediction i.e. the AVEC 2014 Depres-
sion severity prediction challenge (AVEC 2014 DSC) [12] and the AVEC
2017 Depression severity prediction challenge (AVEC 2017 DSC) [13].
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The results demonstrate the efficacy of our proposed craniofacial move-
ment features. Moreover, given that these features are inspired by
knowledge of psychomotor retardation from the DSM 5 manual [18], we
believe that interpretability of these features will provide meaningful
feedback to clinicians for diagnosis of depression.

∙ We hypothesised that individuals with depression have unique character-
istics to their speech spectra. To this end, we introduced Fisher vector
encoding [36] of spectral LLDs for quantifying abnormalities within
speech spectra of individuals with depression.

Initially, we demonstrated the efficacy of our proposed approach for
the AVEC 2016 Depression classification challenge (AVEC 2016 DCC)
dataset [12], where the objective was to identify individuals with and with-
out depression [37]. Later, we extended the idea by adding temporally-
piecewise aggregation of Fisher vectors as part of our solution to AVEC
2017 DSC [34]. We beat the challenge baseline whilst using this method.

∙ We note that datasets released as part of AVEC sub-challenges on auto-
mated depression screening (2014, 2016, and 2017 editions) have all used
accumulated scores from various depression measurement instruments as
labels for audio/visual recordings. The AVEC 2014 DSC dataset [11] used
Beck Depression Inventory (BDI-II) [38], whereas the AVEC 2016 DCC
dataset [12] and AVEC 2017 DSC dataset [13] used PHQ-8 [21]. While
these scores provide a way to quantify depression severity in absence of
physical tests for depression [28], there are inherent limitations of using
these labels.

For example, the BDI-II [38] asks patients about feelings of satisfaction,
disappointment, and guilt, as well as questions about their weight, ap-
petite, and sex-life. It is obvious that information pertaining to these
questions cannot be extracted from audio/visual recordings unless pa-
tients are explicitly recorded whilst answering these questions. In that
case, one would use speech-to-text conversion and follow it up with
natural language processing to learn the answers to these questions.

This means that under the current set up of datasets, automated screening
methods based on audio/visual modalities will continue to have sub-par
performance relative to ground truth labels. We argue that it may
be worth investing time to devise depression measurement instruments
(questionnaires) which specially cater for development of automated
screening methods. This would, of course, require significant collaboration
between researchers from psychology and SSP/AC.

∙ In light of our discussion in this chapter and Chapter 3, we believe it
is important to emphasise here that while significant inroads have been
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made for the task of automated screening of depression, this task is still
very much a work in progress.

The most outstanding issue remains the lack of publicly available datasets,
which is further exasperated by potentially noisy labels from self-assessment
based depression measurement instruments. The many confounding fac-
tors such as gender, age, and the nature of speaking tasks means that
research for the development of automated methods for screening of
depression is likely to continue for at least the near future before these
methods are deemed ready for clinical usage.

The work completed for the task of automated screening for depression
was published in two conferences, including our participation in the AVEC
2017 challenge.

∙ Zafi Sherhan Syed, Kirill Sidorov, and David Marshall, “Depression Sever-
ity Prediction Based on Biomarkers of Psychomotor Retardation”, ACM
International Workshop on Audio/Visual Emotion Challenge (AVEC),
pp. 37-43, 2017.

∙ Zafi Sherhan Shah, Kirill Sidorov, and David Marshall, “Psychomotor
Cues for Depression Screening”, IEEE International Conference on Digital
Signal Processing (DSP), pp. 1-5, 2017.

1.5.3 Automated Screening for Bipolar Disorder

Chapter 5 of this thesis is dedicated to the task of automated screening for
bipolar disorder. Here we proposed two new approaches for the task of au-
tomated screening of bipolar disorder from audio-visual recordings; namely
turbulence features and Fisher Vector encoding of Computational Paralinguis-
tics Challenge (ComParE) LLDs. We also introduced Greedy Ensemble of
Weighted Extreme Learning Machines (GEWELMs) based classification of
these features and demonstrated the efficacy of these methods on both, the
development and test partitions. We summarise the contributions of our work
as follows:

∙ Our proposed approaches for automated screening of bipolar disorder from
audio/visual modalities is inherently novel for this task since the AVEC
2018 Bipolar Disorder sub-challenge (BDS) [33] provides researchers for
the very first time a dataset which contains multi-modal recordings of
individuals with bipolar disorder based on structured interviews.

∙ We surmise that traits of bipolar disorder cause sudden and erratic
changes in the contours of social signals and propose turbulence features
to quantify these changes.
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We report that for the task of predicting severity of mania, turbulence
features computed for visual modality performed better than the audio
modality. In fact, the best result achieved by us on the test partition i.e.
UAR = 57.41% uses turbulence features for visual modality. This result
exactly matches the best result published as the official baseline, which
was a result of fusion of features from audio and visual modalities.

∙ Fisher Vector encoding of ComParE LLDs achieved best performance
in terms of classification accuracy amongst all other features on the
development partition. However, their superior performance could not
be replicated on the test partition, likely due to overfitting on the
development partition. Given limited attempts on the test partition, we
could not identify the cause of overfitting on the development partition,
although we posit that there are likely to be some confounding factors
which influence our machine learning models.

∙ We investigated the efficacy of four standard feature sets from the openS-
mile toolkit i.e. Prosody, IS10-Paralinguistics, ComParE functionals, and
eGeMAPS features. We found IS10-Paralinguististics and eGeMAPS
feature sets to be most useful. It is important to mention here that while
organisers report that eGeMAPS features achieve a UAR = 55.03% on
the development partition [39], we could not replicate this result, even
though we used same experimental settings as reported by them.

∙ We also investigated whether it is better in terms of accuracy to perform
classification over the entire recording as a single entity or to classify
each session independently and later perform fusion to yield a label
for the recording. Based on our experiments, we report that session
based classification is a better option when it comes to classification
accuracy. This is somewhat contrary to the findings of Ciftci et al. [33],
who reported no advantage of similar segmentation.

∙ In our attempt of crafting features based on background knowledge of
bipolar disorder, we found that certain aspects of behaviour of subjects
cannot be probed directly from audio-visual recordings. For example,
lack of requirement for sleep is a key behavioural indicator for individuals
with mania as per the Young Mania Rating Scale (YMRS) [22,23]. Now,
unless the subject is explicitly asked a question about their sleeping
habits, it may not be possible to ascertain how much sleep a particular
subject has been having. We attempted to quantify sleepiness using
action unit 45 (AU45) [40], which represents blinking, but this approach
performed poorly.

Similarly, sexual activity/interest is another aspect of the YMRS which
cannot be directly gauged from audio-visual recordings. For the AVEC
2018 BDS, we found that such questions were not asked by the subjects
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in the audio/visual recordings which are provided as part of the dataset.
While our aim is to propose features inspired from behavioural charac-
teristics of individuals with mania as per the YMRS, it is necessary to
acknowledge the existence of inherent limitations of this approach.

The work completed for the task of automated screening for bipolar dis-
order has been accepted for the AVEC 2018 workshop co-located with ACM
Multimedia Conference, which will take place in October 2018.

∙ Zafi Sherhan Syed, Kirill Sidorov, and David Marshall, “Automated
Screening for Bipolar Disorder from Audio/Visual Modalities”, ACM
International Workshop on Audio/Visual Emotion Challenge (AVEC),
pp. 1-6, 2018.

1.5.4 Automated Screening for Autism Spectrum Disorder

Chapter 5 of this thesis is dedicated to the task of automated screening for
Autism Spectrum Disorder (ASD). Our work on the development of automated
screening methods for ASD is novel in the sense that we performed numerous
experiments and provide discussion on the effects of ASD on speech, in light
of research literature, for a previously unpublished dataset. The contributions
of our work are listed as follows:

∙ We manually annotated audio/visual recordings of interview sessions
using ELAN software [41, 42] to mark segments of recordings which only
contain speech of subjects. This enabled us to undertake investigation
into automated screening for ASD using speech.

While our current work is limited to analysis of speech, our efforts for
annotation of these recordings opens up avenues for future research.
For example, analysis of facial expressions and body movement when
children either speak or are spoken to by the interviewer. Using these
annotations, models can also be built to investigate synchrony of dyadic
communication between children and interviewer.

We acknowledge and credit Dr. Catherine Jones (from Cardiff University’s
School of Psychology) and her team for collecting and providing us these
audio/visual recordings. Our work focuses explicitly on social signal
processing, not data collection.

∙ We discussed our feature engineering and classification mechanism for
automated screening of ASD from speech for subjects in our dataset.
The proposed feature engineering mechanism consists of a four-step
process which includes speech segmentation, feature extraction, feature
description, and feature selection.
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The efficacy of this mechanism was demonstrated in terms of classification
accuracy and the identification of highly discriminative speech features
using Mann-Whitney U-test based statistical analysis [43] and effect size
for statistically significant features [44,45].

∙ We investigated the influence of speech segmentation on classification
accuracy. To this end we performed experiments using six different
segmentation rules. Our results suggest that classification accuracy is
dependent on the duration of voiced speech in each speech segment.

∙ We report based on our experiments that traditional voice quality features
such as shimmer, jitter, and HNR are not able to provide discrimination
between speech of individuals from TD and ASD groups. In addition,
we report that features from the COVAREP voice quality feature set are
able to discriminative between the speech of individuals from the two
groups.

∙ We report from experiments conducted using the standard feature sets
that subjects with ASD have smaller pitch and loudness variability (in
terms of standard deviation), which suggests monotonic speech. This is
in line with findings in [46].

∙ Finally, on the basis of experiments performed in this chapter and in
light of published literature, we argue that while the DSM-5 [18] does
not currently recognise that the speech production system is affected by
ASD, there is enough evidence from research literature as well as our
investigation to suggest that ASD may actually have a significant effect
on the vocal production system.

1.6 Thesis Outline

The rest of this thesis is organised as follows:

∙ In Chapter 2, we start by discussing the fundamentals of feature ex-
traction from audio, visual, and text modalities. These modalities are
commonly used in SSP/AC. We follow this by a brief but directed liter-
ature survey for feature engineering mechanisms and machine learning
techniques which are used for developing automated screening methods.

∙ In Chapter 3, we start with a brief discussion of psychomotor changes
which occur due to mental disorders such as depression and bipolar
disorder. These changes can have a profound effect on the social signals
of individuals affected by these disorders. Next, we discuss in detail how
information conveyed by social signals from audio and visual modalities
can be quantified as audio/visual features. As per the scope of the
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thesis, we focus on information extracted from the face region from the
visual modality and speech from the audio modality. We then discuss in
detail inherent limitations which exist and challenges which need to be
overcome for the task of developing automated methods for screening
mental and neuro-developmental disorders.

∙ In Chapter 4 we start with statements of novelty and contributions
through our work on development of automated screening of depression.
We follow this by describing traits of individuals with depression ac-
cording to the Diagnostic and Statistical Manual of Mental Disorders
(DSM-5) [18]. We also discuss various depression measurement instru-
ments which are used to gauge severity of depression. This provides
the foundation for our proposed automated screening methods. Next,
we describe datasets used in this thesis and work carried out by other
researchers in the field for these datasets. We follow this up with a
detailed discussion on our proposed methods, which is supported by
experimental analysis and participation in the AVEC 2017 Depression
severity prediction challenge. Finally, we end the chapter with a summary
of contributions of our work.

∙ In Chapter 5 we start with statements of novelty and contributions
through our work on development of automated screening of bipolar
disorder. We follow this by describing traits of individuals with bipolar
disorder according to DSM-5 manual [18]. We also briefly describe states
of bipolar disorder as per the Young Mania Rating Scale (YMRS) [22].
This provides the foundation for our proposed automated screening
methods. Next, we provide a survey of research literature published for
automated screening of bipolar disorder from audio/visual modalities.
While limited research literature exists, we were able to identify some
features from audio/visual modalities which were previously deemed
useful by others. Next, we discuss our proposed methods in detail and
provide experimental analysis. We also discuss our submissions for the
test partition of the AVEC 2018 Bipolar disorder sub-challenge. Finally,
we provide a conclusion based on insights from our work.

∙ In Chapter 6 we start with statements of novelty and contributions
of our work on the development of automated methods for screening
of Autism. We follow this with a literature survey to identify speech
features which have high discriminative power when it comes to identify-
ing individuals with ASD. We then describe the dataset which we use
in our work. This is followed by a discussion on a feature engineering
and classification mechanism to screen for ASD using speech features.
We then provide a discussion on the efficacy of standard feature sets
for the task at hand. Finally, we end the chapter with a summary of
contributions of our work.
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∙ Finally, in Chapter 7, we conclude this thesis by covering the achieve-
ments of this work. We also discuss possible directions for continuation
of research conducted as part of our effort.
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Fundamentals of Automated
Screening Methods

2.1 Introduction

The purpose of automated screening methods is to develop computerised
methods which can identify groups of individuals which are different from each
other with respect to a particular trait. In context of this thesis, our aim
is to develop automated screening methods which can differentiate between
individuals who have mental and neurodevelopment disorders and healthy
individuals. The term automated screening method in the domain of Social
Signal Processing/Affective Computing (SSP/AC) refers to a computational
framework that can recognise various aspects of human behaviour by processing
information conveyed by their social signals [3, 6].

As illustrated in Figure 2.1, the process flow for the development of auto-
mated screening methods consists of three fundamental steps. The first step
is to identify relevant social signals for the task at hand. For example, if the
task is to recognise emotions of subjects from telephone recordings then speech
is the relevant social signal. On the other hand, if the task is to recognise
emotions from twitter posts then relevant social signals will be from the text
modality. Information contained in these social signals needs to be represented
as a measurable quantity before it can be processed by machine learning
algorithms. This representation is called a feature. Features computed directly
from social signals are called low level descriptors (LLDs). While it will be
clearer in subsequent sections (see Section 2.3), these features are ‘raw’, and
typically require further processing before they can be passed on to machine
learning algorithms.

The next step in the pipeline is called feature engineering. As the name
suggests, this step involves further processing of LLD features into a form which
is most suitable for machine learning algorithms. This process is typically
governed by domain knowledge of the social signals, and the features resulting
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Figure 2.1: Workflow diagram for automated screening methods in social
signal processing

from these processing steps are called intermediate features or higher level
descriptors (HLDs). There are various sub-steps involved in the task of feature
engineering. These include feature aggregation, dimensionality reduction, and
feature fusion. Furthermore, statistical tests can be used to determine the
discriminative power, and therefore usability of intermediate features before
they are finally passed down to machine learning algorithms.

The final part of the automated screening pipeline is to apply suitable
machine learning algorithms. The most fundamental decision, that is the choice
between regression and classification, is dependent on the task at hand. For
example, if the target variable for automated screening task is continuous then
machine learning algorithms which specialise at regression are selected. On
the other hand, a suitable classifier needs to be selected if the target variable is
discrete. It needs to be mentioned here that feature engineering and machine
learning steps typically overlap, and are tuned until either a desired or an
acceptable performance is achieved for the task at hand.

Our aim in this chapter is to provide a gentle introduction to the fundamen-
tals of automated screening methods as used in the field of SSP/AC. We do
not explicitly focus on screening for any particular behavioural characteristic
in this chapter, instead provide a more general discussion. To that end, we
provide a more targeted discussion for development of automated screening
methods for mental and neuro-developmental disorder in Chapter 3.

The rest of this chapter is organised as follows: we start with discussing
fundamentals of feature extraction from audio, visual, and text modalities.
These modalities are commonly used in SSP/AC. We follow this by a brief
but directed literature survey for feature engineering mechanisms and machine
learning techniques which are used for developing automated screening methods.

2.2 Audio, Visual, and Textual Modalities

Human beings exhibit social signals through which they inform and commu-
nicate their emotional behaviour and mental state [4]. While there are a
large number of social signals, the ones which are most commonly used for
automated screening of mental and neuro-developmental disorders are those
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which convey information about the face and speech (including its linguistic
content), thus requiring extraction of features from three modalities i.e. audio,
visual, and text.

It is important to mention here that while other modalities may aid the
task of automated screening, one is restricted to modalities which are available
in datasets. For example, the audio modality is confined to speech segments
and ambient noise in between speech segments. The visual modality is confined
to facial information i.e. most publicly available datasets simply do not
provide information about the subjects’ hand gestures, torso or leg movement.
While initially not considered particularly important, textual modality has
recently become relevant, especially when video recordings contain structured
interviews.

2.2.1 Audio Features

Speech is arguably the most important modality for studying behavioural cues
of an individual. It is a measurable quantity that can be used as a correlate for
various emotional and mental states of an individual. The use of speech as a
behavioural cue is motivated by several neuro-physiological studies, as detailed
in [47] and references therein, which report that regions of brain responsible
for social functioning also affect speech production.

The speech modality has been widely used for the purpose of emotion recog-
nition [48], where the objective is to infer feelings of anger, happiness, surprise,
disgust, sadness, and fear [7], as well as arousal, valence, and dominance [11].
Speech has also been used to screen for various mental, neuro-developmental,
and behavioural disorders such as cognitive load [47], depression [11, 12],
schizophrenia [49], psychosis [26], Parkinson’s disease [50], Alzheimer’s dis-
ease [51,52], and ASD [53] amongst many more.

In order to use speech in a computational framework, one needs to compute
representative features from recordings of speech using appropriate digital
signal processing (DSP) algorithms. The non-stationary nature of speech
mandates that DSP algorithms process speech as short time duration chunks of
speech (called frames), rather than processing the entire speech recording as a
single block [54,55]. These frames are typically between 15–40 ms in duration
and it is assumed that over this duration, the speech signal is quasi-stationary,
thus enabling the application of DSP algorithms. Since these features are
computed over such a small temporal resolution, they are called LLDs. It is
important to mention here that these LLDs only provide local information
about the speech recording, and extra processing is required for a global
representation of the speech recording, as discussed in Section 2.3.2.

A large number of features can be computed from the speech signal. In
order to use these features in an informed manner, taxonomising them is
necessary. Defining taxonomy is, however, not trivial since one can define
multiple taxonomies depending on which principles are used. Speech LLDs
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Figure 2.2: A taxonomy of audio descriptors for social signal processing

can be categorised as either temporal, spectral, cepstral, or time-frequency
in nature, on the basis of the domain of computation. On the basis of their
dimensionality, speech descriptors can be categorised as single dimensional (for
example, pitch and energy) or multi-dimensional (for example, Mel-Frequency
Cepstral Coefficients). Speech descriptors can also be categorised according to
their psychoacoustic characteristics, where descriptors are computed on the
basis of models of the human hearing process. Perceptual features can further
be categorised into prosodic features, voice quality features, and perceptual
spectral/cepstral features.

Mitrovic et al. [56–58] have advocated various categorisation methods of
audio features, and motivated by their work, we propose categorisation which
we believe is best suited from a purely social signal processing perspective.
Our proposed categorisation principles are quite straightforward, as illustrated
in Figure 2.2, where we prioritise the categorisation of speech features on the
basis of their perceptual meaning, and if that is not possible, we categorise
them according to the physical domain of computation and the characteristics
of speech signal.
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Signal Shape Descriptors

This category includes features which describe the temporal and spectral shape
characteristics of the speech signal. Temporal shape features provide informa-
tion about the shape of the speech signal in time-domain i.e. characteristics
of its amplitude over time. Examples include rate of signal increase/decrease,
duration of signal increase/decrease etc. Meanwhile, spectral shape features
provide information about the shape of magnitude spectra of the speech signal.
For example: spectral centroid, spectral spread, spectral slope and roll-off
frequency etc.

Signal Characteristics Descriptors

These descriptors provide information about the speech signal which does not
necessarily has to be its shape. For example, features such as peak energy,
root-mean-square energy, autocorrelation width, zero crossing rate etc. belong
to this category.

Harmonic Descriptors

This category includes features which provide information about harmonic
content of the speech signal and the concentration of energy around those
harmonics. A new category is required for these features since they explicitly
focus on specific frequencies rather than the entire speech spectra. Examples
of harmonic descriptors include: formant frequencies, harmonic-to-noise ratio,
cepstral peak prominence etc. This category also includes features which
provide information about the relative energy at different frequencies. For
example, the energy difference between first and second harmonic, commonly
represented as 𝐻1 −𝐻2, energy difference between the first harmonic and the
highest harmonic in the range of the third formant i.e. 𝐻1 −𝐴3.

Perceptual Descriptors

Features in this category are computed using signal processing models inspired
from the human speaking and hearing process. Perceptual descriptors can
include three types of features, i.e. (a) prosodic features, (b) voice quality
features, and (c) perceptual spectral shape features. Prosodic features provide
information about the patterns of rhythm in the speech signal. For example,
pitch (as represented by the fundamental frequency), intensity, jitter, shimmer
etc. Voice quality features provide information about the voice quality, exam-
ples include normalised amplitude quotient (NAQ) and quasi-open quotient
(QOQ) are known to provide information about voice tenseness, cepstral peak
prominence (CPP) provides information about the amount of breathiness
in speech. And, perceptual spectral shape features are essentially similar
to spectral shape feature, but the difference is that the magnitude-spectra
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is warped to match psychoacoustic frequency scales such as Mel and Bark.
Examples include Mel frequency cepstral components (MFCCs), perceptual
linear prediction coefficients (PLPs) etc.

Deep Learnt Descriptors

Given the recent success of deep learning methods, especially in the field
of computer vision, a large number of researchers have proposed using deep
learning to learn features from the speech signal. There are two fundamental
approaches for using deep learning on the speech signal. The first and most
commonly used approach is to compute features from the speech spectrogram.
This approach feeds speech as two-dimensional images to any type of deep
neural network which can accept images as input [59]. The second approach
is to use speech signal as a one-dimensional signal. While not as common
as first approach, deep learning architectures such as Wavenet from Google’s
DeepMind [60] use this approach.

Other Descriptors

In principle, any mathematical equation with an input and output is a DSP
algorithm which when applied to the speech signal will compute some features.
In the other descriptors category, we propose to include any feature which does
not suit other categories, such as features computed using wavelet transform [55]
or the fractional Fourier transform [61].

A number of audio feature descriptors have been proposed in research
literature with the aim of standardising the use of these features. Most recent
publications have, in fact, focussed on using standard feature sets. The benefit
of using standardised feature sets is that it helps in comparing the efficacy
of specific speech features for various applications. The most popular feature
sets include the Geneva Minimalistic Acoustic Parameter Set (GeMAPS) and
its extended version, the eGeMAPS [58], the Cooperative Voice Analysis
Repository for Speech Technologies (COVAREP) toolbox [62], the VoiceSauce
toolbox [63], the AVEC 2013/2014 speech feature set [10,11], the Computational
Paralinguistics Challenge (ComParE) feature set [64], and the Audio Analysis
Library toolbox [65].

2.2.2 Visual Features

The face conveys a multitude of information about an individual such as their
age, gender, social background, and in most cases what they are thinking,
feeling and what they intend to do next. The validity of head pose, head nods,
and facial expressions as signs to study human behaviour are already well
established in research literature from the field of psychology [66,67]. In fact,
several mental disorders are manifested as an altered facial activity.
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Figure 2.3: A taxonomy of visual descriptors in social signal processing

This has motivated researchers from the SSP/AC community to work on
automated quantification of facial observations for psychiatric diagnosis of
autism [68–70], depression [71], schizophrenia [72,73], and psychosis [74], just
to name a few. However, this work is still very much under development.

Facial observations can be quantified using a myriad of visual features.
Following the precedent of taxonomising audio features, we propose to cate-
gorise visual features as illustrated in Figure 2.3. This taxonomy prioritises
allocating features on the basis of their perceptual meaning in terms of human
emotions [2,7]. If a visual feature descriptor does not directly have a perceptual
meaning, it is categorised according to the method of computation.

Texture Feature Descriptors

Facial muscle movement, which generates facial expressions, manifests as
changes in skin texture with appearance of facial furrows and wrinkles. It
follows that one can quantify facial muscle movement by crafting visual features
which focus on the appearance (texture) of the face region. The use of texture
based feature descriptors requires pre-processing of the video on a frame-by-
frame basis [75]. The first step is use an appropriate face detection algorithm,
such as the Viola-Jones method [76], to find the region of the image which
contains the face so that it can be cropped out for further processing. This step
is required because the image may contain irrelevant information i.e. objects
other than the face. This step is followed by a registration process, which
transforms faces from all frames in the video to pre-defined, fixed number of
pixels.
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Figure 2.4: Reference for numbering of 68 point facial landmarks.

Once the images are registered, one can start the actual computation of
texture features. The simplest texture based feature is raw pixel intensity but is
highly susceptible to illumination and skin tone changes, but better alternatives
are available. For face studies, the most common texture features include the
Local Binary Pattern (LBP) [77], Histogram of Oriented Gradients (HOG) [78,
79], and Local Phase Quantisation (LPQ) [80] just to name a few. While
legacy texture feature descriptors only provide visual information of each frame
independently, newer methods offer the ability to measure intra-frame dynamics
of texture by leveraging the three orthogonal planes (TOP) concept [81]. The
TOP computes features across three planes i.e. the spatial plane (height and
width) and the two temporal planes (height-time and width-time).

Geometric Feature Descriptors

Geometric features are computed from facial landmarks — a term used to
describe contour points of key positions on the face, such as eyes, the nose,
the nostril corners, the mouth, the eyebrows, and the chin, as illustrated in
Figure 2.4.

As the name suggests, geometric features are measures of the shape, size,
and relative position of all or a subset of these facial landmarks. The most
commonly used geometric feature is the measure of the distance between facial
landmarks. Angles between various facial landmarks have also been used as
features and so has the area enclosed within regions covered by facial landmarks.
In principle, any geometric measure can be computed for facial landmarks and
be called a geometric feature descriptor for the face.

Geometric features require that facial landmarks be already computed for
each frame of the video recording, which can be done using one of the many
publically available libraries such as dlib [82], OpenFace [32], and Chehra

22



Chapter 2

tracker [83]. Facial landmarks typically contain geometric variations (such
as scale and rotation) as a result of an individual’s head-pose with respect
to the camera recording the video. While it is common practice to remove
these variations through a registration process [75], doing so in some cases may
compromise the quality information provided by the facial landmarks. For
example, while face registration is useful for recognising facial expressions, this
process is detrimental if the objective is based on studying head-pose.

Perceptual Feature Descriptors

This category of visual feature descriptors has perceptual meaning, typically
based on the theory of facial expressions and emotional behaviour. We propose
to sub-categorise perceptual visual features as: (a) Facial Action Units, and
(b) Ekman’s Fundamental Emotions. This sub-categorisation is strictly based
on the output available from popular software tools such as OpenFace [32], the
Computer Expression Recognition Toolbox (CERT) [84], and IntraFace [85],
which are in turn motivated from research work in Computer Vision to au-
tomatically recognise facial action units and emotions. While it is possible
to design and develop machine learning methods to both facial action units
and fundamental emotions from scratch, using of off-the-shelf tools enables
replicability and objective comparison of empirical research in social signal
processing.

Facial Action Units, simply called Action Units or AUs and sometimes FAUs,
are a set of rules which describe the movement (actions) of individual muscles
or groups of muscles on the face. AUs are based on the facial action coding
system (FACS) [1,2], which is the de facto standard to encode facial muscle
movement [75, 86]. As examples, consider AU4 which is the Brow Lowerer
and represents the Depressor Glabellae, Depressor Supercilli, Currugator facial
muscle, and the AU12 which is the Lip Corner Puller and represents the
Zygomatic Major facial muscle. There are 32 FAUs in total according to the
revision made to FACS in 2012 [2]. A summary of most common AUs has
been provided in Table 2.1, although, we would direct the reader is directed to
the visual guide provided in [40] for further details on AUs.

Perceptual visual features can also be categorised on the basis of which
emotions they represent. Paul Ekman argued in [7] that there exist six basic
emotions which are hard wired in human beings. The emotions include anger,
disgust, fear, happiness, sadness, and surprise. Furthermore, Ekman argued
that these emotions can be decoded as manifestation of facial action units

— an idea which has already been corroborated by many years of research
studying facial expressions [86]. For example, the emotion of happiness can
be represented as presence of AU6, AU12 and AU25, meanwhile the emotion
of sadness can be represented as presence of AU1, AU4, AU6, AU11, AU15,
and AU17. In order to have a perceptual understanding of actions units and
emotions, the reader is encouraged to visit the FACS video guidebook [40].
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Table 2.1: Summary of most common Action Units as per [1, 2]

AU Description AU Description

1 Inner Brow Raiser 14 Dimpler
2 Outer Brow Raiser 15 Lip Corner Depressor
4 Brow Lowerer 17 Chin Raiser
5 Upper Lid Raiser 20 Lip Stretcher
6 Cheek Raiser 23 Lip Tightener
7 Lid Tightener 25 Lips part
9 Nose Wrinkler 26 Jaw Drop
10 Upper Lip Raiser 28 Lip Suck

Deep Learnt Features

As with most domains, deep learning can also be used to compute visual
features from facial images. One possible approach is to use pre-trained models
for object detection such as AlexNet [87], VGGNet [88], GoogLeNet [89], and
ResNet [90] amongst many more to extract features directly from face images.
Another approach can be the use of models specifically trained on faces such
as FaceNet [91] to extract features. It is also possible to build deep learning
models from scratch to extract features from texture, geometric and perceptual
features already extracted, as implemented by Yang et al. [92].

2.2.3 Textual Features

While being very important for depression screening from blogs and tweets
in the domain of Natural Language Processing (NLP), the text modality has
largely been ignored in social signal processing due to the fact that datasets,
until recently, did not contain textual data.

This changed with the AVEC 2016 dataset [12] which contains data about
individuals being interviewed by a virtual agent. Apart from audio and visual
modalities, this dataset also contains transcripts of the communication between
the individual and the virtual agent. Nevertheless, the scope of our work is
restricted to the audio and visual modality only, and the reader is referred
to [93,94] for further details on the textual feature for automated screening of
mental health illnesses.

2.3 Feature Engineering and Machine Learning

In this section, we discuss various features engineering mechanisms and
machine learning methods which form key parts of the computational framework
for the recognition of mental and neuro-developmental disorders.
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2.3.1 Cross-Validation

Cross-validation (CV) is a technique which provides a measure of the ability
of a machine learning algorithm to generalise to previously unseen data. The
principle behind CV is to partition training partition into two independent
subsets called the training subset and development subset. The training subset
is used for training the machine learning algorithm, rather than the original
training partition, while the development subset is used for testing purposes,
rather than the original test partition. The performance of the algorithm on
the development subset provides a way to gauge the generalisation ability
of the model. CV is advantageous because it helps in fine-tuning the model
without having to use the test partition. For further details on CV, the reader
is referred to [35].

The most basic type of CV involves partitioning the original training
partition in such a way that the training subset contains all but one example,
while the development subset contains the remaining example. This approach
is called leave-one-out CV (LOOCV), and is commonly used when the number
of examples in the main training partition is small, which is often the case in
SSP/AC as discussed later in Section 3.5. A major drawback of this approach
is that the testing process needs to repeat individually for each example of the
original training partition, which can be time consuming. However, there is
little to no choice but to use LOOCV for measuring generalisation ability of
the model when the size of the data set is small.

𝐾-fold cross validation is another version of CV, which is also commonly
used in SSP/AC. In this approach the original training partition is partitioned
into 𝐾 equal sized subsets. Here, 𝐾 − 1 subsets are used for training and the
last remaining subset is used for testing purpose. LOOCV can, in fact, be
considered a special case of 𝐾-fold CV where 𝐾 is equal to the number of
training examples.

2.3.2 Feature Aggregation

Feature Aggregation is an approach through which low level feature descriptors
are summarised to create features which provide global information about
audio/visual recordings.

The audio and visual LLDs described in Section 2.2.1 and Section 2.2.2,
respectively, are computed on a frame-by-frame basis, thus providing only local
information. In order to create a global representation of these recordings using
LLDs, one needs to aggregate information provided by these features. There
are a number of approaches to feature aggregation including (a) functionals, (b)
Gaussian Mixture Models (GMM), (c) Bag-of-Words (BOW), and (d) Fisher
Vector encoding.
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Functionals

This method uses descriptive statistics for aggregation. Here, functionals
of descriptive statistics such as mean, variance, maximum, median etc. are
used to summarise sequences of LLDs. In the simplest case, a scalar feature
can be created by applying one of the functionals to LLDs. For example,
using maximum functional on the pitch contour provides information about the
largest pitch of an individual during a speech recording. In most cases, however,
a single functional is not enough to adequately provide global representation
of the recording, and one needs to consider multiple functionals.

Gaussian Mixture Models

It is also possible to use Gaussian mixture models (GMM) [95] for feature
aggregation. GMM provides a probabilistic model for representing the sequence
of LLDs in terms of the parameters of Gaussian functions. The motivation for
using GMMs is that it provides a fuzzy alternative to the functional approach.
When GMMs are used for summarisation, a super-vector is used as the feature
provided as input to the machine learning algorithm. This super-vector can
include all or a combination of the means, variance/covariance, and the mixture
weights of the GMM [96].

Bag-of-Words

While the GMM based approach summarises LLDs using a probabilistic model,
the bag-of-words (BOW) approach does so by using histogram of words [97]. In
the context of BOW for audio-visual features, the term words refers to a code-
books which are created by clustering LLDs from each of these domains. The
BOW feature then is a histogram which describes the frequency of occurrence
of each word.

Fisher Vector encoding

This approach combines the advantages of both generative and discriminative
approaches for machine learning [98]. The process flow for Fisher Vector
encoding starts with building a generative model (typically, using GMM)
of LLDs, and later computing the Fisher kernel from this generative model.
Essentially, FV measures the deviation of the LLDs from the generative model.
Fisher Vectors are quantified using first and second order statistics of the
gradient of the sample log-likelihood with respect to the model parameters [36,
99].

2.3.3 Dimensionality Reduction

While the feature aggregation methods discussed in previous section provide
aggregation from a sequence of LLDs to a fixed length feature vector, it is often
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the case that the length of this vector is large. In machine learning terminology,
the length of the feature vector is called its dimensionality. It is often the case
that when the number of training examples is smaller than or equal to the
dimensionality of the feature matrix, machine learning algorithms fail to learn
a meaningful representation from data and efforts need to be taken to reduce
the dimensionality of the feature matrix [100, 101]. There are various methods
for dimensionality reduction, which can be divided into two categories: (a)
Feature Projection and (b) Feature Selection.

Feature Projection

In this approach features are projected from a high-dimensional space onto a
lower-dimensional space, ideally preserving or even increasing the separability
of each feature. Feature vectors from all training examples are concatenated
as a matrix and the feature matrix is used to learn the mapping process. This
approach for dimensionality reduction is very popular and mostly used in the
form of principal component analysis (PCA), while other methods such as
canonical correlation analysis (CCA) [102] and partial least squares (PLS) [103]
have also found applications, depending on the pattern recognition task at
hand [101].

It is also possible to use feature summarisation methods for dimensionality
reduction. For example, a GMM with smaller number of Gaussians can be
used to reduce the dimensionality of a GMM super-vector with a larger number
of Gaussians, as used by Alghowinem et al. [104].

The major drawback of feature projection methods for dimensionality
reduction is that the transformation from high to low-dimensionality removes
the notion of interpretability of features i.e. features in the low-dimensional
space cannot be interpreted easily even if they were interpretable on the high-
dimensional space. This brings us to the second option for dimensionality
reduction.

Feature Selection

As the name suggests, this approach is based on selecting features from the
high-dimensional feature vector which contribute to improve the performance
of the machine learning task at hand — be it regression or classification. The
main benefit of feature selection methods is that only meaningful features are
retained, although this comes at the risk of losing the ability of the model to
generalise. The reader is referred to the excellent tutorial by Guyon et al. [100]
for a discussion on the principles of feature selection and to [105] for a more
recent review on feature selection methods.

There are three subcategories of feature selection methods i.e. (a) filter
based approach, (b) wrapper based approach, and (c) embedded approach.
Filter based feature selection performs feature selection independent of the clas-
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sification or regression algorithm being used for the selected features. However,
filter based methods do depend on whether the pattern recognition task at
hand is classification or regression. For example, filter based feature selection
methods for classification include t-test, Mann-Whitney U-test and minimum
redundancy maximum relevance (mRMR) [106], meanwhile for regression
Pearson correlation coefficient, Spearman correlation coefficient, Relief [107]
algorithms can be used for regression. The second category of feature selection
methods is called the wrapper based approach. In this method, the classifi-
cation or regression algorithm plays a key role. The idea is to incrementally
add or remove a feature or set of features and monitor the performance of the
pattern recognition algorithm. The process is iteratively repeated until the
performance no longer improves. Examples of wrapper based methods include
sequential forward search (SFS) and sequential backward search (SBS). Embed-
ded feature selection approach performs the task of feature selection along with
classification or regression in one go. Most prominent examples of embedded
feature selection methods include LASSO, Ridge regression, elastic-net and
partial least squares regression (PLSR), just to name a few [100,101].

2.3.4 Feature Fusion

Feature fusion is a method to combine information from various features
with the aim to improve the performance of the machine learning system,
for example the results of classification or regression based on a particular
metric [108]. Feature fusion can be implemented in two fundamental ways i.e.
(a) feature level fusion, and (b) decision level fusion.

Feature level fusion is quite trivial. In this approach multiple features are
simply concatenated with each other, thereby creating a (larger) feature vector.
Meanwhile, decision level fusion offers an alternate approach, which takes place
once the classifier takes a decision on the label of the input feature vector.

Decision level fusion can be implemented in two ways i.e. by using either
hard decision or soft decision. Hard decision is usually implemented by majority
voting on the labels predicted by the classifier using logical AND or OR
operations. Soft decision fusion typically takes place on the probabilistic
outputs of the classifier, or by combining non-probabilistic outputs using
suitable weights.

Feature level fusion typically has a poorer performance when compared
with decision level fusion. This is understandable since it increases the dimen-
sionality of the feature vectors and inherently makes the machine learning task
more complex. Classifiers and regressors may struggle to learn meaningful
representation due the curse of dimensionality problem and yield relatively
poor performance. For the task of automated depression screening, the authors
of [109,110] report that feature level fusion led to poorer performance compared
to decision fusion.
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While decision level fusion generally performs better than feature level
fusion, it has certain limitations. For example, there is no absolute rule
governing whether hard decision fusion should use majority combining or
use Boolean AND or OR operations for feature fusion. In fact, it is often
required that one probe multiple operations and select the best performing
one, as evident in the work of [111]. Meanwhile, soft decision fusion requires
optimisation of weight parameters which are required to combine the classifier
outputs. For example, the authors of [112] assign the weights randomly and
optimise them using cross-fold validation and those in [113] train a Kalman
filter [114] for this purpose. This not only increases the computational cost
but also makes the feature fusion process vulnerable to overfitting.

2.3.5 Classification and Regression

Various types of classification and regression algorithms have found use in the
computational framework for automated screening of human behaviour. These
algorithms include support vector machine (SVM) [115–117], random forest
(RF) [118, 119], decision trees [120], relevance vector machine (RVM) [121],
extreme learning machine (ELM) [122,123], and logistic regression [124].

We note that SVM has been the most popular algorithm, finding appli-
cation in tasks related to automated recognition of depression [102,125–131],
emotions [132–135], public speaking ability [136–139], ASD [69,70,140–145],
Schizophrenia [73], and paralinguistic activity [64,146–148] amongst many more.
For the task of automated screening of depression, decision trees [111,149–151]
and random forest [28,92,131,152,153] have also been used. Amongst other clas-
sification and regression algorithms, RVMs have been used in [154–159], ELMs
in [128,160,161], and logistic regression has found use in [27,39,53,155,162–168].

Our literature survey suggests that there is no particular method for
selecting a classifier/regressor for development of automated screening methods,
although SVM does appear to be the ‘go to’ algorithm. This is likely because
classification/regression tasks related to the automated screening of human
behaviour are inherently complex. For example, classes are rarely separable and
it is typical to have a large overlap between the classes due to the nature of how
labels are assigned (we visit this aspect of SSP/AC in Section 3.5.4). Kachele
et al. [113], therefore, advocate the use of an ensemble of classifiers/regressors
for tasks related to recognition of affective states and depression. They believe
that since classes are not linearly separable, a single classifier would have poor
performance as it tries to learn contradicting data points or simply creates a
best fit of features which may not represent the actual learning task. Another
aspect which affects the choice of classification/regression algorithm is the
amount of available data. Williamson et al. [128] argue that with limited data,
least squares based approach would perform better than stochastic gradient
descent approach of SVM. In fact, this motivated them to use ELM instead of
SVM. Scherer et al. [126] report that a simple linear discriminant classifier [120]
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performed better than SVM for the task of depression recognition, however,
they surmise that SVM could have provided a better result had their grid
search been wider.

In subsequent sections, we provide a brief introduction of classification and
regression algorithm which we have used in this thesis. These include SVM,
ELM, and partial least squares regression (PLSR).

Support Vector Machine

The SVM was introduced by Cortes et al. [116] as a linear classifier for binary
classification tasks. It models the decision boundary between two classes as a
separating hyperplane. Extensions by Drucker et al. [117] enables SVM to also
be used for regression tasks, commonly known as support vector regression
(SVR). While the legacy SVM was a linear classifier, it can be extended to
perform classification/regression when separability between classes in non-
linear. This is achieved by first projecting feature matrix into a hyperspace
using a suitable kernel such that linear separability exists in that hyperspace,
before SVM is used. The task of finding a suitable kernel is not trivial, and
typically requires cross-validation for tuning parameters of the various kernel
functions. Commonly used kernel functions include linear kernel, Gaussian
kernel, and polynomial kernel [169].

Given that there are a number of options for classifiers/regressors, it has
become common to use SVM for reporting baseline classification/regression
results. For example, Interspeech ComParE challenges provided baseline
classification results using the SVM with a linear kernel [146, 148] whilst using
implementation of SVM provided by the WEKA toolkit [170]. Meanwhile, the
recently concluded AVEC 2018 sub-challenge on Bipolar disorder [39] used the
LIBLINEAR toolkit [171] implementation of linear SVM.

Extreme Learning Machine

ELM was introduced by Huang et al. [122, 123] as single layer feed-forward
neural network where the hidden layer is assigned randomly generated weights.
These weights are not updated during the training process, instead, the classifier
works by mapping the output from the hidden layer to the training labels using
a least squares fit.

While Huang et al. argue that even with random weights, the hidden
layer can learn useful representation of input data which can be exploited by
designing a suitable output layer, we do not find their argument to be absolutely
true. In fact, as part of our experiments with ELM we found the classification
performance with ELM is highly dependent on the choice of random weights
i.e. the seed used to generate random matrices (see Section 5.6.4 for details).

However, we do agree with Huang et al. that compared with other classifi-
cation algorithms, ELM enjoy an outstanding advantage of very fast training
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times, which enables one to undertake a grid search for the best random weights
for the hidden layer.

Partial Least Squares Regression

PLSR is a regression algorithm which is most useful when the feature matrix
has collinearities and in cases when the dimensionality of feature matrix is
smaller than the number of training examples [103,172]. PLSR involves two
fundamental steps. In the first step, the original feature matrix is transformed
such that the new matrix contains uncorrelated components instead of original
features. In the second step, least squares regression is applied to map the
new feature matrix with the target variable. The PLSR only has one tuning
parameter i.e. the number of components to retain, which can be optimised
using an appropriate metric (such as the mean square error) on the development
partition. Typically, the performance of PLSR will improve as the number of
components is increased, however, this also makes PLSR prone to overfitting.

2.3.6 Statistical tests

Statistical tests are commonly used for the development of automated screening
methods in order to provide insights and inferences about features and their
association to the target variable. We note from our literature survey that two
fundamental types of statistical tests have been used for the development of
automated screening methods. These include tests to determine the outcome
of a hypothesis and the second task is to determine the strength of correlation

In the following sections, we provide a brief introduction to hypothesis
tests and correlation tests, in context of their application in SSP/AC.

Hypothesis Tests

The t-test and Mann-Whitney U-test fall under the category of statistical
hypothesis tests. These tests are used to determine if the data (which in our
case are audio, visual, or text features) from two groups (which in our case are
labels, such as depressed and not depressed) is significantly different from each
other. While similar in application, there are subtle differences between the
t-test and the U-test [35]. For example, the t-test can only be used under the
assumption that data points for both groups are normally distributed, whereas
no such assumption is need for the U-test. Moreover, the t-test quantifies the
difference between mean values of the two groups, whereas the U-test quantifies
the difference between median values of the two groups.

The hypothesis that whether the difference between the two groups is
statistically significant is determined through the probability value of these
tests. The probability value, commonly called 𝑝-value, indicates how likely
it is to observe a difference between the groups whilst using these tests due
to noisy observations when is in reality no difference between the groups [35].
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For example, a small 𝑝-value means that it is unlikely that the difference in
mean/median values of the two groups is due to noisy observations and that
the data from the two groups is indeed different. Meanwhile a large 𝑝-value
means that the difference between the mean/median values is likely to have
occurred due to noisy observations.

In SSP/AC, the t-test test has been used in applications pertaining to
depression [28,52,104,125,157,173–175], schizophrenia [72,73], bipolar disor-
der [176], psychological distress [177], and public speaking ability [137]. It is
important to mention here that Alghowinem et al. [104, 174, 175] have used
t-tests for feature selection instead of hypothesis testing. Meanwhile, the U-test
has also been used for recognition of depression [178–180], ASD [145,181, 182],
bipolar disorder [183,184], and cognitive impairments [185]. Amongst these, we
find that 𝑝 = 0.05 is typically chosen as the threshold for determining whether
or not a statistically significant different exists between the two groups.

Sullivan and Feinn [44] argue emphatically in favour of effect size, which
represents the magnitude of the difference between groups, to report statistical
analysis to support 𝑝-values, and quote Jacob Cohen (a statistician, infamous
for his work on statistical power and effect size) as ‘the primary product of a
research inquiry is one or more measures of effect size, not P values’.

We find motivation to reporting effect-size for statistical analyses from Fritz
et al. [45], who argue that reporting effect sizes not only allows the comparison
of effects in a single study, but also permits meta-analyses across studies. While
not previously common, we note a growing trend where the effect size based
on the Hedge’s 𝑔 [45] has been reported for SSP/AC application related to
depression [125,126,173,186–189], public speaking ability [136,137,190,191],
and ASD [145].

Correlation Tests

Correlation tests are used in statistics to measure the strength of relationship
between two variables. In context of SSP/AC, these are used to determine
the relationship between an audio, visual, or text features and the continuous-
valued target variable, which, for example, could be the depression severity.

The two most commonly used correlation tests are the Pearson Correlation
Coefficient (Pearson 𝑟) and Spearman Correlation Coefficient (Spearman 𝜌) [35].
Similar to the t-test and U-test, there are subtle differences between Pearson 𝑟
and Spearman 𝜌. The Pearson correlation coefficient is used to evaluate
relationship between two continuous variables under the assumption that
the relationship between the two variables is linear and that the both are
normally distributed. Meanwhile, the Spearman 𝜌 is used to evaluate monotonic
relationship between two continuous or ordinal variables. Unlike, Pearson 𝑟,
Spearman 𝜌 does not have restrictions for the normal distribution of the two
variables. The correlation coefficient 𝑟/𝜌 can take values between -1 and 1. A
value of 1 indicates perfect correlation, whereas a value of -1 indicates perfect
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but negative correlation. A correlation coefficient value of 0 means that no
correlation exists.

We find that Pearson’s Correlation Coefficient has found use in applications
related to screening of depression [125–128,130,178,192,193], ASD [194,195],
bipolar disorder [33, 183, 184], public speaking ability [136, 137, 190, 191],
schizophrenia [73], and psychosis [196]. Spearman’s Correlation Coefficient
has also found use in various applications related to screening of depres-
sion [127,197,198], psychosis [196], ASD [194,195], and public speaking abil-
ity [190].

2.4 Summary

In this chapter we provided a gentle introduction to the fundamentals of
automated screening methods as used in SSP/AC. We started with a discussion
on the three most popular modalities as used in SSP/AC [4] i.e. audio, visual,
and text.

We followed this by a discussion on various feature engineering mechanisms
including feature aggregation based on functionals, GMMs, BoWs, and Fisher
Vectors. For dimensionality reduction, we discussed methods based on feature
projection and feature selection. We also discussed feature fusion and decision
level fusion, which have been reported in research literature to be useful for
improving performance of automated screening methods. We provided an
introduction to various machine learning techniques which we use later in this
thesis. Finally, we provided a brief introduction to statistical tests commonly
used in SSP/AC and link them to specific applications in the field.

In the next chapter, we continue with our discussion on the development of
automated screening methods. We move on from discussing fundamentals of
these methods to a more targeted discussion on the development of automated
methods to screen for mental and neuro-developmental disorders.
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Automated Screening for
Mental and
Neuro-developmental
Disorders

3.1 Introduction

The Diagnostic and Statistical Manual of Mental Disorders (DSM) [18] is a
reference book published by the American Psychiatric Association which offers
a common language for the codification of mental disorders. More importantly,
especially in the context of developing automated screening methods, the DSM
manuals provide standard diagnostic criteria for various types of disorders,
which include major depressive disorder (commonly known as depression),
autism spectrum disorder (commonly known as autism), bipolar disorder, post-
traumatic stress disorder, and schizophrenia amongst many others. Our aim
is to utilise the standard diagnostic criteria for depression, bipolar disorder,
and ASD to develop automated screening methods for these disorders and
accordingly, provide discussions in Chapters 4, 5, and 6, respectively.

The DSM-5 manual (the latest edition) defines a mental disorder as a
‘syndrome characterized by clinically significant disturbance in an individual’s
cognition, emotion regulation, or behaviour that reflects a dysfunction in the
psychological, biological, or developmental processes underlying mental func-
tioning’. Meanwhile, neuro-developmental disorders are defined as an umbrella
term for a group of conditions which start becoming apparent in the develop-
mental phase of a child. According to the DSM-5, the neuro-developmental
disorders are ‘a group of conditions with onset in the developmental period.
The disorders typically manifest early in development, often before the child
enters grade school, and are characterized by developmental deficits that pro-
duce impairments of personal, social, academic, or occupational functioning.
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The range of developmental deficits varies from very specific limitations of
learning or control of executive functions to global impairments of social skills
or intelligence’. Relevant to this thesis, depression and bipolar disorder are
considered mental disorders, whereas ASD is considered a neuro-developmental
disorder.

Relevant to this thesis, depression and bipolar disorder are considered
mental disorders, whereas autism is considered a neuro-developmental disorder.
It is important to mention here that while the DSM-5 manual has organised
disorders under special sections, some researchers have preferred to use more
generic terms to describe these disorders. For example, Cohen et al. [199]
refer to depression, schizophrenia, and bipolar disorders as ‘serious mental
illness’. Asgari et al. [200] refer to clinical depression and autism as ‘cognitive
impairments’, and Hantke et al. [201] cluster individuals with various types of
mental, neurological, and physical disabilities and refer to individuals affected
by these disabilities as ‘cognitively impaired’.

Our primary aim in this chapter is to discuss how features can be extracted
from audio/visual modalities and subsequently used for screening of mental and
neuro-developmental disorders. It must be mentioned here that our discussion
will be somewhat biased towards screening of depression. This simply due to
the fact that there are more publicly available datasets focusing on the task of
depression screening than any other disorder, thereby gathering most attention
from researchers in the SSP/AC community. Our secondary aim is to discuss
inherent limitations of automated screening methods, we believe this is very
important so that deliverables are reported with well-founded understanding.

The rest of this chapter is organised as follows: we start with a brief
discussion of psychomotor changes which occur due to mental disorders such
as depression and bipolar disorder. These changes can have a profound effect
on the social signals of individuals affected by these disorders. Next, we
discuss in detail how information conveyed by social signals from audio and
visual modalities can be quantified as audio/visual features. As per the scope
of the thesis, we focus on information extracted from the face region from
the visual modality and speech from the audio modality. We then discuss
in detail inherent limitations which exist and challenges which need to be
overcome for the task of developing automated methods for screening mental
and neuro-developmental disorders.

3.2 Psychomotor Changes

Psychomotor activities are skills which require coordination between the brain
and the body to function effectively. Psychomotor activity spans multiple
domains which include body movements and speech, and how well activities
are affected by underlying mental processes and emotions [202].

A number of mental disorders have an adverse effect on psychomotor
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activities, implying that monitoring of psychomotor activities can lead to
recognition of these mental disorders. For example, depression and bipolar
disorder can be recognised by identifying psychomotor symptoms as per the
DSM-5 manual [18]. It is important to mention here that according to the
DSM-5 manual, neuro-developmental disorders, in particular autism spectrum
disorder, do not result in psychomotor changes.

In the context of mental disorders, there are two fundamental types of
psychomotor symptoms. These include: (a) Psychomotor agitation, and (b)
Psychomotor retardation.

Psychomotor agitation

Psychomotor agitation can be defined as an inner restlessness or tension
associated with increased motor movement. From a motor perspective, it
manifests as feelings of restlessness, such as undertaking repeated movements
and fidgeting. Restlessness also leads to insomnia. From a cognitive perspective,
psychomotor agitation can lead to emotions which involve high arousal and
negative valence, for example anger and anxiety.

Psychomotor retardation

Psychomotor retardation is, in general, the slowing down of psychomotor
activities. From a motor perspective it manifests as impaired speech (in
terms of prosody, voice quality and articulation), sluggish body movements,
and fatigue (which can lead to hypersomnia). From a cognitive perspective,
psychomotor retardation can lead to impaired thinking and most prominently
blunted display of affect and emotions.

3.3 Screening based on features from Visual
Modality

Using the methods discussed in Chapter 2, one can craft features from social
signals which are representative of psychomotor changes. These features
can subsequently be used for recognition of mental and neuro-developmental
disorders. We start our discussion with features from the visual modality

We organise features from the visual modality into two categories i.e. (a)
craniofacial movement features, and (b) emotional expressivity features. We
argue in light of research literature in the following section that Craniofacial
Movement Analysis can be used to capture the motor perspective of psychomo-
tor activities, whereas Emotional Expressivity Analysis can be used to test the
hypothesis that individuals with mental and neuro-developmental disorders
express emotions differently.
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3.3.1 Craniofacial Movement

Alghowinem et al. [174,175,203,204] made significant contributions to the task
of automated screening of depression between 2013–2016. They study head
motion, eye gaze and movement of facial landmarks as features for classifying
between individuals with and without depression.

To study movement of facial landmarks, they compute an exhaustive set of
pair-wise distances between facial landmark points, follow it up by computing
velocity and acceleration contours from the distance measures. Finally, the
contours are summarised using functionals. The authors hypothesise that since
these features capture facial muscle activity, they can be useful to identify
individuals with depression.

They study head motion by computing velocity and acceleration contours
from headpose in terms of yaw, pitch, and roll, and summarise their values
using functionals; similar to the approach used for facial landmarks. In order
to estimate head pose, they first used the (POSIT) algorithm [205] with 2D
facial landmarks and a 3D face reference shape to estimate the rotation matrix.
Using the rotation matrix, they computed yaw, pitch, and roll.

Finally, to study eye gaze, they manually annotated up to 45 images of
each participant in the database and build a 74 point active appearance model
(AAM) [206] around the eye region. They then use distance measures to
describe eye openings, and horizontal and vertical eye gaze.

Key findings from their research affirmed that individuals with depression
do indeed show signs of reduced motor activity. These individuals have smaller
facial muscle movement, slower head movement, and they tend to keep their
head in the same position for a longer period of time. Interestingly, they also
find contact avoidance to be a key discriminating factor, using both head pose
and eye gaze features.

While it is appreciated that their work is the first major attempt in finding
potentially useful visual features for depression recognition, there a number
of caveats in their approach. The major caveat is to compute an exhaustive
set of distance measures from 68 facial landmarks. Secondly, they used a few
thousand 𝑡-tests to whittle down useful features without correction for multiple-
hypothesis testing, arguing that they used t-tests for feature selection rather
than hypothesis testing — which is not uncommon in the field of social signal
processing (as discussed in Section 2.3.6). However, this argument does not
alleviate the dangers of multiple-hypothesis testing. Also, they report results
on the BlackDog dataset — their private dataset — the results, therefore,
cannot be verified independently. Nevertheless, their work has laid down a
foundation for future research in this area since it demonstrated that motor
retardation does indeed manifest as reduced craniofacial movement, and it can
be quantified automatically.

Dibekliouglu et al. [207] also proposed the computation of features based
on facial dynamics for depression recognition. Similar to the approach of
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Alghowinem et al. [174,175,203,204], these authors compute movement of each
facial landmark across the video recording as a time series. Thus for each video
frame, there are 98 different time series (i.e. 𝑥 and 𝑦 coordinates of 49 facial
landmarks). After applying a smoothening algorithm, they use PCA to reduce
the dimensionality to 15 time series components at each time instant (i.e. each
frame), retaining 95% of the total variance. Next, they compute velocity and
acceleration contours. They also divide velocity and acceleration contours
into segments of increasing and decreasing values before using functionals for
feature summarisation. A similar procedure is used for the time-series for
yaw, pitch, and roll which represents the head-pose. Instead of t-tests used
by Alghowinem et al., these authors use Minimum Redundancy Maximum
Relevance (mRMR) [106] for feature selection. Dibekliouglu et al. replicate the
method of Alghowinem et al. [104] on their own dataset and report that their
method provides better results in terms of classification accuracy. Although
the results in Table 3 of their paper, Dibekliouglu et al. [207] suggest that
performance improvement is likely dominated by the better performance of
mRMR feature selection algorithm when compared to t-tests.

For submission to the AVEC 2016 Depression classification challenge (AVEC
2016 DCC) [12], Pampouchidou et al. [150] quantify muscle movement via
motion history images (MHI) [208] of facial landmarks. Instead of using all
available landmarks, they selected landmarks which represent eyebrows, eyes,
nose tip, and mouth. Prior to computing MHI, they register all landmarks
with respect to landmarks on the temple, chin, and inner and outer corners of
the eyes. Later they compute the magnitude of change between frames, similar
to the concept of histogram of optical flow (HOF) [209].

For head motion analysis, Pampouchidou et al. computed velocity and
acceleration contours of four facial landmarks located on the contour of the
face i.e. landmarks {2, 4, 14, 16} for a 68-point reference. For measuring eye
blinking, they compute area occupied by facial landmarks around the eyes and
use an empirically determined method to measure eye blinks. Finally, they use
a number of functionals to summarise velocity and acceleration contours.

Apart from facial landmarks, Pampouchidou et al. also computed function-
als from facial action units (AUs) [40] and gaze features provided as part of
the dataset. However, they report that both AUs and gaze functions proved
detrimental to the classification performance, although MHIs computed from
facial landmarks were useful. They report that visual features provide a mean
F1 score of 0.58 with LOOCV on the combination of training and develop-
ment partitions, 0.70 on the development partition only, and 0.47 on the test
partition.

While it is appreciated that Pampouchidou et al. [150] seek to develop inno-
vative methods to measure dynamics from visual features, however, computing
features from landmarks which are towards the edge of the face contour, makes
their method highly susceptible to failures of the facial landmark tracker. It
may make more sense to use facial landmarks closer to the centre of the face
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with the understanding that they will have minimal effect from poor tracking.
For example, head motion can be gauged by using landmarks around the
nose instead of contours of the face. Furthermore, their approach focuses on
maximising classification accuracy and failed to provide intuition on how well
their features relate to depression severity.

Yang et al. [149] was the only submission to AVEC 2016 DCC to beat
the challenge baseline on the test partition. They first perform registration of
landmarks using the mean shape computed from 51 stable landmarks from the
training, development and test partitions. They proceed to compute distance
and angle measures for eye, eyebrow, and mouth regions. PCA is applied to
reduce dimensionality of the feature vector while retaining 99.90% of variance.
The average value of each feature over the entire recording is taken as a global
feature. They also experimented with using AUs. While their proposed features
demonstrate promising results on the development partition, the authors report
that their challenge winning submission was actually based on manually crafted
decision trees from interview transcripts.

In their submission to the AVEC 2016 DCC, Huang et al. [155] compute
multi-resolution, multi-lag auto- and cross-correlation between sequences of
facial landmarks (both 2D and 3D), eye gaze, head pose, and AUs, using an
approach originally proposed by Williamson et al. [210]. They achieve a mean
F1 score of 0.73 on the development partition using these features, however,
their best results on the test partition are from processing interview transcripts.

Nasir et al. [152] also process facial landmarks and use them as features to
quantify facial muscle movement. Apart from computing distances between
facial landmark points, they also compute area between certain facial landmarks.
We argue that the most important deliverable from their work is the use of multi-
resolution approach to feature description, where they argue that symptoms
of depression may not manifest at small time intervals over which audio-visual
features are typically computed. Interestingly, they claim that ‘polynomial
parameterisation of facial landmark features achieved the best performance
among all systems’, but this is not true as suggested by Table 4 in their
paper. It is clear that geometric features which are based on distance and
angle measures achieve better performance. Nevertheless, using a combination
of visual features, they achieve a mean F1 score of 0.84 on the development
partition and 0.55 on the test partition, both of which are promising.

Williamson et al. [130] computed correlation structure features of various
facial action units in line with their previous works [128,210]. They achieve a
mean F1 score of 0.53 on the development partition using these features, along
with a Pearson correlation value of 0.44.

Lucas et al. [177] utilised a subset of videos from the Distress Assessment
Interview Corpus (DAIC) [211], they report very high correlations between
frowning, smiling and eye gaze with respect to the Patient Health Questionnaire
PHQ [21] scores. The caveat, however, is that their dataset contains data
from only 6 participants, which compromises the validity of their results.
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Nevertheless, their work provides us the motivation to undertake a cross-
corpus analysis of features related to craniofacial movement.

Stratou et al. [186] also undertake analysis of a subset of the DAIC corpus,
which contains individuals with depression, Post-Traumatic Stress Disorder
(PTSD) or both depression and PTSD. Their results show that as the severity
of depression and PTSD increases, individuals with these mental disorders show
reduced facial activity in terms of AUs, head movement and eye gaze variations.
It must be mentioned here, however, that specialist software was used to
compute features from the face region, while other publications mentioned so
far typically used non-commercial tools to compute features.

3.3.2 Emotional Expressivity Analysis

Given that individuals with mental and neuro-developmental disorders typically
display altered affect, one can leverage emotional expressivity analysis to
potentially identify them amongst healthy individuals.

Emotional expressivity analysis using facial expressions is based on Paul
Ekman’s theory for basic emotions [7]. According to him, while human beings
can exhibit a very large number of emotions depending on culture, age, gender
etc., there still exist a set of six ‘basic’ emotions which are manifest irrespective
of these confounding factors. The six basic emotions are: (1) Anger, (2)
Disgust, (3) Fear, (4) Happiness, (5) Sadness, and (6) Surprise. Ekman also
defined these emotions in terms of specific facial muscle movements, as defined
by his facial action coding system (FACS) [1, 2].

Scherer et al. [126] study anger, disgust, contempt, fear, joy, surprise, sad-
ness, and neutral emotions computed from Computer Expression Recognition
Toolbox (CERT) [84]. These test how emotional variability and emotional
neutrality changes with respect to the depression severity of individuals. They
report a Pearson correlation value of 0.198 for emotional neutrality with a
Hedge’s 𝑔 effect size of 0.840. Meanwhile, emotional expressivity has a Pearson
correlation value of −0.054 for emotional neutrality with a Hedge’s 𝑔 effect size
of −0.757, thus showing that as depression severity increases, flat affect be-
comes dominant. In another publication [173], these authors show that anxiety,
depression, distress, and PTSD, all lead to a reduction of smile intensity.

Stratou et al. [186] provide an analysis of emotions in terms of AUs rather
than Ekman’s basic emotions. They report that the emotional expressivity
is highly dependent on the gender of the individual. They found that men
have an increased activation of AU4 compared to women — which means that
men tend to smile more under depression compared to women. They observe
a similar trend for disgust and trend for both individuals with depression and
PTSD.

Lucas et al. [177] report that individuals with depression and PTSD show
facial expressions of hostility, grief and diminished signs of joy. While their
observations are in agreement with research literature from psychology i.e.
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psychomotor retardation, it needs to be mentioned that they experimented
with data from only six individuals.

Vijay et al. [74] used AU intensity features extracted from the OpenFace
toolbox for a study on facial expressions on various forms of psychosis, including
depression. They report that individuals with depression show eye widening
(actually larger intensity of eyelid raiser, AU5), and smaller eye openings. They
also report the standard deviation of brow lowerer (AU4) intensity to be dis-
criminatory between depressed and non-depressed individuals. They find that
subjects who had a higher Brief Psychiatric Rating Scale scores (BPRS) [212],
also raise their eyebrows more. While ‘more’ is a vague description, we do
find from our own analysis on the AVEC 2016 dataset that dynamic range
of eyebrow movement’s velocity contour is positively correlated with PHQ-8
score for depression. They also report the following features to be useful on
certain specific tasks based on the Positive And Negative Syndrome Scale
(PANSS) [213]: standard deviation of AU5 intensity for focusing/thinking ques-
tions on PANSS-G6 depression scale, mean AU2 intensity for self-confidence
question on PANSS-P1 delusions scale and mean value of AU12 intensity for
self-confidence PANSS negative cumulative scale. A similar approach was
also used by Laksana et al. [180] in their investigation on the facial behaviour
indications of those with suicidal tendencies. In fact, these papers are part
of the recent shift from brute force approach to maximising classification or
regression accuracy and moving towards interpretable features.

While not for depression, Wortwein et al. [190] undertake analysis of facial
expressions of individuals with anxiety for public speaking tasks. They used
the FACET toolbox [214] to compute a number of emotions, and report on
the Pearson correlation (𝜌) of these emotions with respect to anxiety. They
report that individuals with anxiety also display sadness with a correlation
value of 𝑟 = 0.21, while fear correlates with anxiety with 𝑟 = 0.41.

3.4 Screening based on features from Audio
Modality

While discussing the importance of exploring potential biomarkers for auto-
mated depression screening, Horwitz et al. [215] propose linking up perceptual
qualities of speech from depressed individuals to the source-system (a.k.a.
source-filter) model of the speech production system. Their methodology is
also supported by an earlier work by DeBodt et al. [216], where they report
that speech impairments can be a result of malfunctioning of one or more
subsystems of speech production i.e. articulatory, resonatory, phonatory, and
respiratory. We find motivation from the work of Horwitz et al., and follow
their methodology to search for acoustic biomarkers for screening of mental
and neuro-developmental disorders since the method provides a systematic
and robust means to identify biomarkers.
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According to the source-system model of speech production [217], two
fundamental processes are involved in speech production. These include the
generation of sound sources at the glottis or along vocal tract followed by
filtering of these sources by the vocal tract. This theory suggests that speech
analysis can be undertaken by means of acoustic features which represent the
voice source(s) and the vocal tract.

However, in order to explore the effects of depression on speech more
elaborately, Horwitz et al. add, explicitly, the category of prosody analysis in
their work since it correlates with one of the most common perceptual cues of
depression i.e. monotony of speech. The analysis of voice source can enable
the study of the effects of mental disorders on voice quality [47, 218], while
the analysis of vocal tract may identify the effects of psychomotor changes
(agitation and/or retardation) [218,219].

We organise our study on automated methods for screening mental and
neuro-developmental disorders from speech into four parts:

∙ Prosody Analysis

∙ Voice Quality Analysis

∙ Spectral Modelling

∙ Formant Space Analysis

3.4.1 Prosody Analysis

Speech prosody is a generic term that describes a number of acoustic features
which quantify the melody accompanying speech. These features can include
but are not limited to pitch, loudness, word rate, and pauses [220].

It is a well-established feature of speech which varies in sympathy with
the underlying emotions and mood of an individual [156, 221–223]. Thus,
prosody is an important aspect of speech production through which one can
communicate affect. Prosodic analysis has previously been used to identify
individuals with depression [34,162,163,207,224,225], bipolar disorder [226,227],
schizophrenia [228] and ASD [46,229,230].

Pitch

Pitch represents the frequency of vibrations of the vocal cords during speech
production [231]. It is an important part of speech communication since it
can be modulated to convey a variety of meanings, for example, emotions of
happiness, sadness, or surprise and to mark an utterance as a question or an
answer. Fundamental frequency is typically used as a correlate for pitch [28].
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Loudness

Loudness is the psychological counterpart to sound pressure level. Sound
pressure level is a physical quantity, but loudness is a psychoacoustic quantity.
The former has to do with how a microphone perceives sound, the latter how
a human perceives sound. It measures the sound strength. It is important for
making speech intelligible and for expressing emotions. [28].

3.4.2 Voice Quality Analysis

Voice quality features capture information pertaining to the voice source, at
the glottis and vocal fold level [232]. Analysis of the voice quality provides a
means of gaining insight into the physiology of the glottal source.

Interestingly, there is no consensus on the number of categories for clas-
sifying voice qualities. For example, according to Gobl et al. [233], voice
quality can be classified as harsh, tense, modal, breathy, whispery, creaky,
or lax-creaky. We, however, follow the seminal work of Scherer et al. [126]
where they use voice quality features for automated depression screening. They
measure on a voice quality scale between breathy and tense, with modal voice
being at the centre. The characteristics of these types of voice qualities, based
on [199,233,234], can be summarised below.

Modal Voice: Modal voice represents normal speech. There is moderate
laryngeal tension, vocal fold vibrations are efficient and the glottal flow
waveform has moderate pulse.

Breathy Voice: In breathy voice, there is minimal laryngeal tension. Vocal
folds, therefore, do not come fully together resulting in audible aspiration
noise. The idealised glottal flow resembles a sinusoid.

Tense Voice: A tense voice results due to a higher degree of tension in the
entire vocal system. Vocal fold vibrations are irregular since they are
compressed tightly. This type of speech is characterised by a narrow
glottal pulse with long closed phase.

The hypothesis follows that psychomotor symptoms affecting voice sources
can be quantified via voice quality features. These features have previously
been used to screen individuals for depression [111, 125, 126, 177, 235, 236],
Psychosis [196], Suicidal tendencies [74, 237], Melancholia (a type of depres-
sion) [238], and Bipolar disorder [239].

In this thesis, we use a set of voice quality features which can be computed
as part of the open-source COVAREP toolbox [62]. The COVAREP toolbox
provides state-of-art algorithms for quantification of voice quality, and has
been used to compute baseline features for 2016 and 2017 editions of the AVEC
depression recognition sub-challenges. These features include normalised
amplitude quotient (NAQ), quasi-open quotient (QOQ), parabolic spectral
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parameter (PSP), Maxima Dispersion Quotient (MDQ), Harmonic-to-noise
ratio (HNR), Corrected difference of first two harmonic amplitudes (H1H2),
Cepstral Peak Prominence (CPP), and Peak Slope (PS). We note from the
works of [199,234,240,241] that all these features, with the exception of CPP
have a monotonic decreasing value as voice changes from breathy to tense.
CPP feature values increase as voice changes from breathy to tense.

Voice quality features can be of two fundamental types. The first type are
based on estimates of glottal airflow. The second type of voice quality features
are measured from speech spectra. While the features in the latter category do
not directly measure glottal activity, these are known to with correlate with
it [47]. This class of features includes:

NAQ: The NAQ quantifies the glottal closing phase [242], and shows a
monotonic decreasing trend when speech changes from breathy to creaky.

QOQ: The quasi-open quotient describes the relative open time of the glot-
tis [47]. It is measured by detecting the duration during which the glottal
flow is 50% above the minimum flow. This is then normalized by the
local glottal period.

HNR: Harmonics to Noise Ratio quantifies the amplitude differences between
the tonal peaks and the mean noise level in speech. Noise, for example,
is introduced during the speech production process when vocal folds do
not close completely during the closed phase [47].

H1H2 : It describes the amplitude of the fundamental frequency relative to
that of the second harmonic. Positively correlated with breathiness in
speech. The difference between the first two harmonic amplitudes of
the speech spectrum (H1H2) has been shown to correlate with the open
quotient of the glottal waveform [47].

CPP : Cepstral Peak Prominence is the ratio between the amplitude of the
cepstral peak and the overall signal amplitude [243]. It measures the
degree of periodicity of speech. For example, an increase in turbulent
noise leads to a decrease in the CPP value. Hence, CPP values are
lower for breathy speech compared with non-breathy speech. negatively
correlated with breathiness in speech [244].

PSP : The Parabolic Shape Parameter quantifies the spectral decay of glottal
flow [240] by fitting a parabolic curve to its signal. It has been should to
be related to voice quality [125].

PeakSlope: The PS involves fitting a regression line to the maximum am-
plitudes of speech spectra divided into octave bands. It can be used to
discriminate between breathy and tense voice [241].
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MDQ: It describes how the spectral decay of an obtained glottal flow behaves
with respect to a theoretical limit corresponding to maximal spectral
decay [240].

Jitter : It quantifies the irregularity in pitch. Jitter is a measure of frequency
instability.

Shimmer : It quantifies the irregularity in loudness. Mean absolute difference
between the amplitudes of consecutive periods, divided by the mean
amplitude.; shimmer is a measure of amplitude instability

It is important to mention here that in order to classify voice between
breathy and tense based on a feature value, one needs information about the
feature value for modal voice since feature values are known to be subject
dependent. For example, consider the work of Alku et al. [240] on the use
of PSP features for voice quality. While it is clear that the feature value is
monotonically decreasing as voice changes from breathy to tense, the magnitude
of this feature is indeed subject dependent. Thus, without a reference for the
value of a particular voice feature for modal voice, any discrimination of voice
into breathy or tense, is at best data driven and potentially prone to errors.

3.4.3 Spectral Modelling of Vocal Apparatus

Psychomotor changes affect muscle movements [18], these changes affect the
speech production system by either increasing or decreasing vocal tract mus-
cle tension, depending on whether retardation or agitation manifests in the
individual [219,245]. This in turn modulates spectral characteristics of voice
source signals in terms of both, their magnitude and phase. To summarise, it
is possible to study the effects of mental disorders on the speech production
system by modelling the spectral characteristics of speech signal.

There are two fundamental approaches to spectral modelling, which we
discuss briefly in subsequent sections after brief overview of commonly used
spectral features of speech.

Spectral Features

Spectral features characterise speech spectra i.e. the frequency distribution of
the speech signal. These features offer detailed information about the vocal
tract structure and are especially useful for quantifying changes there due to
muscle tension and control [246]. We provide a brief description of various
spectral features as follows. These features have been used to model speech
spectra.

MFCCs: Mel Frequency Cepstral Coefficients (MFCCs) are arguably the most
popular spectral features for speech signals. The key attribute of MFCCs
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is that they represent speech spectra with respect to human perception
of pitch. This is achieved by warping speech spectra with respect to the
Mel scale, which relates real frequency to perceived frequency [247]. A
compact cepstral representation of speech spectra is subsequently created
using discrete cosine transformation of the Mel filtered log-energy speech
spectra.

PLPs: Proposed by Hermansky et al. [248], PLP features share similarities
with MFCCs, even though both were developed independently [249].
While MFCCs warps spectra according to the human perception of pitch,
PLP features model the perception of loudness at different frequencies [30].
This is achieved by warping speech spectra with respect to the Bark
scale. Both, MFCCs and PLPs, use cepstral representation of spectra.

Auditory Spectrum: Auditory spectrum (AudSpec) features are similar to
PLP features in that speech spectra is warped to the Bark scale. However,
unlike PLPs, AudSpec features do not use cepstral representation, instead
contain summation of energy within critical bands.

Spectral Flux : Spectral flux features quantify variation in the power spec-
trum. This is achieved by comparing the difference in power spectrum
between successive short-time frames.

Spectral Entropy : As the name suggestions, spectral entropy features quan-
tify the amount of information conveyed by the power spectrum of the
speech signal. Spectral entropy features represent the peakiness of speech
spectra [250].

Spectral Variance: Spectral variance is the second moment of statistics
computed for speech spectrum, and provides information about the
shape of the spectrum. It is particularly useful in differentiating between
tone-like and noise-like sounds.

Spectral Skewness: Spectral Skewness is the third moment of statistics
computed for speech spectra, and provides quantification of spectral tilt.

Spectral Kurtosis: Spectral kurtosis is the fourth moment of statistics com-
puted for speech spectra, and provides information about the peakiness
of the power distribution. A large value for kurtosis means that peaks are
usually well defined, whereas a small value means that power distribution
is relatively flat.

Spectral Slope: This feature provides the slope parameter of a linear regres-
sion line between two cut-off frequencies of the power spectra. openS-
mile [30] provides spectral slope values for two ranges of frequencies i.e.
(a) 0–500 Hz and (b) 500–1500 Hz.
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Spectral Energy Proportions: Spectral energy proportions (SEP) features
quantify energy contained within certain frequency bands relative to the
total energy in a short-time power spectrum. openSmile [30] provides
SEP features for two bands i.e. 0–500 Hz and 0–1000 Hz.

Spectral Roll Off Point : This feature provides information about the shape
of speech spectrum. It determines the frequency below which a pre-
defined percentage of the total spectral power is concentrated. openS-
mile [30] computes these features for 25%, 50%, 75% and 90%.

Psychoacoustic Sharpness: This feature quantifies the amount of high
frequency content in speech, such that perceptually, the speech sounds
sharp.

Harmonic Differences: These features are computed from the magnitude of
harmonics of the fundamental frequencies. They represent the difference
between the amplitude of a particular harmonic and the amplitude of
the peak fundamental frequency. openSmile [30] provides two harmonic
difference features i.e. H1–H2, which is the difference between the first
and second harmonic, and H1–A3, which is difference between the first
harmonic and the third harmonic.

It is important to mention here that H1–H2 has been proved to be
associated with voice quality (see [47] and references therein), i.e. a
breathy voice has larger values of H1–H2 compared to a tense voice.

Alpha Ratio: This feature provides the ratio between the energy of speech
signal between 50–1000 Hz and 1–5 kHz. In essence, it provides a measure
of spectral slop. It is loosely correlated with voice quality [251].

Hammarberg Index : This feature provides ratio between the peak energy
in the 0–2 kHz region and the peak energy in the 2-–5 kHz region. Thus,
similar to the alpha ratio, Hammarberg index also provides information
about spectral slope and voice quality [252].

Spectral Harmonicity: As the name suggests, spectral harmonicity quanti-
fies the extent of harmonics in the signal. It can be used to differentiate
between, for example, voiced and unvoiced speech [253].

Spectral Modelling Methods

There are two fundamental approaches to spectral modelling. The first ap-
proach is based on using the process flow for legacy (i.e. non-deep learning)
automated speaker recognition systems [95]. While the aim in speaker recogni-
tion systems is to link speech recordings to a particular individual, the objective
of spectral modelling in our work is to build a model which represents speech
characteristics of individuals with mental and neuro-developmental disorders.
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Figure 3.1: Generic Block diagram for Multi-dimensional Spectral Modelling

The generic process flow diagram for spectral modelling is illustrated in
Figure 3.1. In the first stage, signal processing algorithms are used to extract
spectral features from speech waveforms. As the name implies, these features
provide detailed information about speech spectra and typically span multiple
dimensions. The second stage involves building a generative model to learn
the feature space of those features. The generative model, often called the
background model, is trained on spectral features from speech recordings of all
speakers. In the final stage, a discriminative model is built for speech recording
of each speaker by quantifying the difference between spectral features from
their recording and the background model. It is common to use either some or
all of the parameters of the discriminative model as features for the classification
or regression.

There are a number of ways to implement the generic spectral modelling
process flow, illustrated in Figure 3.1. Cummins et al. [254] and Lopez
et al. [255] build background models using GMM, and follow it up with
GMM-UBM approach [95] to identify individuals with depression from speech.
Meanwhile, Senoussaoui et al. [154], Lopez et al. [256] and Nasir et al. [152]
use the i-vector approach [257] for building models for depression screening.
Finally, in [34,37], we introduce Fisher Vector encoding [98] of spectral features
for the task of automated depression screening. All these approaches have
demonstrated success for the task of depression recognition.

There are two major advantages of this spectral modelling approach. First,
it uses features which provide detailed information about speech spectra,
typically in the form of MFCCs, PLP, or AudSpec features. It is also possible
to concatenate any of the other features discussed earlier to create an even
more detailed spectral representation in order to improve quality of data.
The second major advantage is the use of the background model approach to
learn the acoustic feature space — an approach which was the state of art
for speaker recognition until deep learning became popular. This enables the
discriminative model to already have an understanding of the acoustic feature
space (including the background noise), and speaker specific models can be
created without the need of large amount of data [95]. There are some inherent
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flaws with this approach as well. For example, these features do not carry an
intuitive meaning, therefore, while one can use multi-dimensional modelling
to identify individuals with mental and neuro-developmental disorders, one
cannot ascertain which characteristics of speech make them different from
healthy individuals.

Speech spectra can also be modelled by functionals based feature summari-
sation [162]. In this approach, functionals of descriptive statistics are computed
of each LLD separately and the resultant functionals are concatenated together
to craft a multi-dimensional feature vector.

While trivial compared to the first approach, modelling speech spectra using
functionals is interpretable [162] and is therefore more useful for experiments on
datasets which are not publicly available [58]. For example, Solomon et al. [28],
report that comparing mean value of MFCC coefficients 0 versus 1 i.e. MFCCs
0 vs MFCCS 1 can be used to identify individuals with depression — even if
they attempt to hide their symptoms. Furthermore, Furorali et al. [46] conduct
a systematic review of speech as a potential biomarker of individuals with
ASD. It is clear from their review that functionals based spectral modelling is
indeed useful for identifying speech of individuals with ASD.

This method has also proved successful for brute-force training on datasets.
For example, Alghowinem et al. demonstrate this approach in [104] where they
use 𝑡-test based feature selection on functionals to identify features which prove
useful for the task of depression screening. Furthermore, authors of [28,162,224]
use this approach to report on speech of individuals with depression, Wortwein
et al. [196] report for psychotic people, and Chen et al. [145, 167] use this
approach to report on speech characteristics of individuals with ASD.

While spectral modelling is a promising method for identifying individuals
with cognitive impairments, there are some caveats which need to be acknowl-
edged. This relates with the fact that spectral features are representative of all
the information contained in speech, including both linguistic and paralinguis-
tic — some of which may be correlated with cognitive impairment, and some
of it not. It is possible that any of the many confounding factors overrides any
paralinguistic information which has discriminative power [258].

3.4.4 Formant Space Analysis

An alternate method for studying the effects of mental and neuro-developmental
disorders on the vocal tract is to model the formant space. Formants are the
resonant frequencies of the vocal tract, therefore formant space analysis provides
a direct insight into changes at vocal tract level of the production system.
Formant space analysis has widely been used by the computational linguistics
community, especially for understanding articulation [217,259].

Based on the hypothesis that psychomotor symptoms affect the vocal tract
functions, it follows that individuals with mental disorders will have, depending
on the severity of their illness, impaired articulation. This is in part supported
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by formant space analysis and it has accordingly been proposed as a robust
identifier for a number of mental disorders, neuro-developmental disorders,
and cognitive impairments such as depression [128, 162, 260], autism [46] (with
references therein), Schizophrenia [199,261], Alzheimer’s disease [185,262], and
bipolar disorder [184,199].

There are practical constraints, however, which hinder the application of
formant space analysis to its full potential. For example, it is highly dependent
on the lexical content of speech and requires phonetic segmentation as a pre-
processing step. This is highlighted in the work of [128], who report that their
method works best for scripted speech. In fact, they only used scripted speech
recordings of the AVEC 2014 depression recognition sub-challenge where they
achieved the highest accuracy. For the 2016 edition of the challenge, where
they were not able achieve phonetic segmentation, the results of their formant
analysis method were not particularly good [130].

3.5 Limitations and Challenges

Automated screening for mental and neuro-developmental disorders is still very
much a work in progress. There are a number of limitations which need to be
acknowledged and challenges which need to be overcome in order to develop
such systems. In subsequent sections, we discuss some of the outstanding issues
relevant to the field. These are:

∙ Availability of datasets

∙ Size of datasets

∙ Social Signal Modalities

∙ Ground truth labels

∙ Confounding Factors

∙ Dataset Creation and Design

∙ Choice of Software

3.5.1 Availability of Datasets

An inherent limitation in the field of SSP/AC is the lack of publicly available
datasets, which inhibits research progress. We find that this issue is even
worse for the task of developing automated screening methods for mental and
neuro-developmental disorders.

The availability of datasets is limited to due ethical restrictions which
while permitting some researchers to collect and use data, do not permit them
to share data with other researchers, mostly due to privacy concerns. For
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example, as part of our work on the development of automated screening
methods for ASD, we sought access to datasets used by other researchers in
the field. Upon contact, Bone et al. [195] and Baird et al. [144] informed us
that their dataset cannot be shared with researchers outside of their group due
to ethical restrictions. Meanwhile, organisers of Interspeech ComPare 2013
Autism sub-challenge [64] and Motlagh et al. [263] did not return our emails.
We would like to add here that ethical restrictions do not permit us to share
the dataset used by us in our work with researchers outside our group as well.

On the other hand, we note that datasets which are publicly available
have drawn interest from the community, especially when it comes to the
task of developing automated screening methods. For example, consider
the case of datasets provided as part of the annual Audio/Visual Emotion
Challenge (AVEC), which is organised as a workshop co-located with the ACM
Multimedia Conference. One of the highlights of AVEC has been its challenges
on development of automated screening methods for depression. As of 20th
of August 2018, the introductory paper for AVEC 2013 challenge has been
cited 189 times, AVEC 2014 has been cited 153 times, AVEC 2015 has been
cited 80 times, AVEC 2016 has been cited 125 times, and AVEC 2017 has been
cited 19 times so far. An interesting point to raise here is that AVEC 2015 did
not have a challenge dedicated to depression, and when compared with other
challenges, its introductory paper has the smallest number of citations.

The most recent edition of the challenge i.e. AVEC 2018 provides for the
first time a publicly available dataset for the task of screening for bipolar
disorder. We expect this dataset to generate interest for the development of
automated screening methods for bipolar disorder, just as previous AVEC
challenges helped generate interest for research on depression.

3.5.2 Size of Datasets

Most datasets available for training automated screening methods contain a
relatively small amount of training data in terms of both, subjects and samples.
In order to convince the reader, we provide a summary of number of subjects in
each dataset from recent publications advocating automated screening methods
in Table 3.1.

Here, it is shown that most datasets contain only a small number of
subjects, with further categories based on ground truth labels and training,
development, and testing partitions. This makes it difficult to ascertain the
efficacy of automated screening methods simply because the trained models
are vulnerable to the effects of overfitting.

For example, consider the case of the recently concluded Audio Visual
Emotion Challenge (AVEC 2018) [33], where we participated in the Bipolar
Disorder sub-challenge. Based on our work on the development of automated
screening methods for bipolar disorder (see Chapter 5), we observed a trend
where there is a significant decrease between the accuracy achieved on the
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Table 3.1: Typical size of datasets available for developing automated
methods for screening of mental and neuro-developmental disorders

Reference Year Theme Subjects and Labels

Bhatia et al. [238] 2017 Melancholia
(depression)

39, with 13 control, 13 melan-
cholic depression, and 13 non-
melancholic depression

Venek et al. [237] 2017 Suicidal risk
assessment

60, with 30 suicidal and 30
non-suicidal

Wortwein et al.
[196]

2017 Psychosis 20, all with psychosis

Coco et al. [69] 2017 Autism 10, with 5 typically developing
and 5 with autism

Pokorny et
al. [145]

2017 Autism 20, with 10 typically develop-
ing and 10 with autism

Vijay et al. [74] 2016 Psychosis 18, all with psychosis
Tron et al. [73] 2016 Schizophrenia 67, with 33 control and 34 with

schizophrenia
Valstar et al. [12] 2016 Depression 142, continuous depression

scale
Alghowinem et al.
[175]

2016 Depression 60, with 30 control and 30 de-
pressed

Wolters et
al. [197]

2015 Depressed
mood

14, all depressed

Hussenbocus et al.
[225]

2015 Depression 139, with 71 non-depressed
and 68 depressed

Solomon et al. [28] 2015 Depression 17, with 8 non-depressed and
9 depressed

Valstar et al. [11] 2014 Depression 84, continuous depression scale
Stratou et al. [186] 2013 Depression

and PTSD
53, with overlapping illnesses
with 22 PTSD positive, 31
PTSD negative, 17 depression
positive, and 36 depression
negative

Scherer et al. [125] 2013 Depression
and PTSD

30, with 10 control, 10 suicidal,
and 10 depressed

development partition compared to the test partition. However, given the
relatively small size of the dataset, one does expect such observations.
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3.5.3 Social Signal Modalities

For the development of systems which can complement trained clinicians,
automated systems need to have access to same information that is available
to a clinician. For example, clinicians can both, watch and hear, the patient
during the interview process. Thus, clinicians have access to information about
the patient’s facial expressions, head motion, body posture, and speech. In
most cases clinicians will also have access to the patient’s medical history,
including any medications they take.

However, datasets currently available for developing screening methods
simply do not have access to the same number of modalities. For example,
datasets available as part of 2013, 2014, 2016, and 2017 editions of the AVEC
depression recognition challenges only contain information about the patient’s
face and their speech [10–13]. Naturally, with limited modalities, one cannot
expect automated systems to reach performance of clinicians. In the worst case
scenario automated systems may even start making false conjectures based on
missing social signals.

3.5.4 Ground Truth Labels

While automated screening systems can indeed bring objectivity to the screen-
ing process, these systems are still trained on data which has inherently
subjective labels. We find this common in many applications of social signal
processing, especially those in the domain of automated screening of men-
tal and neuro-developmental disorders. For example, it is common to use
self-assessment forms to provide labels for automated screening of depression
severity [10–13,28], bipolar disorder [33,39], and ASD [46].

Let us visit the case of ground truth labels used for the task of automated
screening of depression in more detail. In most cases, labels for depression
severity scores are based on self-assessment forms, which essentially rely on
individuals to honestly report on the questionnaires. This may not always be
true. In fact, for the AVEC 2017 challenge, we note that certain participants
have a Patient Health Questionnaire (PHQ) [21] score of zero – which may show
that they have excellent mental health – but in the interview transcripts these
participants go on to discuss their battles with depression and post-traumatic
stress disorder in the past. To hone in on the point of potentially noisy labels
in the dataset, consider the case of participant with ID 464, who has a PHQ
score of 0. From the interview transcript, one finds this individual saying, ‘I
know how it’s like to be depressed . . . how does depression feel like . . . like a
bird in a cage . . . a fish who can’t swim in water . . . a bird without wings . . . like
you’re limited ’. When pressed by Ellie (the virtual avatar) the participant
finally concedes, ‘I could say today, you know, earlier when I was just by myself
I felt a little depressed ’, even though the PHQ score for this individual is 0.

The use of ground truth labels based on self-assessment forms mean that
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labels are potentially noisy, which harms the machine learning process. However,
as noted by Solomon et al. [28], despite the inherent flaws of self-assessment
forms, they provide at least a reasonable and quantifiable standard to measure
depression against. Furthermore, it needs to be appreciated that at this stage
automated methods do not have objective labels. In the case of depression
screening, computerised algorithms, at best, predict self-assessment forms.
This limitation, however, comes directly from the field of psychology, since
mental and neuro-developmental disorders are at best diagnosed based on
behavioural symptoms [28,33,264].

Therefore, any system trained on the data currently available publicly is
more accurately described as predictor of depression scores rather than one
detecting depression. It is essential to distinguish between these descriptions
in order to avoid misrepresentation. This is because predicting scores of a
self-report questionnaire does not strictly mean detecting depression and vice
versa. While it would certainly help if datasets also include reports from
trained clinicians as ground truth labels along with self-report forms, however,
to the best of our knowledge no publicly available dataset for the task of
depression screening includes this information.

3.5.5 Confounding Factors

The limitations due to relatively small size of datasets is further exacerbated
by many confounding factors which can affect social signals in addition to
possible impairments due to mental and neuro-developmental disorders. This
in turn affects the accuracy of automated screening methods.

For example, McDuff et al. [265] conducted a large scale study on cultural
differences in observed facial behaviour based on 740,984 subjects from 12
countries around the world in which they report that culture and gender
independently play a major role in the characteristics of facial affect. Similarly,
acoustics of speech can be affected by various confounding factors such as
climate, language, ethnicity, the lexical content, age, gender, and medication
status amongst others, as per discussion by Schuller et al. [266].

Sagha et al. [258] investigated the effect of age, gender, and OCEAN
personality traits (Openness to experience, Conscientiousness, Extroversion,
Agreeableness, and Neuroticism) on the performance of automated emotion
recognition from speech. They found that age is the biggest confounding
factor, closely followed by gender. Amongst the OCEAN personality traits,
conscientiousness and neuroticism had the most effect. An earlier work by
Kring et al. [267] also found gender to be a significant confounding factor.

Gross et al. [268] reported the difference between induced and naturally
occurring emotions. They highlight that while emotions can be induced, by
showing affective pictures or music, an individual may not have the same
response in terms of changes in facial muscles or vocal tract as they would
with natural emotions. We find deliverables from their work important since
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several popular datasets which are used for developing automated screening
methods use induced emotions, for example the dataset used for the ComParE
Self-Assessed Affect sub-challenge [148].

We find that existence of confounding factors has been acknowledged by a
few members in the research community for the task of developing automated
screening methods [71], however, the scale of effect is disputed. For example,
while [104, 111, 149] report that gender is a significant confounding factor
for automated screening of depression from speech modality, research from
Cummins et al. [162] suggests that gender differences exist only when detailed
(i.e. high-dimensional) spectral features are used, implying that gender does
not act as a confounding factor when single-dimensional features are used.
Honig et al. [127] disagree, and report that even single-dimensional features
are affected by gender.

Similarly, Alghowinem et al. [109] and Williamson et al. [128] make differing
conclusions about the usefulness of spontaneous speech or scripted speech for
automated screening for depression, with Alghowinem et al. reporting in favour
of spontaneous speech while Williamson et al. reported in favour of scripted
speech. It is, however, clear from the work of Price et al. [269] that different
brain regions are activated by spontaneous and scripted speech, implying that
different sets of speech features may be useful for these two types of speech.

It is important to mention here that confounding factors can also exist
due to differences in recording environments. For example, the dataset used
for the ComParE 2013 Autism sub-challenge [64] contained speech recordings
from typically developing children and atypically developing children. One of
the objectives for the challenge was to develop machine learning models to
differentiate between the speech of the two groups of children. As it turned
out that atypically developing children were recorded in hospital environment,
whereas the children from the typically developing group were recorded in a
variety of different environments. As part of their solution to the challenge,
Bone et al. [270] demonstrated that it is possible to differentiate between the
two groups of children by explicitly focussing on the acoustics of background in
the speech spectra. Thus, through their experimentation they highlighted the
influence of recording environment acoustics as a major confounding factor.

Karasz et al. [271] investigated the role played by cultural differences in
screening of depression. Here, they argue that depression cannot be studied
without first taking into account both, the social context and environment,
since factors such as nationality, ethnicity, and socio-economic status influence
the prevalence and the presentation of depression. However, to the best of our
knowledge, no publicly available dataset which can be used to train a model
to recognise depression, provides such detailed level of meta-data.
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3.5.6 Dataset Creation and Design

While dataset creation and design is a difficult and complicated task, any flaws
in the design process eventually make the development of automated screening
methods more challenging. As discussed previously, there exist inherent
limitations due to imprecise ground truth labels, a myriad of confounding
factors, and the relatively small size of datasets. In addition to these, we
believe that the following aspects of the design process need to be considered
as well.

The first point we raise, addresses the methodology through which raw
(unedited) audio recordings are segmented to create audio files which form the
dataset. Speech segmentation is one of the first steps in dataset creation where
the objective is to separate parts of the audio recording which contain speech
belonging to subjects and speech belonging to non-subjects. We find that this
is typically achieved through manual annotation and subsequent segmentation
of these recordings. For example, in the recently concluded ComParE 2018
Atypical-Affect sub-challenge [148], the dataset contained audio files which
were segmented from raw audio recordings after manual annotation, details
of which were not provided even after our contact with the authors of the
dataset [134]. Similarly, in their work on development of automated methods
for screening of ASD, Motlagh et al. [263] state that they performed manual
segmentation of raw speech recordings — again, without providing further
details.

We believe that a major drawback of purely manual annotation is that
speech segments resulting from manual annotation and subsequent segmen-
tation not only depend on speech activity of subjects but are also biased
due to the mood, concentration, and overall subjectivity of the annotator.
For example, we find that the duration of audio files for the ComParE 2018
Atypical-Affect sub-challenge range between 143 ms and 200 seconds, which is
quite a large range. Furthermore, we find that in some audio files, speech from
non-subjects is also not properly removed. We posit that speech segmentation
can have significant impact on the deliverables of automated screening methods,
and conduct experiments to investigate this as part of our work on automated
screening of ASD (see Chapter 6).

On a related matter, we note that for ComParE 2017 and 2018 challenges,
the time duration of some audio files is as short as 143 ms, which appears to
be very short. While we do appreciate that human beings have the ability
to predict human behaviour even from short duration exposure to relevant
social signals [272], there is still no consensus in the SSP/AC community
about how effectively machines can learn from the same. In the SSP/AC
community, short duration exposure to social signals is typically referred to
as thin-slices, and numerous experiments have been conducted to understand
aspects of human behaviour using the thin-slices approach [224,273–275]. For
example, Alghowinem et al. [224] report that for the task of screening for
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depression, thin-slices of speech as short as 1.4 seconds works better than
taking features from entire speech recording. Similarly, Jaques et al. [275]
report using thin-slices of up to 1 minute in duration for predicting bonding in
conversation using speech of subjects.

We also find that various regimes are used for arranging audio/visual
recordings into a dataset. For example, organisers of the AVEC challenges
(editions 2013 through 2018) provide entire audio/visual recordings without
segmentation i.e. they provide recorded data after truncation at the beginning
and end of recording sessions. Thus, each recorded session is stored within
a single file, which provides useful information for participants in terms of
session number and speaker identity. When organisers have felt the need
to provide information about speech segments, they explicitly provide time
stamps as part of meta-data (as is the case for 2016–2018 editions of the AVEC
challenges [12,13,39]. On the other hand, organisers of ComParE 2017 [146]
and 2018 [148] performed segmentation themselves and provide segmented
audio as separate files in the dataset. Moreover, we find these audio files are
numbered in an apparently random manner (at least to participants of the
challenge), therefore, one cannot link these audio files to either a particular
subject or a recording session. Thus, for AVEC challenges, we have access to
data for each subject which is longer in duration compared to the ComParE
challenges.

Another aspect which plays an important role in dataset design process is
how subjects are allocated between training, development, and test partitions.
Ideally one expects that subjects are allocated in such a way that confounding
factors such as subjects’ age and gender are evenly distributed amongst the three
partitions. This is in addition to the requirement of an identical distribution of
labels between the partitions. One expects that machine learning models can
be trained on the training partition, their hyper-parameters can be optimised
using the development partition, and performance can be tested on a previously
unused test partition. However, we find a lack of consistency in this regard
between datasets released as part of AVEC and ComParE challenges. For
example, we note that while the datasets for AVEC 2013 [10] and 2014 [11] had
some subjects repeated multiple times across multiple partitions, AVEC 2016,
2017, and 2018 editions did not repeat subjects between multiple partitions.
Meanwhile, datasets provided as part of ComParE 2017 and 2018 do not
contain meta-data which can help ascertain whether subjects do or do not
repeat between partitions, although as part of our work on ComParE 2017
Cold sub-challenge, we suspect that some subjects do at least repeat across
training and development partitions.

Nevertheless, given limited availability of datasets, one often has no choice
but to work with the datasets which are available, even if there are aspects
which make development of automated screening methods more challenging
and the deliverables imprecise.
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3.5.7 Choice of Software

Kiss et al. [276] highlighted in their work that the choice of software tools
can significantly affect experimental results. They found pitch features to be
useful (statistically significant) for the task at hand using one software but
not on another. This is most likely due to differences between implementation
of signal processing algorithms, but nevertheless, it affects reproducibility of
experiments if precise details of software implementation are not provided.
In [46], Fusaroli et al. conduct a systematic literature review and meta-analysis
as part of their investigation into the efficacy of voice as a marker for ASD.
One of the key deliverables of their work is that choice of software and lack of
details for it has been one of the limiting factors which has hindered research
progress.

We believe that the solution to this hindrance is to either use open source
software tools (i.e. standard feature-sets and standard machine learning
toolkits) or for researchers to make their codes public.

3.6 The Need for Interpretability

Modelling human behaviour is an inherently complicated process [266]. As
already discussed in this chapter this task is further complicated due to
numerous factors, which include limited amount of data, relatively small size of
datasets, imprecise ground-truth labels, limitations with respect to availability
of social signal modalities, a myriad of confounding factors which affect social
signals as well as subject bias introduced by dataset creation and design
process.

A potential way forward is discussed by Cohen et al. [199, 277], where
they emphatically argue in favour of informed research progress in terms of
interpretable features and machine learning algorithms. Their main argument
is that the absence of informed research progression can lead to misleading
deliverables from the field of SSP/AC.

We believe so too, especially in light of the surveyed literature in this
thesis and experiments conducted as part of our work on the development
of automated screening methods for depression, bipolar disorder, ASD, and
paralinguistic activities. It appears that other researchers also have had this
realisation. There is a growing trend amongst researchers working towards
the development of automated screening methods [28,69,73,74,145,196,237]
where the authors report on the efficacy of interpretable audio-visual features
rather than focussing on brute-force approaches to fit datasets.
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3.7 Summary

In this chapter we continued our discussion on automated screening methods
from Chapter 2, but here the discussion was more targeted towards screening
of mental and neuro-developmental disorders.

We provide a summary of discussions from this chapter as follows:

∙ We started with a brief discussion of psychomotor changes which occur
due mental disorders such as bipolar and depression. These changes can
have a profound effect on social signals of affected individuals.

We follow this up with a detailed discussion on how one can craft features
from social signals from audio/visual modalities which are representative
of psychomotor changes. These features can subsequently be used for
recognition of mental disorders.

∙ We note that while the DSM-5 manual [18] has organised disorders under
special sections, some researchers have preferred to use more generic
terms to describe these disorders. For example, depression, schizophrenia,
and bipolar disorders have their own categories, but, Cohen et al. [277]
refers to these as ‘serious mental illness’. Similarly, Asgari et al. [200] refer
to clinical depression and autism spectrum disorder (ASD) as ‘cognitive
impairments’. Hantke et al. [201] cluster individuals with various types
of mental, neurological, and physical disabilities and refer to individuals
affected by these as ‘cognitively impaired’.

∙ We discuss in detail current limitations of automated screening methods
which need to be acknowledged and challenges which need to be overcome
for further development of these methods. The challenges include limited
amount of data, relatively small size of datasets, imprecise ground-truth
labels, limitations with respect to availability of social signal modalities,
myriad confounding factors which affect social signals, and subject bias
introduced by dataset creation and design process.

Overall, in light of discussion in this chapter, we believe that development
of methods for automated screening of mental and neurological disorders
can greatly benefit from collaboration between researchers from SSP/AC
community and clinicians.
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Automated Screening for
Depression

4.1 Introduction

Depression is a mental illness, which according to the World Health Organ-
isation (WHO) affects more than 300 million individuals worldwide and is
the leading cause of disability [278]. At its worst, depression can trigger
thoughts of suicide and is directly blamed for around 800,000 deaths every
year [278]. Individuals who suffer from depression often face unemployment due
to their inability to work and are susceptible to alcohol abuse [279]. Further-
more, long-term depression also increases the risk of dementia and Alzheimer’s
disease [280,281].

Individuals with depression may exhibit a wide range of symptoms. In fact,
Stanford University’s Mood and Anxiety Disorders Laboratory [282] defines
depression as a ‘whole-body’ illness, which affects body movements, mood,
and thoughts. Depression modulates the way individuals eat and sleep, and
the way one thinks about oneself and others. Sobin et al. [202] found that
depressed individuals differ from non-depressed control groups in terms of gross
motor activity, body movements, speech, and motor reaction time. It has been
reported by Niedenthal et al. [283] and Schrijvers et al. [284] that depression
adversely affects emotional state of an individual along with their physical
movements, while Solomon et al. [28] report that depression is correlated with
the breakdown of normal social interactions.

Automated depression screening can provide insights into the depressive
state of individuals in two fundamental ways. The first is to consider depression
screening as a classification task, where the objective is to determine whether
or not an individual is depressed. The second approach is a regression task,
where the objective is to predict the depression severity score.

In this chapter we discuss our proposed approaches for automated screening
for depression from audio/visual modalities. Accordingly, we organise the rest of
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this chapter as follows: we start with statements of novelty and contributions
through our work. We follow this by describing traits of individuals with
depression according to the Diagnostic and Statistical Manual of Mental
Disorders (DSM-5) [18]. We also discuss various depression measurement
instruments which are used to gauge severity of depression. This provides
the foundation for our proposed automated screening methods. Next, we
describe datasets used in this thesis and work carried out by other researchers
in the field for these datasets. We follow this up with detailed discussion
on our proposed methods, which is supported by experimental analysis and
participation in the AVEC 2017 Depression severity prediction challenge [13].
Finally, we end the chapter with a summary of key achievements of our work.

4.2 Novelty and Contributions

We summarise our contributions for the task of automated screening of depres-
sion as follows:

∙ We surmise that psychomotor changes due to depression lead to unique-
ness in an individual’s speech pattern which manifest as sudden and
erratic changes in speech feature contours. To this end, we propose
a novel set of temporal features, which we call turbulence features, to
quantify fluctuations in contours of speech features. The efficacy of these
features is demonstrated in terms of our solution for the AVEC 2017
depression severity prediction sub-challenge, as reported in [34].

The reader is referred to Section 4.7.1 for details of turbulence features
and to Section 4.8.2 for experimental results.

∙ We detail a methodology to quantify specific craniofacial movements,
which we hypothesise could be indicative of psychomotor retardation
and hence depression. The efficacy of these features is demonstrated
by predicting test partition labels two publicly available datasets from
AVEC challenges on depression severity prediction i.e. the AVEC 2014
Depression severity prediction challenge (AVEC 2014 DSC) [12] and
the AVEC 2017 Depression severity prediction challenge (AVEC 2017
DSC) [13].

The reader is referred to Section 4.7.2 for details of craniofacial movement
features and to Section 4.8.1 for experimental results.

∙ We hypothesise that individuals with depression have unique characteris-
tics to their speech spectra due to psychomotor changes at vocal tract
level. To this end, we introduce Fisher vector encoding of spectral LLDs
for quantifying abnormalities within speech spectra of individuals with
depression.
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Initially, we demonstrate the efficacy of our proposed approach for the
AVEC 2016 Depression Classification Challenge (DCC) dataset [12],
where the objective was to identify individuals with and without depres-
sion [37]. Later, we extended the idea by adding temporally-piecewise
aggregation of Fisher vectors as part of our solution to the AVEC 2017
DSC [34]. We beat the challenge baseline whilst using this method.

The reader is referred to Section 4.7.3 for details of Fisher Vector features
and to Section 4.8.3 for experimental results.

4.3 Depression as per the DSM-5 manual

Depression can affect an individual in many ways making it difficult to be
diagnosed perfectly. There exists a need, however, for formal specification of the
core symptoms of depression. The most widely accepted documentation of these
symptoms exists in the Diagnostic and Statistical Manual of Mental Disorders
(DSM) manual [18], which is a guidebook from the American Psychiatric
Association. It is important to mention here that the DSM-5 formally defines
depression as ‘major depressive disorder (MDD)’, however, one finds that the
term ‘depression’ is more commonly used. Therefore, we continue to refer to
MDD as depression.

According to the DSM-5 manual, an individual may be diagnosed with
depression if he or she exhibits at least five symptoms from a list of nine,
including at least one of the first two symptoms. These symptoms must also
prevail over a duration of two weeks or more. We list the symptoms for
diagnosis of depression as specified in the DSM-5 manual as follows:

1. Depressed mood most of the day or nearly every day.

2. Markedly diminished interest or pleasure in all, or almost all, activities
most of the day or nearly every day.

3. Significant increase or decrease in appetite leading to unintentional weight
gain or loss.

4. Insomnia or hypersomnia nearly every day.

5. Noticeable psychomotor retardation or agitation nearly every day.

6. Fatigue or loss of energy nearly every day.

7. Feelings of worthlessness or excessive or inappropriate guilt.

8. Diminished ability to think or concentrate, or indecisiveness, nearly every
day.

63



Chapter 4

9. Recurrent thoughts of death (not just fear of dying), recurrent suicidal
ideation without a specific plan, or a suicide attempt or a specific plan
for committing suicide.

The DSM-5 manual provides further guidelines to corroborate the existence
of these symptoms. For example, the manual makes it clear that cues of
psychomotor retardation or agitation must not merely be subjective feelings of
being slowed down (in case of retardation) or restlessness (in case of agitation).
These cues also need to be observable by others.

The manual acknowledges the fact that some of these symptoms may vary
according to the age of the patient. For example, depressed mood may manifest
in adults as feelings of sadness, emptiness and hopelessness, while for children
and adolescents, it may manifest as irritable mood. Furthermore, given that
some of these symptoms may be modulated by patient’s history and cultural
norms, the decision on whether or not an individual has depression inevitably
requires the exercise of clinical judgement.

While the manual lists the most fundamental symptoms of depression, it is
clear to see why it is difficult to diagnose depression perfectly: depression can
have effects on two extremes, such as insomnia or hypersomnia, psychomotor
retardation or psychomotor agitation, appetite loss or appetite gain. As one
can expect, the absence of clear symptomisation of depression does adversely
affect the process of measuring and quantifying the depressive state of an
individual.

4.4 Depression Measurement Instruments

Similar to related serious mental health illnesses [199] such as schizophrenia,
bipolar disorder, and post-traumatic stress disorder, there is a lack of physical
means to measure depression [19,152]. Diagnosis and assessment of symptom
severity for depression is based on subjective reports from either patients
themselves, their family members, or in the best case scenario, by a clinician.

Depression measurement instruments exist as multiple choice questions
(MCQ) style question-answer forms. Some of these instruments are adminis-
tered by a clinician as the patient is interviewed, while others instruments are
self-administered forms which are filled in by the concerned individuals (aka
patients) themselves. Depression measurement instruments are also referred
to as depression severity scales or depression scales.

The most commonly used depression measurement instruments include
the Hamilton Rating Scale for Depression (HRSD) [20] often abbreviated as
HAM-D, the 2𝑛𝑑 edition of the Beck Depression Inventory (BDI-II) [38], the
Quick Inventory of Depressive Symptomatology (QIDS) [285], and the Patient
Health Questionnaire (PHQ-8) [21]. This list is not exhaustive and the reader is
directed to [286] for a discussion on other depression measurement instruments.
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In Table 4.1 we summarise four depression scales i.e. HAM-D, BDI-II,
QIDS and PHQ-8 based on information provided in [20,21,38, 71, 129,193,207,
256,285,286]. Our decision to specifically select these four instruments is based
on the fact that most researchers in SSP/AC have used these instruments to
measure depression, as will become evident in this chapter. It therefore makes
sense to have an understanding of these depression measurement instruments
before we go any further.

As evident from Table 4.1, the decision to select a depression measurement
instrument is not very clear and depends on a number of factors. The most im-
portant decision perhaps is to decide whether the instrument is administered by
the clinician or self-administered by the patient. While clinician-administration
will require time from a trained clinician, it is less susceptible to bias from
the individual. The number of questions in the instrument can also be a
deciding factor since it translates into time and effort required to complete the
questionnaire by a clinician or the patient.

The detail in which each symptom of depression is probed in the instrument
can also play an important part in the decision process, because as discussed
in [287,288], some of these instruments probe more than just the core symptoms
of depression mentioned in the DSM-5 manual. For example, in addition
to directly querying depressive illness, the BDI-II instrument also queries
feelings of being punished, pessimism, and irritability, whereas the HAM-D
instrument covers anxiety, hypochondriasis, and genital symptoms. These
symptoms are not, in fact, part of the DSM-5 manual for depression screening.
Nevertheless, Fried et al. [287] report that both DSM and non-DSM symptoms
show significant correlation for the task of depression screening.
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4.5 Datasets

In our work we use three datasets provided as part of challenges for automated
screening for depression from the 2014, 2016, and 2017 editions of the AVEC
challenges. We provide brief details of these datasets as follows:

4.5.1 AVEC 2014 DSC

The dataset for the AVEC 2014 Depression severity prediction challenge (AVEC
2014 DSC) consists of video recordings of subjects with a human computer
interaction (HCI) environment. Subjects were instructed to perform two tasks
as they were being recorded through a webcam and a microphone. The first
task, hereby called Northwind, is a scripted speech task where subjects read
aloud an excerpt from the fable Die Sonne und der Wind (The North Wind
and the Sun). The second task is a spontaneous speech task where subjects
respond to one of a number of questions such as: ‘What is your favourite dish?’;
‘What was your best gift, and why?’; ‘Discuss a sad childhood memory’. All
subjects speak German language in the dataset.

The dataset contains 150 video recordings from 84 subjects. As obvious,
some of these were recorded multiple times. 18 subjects appear in three
recordings, 31 in two recordings, and 34 in only one recording. The mean
age of subjects is 31.5 years, with a standard deviation of 12.3 and a range
between 18 to 63 years. The duration of recordings provided as part of the
dataset lie between 6 and 248 seconds. In total there are 300 video recordings
as Northwind/Freeform task pairs, divided as 100 recordings for training, 50
for the development, the remaining 150 recordings for the test partition.

Prior of each recording session, subjects were asked to complete the self-
administered BDI-II questionnaire [289]. Scores from BDI-II are used to
quantify depression severity. The objective of the AVEC 2014 DSC was for its
participants to predict the BDI-II scores for training, development, and test
partitions.

Participants of the sub-challenge were judged on the basis of the perfor-
mance of their method in terms of the root mean square error (RMSE) between
the ground-truth BDI-II scores and predictions on the test partition. For
further details, we refer to the reader the baseline paper for AVEC 2014 [11].

4.5.2 AVEC 2016 DCC

The AVEC 2016 Depression classification challenge (AVEC 2016 DCC) [12] uses
the Distress Analysis Interview Corpus – Wizard of Oz (DAIC-WOZ) dataset,
which is part of a larger corpus i.e. the Distress Analysis Interview Corpus
(DAIC) [211]. The DAIC-WOZ database consists of video recordings of clinical
interviews of subjects with a virtual agent called Ellie. The interview structure
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was designed to support the diagnosis of psychological distress conditions such
as anxiety, depression, and post-traumatic stress disorder.

Due to ethical restrictions, however, organisers did not actually provide
video recordings. Instead they provided speech recordings of communication
between participants and Ellie along with the transcripts. The duration of
these recordings range between 7–33 minutes. As baseline audio features,
the organisers provide prosody, voice quality, and formant features computed
from the COVAREP toolkit [62]. They also provided a set of visual features
computed using the OpenFace toolkit [32]. These features provide information
about the location of facial landmarks, facial action units [40], and histogram
of oriented gradient (HOG) features [78].

Each subject in the dataset was required to complete a self-administered
depression assessment questionnaire based on the PHQ–8 [21], which provides
a measure of current state of depression. Based on the guidelines of the
PHQ-8, each participant was allocated a binary ground-truth label of either
depressed or not-depressed. The objective of the AVEC 2016 DCC was for the
participants of the challenge to predict these ground truth labels.

The DAIC-WOZ dataset used for AVEC 2016 DCC contains multimodal
data from 189 subjects in total, with 107, 35, and 47 subjects in training, devel-
opment, and test partitions, respectively. Classification accuracy is measured
in terms of average F1 score for prediction of subjects as either depressed or
not-depressed for each partition. The F1 score is typically used as a measure
of classification accuracy when large imbalance exists between class labels and
is computed as the harmonic average of the precision and recall [290].

For further details, we refer the reader to the baseline paper for the AVEC
2016 DCC [12] and the supporting documents which are available within the
dataset.

4.5.3 AVEC 2017 DSC

The AVEC 2017 Depression severity prediction challenge (AVEC 2017 DSC) [13]
uses the same dataset i.e. the DAIC–WOZ dataset, as used for the AVEC 2016
DCC. However, the objective of the AVEC 2017 DSC was to predict depression
severity in terms of the PHQ-8 scores from the self-administered depression
assessment forms (i.e. a regression task) rather than the classification task of
AVEC 2016 DCC. Similar to the AVEC 2014 DSC, the accuracy of submissions
for AVEC 2017 DSC was measured in terms of RMSE for training, development,
and test partitions.

For further details, we refer the reader to the baseline paper for the AVEC
2017 – DCC [13] and the supporting documents which are available within the
dataset.
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4.6 Literature Survey

Here we discuss work from other researchers for the three AVEC challenges. It
must be mentioned here that research literature surveyed in this section is in
addition to that already surveyed in Chapter 2 and 3.

4.6.1 AVEC 2014 DSC

Gupta et al. [223] hypothesised that head and overall facial movement carry
important information about affective state and depression level. They quantify
this movement using local binary patterns (LBP) [291], local binary patterns
– three orthogonal planes (LBP-TOP) [81], and optical-flow-based motion
vectors [209] between a pair of consecutive frames at key points computed using
a corner detection algorithm [292]. They also computed pairwise Euclidean
distances between each of the 66 facial landmarks and a stable point between
the eyes.

For audio modality, Gupta et al. used the baseline audio features provided
as part of the challenge, along with a variety of other features they had
proposed in one of their prior works [293]. In total, the dimensionality of their
feature vector from audio-visual modalities reached 42,092! — at which point
they used brute-force feature selection based on the sequential forward search
(SFS) and sequential backward search (SBS) algorithms [100]. Support vector
regression (SVR) [116] was used for the task of mapping feature values to
the BDI-II scores. The best result they achieved on the test partition was an
RMSE = 8.99, with an RMSE = 9.68 on the development partition.

Kachele et al. [294] demonstrated that abstract meta-knowledge can be
useful in prediction of depression severity. They argue the BDI-II form [38]
queries personal circumstances from subjects which cannot be determined
from only watching a video with the subject talking. We agree with this
observation of Kachele et al. For example, the BDI-II form asks subjects
whether they consider themselves as a failure and whether they feel disgusted
with themselves. We believe that unless participants explicitly answer these
questions, it is a difficult task to predict their response of such questions. For
the AVEC 2014 DSC, Kachele et al. used meta-knowledge such as duration of
video, movement of subjects as pixel-wise difference of frames, estimated age,
gender etc. to achieve an RMSE = 9.58 on the test partition.

Perez et al. [295] investigated the correlation between affective dimensions of
arousal, valence, and dominance with depression severity. They experimentally
verified that leveraging affective dimensions can be fruitful for automated
depression screening, achieving Pearson correlation values of 𝑟 = 0.46 and
𝑟 = 0.52 for Freeform and Northwind tasks, respectively. The best results on
the test partition i.e. RMSE = 10.82 are, however, from a brute-force approach
(not a model based on affect). This involves combination of audio-visual
modalities with feature selection based on relief algorithm [107].
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Senoussaoui et al. [154] demonstrated the effectiveness of an i-vector based
representation [257] for audio-visual LLDs as part of their solution for the
AVEC 2014 DSC. For the audio modality, they used MFCCs along with its
velocity and acceleration contours. For the video modality, they used LBP-
TOP features [81] which were provided as baseline features. Also, rather than
using a single regression model to predict BDI-II scores, they proposed a
two-stage model. In the first stage, they classify whether or not a particular
subject is depression, then in the second stage, they use a regression model to
predict BDI-II scores. The caveat to this approach is that if the classification
model fails to predict accurately, the subsequent regression model may also fail
catastrophically. The best result they achieved on the test partition was an
RMSE = 10.43 which was slightly better than the baseline RMSE = 10.83. It
must be mentioned here that they experimented with SVR, generalised linear
models (GLM) [296], and relevance vector machine (RVM) [121] for building
regression models. They also experimented with a number of combinations of
feature level fusion followed by dimensionality reduction using PCA. Thus, it
is difficult to distil the effectiveness their methodology beyond RMSE scores.

Mitra et al. [164] explored the usefulness of a diverse set of audio features
for predicting BDI-II scores. These features, 18 in total, focus on quantifying
various aspects of speech such as: articulatory trajectories, acoustic charac-
teristics, acoustic-phonetic characteristics, and prosodic features. We refer
the reader to their paper for details of these features. They evaluated the
performance of these features using LOOCV on the development partition,
and report that the RMSE of individual features varied between 9.18 and
11.87. On the test partition, their best system achieved RMSE = 11.10. It is
reminded that the baseline for audio modality is RMSE = 12.57, and for the
video modality, the baseline is RMSE = 10.86. Therefore, using speech alone,
they beat the baseline.

Jain et al. [297] perform experiments with Fisher Vector encoding of audio-
visual features for the task of depression severity prediction. For the visual
modality, they used LBP-TOP [81] and dense trajectories [298]. For audio
modality, they used baseline audio features provided as part of the AVEC
2014 DSC dataset. Descriptors from audio and visual modalities are encoded
using Fisher Vector encoding [98]. Their motivation for using Fisher vector
encoding method was based on state-of-art performance achieved on image
classification tasks using this approach. They compare the RMSE of LBP-TOP,
dense trajectories, and audio features explicitly and then as feature-level fusion.
Amongst these LBP-TOP features encoded as Fisher Vectors achieve the best
result on the development partition i.e. RMSE = 8.17, which is better than
the baseline RMSE = 9.26 for the development partition. Since there was no
improvement in the RMSE due to feature level fusion of additional features, on
the test partition they only used LBP-TOP features and achieved an RMSE
= 10.25, which is better than baseline RMSE = 10.86.

Jan et al. [299] surmised that depression causes subtle changes in facial and
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vocal expression. In order to capture these dynamics, they used motion history
histograms (MHH) [300] to quantify local dynamics from audio and visual
modalities. For the visual modality, they computed histogram of oriented
gradients (HOG) [78], local phase quantization (LPQ) [301], and local binary
pattern (LBP) [81] features for each frame of the video. This was followed by
using 2D MHH for capturing intra-frame variations in these features.

For audio modality, they used baseline features provided as part of the
dataset. Since there were 2,268 features, they tested the performance of each
individual feature on the development partition and selected top eight features.
Jan et al. do not provide details of the method they used to test the performance
of audio features. Next, they experimented with 256 (28) combinations of the
top eight features. The combination of features which achieved best results
include: spectral flatness, Band1000, psychoacoustic sharpness, probability of
voicing, shimmer, and zero crossing rate. It is interesting to note that the final
selection of features did not feature MFCC features, even though they have
previously been shown to be useful for the task of depression screening [162].
Finally, they use one-dimensional MHH to summarise dynamics of the select
audio features.

They used PLS regression [103] for predicting BDI-II from audio and visual
features, and follow this up with linear regression for fusing predictions from
all features. On the test partition, they achieve best results of RMSE = 10.26
by combining audio-visual modalities, which is better than the baseline results
on the test partition i.e. RMSE = 10.86.

The winners of the AVEC 2014 DSC, Williamson et al. [128] base their work
on the theory that neuro-physiological changes occurring due to depression alter
motor control, thereby affecting the mechanisms controlling speech production
and facial expression production. They use correlation structure features for
quantifying these deficits. When used with formants and the velocity of MFCC
contours, the authors find that these coupling features are particularly useful
for detecting depression. Williamson et al. call these features vocal tract
coordination (VTC) features.

We believe that the key to this method actually lies in measuring the
coupling strength of time series because this approach has been successfully used
for a variety of tasks such as prediction of seizures from electroencephalogram
signals [302], cognitive impairment prediction in the elderly [185, 262], and
estimating load carriage from sensors placed on the body [303].

The second vital component of their model is the use of a GMM-based
multivariate regression scheme which they call Gaussian staircase regression
(GSR). Williamson et al. had proposed GSR previously in [210]. In this
approach, training data is split in terms of ordinal ranges of the target variable
for regression thereby forming a ‘staircase’, and an ensemble of Gaussian
classifiers is trained to classify over the staircase. For the case of AVEC
2014 DSC, the regression variable is the BDI-II score. We recommend the
reader to experimental work of Cummins et al. [246] for further details on
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GSR. Williamson et al. computed correlation structure features for formant–
CPP, CPP–HNR, and delta MFCC for the Northwind task (which is scripted
speech) from audio modality, and Facial Action Units (FAUs) from the visual
modality. FAUs were computed using the Computer Expression Recognition
Toolbox (CERT) [84]. One must note that while formants and MFCCs are
multi-dimensional features, correlation structure features are computed for
scalar features only. The authors do not provide details about exactly which
features were used to compute correlation structure features. Nevertheless,
they achieve an RMSE = 8.12 on the test partition, which beats the baseline
score RMSE = 10.26.

4.6.2 AVEC 2016 DCC

We note that none of papers submitted to AVEC 2016 DCC beat the challenge
baseline significantly. As pointed out by Williamson et al. [130], the challenge
baseline was set with a different ratio of depressed/non-depressed classes as
compared to what was provided to participants of the challenge. Therefore,
a direct comparison with the baseline may not be fair but one has no choice
but to go ahead with this comparison since dataset partitioning is beyond our
control.

The only paper to beat the test partition baseline for the AVEC 2016 DCC
is the work of Yang et.al. [149]. Their method achieves a mean F1 score of
0.72 compared to 0.70 of the challenge baseline. From visual modality, they
used geometric features computed from facial landmarks and HOG features
which were provided along with the dataset by challenge organisers. Geometric
features are computed in the form of Euclidean distance between pairs of 51
stable 2D facial landmarks, and HOG features are used after dimensionality
reduction using PCA. Multiple SVRs with RBF kernels were trained on the
training and development partitions and the one which provided the best
performance was used for the test partition. From audio modality they also
used COVAREP and formant features after reducing dimensionality using
PCA. The best result they achieved is using the text modality. Here, they
manually selected information from interview transcripts which was related
to the PHQ form and used decision trees to classify between depressed and
non-depressed classes.

Nasir et al. [152] achieved a mean F1 score of 0.55 on the test partition,
which is below the challenge baseline of 0.70. They conducted a large num-
ber of experiments for audio/visual features as well as feature selection and
classification methods. We believe that the most important contribution from
their work is the proposal to use multi-resolution windows to combine LLD
from interview sessions. They argue that depression cannot be recognised at
temporal resolution of LLD features i.e. 10 ms for audio LLDs and 33 ms for
visual LLDs [12].
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Williamson et al. [130], the winners of the AVEC 2014 DSC, used audio,
visual, and textual modalities as part of their solution for the AVEC 2016
DCC. For audio/visual modalities, their work is similar to their approach for
AVEC 2014 DSC. They used textual analysis to mine for answers to questions
relevant to PHQ questionnaire, similar to the approach of Yang et al. [149] and
also find those features to be most useful. Williamson et al. determined via
experimentation on the training and development partition that text modality
is much better than any other modality for the task at hand i.e. text modality
achieved a maximum mean F1 score of 0.81, whereas audio and visual modalities
achieved a maximum mean F1 scores of 0.76 and 0.53, respectively. On the
test partition, they achieved score of 0.70, which exactly matches the challenge
baseline. Interestingly, the highest accuracy they achieved was from textual
analysis of Ellie’s script, rather than textual analysis of subject’s script.

The submission of Pampouchidou et al. [150] did not beat the baseline
i.e. they achieved a score of 0.66 compared to 0.70 of the challenge baseline.
Similar to [304], they used the concept of motion history images (MHI) [208].
Since facial images were not provided as part of the dataset due to ethical
restrictions, they computed MHI on facial landmarks. Prior to computing
MHI, facial landmarks were registered with respect to facial landmarks on the
temples, chin, and inner and outer corners of the eyes. They computed LBP
and HOG features for each MHI image and used these features for classification.

Huang et al. [155] investigated the effect of subject’s gender as a confound-
ing factor for depression recognition for the AVEC 2016 DCC and report that
gender did not influence their results. They used relevance vector machines
(RVM) [121] which employ a Bayesian framework for regression and classi-
fication tasks. Huang et al. also attempted the use of correlation features
of time series as well as staircase regression approach, previously used by
Williamson et al. [130]. However, they failed to replicate good performance. In
fact, the best results they achieve is a score of 0.55 compared to the baseline
of 0.70.

Ma et al. [305] provide the only entry in the challenge to use aspects of
deep learning. They call their model DepAudioNet for audio based depression
recognition. Ma et al. propose a combination of convolutional neural networks
(CNN) and long short term memory (LSTM) for audio feature representation.
While their approach beats the baseline for audio modality i.e. 0.61 versus
0.50 on the development partition, the authors do not provide results for the
test partition.

4.6.3 AVEC 2017 DSC

Yang et al. [92,306] submitted two papers for AVEC 2017 DCC Workshop, both
were essentially similar in that they estimated depression severity from audio,
video, and text modalities using a combination of CNN and fully connected
deep neural network (DNN).
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For audio features, they computed exhaustive audio descriptors from openS-
mile toolkit [30] i.e. 238 LLDs, then used 29 functionals to summarise these
features, which results in 6,902 features. These features were fed to a CNN to
learn deep learnt features.

For text modality, they analysed subjects’ answers to questions related to
psychoanalytic aspects associated to depression symptoms. These included
topics related to: (1) Prior depression diagnoses, (2) Prior post-traumatic stress
disorder (PTSD) diagnosis, (3) Sleep disorder, (4) Feeling, and (5) Personality.
Next, they used Paragraph Vector (PV) descriptors, introduced by Quoc et al.
in [307] to represent sentences for interview transcript.

In one of their papers i.e. [306], Yang et al. proposed Histogram of Dis-
placement Range (HDR) to summarise the movement of facial landmarks.
HDR is essentially a histogram of changes in pixel coordinates of facial land-
marks. Meanwhile, in their second paper [92], Yang et al. used Motion History
Histogram (MHH) [300] to summarise information from AU features.

To deal with dataset imbalance, they divided each recording to multiple
segments and consider those segments as new samples. They used a 3 layer
CNN each for feature extraction from audio, visual, and text modality. Features
learnt from CNNs for the three modalities are fused using a 4 layer DNN. For
their paper [92], they report an RMSE = 5.79 on the test partition, whereas
for their paper [306], they achieved an RMSE = 5.40. Both of these are better
than the baseline RMSE = 6.97 on the test partition.

Dang et al. [158] investigated the effectiveness of word affect for predicting
depression severity. They base their work on prior research which has shown
that depressed individuals exhibit more negative sentiments compared to non-
depressed individuals [308]. They used the Suite of Automatic Linguistic
Analysis Tools (SALAT) [309] for extracting a range of text-based features
from transcripts of subjects’ interviews with the virtual agent.

Apart from the text modality, they also experimented with audio and visual
modalities. For the audio modality, they used MFCC features, whereas for the
video modality they used FAUs. For regression, they used Gaussian staircase
regression [210].

While they experimented on audio, visual, and text modalities for pre-
dicting depression severity, their best performance of RMSE = 6.02 on the
test partition was achieved whilst using Affective Norms for English Words
(ANEW) features [310]. ANEW features provide affective normal for English
words in terms of arousal, valence, dominance, and pleasure. It is important to
mention here that RMSE on the test partition decreased when they appended
other text or audio/visual features with ANEW features.

Sun et al. [153] report on experiments with audio/visual modalities for
predicting depression severity. Their first approach is essentially brute-force
where they used ensembles of cascaded random forest regressors, with a random
forest for each baseline paper (see Section 4.5.2). In their second method, which
uses the text modality, Sun et al. manually selected features from interview
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transcripts. They specifically focussed on subject’s answers to questions related
to previous PTSD/depression diagnoses, treatment of mental illness, personal
preference and feelings, and sleep quality. We note that these questions are
similar to those asked on the PHQ-8 [21] questionnaire, which is exactly what
makes up depression severity scores.

On the test partition, their brute-force approach with cascades of random
forests achieved RMSE = 6.22, which is better than the baseline for video
modality i.e. RMSE = 6.97. However, their best result on the test partition
is achieved with manually selected text features, with which they achieve an
RMSE = 4.98.

Gong et al. [131] were the winners of the AVEC 2017 DCC via their topic
modelling based approach to perform context-aware analysis of the audio-visual
recordings. They surmised that since Ellie is a virtual agent, therefore, it
will have a limited number of topics which it can use as part of the interview
process. Furthermore, the number of topics possible in clinical interviews are
also limited (for example, the topics likely focus on PHQ-8 questionnaire for the
AVEC 2017 DCC dataset). They start by building a sentence dictionary based
on the questions asked by Ellie, and manually clean the sentence dictionary of
inconsistencies. This process yields 83 topics (see Table 1 of [131] for the list
of topics).

Next, for topic they each create a feature vector which contains subject’s
gender, FAUs (mean, max, and min functionals), COVAREP features (mean,
max, and min functionals), and semantic features based on linguistic inquiry
and word count (LIWC) [311], that is 390 features for each topic. In total,
for 83 topics, the length of feature vector reaches a length of 32,370, but this
feature vector contains audio, video, and text information of each topic. In
order reduce the dimensionality of the feature vector, they use correlation-based
feature subset selection (CFS) [312].

Finally for predicting depression severity, they experimented with decision
trees, random forests, SVR, and Stochastic Gradient Descent (SGD) regression
using the development partition. Amongst these regression methods, they
found SGD regression to achieve best results. On the test partition, the achieve
RMSE = 4.99, which is considerably better than the best baseline for AVEC
2016 DCC i.e. RMSE = 6.97.

The reader may note that Sun et al. [153] achieved an RMSE = 4.98 on
the test partition, whereas Gong et al. [131] achieved an RMSE = 4.99 —
which were deemed within the margin of error by the organisers of the event.
However, since Sun et al. achieved their result using manually selected text
features, Gong et al. were declared winners of the AVEC 2016 DCC .
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4.7 Methodology

In this section, we discuss the methodology of our multi-pronged approach for
the development of automated screening of depression.

4.7.1 Turbulence in Feature Contours

We discussed in Section 3.4 that psychomotor symptoms lead to uniqueness
in an individual’s speech pattern, here we posit that it must manifest itself as
turbulence or lack thereof in speech feature trajectories. Fundamentally, we
hypothesise the LLDs of speech of individuals with and without depression are
different, and if quantified may provide an insight into depression severity. We
call these features as turbulence features.

However, given the complex nature of depression and how it affects the
speech production system, the task of recognising turbulent patterns in speech is
complicated. Inspired by the method of formulation of the Geneva Minimalistic
Acoustic Parameter Set (GeMAPS) [58], we devise the following methodology
to capture the hypothesised turbulence, and later demonstrate its effectiveness
for the task of depression screening.

Consider as an example, the pitch contour of an individual’s speech (F0
feature). It has been computed at a frequency of 100 Hz using the COVAREP
toolbox [62]. Due to the free speech nature of the recordings in the dataset,
there exists no prior knowledge where this turbulence may manifest. We
therefore consider a multi-scale approach, by using a set of temporal windows
of lengths {0.5, 2, 5, 10, 15} seconds, with an overlap of {0.2, 1, 3, 5, 7} seconds,
respectively. Within each window, we compute the crest factor as the measure
of turbulence [313]. The crest factor measures the ratio between the absolute
max value of the signal and its root mean square (RMS) value. Therefore, if
there indeed exist irregularities in the pitch within any window, we are likely
to capture them. Finally, the crest factor values from multiple windows at
each scale are pooled using the following descriptive statistics: the 10th, 25th,
50th, and 75th percentile, and the mean with 5% trimming.

In addition to the pitch, we apply the above multi-scale procedure to a
number of voice quality features. Our motivation is to capture changes in voice
quality due to depression. We compute voice quality features using COVAREP
toolbox [62]. These features include: normalised amplitude quotient (NAQ),
quasi open quotient (QOQ), the difference in amplitude of the first two har-
monics of the differentiated glottal source spectrum (H1H2), parabolic spectral
parameter (PSP), maxima dispersion quotient (MDQ), spectral tilt/slope of
wavelet responses (PS), and shape parameter of the Liljencrants-Fantmodel
of the glottal pulse dynamics (Rd). These features were computed using the
COVAREP toolkit [31].
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Figure 4.1: Reference for numbering of 66 point facial landmarks

Nasir et al. [152] have argued that depression is a long term effect and
may not be evident at fine temporal resolutions of LLDs i.e. 10 ms for speech
and 33 ms for visual features in our case. In their work, they use a temporal
window of 10 s in duration with a shift of 2 s. We concur and use four temporal
resolutions i.e. Res 1: 2 s with 1 s shift, Res 2: 5 s with 2 s shift, Res 3: 10 s
with 5 s shift and Res 4: 15 s with 7 s shift.

However, in contrast to [152], where features are combined within a partic-
ular temporal window using arithmetic mean, we use the following functionals
of descriptive statistics: arithmetic mean, 10% trimmed arithmetic mean,
standard deviation, median and range (as the difference between the 99𝑡ℎ and
1𝑠𝑡 percentile). We also compute the crest factor, which measures the peak
value of the feature in a particular window with respect to the RMS value of
that feature in that window. Therefore, it inherently measures rapid changes
in a feature value, which we hypothesised will prove to be useful as a descriptor
for psychomotor symptoms. We discuss the effectiveness of this approach for
the task of automated screening of depression severity in Section 4.8.2.

4.7.2 Modelling Craniofacial Movement

In this section, we discuss our method to model craniofacial muscle movement
and later demonstrate the effectiveness of this method on the AVEC 2014 DSC
and AVEC 2016 DSC datasets.

Our objective is to craft visual features that are capable of representing
muscular tightening, a trait of psychomotor retardation. Thus, we hypothesise
that if an individual has depression then their head movement as well as
facial muscle movement will be impaired compared to those who do not have
depression. In order to track these movements, we use 66-point 3D facial
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Figure 4.2: Framework for our proposed craniofacial movement features for
predicting depression severity score

landmarks, as illustrated in Figure 4.1, of subjects in the two datasets. These
facial landmarks are already provided as part of the AVEC 2017 DSC by the
organisers of the challenge (ethics restrictions meant that organisers could
not provide video recordings [13]). We computed facial landmarks for video
recordings provided as part of the AVEC 2014 DSC dataset using the OpenFace
toolkit [32] with its default settings i.e. the same software toolkit used to
compute facial landmarks for the AVEC 2017 DSC dataset.

Similar to previous work on this subject [175, 207], we compute velocity
and acceleration contours from facial landmarks. However, unlike [175, 207]
where contours are computed for many combinations of facial landmarks, we
specifically target four types of movements: (1) head movement, (2) mouth
movement (both horizontal and vertical), (3) eyelid movement, and (4) Eye-
brow movement. Details of craniofacial movement features are described in
subsequent sections.

In order to demonstrate the efficacy of our proposed approach for computing
craniofacial movement, we propose the framework illustrated in Figure 4.2.
The first part of the framework focuses on feature generation. Here, we start
by computing velocity and acceleration contours of facial landmarks, using
these contours to represent craniofacial movement (as detailed in subsequent
sections). Next, we use the concept of multi-resolution feature aggregation, as
used for turbulence features in Section 4.7.1, to summarise information from
velocity and acceleration contours into a fixed length feature vector. We use a
set of temporal windows of lengths {2, 5, 10, 15} seconds, with an overlap of
{1, 2, 5, 7} seconds, respectively. Within each window, we compute the median,
range, and crest factor to summarise velocity and acceleration contours within
each window. Finally, we use min, max, median, range functionals to create a
global representation for both velocity and acceleration contours for the entire
recording. This completes the stage of multi-resolution feature aggregation in
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our framework.

The next stage of the framework implements regression. Here, we first use
Pearson’s correlation coefficient based filtering to arrange features in descending
order with respect to their correlation to the depression severity score. These
sorted features are provided as input to PLSR regressor [172]. The PLSR
regressor has two parameters which are optimised using the development
partition. These include (a) the number of features which are provided as
input to the regressor, and (b) the number of components for PLSR. The
parameters tuned for the development partition are then passed down to be
used for the test partition.

We follow the rules for the AVEC 2014 DSC and AVEC 2017 DSC challenges,
where participants were instructed to develop their model using the training
and development partitions, and were only allowed to use the test partition
for measuring the efficacy of their proposed methods i.e. participants were
not permitted to use the test partition for training their models. Given that
the objective of both AVEC challenges was to predict scores of depression
measurement instruments, the accuracy was measured in terms of RMSE.

In subsequent paragraphs, we shall detail our methodology for crafting
craniofacial movement features.

Head movement

For quantifying head movement, we aim to select facial landmarks which are
representative of rigid movement of face. We surmise that rigid movement of
the face is a correlate for head movement. Ideally, one would compute headpose
for this purpose, however, that requires information about parameters [104,
175,207]. Such information is not available for either of the two datasets.

We investigate the use of two sets of facial landmarks to quantify head
movement: the first contains landmarks from the nose region and includes
landmarks {𝑃28, 𝑃29, . . . , 𝑃36}. The second set of landmarks form the face
contour and includes landmarks {𝑃1, 𝑃2, . . . , 𝑃17}. Both of these are considered
stable since they are not effected by non-rigid facial movement [12, 150]. In
addition to these two sets of landmarks, we shall also investigate the efficacy of
using both of these landmarks together. A summary of these facial landmarks
is summarised in Table 4.2.

The procedure for computing head movement features is as follows: for each
set of facial landmarks, we first compute the 3D Euclidean distance between
contiguous frames, which encodes the change in (𝑥,𝑦,𝑧) coordinates. Following
this procedure, for all frames, generates a vector representing velocity of head
movement for the individual. Similarly, applying the second order difference
operation to the velocity contour provides the acceleration contour. It is
important to mention here that we only use landmarks for which the tracker
outputs a success in order to avoid using landmarks for which the tracker has
low confidence. The velocity and acceleration contours are then passed to the
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Table 4.2: Summary of facial landmarks used for the proposed cranio-facial
movement features

Features Facial Landmarks

Head Movement

Face Contour {𝑃1, 𝑃2, . . . , 𝑃17}
Nose {𝑃28, 𝑃29, . . . , 𝑃36}
Nose + Face Contour {𝑃1, 𝑃2, . . . , 𝑃17, 𝑃28, 𝑃29, . . . , 𝑃36}

Mouth Movement

HorizCentral {‖𝑃51𝑃53‖ , ‖𝑃57𝑃59‖ , ‖𝑃61𝑃63‖ , ‖𝑃64𝑃66‖}
HorizNonCentral {‖𝑃50𝑃54‖ , ‖𝑃49𝑃55‖ , ‖𝑃56𝑃60‖}
VertCentral {‖𝑃52𝑃58‖
VertNonCentral {‖𝑃50𝑃60‖ , ‖𝑃51𝑃59‖ , ‖𝑃53𝑃57‖}, ‖𝑃54𝑃56‖}
DiagCentral {‖𝑃51𝑃57‖ , ‖𝑃53𝑃59‖}
DiagNonCentral {‖𝑃50𝑃56‖ , ‖𝑃54𝑃60‖}

Eyelid Movement

Vert Left: {‖𝑃44𝑃48‖ , ‖𝑃45𝑃47‖}
Right: {‖𝑃38𝑃42‖ , ‖𝑃39𝑃41‖}

Diag Left: {‖𝑃44𝑃47‖ , ‖𝑃45𝑃48‖}
Right: {‖𝑃38𝑃41‖ , ‖𝑃39𝑃42‖}

Eyebrow Movement

𝜃1 Left: △𝑃23𝑃24𝑃43

Right: △𝑃21𝑃22𝑃40

𝜃2 Left: △𝑃23𝑃25𝑃43

Right: △𝑃20𝑃22𝑃40

𝜃3 Left: △𝑃23𝑃26𝑃43

Right: △𝑃19𝑃22𝑃40

𝜃4 Left: △𝑃23𝑃27𝑃43

Right: △𝑃18𝑃22𝑃40

multi-resolution feature aggregation and regression framework as illustrated in
Figure 4.2.

Mouth Movement

These features quantify deformations of the mouth region as the subject speaks
to the camera. It is surmised that by modelling mouth movements, one can
jointly represent the amount of speech by the subject as well as the amount of
effort the subject puts in order to produce it. For the sake of completeness,
we first quantify horizontal, vertical, and diagonal deformations of the mouth
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separately and later investigate the modelling of all deformations together.

For quantifying horizontal deformations of the mouth, the first step is
to compute, for every frame, the pairwise Euclidean distance between the
landmarks 𝑃49 and 𝑃55, 𝑃50 and 𝑃54, 𝑃60 and 𝑃56, 𝑃61 and 𝑃63, 𝑃66 and 𝑃64, 𝑃51

and 𝑃53, and 𝑃59 and 𝑃57, representing them as ||𝑃49𝑃55||, ||𝑃50𝑃54||, ||𝑃60𝑃56||,
‖𝑃61𝑃63‖, ‖𝑃66𝑃64‖, ‖𝑃51𝑃53‖, and ‖𝑃59𝑃57‖, respectively, as illustrated in
Figure 4.3.

While it is possible to use all the mentioned pairs of facial landmarks for
quantifying horizontal deformations, our aim is to determine the optimal land-
marks for the task at hand. We do not want to use more landmarks than what
are necessary, but also do not want to use a brute force approach such as that
based on feature selection [100]. Hence, we organise these distance measures
into two sets as summarised in Table 4.2. The HorizCentral set consists of
landmarks closer to centre of the mouth region, whereas the HorizNonCentral
set consists of landmarks closer to lip corners. We surmise that landmarks
closer to the lip corners may be more relevant since they experience greater
change during smiling compared to landmarks closer to the center of the mouth
region. The reader is reminded that individuals with depression tend to smile
less or have unnatural smiles [180, 192]. Next, for each of the two sets of
landmarks, velocity and acceleration contours are computed by applying 1st
and 2nd order difference operators. Finally, the average value of each contour
is taken for landmarks in HorizCentral and HorizNonCentral contours to yield
horizontal mouth movement features for the subject. These features are then
passed down to the multi-scale feature aggregation stage of our framework.

For vertical movement, we follow a similar procedure to that used for
quantification of horizontal movement. For every frame, we compute pair-
wise distances between facial landmarks i.e. ‖𝑃51𝑃59‖, ‖𝑃52𝑃58‖, ‖𝑃53𝑃57‖,
‖𝑃61𝑃66‖, ‖𝑃62𝑃65‖, and ‖𝑃63𝑃64‖, as illustrated in Figure 4.3. Next, these
pairwise distance measures are organised into two sets i.e. VertCentral and
VertNonCentral based on whether the landmarks are closer to the centre of the
mouth region or the lip corners. The rest of the process is same as followed for
horizontal movement features.

Finally, we compute craniofacial movement features which represent diag-
onal deformations of the mouth. As summarised in Table 4.2, we compute
DiagCentral and DiagNonCentral sets of features to quantify diagonal mouth
deformations. The rest of the process for diagonal mouth movement is same
as that used for horizontal and vertical features.

Eyelid movements

We measure eyelid movement as a correlate of blinking rate, which according
to [174, 314, 315] can be used to identify individuals who have depression.
We investigate two types of features for quantifying eyelid movements, as
summarised in Table 4.2. The first set of eyelid movement features is called
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(a) HorizCenter (b) HorizCorner

(c) DiagCenter (d) DiagCorner

(e) Vert

Figure 4.3: Reference for facial landmarks from the mouth region used for
quantifying mouth movement

Figure 4.4: Reference for facial landmarks from the eye region used for
quantifying Eyelid movement, right eye (left) and left eye (right)

Vert and contains velocity and acceleration contours based on pairwise distances
||𝑃38𝑃42|| and ||𝑃39𝑃41|| for the right eye and ||𝑃44𝑃48|| and ||𝑃45𝑃47|| for the
left eye, as illustrated in Figure 4.4. Meanwhile, the second set of eyelid
movement features is called Diag, and as the name suggests it contains velocity
and acceleration contours for diagonal distance to characterise eye opening.
While we compute the Diag features for the sake of thorough investigation,
one can argue that Vert features provide a more direct method to quantify
eye opening.
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(a) Illustration of method to compute
eyebrow movement

(b) Reference for facial landmarks from the eye and eyebrow region
used for quantifying eyebrow movement

Figure 4.5: Quantifying Eyebrow movement

Eyebrow movements

Sobin et al. [202] reported that individuals with depression have greater eyebrow
movement. However, their work was based on manual inspection of eyebrow
movement in video recordings. Our aim here is to automate this process by
crafting features to quantify eyebrow movement using facial landmarks.

In order to quantify eyebrow movement, we propose to measure the angle
formed between the eye corner landmark and various landmarks on the eyebrow,
as illustrated in Figure 4.5a. Here, landmarks at positions A and B are used
as anchor points, with A being the landmark for the eye-corner and B, the
landmark for the eyebrow corner. The angle 𝜃 formed for the triangle △𝐴𝐵𝐶
then provides a measure of the changes due to eyebrow movement. This angle
is computed using the Law of Cosines as given in equation 4.1, where 𝛼, 𝛽 and
𝛾 are the Euclidean distances between landmarks 𝐴 and 𝐶, 𝐵 and 𝐶, and 𝐴
and 𝐵, respectively.

𝜃 = arccos

(︂
𝛽2 + 𝛾2 − 𝛼2

2𝛽𝛾

)︂
(4.1)

Given that there are four more eyebrow landmarks (other than the anchor
landmark; refer Figure 4.5b, we iteratively select each of the four available
options in order to compute angles {𝜃1, 𝜃2, 𝜃3, 𝜃4} and later conduct an inves-
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tigation in order to determine the best configuration for eyebrow movement
features.

As an example, consider Figure 4.5b where the angle ̸ 𝑃21𝑃22𝑃40 needs
to be computed to quantify the degree of eyebrow movement for the right
eye. The angle ̸ 𝑃21𝑃22𝑃40 is computed using the Law of Cosines, as given in
equation 4.1, where 𝛼, 𝛽, and 𝛾 are the Euclidean distances between landmarks
𝑃21 and 𝑃40, 𝑃22 and 𝑃40, and 𝑃21 and 𝑃22, respectively. Here, landmarks
𝑃22 and 𝑃40 are used as anchor points, whereas the landmark 𝑃21 is one of
the four landmarks over which we compute the angle 𝜃, as summarised in
Table 4.2. A similar process is followed to compute the four angles for left
eyebrow as well. Finally, velocity and acceleration contours are computed and
the average of velocity and acceleration contours for each angle for both eyes
is taken as the feature descriptor for eyebrow movement. These features are
subsequently passed down to the multi-resolution feature aggregation stage of
our framework.

4.7.3 Fisher Vector encoding of Speech Spectra

We hypothesise that speech spectra of individuals with depression, represented
as spectral LLDs, is characteristically different from those who do not suffer
from depression, and can be quantified. We propose a framework based on
Fisher Vector encoding to test this hypothesis.

In the following sub-sections, we first provide an introduction to Fisher
Vector encoding before proceeding to a discussion on our proposed framework
for modelling speech spectra using Fisher Vectors.

Fisher Vector Encoding

Fisher Vector encoding is a feature aggregation method which was proposed by
Perronnin et al. [36,99] for use in object recognition tasks, where it provided
state-of-the-art results [98] until the advent of the age of deep learning [87].

We note that Fisher Vector encoding also has gained recognition amongst
researchers from SSP/AC community. Simonyan et al. [316] achieved state-
of-the-art results for the task of face recognition using this approach. Jain
et al. [297] used FV encoding of audio baseline features (functionals) for
the AVEC 2014 DSC, whereas Dhall et al. [110] used FV encoding of visual
features (LBP-TOP) for the task of depression recognition. Meanwhile, Kaya et
al. [317] used FV for emotion recognition, and later used it for Computational
Paralinguistics [112, 318]. The results reported by these researchers motivated
us to investigate the efficacy of Fisher Vector based aggregation of spectral
LLDs for modelling speech of individuals with depression.

Fisher Vector encoding owes its success to prior work by Jaakkola and
Haussler [319] who proposed the Fisher Kernel framework. Their aim was to
develop a framework which combined the advantages of generative models (i.e.
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ability to work with variable length data items) and discriminative models (i.e.
ability to learn class specific boundaries). Jaakkola and Haussler achieved this
through kernel functions, computed from generative probabilistic models, which
provide discriminative features. The underlying idea, based on Fisher scores,
is that within a generative model built using various data items, similarly
structured data items will induce similar gradients in the parameters of the
generative model. These gradients can subsequently be used as feature vectors
for classification tasks. Therefore, it follows that the Fisher Kernel framework
provides features based on the underlying probability distribution that are
naturally discriminative.

Perronin et al. [36, 99] proposed to follow the Fisher Kernel framework
for the task of object recognition. The input to the framework are visual
descriptors of objects and these represent data items in the Fisher Kernel
framework. The generative model is a Gaussian Mixture Model (GMM) [95]
which is built using visual descriptors to approximate the distribution of visual
descriptors in the entire dataset (thus, acting as the visual vocabulary). The
output of their framework are Fisher Vectors, which represent the first and
second order statistics for gradients between the visual descriptors for each
object and the visual vocabulary.

In mathematical form [36,99], the process can be summarised as follows:
Let 𝐼 = 𝑥1, 𝑥2, ..., 𝑥𝑁 be a set of 𝐷 dimensional feature vectors extracted from
an image which represents an object. Let 𝜃 = (𝜇𝑘,Σ𝑘, 𝜋𝑘) ∀ 𝑘 = 1, 2, ...,𝐾 be
the sufficient parameters of the generative model created using GMM with 𝐾
Gaussians. The GMM associates each vector 𝑥𝑖 to the Gaussian 𝑘 within the
GMM with a strength given by the posterior probability as:

𝑞𝑖,𝑘 =
𝑒𝑥𝑝

[︁
−1

2 (𝑥𝑖 − 𝜇𝑗)
𝑇 Σ−1

𝑘 (𝑥𝑖 − 𝜇𝑗)
]︁

∑︀𝐾
𝑡=1 𝑒𝑥𝑝

[︁
−1

2 (𝑥𝑖 − 𝜇𝑡)
𝑇 Σ−1

𝑘 (𝑥𝑖 − 𝜇𝑡)
]︁ (4.2)

For each Gaussian within the GMM, the mean gradient vector 𝑢𝑘 and the
covariance gradient vector 𝑣𝑘 can be computed as follows:

𝑢𝑗,𝑘 =
1

𝑁
√
𝜋𝑘

𝑁∑︁
𝑖=1

𝑞𝑖,𝑘
𝑥𝑗,𝑖 − 𝜇𝑗,𝑘

𝜎𝑗,𝑘
(4.3)

𝑣𝑗,𝑘 =
1

𝑁
√

2𝜋𝑘

𝑁∑︁
𝑖=1

𝑞𝑖,𝑘

[︃(︂
𝑥𝑗,𝑖 − 𝜇𝑗,𝑘

𝜎𝑗,𝑘

)︂2

− 1

]︃
(4.4)

Note that the mean and covariance gradient vectors span the 𝑗 = 1, 2, ..., 𝐷
vector dimensions of the input feature descriptor. Finally, the Fisher Vector
representing the image is achieved by concatenating the two gradient vectors,
i.e.

Φ = [𝑢1,𝑘, 𝑢2,𝑘, ..., 𝑢𝐷,𝑘, 𝑣1,𝑘, 𝑣2,𝑘, ..., 𝑣𝐷,𝑘] (4.5)
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Perronin et al.’s Fisher Vectors come in two versions. The first version
is commonly known as vanilla Fisher Vectors and represents the original
formulation [36]. The second version is called improved Fisher Vectors and was
proposed in [99] i.e. three years after their original formulation. In improved
Fisher Vectors, Perronin et al. proposed methods to normalise Fisher Vectors
in a two stage process. They demonstrated that normalisation of Fisher Vectors
leads to improvement in classification accuracy for object detection task when
compared with results based on vanilla Fisher Vectors.

They proposed power normalisation to deal with cases where the input
feature descriptors are not independent (an assumption in their framework).
The efficacy of their proposed normalisation was demonstrated in [98, 99].
Perronin et al. also proposed L2-normalisation based on the argument that it is
always beneficial for high-dimensional feature vectors when used in combination
with linear classifiers. The efficacy of L2-normalisation was demonstrated in
[98,99,320].

Proposed Framework for Depression Recognition

In order to model speech spectra of individuals with depression using Fisher
Vectors, we first compute various spectral LLDs. These include Mel Frequency
Cepstral Coefficients (MFCCs) and Perceptual Linear Prediction (PLP) coef-
ficients, which are standard representations for spectra in speech processing.
These LLDS, along with their velocity and acceleration contours were computed
using the openSmile toolkit version 2.3.0 [30]. Apart from MFCCs and PLP
coefficients, we also experiment with FV encoding of formants, Mel-Cepstral
compression (MCEP), Harmonic Model plus Phase Distortion Mean (HMDPM)
and Harmonic Model plus Phase Distortion Deviation (HMDPD) computed
using standard settings of COVAREP toolbox version 1.3.2 [62].

The overall layout of our framework is depicted in Figure 4.6: we start
by concatenating spectral LLDs from each speech recording of the training
partition into a single matrix and then build a background model for the
spectral space using a GMM.

However, in order to train the GMM efficiently, we perform the following
pre-processing steps: all feature frames are 𝑧-score normalised i.e. made to
have zero mean and unit standard deviation. Next, we use principal component
analysis (PCA) to decorrelate the feature space. We retain dimensions such
that they match the number of clusters of the GMM. In case the feature set has
dimensionality smaller than or equal to the number of clusters for GMM, we
perform PCA over the dimensions of feature set, i.e. dimensionality reduction
does not take place. We apply a second 𝑧-score normalisation on the output of
PCA before using the resultant features to fit the GMM. Finally, we compute
Fisher Vectors in order to describe the deviation of each participant’s spectra
from the background model.
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Figure 4.6: Block diagram for FV encoding of spectral LLDs.

It is also important to mention here that since the GMM is built using
pre-processed features, the combination of 𝑧-norm + PCA + 𝑧-norm needs to
be applied to any new features which need to be encoded as Fisher Vectors,
for example, features of individuals from the development and test partitions.

We used VLFeat library [321] for both, estimating the means, covariance
matrix, and priors of the GMM, and implementing FV encoding. For FV
encoding we set parameters such that Perronnin’s improved FVs [99] are
computed.

4.7.4 Weighted Extreme Learning Machines

We use Weighted Extreme Learning Machines (WELMs) [322] for classifying
speech of individuals with depression and healthy individuals. Our motivation
for using WELMs is based on the work of Williamson et al. [128] who argued
that with limited data, least squares based approach would perform better
than stochastic gradient descent approach of SVM. Here, we provide a brief
introduction to WELMs.

ELMs is essentially a single layer feed-forward neural network where the
hidden layer is assigned randomly generated weights and these weights are
not updated during the training process. The classifier works by mapping
the output from the hidden layer to the training labels using a least squares
fit [122, 123]. The idea is that even with random weights, the hidden layer can
learn useful representation of input data which can be exploited by designing
a suitable output layer. An outstanding advantage of ELMs is their very fast
training time, which eases the process of tuning its hyper-parameters and
further experimentation.

We note, from the training and the development partitions of the AVEC
2016 DCC, that about 80% of participants are labelled as non-depressed while
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the remaining 20% are labelled as depressed. Due to this class imbalance,
we opt to use WELMs as proposed in [322] rather than legacy ELM (non-
weighted) classifier. WELMs assign weights to each class according to the
number of training examples available for that class. The WELM classifier
has three hyper-parameters: (1) the number of neurons 𝐿 in the hidden layer,
(2) the regularisation parameter 𝑐 required for the generalised Moore-Penrose
inverse [322], and (3) the weights. While all of these parameters can be tuned
using grid search, we determine weights based on the class distribution in the
training partition.

The mathematical formulation for WELMs is given as follows [322]: Let 𝐻,
an 𝑁 ×𝑀 matrix, be the output of the hidden layer (i.e. after multiplication
of feature matrix with randomly generated weights of the hidden layer), with
𝑁 samples and 𝑀 features, 𝑇 ∈ {1, 2} be an 𝑁 × 1 vector which contains the
labels for an individual not having depression (𝑇 = 1) and having depression
(𝑇 = 2), and 𝛽 be the transformation (aka output weights) which maps 𝐻
to 𝑇 , given as 𝐻𝛽 = 𝑇 . Then according to the generalised Moore-Penrose
generalised inverse for 𝐻, the transformation can be computed either using eq.
4.6 or eq. 4.7, as follows:

when 𝑁 ≤ 𝐿

𝛽 = 𝐻𝑇

(︂
𝐼

𝑐
+ 𝑊𝐻𝐻𝑇

)︂−1

(4.6)

when 𝑁 > 𝐿

𝛽 =

(︂
𝐼

𝑐
+ 𝐻𝑇𝑊𝐻

)︂−1

𝐻𝑇𝑊𝑇 (4.7)

where 𝑊 are the user defined weights to take into account class imbalance,
𝐼 is an identity matrix used to integrate the regularisation parameter 𝑐 in
equations 4.6 and 4.7.

4.8 Experimental Results and Discussion

4.8.1 Craniofacial Movement Features

The results for our proposed craniofacial movement features have been sum-
marised in Table 4.3 through Table 4.6. Here, craniofacial movement features
were computed for all subjects in two datasets from AVEC 2017 [13] and
AVEC 2014 [11] challenges on depressions severity estimation. The objective
of these challenges was to make predictions on the score of the depression
severity measurement instrument. For the AVEC 2017, PHQ-8 [21] was used
as the depression severity measurement instrument, whereas for AVEC 2014
BDI-II [38] was used. As per the rules of AVEC, performance is measured in
terms of the RMSE.
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Table 4.3: Performance analysis of Head movement features for AVEC 2017
and AVEC 2014 datasets

Features
RMSE MAE

Dev Test Dev Test

AVEC 2017

Face 6.43 6.14 5.27 5.26
Nose 6.05 6.27 4.96 5.32
Face & Nose 6.39 6.71 5.13 5.66

AVEC 2014

Face 11.06 10.66 9.19 8.64
Nose 10.71 10.96 9.22 9.04
Face & Nose 10.73 10.56 9.14 8.62

Table 4.4: Performance analysis of Mouth movement features for AVEC 2017
and AVEC 2014 datasets

Features
RMSE MAE

Dev Test Dev Test

AVEC 2017

HorizCentral 6.54 5.99 5.39 5.03
HorizNonCentral 6.05 6.20 4.98 4.94
VertCentral 6.64 6.34 5.48 5.42
VertNonCentral 6.66 6.44 5.40 5.46
DiagCentral 6.56 6.35 5.42 5.36
DiagNonCentral 6.41 6.06 5.21 5.04
Avg. of All 6.49 6.32 5.41 5.29

AVEC 2014

HorizCentral 10.86 11.59 9.15 9.49
HorizNonCentral 10.12 11.19 8.50 9.37
VertCentral 11.32 13.44 9.44 10.88
VertNonCentral 11.55 12.59 9.58 10.41
DiagCentral 10.93 13.20 9.28 10.65
DiagNonCentral 11.11 11.41 9.21 9.63
Avg. of All 11.00 13.46 9.35 10.64
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The results for head movement features are summarised in Table 4.3. Here
we investigated the efficacy of using two sets of facial landmarks which are
not affected by non-rigid facial movement (such as facial expressions) for the
task of quantifying head movement. For AVEC 2017 dataset, we note that
the facial landmarks from the nose region provide the best RMSE on the
development partition, whereas, landmarks from the face region provide the
best RMSE on the test partition. It is not uncommon to have slightly different
performances for the development and test partition. This is due to the fact
that the two partitions contain different subjects and while organisers aim
to create balanced partitions in terms of label distribution, there are aspects,
such as, age, gender, and personality, which influence social signals of subjects
(refer Section 3.5.5).

However, as per “the rules of the game” [11], the test partition is only to
be used for measuring efficacy of proposed methods, therefore, one must select
features based on the results of the development partition only. For the AVEC
2014 dataset, we again note that nose based features provide the best results
in terms of RMSE, however, it is closely followed by the a combination of face
and nose features. Overall, on the basis of the results for the two datasets, we
propose the use of nose based features to quantify head movement.

In Table 4.4, we summarise the results for mouth movement features. Here
we investigated the efficacy of features which quantify horizontal, vertical, and
diagonal deformations of the mouth region. Furthermore, we also investigated
whether it is better to craft features from landmarks which are at a central
location in the mouth region compared to those which are relatively further
away from the central position. Results indicate that HorizNonCentral features
are best features for quantifying mouth movement, when the objective is to
achieve smallest RMSE for the development partition. Meanwhile, we note that
VertCentral and VertNonCentral features, which quantify mouth openings,
achieved the worst RMSE on the development partitions for both datasets.

We find it particularly interesting that horizontal movement features have
smaller RMSE than vertical mouth movement features. One possible explana-
tion is that horizontal movement features capture movement of the zygomatic
major facial muscle i.e. the lip-corner puller. The lip-corner puller is the domi-
nant action unit for happiness emotion according to Paul Ekman’s proposal
for representation of fundamental emotions from facial muscle movements [7].
Horizontal mouth movement is also responsible for production of certain vow-
els [323], and as reported by Scherer et al. [324], individuals under distress
do indeed have a reduced vowel space. As expected Diag mouth movement
features provide an intermediate performance between Horiz and Vert features
given that diagonal deformation of mouth is based on simultaneous horizontal
and vertical deformations.

In Table 4.5, we summarise the results for eyebrow movement features.
Here, our aim was to quantify deformations in the eyebrow caused by movement
of muscles in the eyebrow region. While our results do not point out a particular
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Table 4.5: Performance analysis of Eyebrow movement features for AVEC
2017 and AVEC 2014 datasets

Features
RMSE MAE

Dev Test Dev Test

AVEC 2017

𝜃1 6.48 6.33 5.46 5.29
𝜃2 6.34 6.34 5.32 5.18
𝜃3 6.36 6.38 5.28 5.32
𝜃4 6.28 6.36 5.36 5.35
Avg. of All 6.27 6.29 5.26 5.13

AVEC 2014

𝜃1 11.28 11.90 9.51 9.90
𝜃2 11.09 11.89 9.25 9.80
𝜃3 11.15 11.79 9.40 9.80
𝜃4 11.24 11.56 9.36 9.72
Avg. of All 11.11 11.80 9.28 9.71

feature which stands out for both datasets, we do note that the feature 𝜃1
provides worst performance. It is reminded that 𝜃1 is the angle computed
between the anchor landmarks and the eyebrow landmark closest to the center
of the face.

Given that there is no conclusive evidence which favours a particular
eyebrow movement feature, we propose to use the average value of all these
features as the eyebrow movement feature. This proposal is backed by results
shown in Table 4.5, the average feature achieves the best performance on
the development partition for both datasets, as well as achieving the best
performance on the test partition for the AVEC 2017 dataset.

In Table 4.6, we summarise the results for eyelid movement features. Here,
our aim was to quantify eye openings using facial landmarks in the eye region
and subsequently use it for prediction of depression severity. To this end, we
investigated the efficacy of Vert and Diag eyelid movement features for the
tasks. Results indicate the Vert features provide better results as compared to
Diag features, which is expected given that the latter is a direct measure of
eye openings.

Overall, we conclude on the basis of our investigation for the proposed
craniofacial movement features and associated results that head movement,
based on features derived from the nose region, is most useful for predicting the
depression severity score. This is followed by mouth movement, in particular
those features which quantify horizontal deformations. We also report that
eyebrow movement features need to consider changes in eyebrow deformations
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Table 4.6: Performance analysis of Eyelid movement features for AVEC 2017
and AVEC 2014 datasets

Features
RMSE MAE

Dev Test Dev Test

AVEC 2017

Vert 6.24 7.03 4.91 5.84
Diag 6.21 7.14 4.94 5.54
Avg. of Vert & Diag 6.23 7.22 4.86 5.72

AVEC 2014

Vert 11.58 12.51 9.93 10.36
Diag 11.59 12.60 9.64 10.32
Avg. of Vert & Diag 11.62 12.37 9.93 10.16

for all landmarks located on the eyebrow. Finally, we report that eyelid
movement features, crafted to quantify eye openings, are not as effective as
predicting depression severity scores as compared to head, mouth, and eyebrow
craniofacial movement features.

Comparison with published literature

In order to compare our proposed craniofacial movement features, we summarise
the contributions from other features in Table 4.7 for AVEC 2017 DSC and
Table 4.8 for AVEC 2014 DSC challenges. It is important to mention here
that we only list results from the baseline papers of these challenges as well as
publications which use features derived, at least in part, from facial landmarks.
Our aim is to provide a balanced comparison with craniofactial movement
features which only used facial landmarks. It is reminded that we already
provide a survey of publications from AVEC 2014, 2016, and 2017 challenges
in Section 4.6.

Moreover, it is also pertinent here to state the differences between the two
datasets. For example, AVEC 2017 DSC dataset consists of video recordings
of structured interview sessions between subjects and a virtual agent. The
interview sessions were devised in such a way that subjects were asked questions
from the PHQ-8 [21] questionnaire, therefore, the sessions closely followed the
protocol for assessment of depression. The AVEC 2014 dataset, meanwhile,
consists of video recordings of subjects performing two types of speaking tasks.
In the first task, subjects read out a passage from the German fable North
Wind and the Sun. The second task required subjects to provide answers to
questions prompted through a Power Point presentation file. These questions
included “What is your favourite dish?”; “What was your best gift, and why?”,
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(a) AVEC 2014 dataset

(b) AVEC 2017 dataset

Figure 4.7: Cumulative Density Function of time durations of video recordings
in AVEC 2014 and AVEC 2017 datasets

and “Discuss a sad childhood memory”. Essentially, the sessions from AVEC
2014 DSC do not follow the protocol for depression screening as the AVEC
2017 DSC does. Moreover, we note that the duration of sessions for AVEC
2017 and AVEC 2014 are also different, as illustrated in Figure 4.7. More than
half of the recordings in AVEC 2014 dataset have a duration of less than 50
seconds, whereas half of recordings in the AVEC 2017 dataset have a duration
of at least 300 seconds. The smaller duration of video recordings for AVEC
2014 dataset means that there is smaller amount of data available to compute
craniofacial movement features. Finally, whereas AVEC 2017 dataset included
a bespoke recording environment, recordings for AVEC 2014 dataset were
made through Skype-like sessions.

In Table 4.7 we summarise the results obtained in the baseline paper for the
AVEC 2017 DSC as well as those publications where facial landmarks based
features were used. It is important to mention here that since the AVEC 2017
challenge used the same dataset as the AVEC 2016 challenge1, some researchers

1The objectives of these challenges were different: for AVEC 2016 the objective was to
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reported results in terms of RMSE/MAE for the AVEC 2016 challenge as well.
Therefore, we have also included results from such publications in Table 4.7.

In order to compare our proposed features based facial landmarks, we sum-
marise the contributions from other researchers who have proposed cranio-facial
features computed using facial landmarks. To this end, we have summarised
results from three AVEC depression challenges.

Ringeval et al. [13] introduce the AVEC 2017, however, since AVEC 2016
and AVEC 2017 challenges use the same dataset, therefore, Ringeval et al.
propose the same baseline for visual features as that proposed by Valstar et
al. [12] who utilised a combination of facial landmarks based features and
appearance features based on LGBP-TOP [81].

For features based on facial landmarks, they computed what they called
geometric features. These features included a large number of distance and angle
measurements between pairs of facial landmarks around the eyes, eyebrows,
and the mouth region. They also computed the distance between the median
of stable landmarks and each of the 67 other facial landmarks. Thus in total,
they compute 316 geometric features and later use functionals based feature
aggregation.

We find the proposal from Valstar et al. to compute geometric features for
only specific regions of the face particularly interesting, given that prior trend
was to compute an exhaustive set of geometric features for all possible pairs of
facial landmarks [104,207]. However, (a) Valstar et al. do not provide details
of how they computed features for sub-regions of the face, and (b) they still
compute an extensive set of features even if it is not exhaustive.

On the development partition, Valstar et al. achieved an RMSE/MAE =
7.13/5.88, and an RMSE/MAE = 6.97/6.12 on the test partition. However, it
is also important to mention here that the efficacy of their proposed geometric
features cannot be ascertained since they combined these features with LGBP-
TOP based appearance features based on LGBP-TOP for predicting depression
severity. Nevertheless, we aim to compare the performance of our proposed
craniofacial movement features with their work since it forms the baseline for
the AVEC 2017 challenge.

Nasir et al. [152] investigate the use of facial landmarks for predicting
depression. To this end, they experiment with three feature sets derived from
facial landmarks. The first feature set, which they called facialtracker is
based on taking the average value of each facial landmark over a 10 second
temporal window. For the second feature set, which they called geometric
feature set, they compute distance and area measures using facial landmarks.
The distance features quantify: (a) distance between eyelid and the eyebrow,
distance between nose and upper lip, distance between chin and the lower
lip, distance between upper and lower lips, and the distance between mouth

classify individuals as depressed or not depressed, whereas for AVEC 2017, the objective was
to predict depression severity score
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corners. These distance measures are computed for every pair of frames
and the average value is taken over a 10 second window. As illustrated in
Figure 1 of their paper, a total of 26 features are computed which represent
the area encompassed by 68 facial landmarks. The third feature set is based
on polyonimal parameterisation of changes in facial landmarks. This involves
fitting a second order polynomial function to the value of facial landmarks
over a 10 second window. The parameters of the polynomial function are
subsequently used as features. Nasir et al. report that amongst the three types
of feature sets, the combination of distance and area features provided the
best performance (in terms of average F1 score) for the task at hand. This is
followed by facialtracker and the polynomial parameterisation featureset. On
the development partition, they also report accuracy in terms of RMSE/MAE
after combining features from the geometric and facialtracker featureset. Here
we note that the feature set achieves an RMSE = 7.86 and an MAE = 6.48.
They do not, however, report results for the test partition.

Yang et al. [149], compute geometric features based on distance and angle
measurements between pairs of facial landmarks in the region of eye, eyebrows,
and mouth. However, they do not provide further information about how
distance and angle features are computed. Next, they reduce the dimensionality
of their geometric features by applying a PCA such that 99.9% of variance is
retained. Finally, they take the average value of the PCA-geometric features
over the entire duration of recording in order to create a global representation
of video. Yang et al. report the performance of the computed features for
the development partition for gender dependent models. As summarised in
Table 4.7, the model for females achieves an RMSE/MAE = 6.39/5.10, whereas
the model for males achieves an RMSE/MAE = 6.99/5.75. Similarly, Sun et
al. [153] compute PCA-geometric features (without providing details), and
achieve an RMSE/MAE = 7.06/5.77 on the development partition.

In Table 4.7, we provide performance comparison of our proposed craniofa-
cial movement features with the works Valstar et al. [12], Nasir et al. [152],
Yang et al. [149], and Sun et al. [153]. Here, we observe that our proposed
craniofacial movement features achieve best performance in terms of RMSE on
the development partition. Head movement, Mouth movement, and Eyebrow
movement features also beat the challenge baseline on the test partition in
terms of both RMSE and MAE. Amongst these results, the most interesting
observation was that craniofacial movement facial features were able to beat
the combination of geometric and appearance features proposed by Valstar et
al.

Finally, given that our features are also interpretable, that is, one can
explicitly link the contribution of various aspects of facial movement to de-
pression severity score, we believe that these features can provide meaningful
feedback to clinicians for diagnosis of depression.

In Table 4.8 we summarise the results obtained in the baseline paper for the
AVEC 2014 DSC as well as those publications where facial landmarks based
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Table 4.7: Performance comparison of proposed craniofacial movement
features for AVEC 2017

Features
RMSE MAE

Dev Test Dev Test

Valstar et al. [12] (baseline) 7.13 6.97 5.88 6.12
Nasir et al. [152] 7.86 – 6.48 –
Yang et al. [149] (female) 6.39 – 5.10 –
Yang et al. [149] (male) 6.99 – 5.75 –
Sun et al. [153] 7.06 – 5.77 –
Head Movement 6.05 6.27 4.96 5.32
Mouth Movement 6.05 6.20 4.98 4.94
Eyelid Movement 6.24 7.03 4.91 5.84
Eyebrow Movement 6.27 6.29 5.26 5.13

features were used. We start with the work of Valstar et al. [11] who introduced
the AVEC Depression Recognition Challenge and provide baseline results for
the visual modality. They utilise LGBP-TOP features [81] to quantify facial
movement. The fundamental idea behind this approach is that facial muscle
movement manifests as changes in skin texture with appearance of facial
furrows and wrinkles, which can be quantified through the use of texture-level
features. On the development partition, Valstar et al. achieve an RMSE =
9.26 (they do not report MAE for the development partition), meanwhile on
the test partition, these features provide an RMSE/MAE = 10.86/8.86. It is
worth mentioning here that since Valstar et al. did not use features derived
from facial landmarks therefore a direct comparison between our work and
theirs is not possible. Nevertheless, it is still important to compare our work
with theirs since their work is the challenge baseline.

The only publication from AVEC 2014 challenge which used facial land-
marks based features is the work of Gupta et al. [223]. They hypothesised that
head and overall facial movement carry important information about affective
state and depression level. They quantify this movement using LBP [291],
LBP-TOP [81], and optical-flow-based motion vectors [209] between a pair
of consecutive frames at key points computed using a corner detection al-
gorithm [292]. They also computed pairwise Euclidean distances between
each of the 66 facial landmarks and a stable point between the eyes. As per
results reported in their paper, Gupta et al. achieved an RMSE of 9.00 on the
development partition, which is better than any of our proposed craniofacial
movement features as shown in Table 4.8.

A caveat to their result is the fact that they used features based on facial
landmarks alongside multiple appearance based visual features such as LBP,
LBP-TOP, and optical flow, thus combining four types of features through
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Table 4.8: Performance comparison of proposed craniofacial movement
features for AVEC 2014

Features
RMSE MAE

Dev Test Dev Test

Valstar et al. [11] (baseline) 9.26 10.86 – 8.86
Gupta et al. [223] 9.00 – – –
Head Movement 10.71 10.96 9.22 9.04
Mouth Movement 10.12 11.19 8.50 9.37
Eyelid 11.58 12.51 9.93 10.36
Eyebrow 11.11 11.80 9.28 9.71

feature-level fusion. In addition to this, Gupta et al. also used a two-stage
greedy feature selection algorithm to optimise RMSE for the development
partition. Thus one cannot separate the contribution of appearance based
visual features from the contribution of facial landmarks based features.

In Table 4.8, we provide performance comparison of our proposed craniofa-
cial movement features with the works Valstar et al. [11] and Gupta et al. [223].
Here we note that results of our proposed features do not hold particularly
well i.e. our best result i.e. mouth movement features, trails both Valstar et
al. and Gupta et al. Given the results achieved on the AVEC 2017 dataset,
where these features demonstrated strong performance, the results achieved
for AVEC 2014 dataset are disappointing.

Nevertheless, as discussed earlier in this section, the AVEC 2017 dataset
follows the clinician-patient interaction protocol much more closely as compared
to the AVEC 2014 dataset. This could be one of the reasons why our features
perform better for the AVEC 2017 dataset. Nevertheless, our proposed features
offer the unique advantage of interpretability, that is, one can explicitly link
the contribution of various aspects of face based motor activity to depression
severity score.

4.8.2 Turbulence Features for Audio Modality

We compute turbulence features over five different time-scales, and use five
descriptive statistics to summarise their values, as detailed in Section 4.7.1.
Therefore, the resultant feature has 25 dimensions.

In order to build a model for prediction of depression severity, we use
PLSR [172]. We vary the number of components between 4 and 8, and
optimise for the objective of achieving the smallest RMSE on the development
partition. There is, however, an interesting question which exists with the use
of these features i.e. should unvoiced frames be removed from the features or
should they be retained. On one hand it makes sense to remove them because
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Table 4.9: Performance of turbulence features while keeping unvoiced frames
as zero

Feat
Train Dev

Comp
MAE RMSE Corr MAE RMSE Corr

F0 4.23 5.20 0.29 4.81 5.95 0.43 4
NAQ 4.14 5.06 0.37 5.03 6.16 0.37 8
QOQ 4.24 5.23 0.27 6.2 8.29 0.04 4
H1H2 4.11 5.16 0.32 5.27 6.47 0.13 8
PSP 4.39 5.25 0.26 6.52 10.40 0.04 4
MDQ 4.04 5.05 0.37 5.21 6.43 0.21 4
PS 4.23 5.12 0.34 5.19 6.33 0.30 5
Rd 4.41 5.34 0.19 5.33 6.43 0.20 7

Table 4.10: Performance of turbulence features after removing unvoiced frames

Feat
Train Dev

Comp
MAE RMSE Corr MAE RMSE Corr

F0 4.40 5.21 0.29 5.58 6.75 0.01 4
NAQ 4.31 5.34 0.19 5.33 6.40 0.27 7
QOQ 3.74 4.79 0.47 5.66 6.73 0.02 7
H1H2 4.07 5.14 0.33 5.38 6.54 0.12 5
PSP 4.00 4.88 0.44 6.22 8.22 0.10 7
MDQ 4.22 5.17 0.31 5.45 6.49 0.20 7
PS 3.93 4.79 0.48 5.55 6.95 0.10 4
Rd 4.06 4.93 0.42 5.49 6.64 0.03 4

they will contain information not related to speech, but on the other hand,
keeping unvoiced frames may provide information about the rhythm of an
individual’s speech.

We empirically test two approaches, with results summarised in Tables
4.9 and 4.10. In Table 4.9, instead of removing unvoiced frames, we simply
change their value to zero, meanwhile in Table 4.10, we remove those frames
altogether. An inspection of these two tables suggests that it is almost always
beneficial to retain unvoiced frames if their value is changed to zero. The
biggest beneficiary are features derived from F0, which beats the best RMSE
and MAE scores for the development partition, as given in the baseline paper.

4.8.3 Fisher Vector encoding of Spectral LLDs

In this section, we discuss experiments on using spectral modelling of speech
of depressed individuals using Fisher Vector encoding, for AVEC 2016 DCC
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and AVEC 2017 DSC datasets.

Classification Task: The AVEC 2016 DCC

For the classification task, we report on our approach for the AVEC 2016
depression severity prediction sub-challenge [12]. The objective of this challenge
was to classify between individuals who had depression and those who did not.
The results were measured using the F1 score. It must be mentioned here
that these experiments were performed using training and development subsets
since these experiments were performed after the challenge was formally closed
and the organisers were no longer providing results on the test. Nevertheless,
as discussed below, we use create multiple partitions of data available to test
our proposed approach.

We start by combining data from the training and the development sets and
create 10 randomly generated partitions (so-called sub-train and sub-test), while
maintaining 80/20 ratio of non-depressed/depressed classes. We also retain
the same number of samples in the two sub-sets as provided by the organisers
i.e. 107/35 for the training and development. It was ensured that data from
sub-training partition does not mix with the data from the sub-test partition.
Next, optimal values of hyper-parameters of WELM are selected using grid-
search over the set {50, 100, . . . , 1000} for 𝐿 and {2−3, 2−2, . . . , 29} for 𝑐 and
the number of clusters for the GMM used for FV encoding were selected as
{4, 8, 16, 32, 64}, for each partition, with the objective of maximising the mean
F1 score. We report classification results in Table 4.11 of FV encoding of
various spectral features as the median value of their score on the 10 partitions.

We note that the best result is achieved by FV encoding of PLP features
when 64 cluster GMM is used to model the background, although even with 4
clusters, PLP features once FV encoded provide a better performance than the
AVEC 2016 DCC baseline, as shown in Table 4.12. FV encoding of MFCCs,
another popular spectral representation of speech, is also able to improve on
the baseline, however, its performance lags behind that of PLPs.

Surprisingly, formants failed to yield satisfactory results. One expected
better results since formant frequencies have been described as correlates of
vocal tract [130], which could have been more discriminatory. We suspect
that their performance may have been compromised due to free speech nature
of the dataset. Meanwhile, features based on MCEPs, HMPDMs, and HM-
PDDs, provided as part of the dataset, are also unable to reach the baseline
performance.

Finally, when compared to results from other publications for the AVEC
2016 DCC, our results are comparable to the best performance on the develop-
ment partition. In fact, if one is to consider the maximum score achieved on
the 10 partitions, then we achieve the best result on the development partition.
While the results are exceptionally good, one must appreciate the fact that
machine learning algorithms have a tendency to overfit when the size of the
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Table 4.11: Classification results on the development partition with FV
encoding and WELM

Features GMM 4 GMM 8 GMM 16 GMM 32 GMM 64

MFCCs 0.704 0.761 0.800 0.788 0.807
PLPs 0.791 0.842 0.857 0.885 0.906
Formants 0.551 0.622 0.630 0.628 0.636
MCEPs 0.589 0.619 0.661 0.649 0.687
HMPDMs 0.636 0.627 0.621 0.642 0.617
HMPDDs 0.596 0.628 0.599 0.608 0.612

Table 4.12: Comparison of results as mean F1 for publications from AVEC
2016 DCC

Publication Development Test

(baseline) [12] 0.698 0.720
Ma et al. [305] 0.610 —
Pampouchidou et al. [150] 0.730 0.665
Nasir et al. [152] 0.760 —
Huang et al. [155] 0.765 0.550
Williamson et al. [130] 0.810 0.700
Our work (median) 0.906 —
Yang et al. [149] 0.910 0.724
Our work (max.) 0.957 —

dataset is small, which is typically the case in most social signal processing
domains. Nevertheless, the efficacy of our proposed method is evident through
these results.

Regression Task: The AVEC 2017 DSC

For the regression task, we report on our approach for the AVEC 2017 depres-
sion severity prediction sub-challenge [13]. The objective in this challenge was
to predict the PHQ scores of individuals on the test partition. The performance
was measures in terms of the MAE and RMSE.

While we computed a single Fisher Vector for spectral LLDs for the
classification task discussed in previous section, we proposed a multiscale
FV encoding of spectral LLDs, and use pooled functionals from these Fisher
Vectors as features for predicting depression severity.

The background modelling part is similar, and it is only the Fisher Vector
encoding part which is different for the multi-scale approach. In order to achieve
this, we take spectral LLDs windows of {0.5, 5, 10} seconds, with overlap of
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Table 4.13: Summary of results for various pooling methods for multi-scale
FV encoding.

Pool .
Train Dev

Res. GMM
MAE RMSE Corr MAE RMSE Corr

Mean 3.05 3.38 0.90 5.53 6.50 0.43 3 16
Max 4.81 5.66 0.60 5.67 6.52 0.33 3 16
Med. 4.81 5.66 0.54 5.65 6.52 0.32 2 24
CF 4.81 5.66 0.71 5.66 6.52 0.34 1 32
Range 4.78 5.47 0.59 5.60 6.42 0.37 3 16
Var 4.81 5.66 0.70 5.65 6.52 0.41 2 16

{0.2, 3, 5} seconds, respectively. The FVs computed over each of these time
scales are pooled into a single FV by applying the following descriptive statistics
element-wise: mean, max, median, variance, crest factor, and range.

We use SVR, to build models based on Fisher vectors which can predict
PHQ scores for individuals. We train SVRs with an RBF kernel. We utilise
Matlab wrappers for 𝜀-SVR available as part of the libSVM [169] toolkit.
The cost parameter 𝐶 is searched between 2{−10:10}, 𝐸𝑝𝑠𝑖𝑙𝑜𝑛 between 2{−5:5}

and the width of the RBF kernel 𝐺𝑎𝑚𝑚𝑎 between 2{−16:4}, with a step of
2. Amongst these, we select the parameters which yield the largest absolute
Pearson correlation values on the development partition.

In Table 4.13, we provide a summary of the best performing pooling
methods on the training and development sets in terms of RMSE and MAE as
well as the absolute Pearson correlation coefficients, whilst selecting a cut-off
𝑝-value of 0.05. We note that all pooling methods are able to achieve virtually
similar performance in terms of MAE and RMSE, when one has options to
choose any particular temporal resolution for FV encoding along with the
number of clusters for the GMM.

There are, however, subtle differences. Firstly, we note that the absolute
Pearson correlation value of 0.43 on the Development partition is achieved
through Mean pooling of FVs, when using 𝑅𝑒𝑠 3 i.e. a window of 10 seconds
and using a 24 cluster GMM. Mean pooling also has the smallest MAE and
RMSE on the development partition compared to other pooling methods.
Another important observation is that most pooling methods perform well at
𝑅𝑒𝑠 3 i.e. a temporal resolution of 10 seconds, while the crest factor stands out
as the only pooling method which works best at a temporal resolution of 500 ms.
We believe that this is due to the nature of the crest factor, which essentially
measures turbulence, and at larger time-scale, micro-level description is not as
fruitful for the task of predicting labels.

While the objective of the AVEC 2017 DSC was to achieve the smallest
possible RMSE, we believe that there may be cases where one may want to
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Table 4.14: Trade-off between minimising RMSE and maximising correlation.

Pooling
Train Dev

MAE RMSE Corr MAE RMSE Corr

Max (best RMSE) 4.81 5.66 0.60 5.67 6.52 0.33
Max (best corr) 4.45 5.62 0.89 5.45 6.93 0.42
Mean (best RMSE) 3.05 3.38 0.90 5.53 6.50 0.43
Mean (best corr) 3.67 3.87 0.92 5.50 6.55 0.46

measure depression severity using a parameter which may not match PHQ
scores in terms of its dynamic range (therefore have poor RMSE), but closely
matches the PHQ labels through correlation. For example, consider Table 4.14,
where we summarise possible trade-offs between the choice of smaller RMSE
or a higher absolute Pearson correlation.

4.9 Summary

In this chapter, we introduced three new approaches for the task of automated
depression screening from audio-visual recordings, namely; turbulence features,
craniofacial movement features, and Fisher Vector encoding of spectral LLDs.
The efficacy of these methods was demonstrated using datasets from 2014,
2016, and 2017 editions of the AVEC challenges on depression screening.

To conclude, we summarise the key achievements of our work as follows:

∙ We surmised that psychomotor changes due to depression lead to unique-
ness in an individual’s speech pattern which manifest as sudden and
erratic changes in speech feature contours. To this end, we proposed a
novel set of temporal features, which we called turbulence features, to
quantify fluctuations in the feature contours of speech features.

The efficacy of turbulence features was demonstrated as part of our
solution for the AVEC 2017 DSC [13], where we stood 6th overall in the
competition, beating the challenge baseline [34]. Amongst various voice
quality and prosody features which were part of our investigation, we
found turbulence features computed for pitch feature contour to be most
useful for the task of automated depression screening.

∙ We detailed a methodology to quantify specific craniofacial movements,
which we hypothesised could be indicative of psychomotor retardation
and hence depression.

The efficacy of these features was tested in terms of the value of Pearson’s
correlation coefficient with respect to depression severity. We used three
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sets of recordings from two publicly available datasets from AVEC 2014
DSC [12] and AVEC 2017 DSC [13].

The results demonstrated the efficacy of our proposed craniofacial move-
ment features. Moreover, given that these features are inspired by
knowledge of psychomotor retardation from the DSM 5 manual [18], we
believe that interpretability of these features will provide meaningful
feedback to clinicians for diagnosis of depression.

∙ We hypothesised that individuals with depression have unique character-
istics to their speech spectra. To this end, we introduced Fisher vector
encoding of spectral LLDs for quantifying abnormalities within speech
spectra of individuals with depression.

Initially, we demonstrated the efficacy of our proposed approach for
the AVEC 2016 DCC dataset [12], where the objective was to identify
individuals with and without depression [37]. Later, we extended the
idea by adding temporally-piecewise aggregation of Fisher vectors as
part of our solution to the AVEC 2017 DSC [34]. We beat the challenge
baseline whilst using this method.

∙ We note that datasets released as part of AVEC sub-challenges on auto-
mated depression screening (2014, 2016, and 2017 editions) have all used
accumulated scores from various depression measurement instruments
as labels for audio/visual recordings. The AVEC 2014 DSC dataset [11]
used BDI-II [38], whereas the AVEC 2016 DCC dataset [12] and AVEC
2017 DSC dataset [13] used PHQ-8 [21]. While these scores provide
a way to quantify depression severity in absence of physical tests for
depression [28], there are inherent limitations of using these labels.

For example, the BDI-II [38] asks patients about feelings of satisfaction,
disappointment, and guilt, as well as questions about their weight, ap-
petite, and sex-life. It is obvious that information pertaining to these
questions cannot be extracted from audio/visual recordings unless pa-
tients are explicitly recorded whilst answering these questions. In that
case, one would use speech-to-text conversion and follow it up with
natural language processing to learn the answers to these questions.

This means that under the current set up of datasets, automated screening
methods based on audio/visual modalities will continue to have sub-par
performance relative to ground truth labels. We argue that it may
be worth investing time to devise depression measurement instruments
(questionnaires) which specially cater for development of automated
screening methods. This would, of course, require significant collaboration
between researchers from psychology and SSP/AC.

∙ In light of our discussion in this chapter and Chapter 3, we believe it
is important to emphasise here that while significant inroads have been
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made for the task of automated screening of depression, this task is still
very much a work in progress.

The most outstanding issue remains the lack of publicly available datasets,
which is further exasperated by potentially noisy labels from self-administered
depression assessment instruments. The many confounding factors such
as gender, age, and the nature of speaking tasks means that research for
the development of automated methods for screening of depression is
likely to continue for at least the near future before these methods are
deemed ready for clinical usage.
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Automated Screening for
Bipolar Disorder

5.1 Introduction

Bipolar disorder is a mental disorder, which, according to the World Health
Organisation (WHO), affects more than 60 million individuals worldwide —
making it amongst the top-ten mental disorders for adults worldwide [325].

Individuals with bipolar disorder suffer from episodes of depression and
mania, which are separated by periods of normal mood. Manic episodes
typically include irritable mood, hyper-activity, loud speech, inflated self-
esteem and a decreased need for sleep [326, 327]. While bipolar disorder is
a life-long illness, early diagnosis and subsequent treatment can favourably
impact the quality of life for individuals with this mental disorder. This is
where automated screening methods can help.

Conventional methods for screening of bipolar disorder are subjective in
nature i.e. based on self-assessment or clinician-assessment based questionnaire.
Based on our discussion in Section 1.4, our motivation is to propose automated
screening methods for this disorder. Accordingly, we propose various methods
for automated screening of bipolar disorder from audio/visual modalities. This
is our solution for the Bipolar Disorder sub-challenge (BDS) which was part
of the Audio/Visual Emotion recognition Challenge (AVEC) 2018, co-located
with ACM Multimedia Conference.

The AVEC 2018 BDS is the very first of its kind within the scope of
mental health analysis where the objective is to predict severity of mania for
individuals with bipolar disorder using audio/visual recordings of structured
interviews. The reader is reminded that previous editions of AVEC challenges
focussed on automated screening of depression [10–13].

The layout of this chapter is as follows: we start with statements of novelty
and contributions through our work on development of automated screening of
bipolar disorder. We follow this by describing traits of individuals with bipolar
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disorder according to DSM-5 manual [18]. We also briefly describe states of
bipolar disorder as per the Young Mania Rating Scale (YMRS) [22]. This
provides the foundation for our proposed automated screening methods. Next,
we provide a survey of research literature published for automated screening of
bipolar disorder from audio/visual modalities. While limited research literature
exists, we were able to identify some features from audio/visual modalities
which were previously deemed useful by others. Next, we discuss our proposed
methods in detail and provide experimental analysis. We also discuss our
submissions for the test partition of the AVEC 2018 Bipolar Disorder sub-
challenge. Finally, we provide a conclusion based on insights from our work.

5.2 Novelty and Contributions

Our proposed approaches for automated screening of bipolar disorder from
audio/visual modalities is inherently novel for this task since the AVEC 2018
Bipolar Disorder sub-challenge (BDS) [33] provides researchers for the very
first time a dataset which contains multi-modal recordings of individuals with
bipolar disorder based on structured interviews. The contributions of our work
can be listed as follows:

∙ We propose turbulence features to capture sudden and erratic changes in
feature contours, and demonstrate its efficacy for the task at hand. The
reader is reminded that we had initially proposed these features for the
task of predicting depression severity at AVEC 2017 (see Section 4.7.1
for details).

∙ We introduce Fisher Vector encoding of Computational Paralinguistics
Challenge (ComParE) low level descriptors and demonstrate that these
features are viable for predicting the severity of mania. In fact, we
show that these features perform significantly better than ComParE
functionals [64] for the AVEC 2018 BDS.

The reader is referred to Section 5.7.3 for details of Fisher Vector features
based on ComParE LLDs and to Section 5.7.3 for experimental results.

∙ We introduce the Greedy Ensembles of Weighted Extreme Learning
Machines (GEWELMs) classifier, for the task of classifying individuals
with bipolar disorder into states of remission, hypo-mania, and mania.).

The reader is referred to Section 5.6.4 for details of GEWELMS and to
Section 5.7 for experimental results.

∙ The best result on the test partition i.e. UAR = 57.41% is achieved
whilst using the proposed turbulence features, computed for features
pertaining to facial movement and associated emotions. This result
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exactly matches the baseline of the AVEC 2018 Bipolar Disorder sub-
challenge. It also matches the state-of-art for the sub-challenge, as
discussed in Section 5.7.6.

5.3 Bipolar Disorder as per the DSM-5 and the
YMRS

Bipolar disorder is a complex mental disorder which modulates the overall
behaviour of an individual — in particular, their mood. According to the
DSM-5 manual [18], bipolar disorder is characterised by cyclic periods of
depression followed by episodes of mania.

Mania is a state of elevated mood, arousal, affect, and energy levels, and its
symptoms are generally opposite to those reported for state of depression [18].
For example, an individual in a manic state has higher-than-normal energy,
elevated mood, decreased requirement for rest/sleep, and is more socially
active. In depressive state, meanwhile, an individual typically goes into social
withdrawal, has decreased arousal, and is generally more passive in their
behaviour and social activities.

The existence of depression can be gauged using the DSM-5 guidelines
for major depressive disorder, which we discussed previously in Section 4.3
as part of our work on automated screening of depression in Chapter 4. The
existence of mania and its severity is commonly quantified using the Young
Mania Rating Scale (YMRS) [22,33,39].

YMRS is a MCQ style questionnaire which was developed by Young et
al. [22] to assess manic symptoms. It is similar to the Hamilton Rating Scale
for Depression (HAM-D) [20] questionnaire which is used for assessment of
depression severity. The YMRS contains 11 items in total. Amongst these,
four items are graded on a scale between 0–8 (querying irritability, speech,
thought content, and disruptive/aggressive behaviour), whereas the remaining
seven items are graded on a scale between 0–4. The YMRS can either be
completed by the psychiatrist (psychiatrist-administered) or the individual
affected with bipolar disorder (self-administered). For the dataset provided as
part of the AVEC 2018 BDS, YMRS was completed for subjects by trained
psychiatrists [33]. The reader is directed to an online version of YMRS [23] for
further insights about the questionnaire.

The severity of bipolar disorder is typically measured in terms of three
sub-states, which are remission, hypo-mania, and mania [33]. Remission is the
lowest severity of bipolar disorder, and it represents suppression of symptoms
through medication. In terms of the YMRS, an individual with YMRS ≤ 7
is considered to be in the remission state of bipolar disorder [33, 39]. An
individual with YMRS > 7 is considered to be in a state of mania. Here,
one is abnormally energised, both mentally and physically. When the YMRS
score is between 8 and 20, an individual is said to be in the state of hypo-
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mania, whereas a score YMRS > 20 means that an individual is the state of
mania. Simply put, symptoms of mania are much more intense than those of
hypo-mania.

5.4 Literature Survey

As mentioned earlier, the AVEC 2018 BDS is the very first of its kind in the
field of social signal processing to provide a publicly available dataset with
audio-visual recordings of structured interviews of individuals with varying
severity of bipolar disorder. Given this fact, one finds limited research work in
this field so far. We foresee numerous publications based on this dataset in
near future. However, we do find the following publications relevant for the
task of automated screening of bipolar disorder.

Guidi et al. [239] investigated voice quality of individuals with bipolar
disorder using long-term spectral average features. They report statistically sig-
nificant differences over certain intervals of speech spectra for individuals with
bipolar disorder, thereby suggesting that speech spectra can be used to screen
for bipolar disorder. In a more recent publication, Guidi et al. [183] undertook
spectral analysis of pitch (F0) contours extracted from audio recordings of
bipolar patients and healthy control subjects as both read emotion inducing
texts. They report that analysing pitch contours was an effective method to
identify individuals with bipolar disorder.

Zhang et al. [184] investigated the efficacy of pitch, formant frequencies,
and spectral features in terms of linear prediction coefficients (LPC) [328] for
the task of distinguishing between individuals with bipolar disorder and healthy
controls. They report that the first, second, and fourth formant frequencies,
along with LPC features performed well for the task at hand.

Meanwhile, Maxhuni et al. [226] investigated classification of episodes of
bipolar disorder from voice and motor activity using data collected from smart
phones. For this, they collected audio from voice calls and accelerometer
data along with self-assessment data from five patients over a period of 12
weeks. They demonstrate that it is possible to identify manic episodes with an
accuracy of 85% for their dataset.

Ciftci et al. [33] introduce the Turkish Audio-Visual Bipolar Disorder
Corpus, a subset of which forms the dataset used for AVEC 2018 BDS. The
dataset is annotated for sub-state of bipolar disorder as well as scores from the
Young Mania Rating Scale (YMRS). In order to capture information from the
visual modality, they computed geometric features from facial landmarks and
texture-based features from a fine-tuned Deep Convolutional Neural Network.
For audio modality, they used Interspeech 2010 paralinguistic challenge features
(IS10) acoustic feature [329]. Partial least squares regression [103] and extreme
learning machines [123] for classification.
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5.5 Dataset

The dataset provided as part of the AVEC 2018 Bipolar Disorder sub-challenge
(henceforth, we shall refer to this dataset as the AVEC 2018 BDS dataset)
is a subset of the Turkish Audio-Visual Bipolar Disorder Corpus [33], which
was published at the Asian Conference on Affective Computing and Intelligent
Interaction 2018 (ACII Asia 2018) [330].

Participants of the AVEC 2018 BDS have to classify patients suffering from
bipolar disorder into three classes i.e. states of remission, hypo-mania, and
mania from audio-visual recordings of structured interviews. The AVEC 2018
BDS dataset contains 218 audio-visual recordings in total. Amongst these, 104
recordings form the training partition, 60 form the development partition, and
the remaining 54 form the test partition. We note that while subjects have
multiple recordings within each partition, subjects are not repeated across
partitions.

Each recording contains multiple sessions in which subjects are asked to
perform various speaking tasks. These tasks range from describing happy and
sad memories, counting numbers up to thirty, and explaining emotion eliciting
pictures [33,39]. The dataset was annotated for bipolar disorder state on the
basis of Young Mania Rating Scale (YMRS) by trained psychiatrists. The
YMRS score of each subject was subsequently quantised into three sub-states
of bipolar disorder using the following set of rules [33]:

1. Remission: YMRS ≤ 7

2. Hypo-mania: 7 < YMRS ≤ 20

3. Mania: YMRS > 20

It is also important to mention here that no baseline paper was released for
AVEC 2018 BDS while the challenge was ongoing but organisers did release
a preprint of Ciftci et al. [33] to facilitate participants of the challenge by
providing them fundamental information about the dataset. One expects the
baseline paper to be released soon as [39].

5.6 Methodology

The objective of the AVEC 2018 BDS is to predict the severity of mania for
individuals with bipolar disorder. Given that labels are based on YMRS scores
(see Section 5.5 for details), we first identify key behavioural characteristics of
individuals with mania as per the YMRS. This enables us to craft features which
can probe for the existence of these characteristics, as opposed to brute-force
methods which aim to learn the dataset without using background knowledge.
Amongst the 11 questions in the YMRS questionnaire, we find the following
characteristics to be most relevant: elevated mood, increased motor activity,
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irritability, speech (in terms of rate and amount), and disruptive-aggressive
behaviour.

In order to probe these behavioural characteristics, we propose to use the
following methods:

Turbulence features: To quantify erratic changes in feature contours of
pitch, formants, eye-gaze, headpose, and facial action units.

Fisher Vector encoding of ComParE LLDs: To quantify prosodic, voice
quality, and spectral characteristics of speech.

openSmile standard feature sets: We use four standard feature sets from
the openSmile toolkit [30] to quantify characteristics of speech which
have been proven to change with respect to emotional and paralinguistic
changes in speech. Our aim is to not only determine the efficacy of
these feature sets for the task of predicting severity of mania, but also to
establish a baseline to compare turbulence features and Fisher Vector
features.

5.6.1 Turbulence Features

We hypothesise that feature contours for individuals under remission, hypo-
mania, and mania states of bipolar disorder are essentially different, and if
quantified appropriately may provide an insight into the severity of mania. We
propose to use turbulence features for this purpose. It is reminded that we
had first proposed turbulence features for the task of predicting depression
severity from audio modality, as discussed earlier in Section 4.7.1.

Here, we extend the idea by computing turbulence features for features
from both audio and visual modalities. We start by selecting features from
audio/visual modalities which, we surmise, are representative of behavioural
characteristics of mania:

Visual Modality

We compute features for visual modality using the OpenFace toolkit [32].
OpenFace provides a large set of features which include facial landmarks,
evidence of activation for facial action units, eye-gaze, head-pose, and histogram
of oriented gradient (HOG) [78] features for the face region. Amongst these,
the following subset of features is selected, for which we subsequently compute
turbulence features.

∙ Eye-gaze and Headpose features are used to quantify motor activity in
terms of eye- and head-movement, respectively.

∙ AU6 and AU12 features represent the cheek raiser and the lip corner
puller, respectively. These action units are activated for facial expressions
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which capture emotions of happiness as per the facial action coding
system (FACS) [2, 40]. We surmise that these features can be used to
quantify elevated mood, in addition to activation of facial muscles.

∙ AU2 and AU5 features represent the outer brow raiser and upper lid
raiser, respectively. As per FACS, these action units are activated during
facial expressions of high arousal such as anger, surprise and fear. We
surmise that these features can be used to quantify elevated mood and
irritability, in addition to activation of facial muscles.

∙ AU20 feature represents the lip stretcher. According to FACS, it is
activated for facial expressions representing emotions of fear. We surmise
that evidence of AU20 can be used to quantify mood changes of each
subject.

∙ Finally, the AU45 represents blinking. We surmise, based on [331], that
evidence of AU5 can be used to gauge sleepiness of each subject.

Audio Modality

For the audio modality, we use feature contours of pitch and the first five for-
mant frequencies, both of these are computed using the COVAREP toolkit [62].

Pitch quantifies the rate of vibration of the vocal folds, and perceptually
represents the melodic contour of speech. We have already demonstrated that
turbulence features computed for pitch are useful for predicting depression
severity as part of our solution for the AVEC 2017 DSC (see Section 4.8.2, and
[34]). Here, we aim to test the efficacy of these features for predicting severity
of mania.

Formant frequencies are harmonics of the pitch in the magnitude spectra
of speech, and were found to be useful for screening of bipolar disorder by
Zhang et al. [184]. Moreover, the first two formants are also correlated with
horizontal and vertical tongue movement as per Cohen et al. [277], thus these
feature can also capture motor activity.

We make one further change in the method of computing turbulence features
for the task of screening for bipolar disorder, compared to our previous work
on screening for depression. Given that the duration of audio/visual recordings
is shorter for AVEC 2018 BDS dataset (∼ 10 seconds) as compared to the
AVEC 2017 DSC dataset (∼ 5 minutes), we use comparatively shorter duration
temporal windows with the AVEC 2018 BDS for multi-scale computation of
turbulence features. That is, we use a set of temporal windows of lengths
{0.5, 1.0, 2.0} seconds, with an overlap of {0.2, 0.4, 0.8} seconds, respectively.

We demonstrate the efficacy of our proposed turbulence features via exper-
imental analysis in Section 5.7, in particular Table 5.3 and Table 5.4.
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5.6.2 Fisher Vector encoding of ComParE LLDs

We had earlier demonstrated the efficacy of Fisher Vector encoding of spectral
features for the task of screening for individuals with and without depression,
as well as their depression severity from their speech alone (see Section 4.8.3
and [34,37]). Here, we propose to encode low level descriptors (LLDs) from
the Computational Paralinguistics Challenge (ComParE) feature set as Fisher
Vectors and use them for the task of predicting severity of mania.

Our motivation for using ComParE LLDs is based on the fact that these
LLDs contain features which represent information pertaining to speech prosody,
voice quality, and spectral features [30]. Therefore, intuitively, by using
all these LLDs, Fisher Vector features should represent even more detailed
information about the characteristics of speech for individuals with bipolar
disorder, compared to spectral features alone.

ComParE features are well known in the field of social signal processing
and were first introduced by Schuller et al. in [64] as the baseline feature set
for 2013 edition of the Interspeech Computational Paralinguistics Challenge.
While the original feature set used functionals for feature aggregation, we opt to
use Fisher Vector encoding for feature aggregation, and demonstrate that our
proposed method achieves much better performance in terms of classification
accuracy (see Section 5.7) compared to ComParE functionals.

We computed ComParE LLDs using the openSmile toolkit [30] with
ComParE 2016.conf configuration file and a setting to save LLDs instead
of functionals. The list of features which are part of the 65-dimensional Com-
ParE LLDs is provided in Table 5.1 as a reference for the reader, based on
descriptions provided in [30,64,332].

5.6.3 openSmile Acoustic Feature Sets

The bipolar disorder sub-challenge has for the first time introduced a pub-
licly available (albeit restricted) dataset for developing methods for screen-
ing of bipolar disorder. We take this opportunity to perform experiments
with four standard features from the openSmile toolkit [30] which are pop-
ular in the social signal processing community. These feature sets include:
(a) prosody feature set computed using prosodyShsViterbiLoudness.conf,
(b) Interspeech 2010 Paralinguistics (IS10-Paraling.) feature set [329] com-
puted using IS10 paraling.conf, (c) Interspeech 2013 ComParE feature set
(ComParE functionals) [64] computed using ComParE 2016.conf, and (d) the
eGeMAPS [58] feature set computed using eGeMAPSv01a.conf.

As their names suggest, the Prosody and IS10-Paralinguistics feature
sets are optimised for capturing information relevant to speech prosody and
paralinguistic activity, respectively. Meanwhile, ComParE feature set is a
6,373-dimensional feature set, often called a brute-force feature set due to its
size and the fact that it was designed as a general purpose feature set to capture
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Table 5.1: List of features within 65-dimensional ComParE LLDs

Feature Group Feature Names Dimension(s)

Prosody

Pitch
Loudness
Sum of RASTA-style filtered auditory spec.
RMS energy
Zero Crossing Rate (ZCR)

1
1
1
1
1

Voice Quality

Harmonics to Noise Ratio (HNR)
Jitter
Shimmer
Voicing Probability

1
2
1
1

Spectral

Mel Frequency Cepstral Coeff. (MFCCs)
RASTA-style auditory spectrum
Spectral Energy (250-650 Hz and 1-4 KHz)
Spectral Roll-off point (0.25, 0.5, 0.75, and 0.9)
Spectral Centroid and Variance
Spectral Flux, Entropy, and Slope
Spectral Skewness and Kurtosis
Psychoacoustic Sharpness and Harmonicity

14
26
2
4
2
3
2
2

paralinguistic activity from speech. It has certainly lived up to its reputation of
brute-force feature set, producing excellent results for Interspeech 2017 and 2018
baselines [146, 148], surpassing even deep learning based approaches. However,
brute-force is not always desirable (see Chapter 6). Eyben et al. [58] proposed
an 88-dimensional minimalistic audio feature set called the eGeMAPS as an
alternate to the ComParE feature set. They also demonstrated the efficacy of
eGeMAPS on various datasets for the task of emotion recognition from speech.

Thus, by reporting accuracy achieved using each these feature sets, we aim
to highlight the role played by features relevant for prosody, paralinguistic
activity, and emotions toward classification of individuals with bipolar disorder.

5.6.4 Classification

We used three fundamental types of classifiers for classifying individuals
into states of remission, hypo-mania, and mania. These classifiers include
SVM1 [116] classifiers with a linear kernel, logistic regression, and Greedy
Ensembles of Weighted Extreme Learning Machines (GEWELMs).

SVM and logisitic regression based classification was performed with the
aid of the LIBLINEAR toolkit [171], which is a popular open-source toolkit.
We were motivated to utilise this toolkit since baseline experiments were
performed whilst using it [39]. Here, a grid search was performed between
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all seven possible solvers provided by LIBLINEAR toolkit [171]. The cost
function parameters were optimised using grid-search with 𝐶 = {1 × 10−5,
2 × 10−5, 5 × 10−5, 1 × 10−4, 2 × 10−4, 5 × 10−4, 1 × 10−3, 2 × 10−3, 5 × 10−3,
1 × 10−2, 2 × 10−2, 5 × 10−2, 1 × 10−1, 2 × 10−1, 5 × 10−1, 1 × 100}, with the
objective of maximising accuracy on the development partition.

In the following section we discuss the GEWELMs classifier, which we pro-
posed as part of our solution for the 2018 edition of Interspeech Computational
Paralinguistics Challenge [24]. Here, our aim is to demonstrate the efficacy of
GEWELMs for the task of predicting severity of mania.

Greedy Ensembles of Weighted Extreme Learning Machines

An Extreme Learning Machine (ELM) is essentially a single layer feed-forward
neural network where the hidden layer is assigned randomly generated weights
which are not updated during the training process. For classification, the
output from the hidden layer can be mapped to the training labels using a
least squares regression [122]. The idea is that even with random weights,
the hidden layer can learn useful representation of input data which can be
exploited by designing a suitable output layer. An outstanding advantage of
ELMs is their very fast training time, which eases the process of tuning the
hyper-parameters and experimentation.

We note that while ELMs were popularised by Huang et al. in 2004 [122],
the fundamental concepts of ELMs have existed for much longer. Ping et al.
proposed using least squares regression to compute weights of a neural network
in [333]. The random weights concept of ELMs is analogous to the concept of
random projections for feature mapping. If the number of neurons in the hidden
layers is smaller than dimensionality of the input data, the ELM essentially
implements dimensionality reduction. Conversely, when the number of neurons
are larger than the input dimensions then the ELM performs dimensionality
expansion.

The technique of dimensionality reduction using random projections is
supported by the 1984 Johnson-Lindenstrauss Lemma [334], according to which
‘points in a vector space of sufficiently high dimension, may be projected into
a suitable lower-dimensional space in a way which approximately preserves
the distances between the points’. Meanwhile, dimensionality expansion is
supported by Cover’s theorem [335], according to which ‘a complex pattern-
classification problem, cast in a high-dimensional space non-linearly, is more
likely to be linearly separable than in a low-dimensional space, provided that
the space is not densely populated’.

In our work, we use ELMs as a method for dimensionality reduction followed
by least squares regression towards class label prediction. As such, we do not
use a non-linear activation function. Moreover, we use principal component
analysis (PCA) to decorrelate features prior to using ELMs.
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It is important to note that ELMs have previously been reported to provide
good performance for tasks pertaining to emotion recognition [317], Interspeech
ComParE [112, 318], and depression recognition [128]. Furthermore, to deal
with class imbalance in datasets (which also exists in AVEC 2018), Zong et
al. [322] assign weights to each class according to the number of training
examples available for that class.

A typical WELM classifier has two hyper-parameters: (1) the number of
neurons 𝐿 in the hidden layer and (2) the regularisation parameter 𝑐 required for
the generalised Moore-Penrose inverse [322], which can be tuned. In our work,
we fix 𝐶 = 1, and use four values for 𝐿 i.e. 𝐿 ∈ {2, 5, 10, 20}. WELMs have
recently been proposed for tasks pertaining to social signal processing [37,161].

It is quite obvious that not all random projections will yield acceptable
results in terms of UAR for the classification tasks at hand. Some random
projection vectors may actually reduce the separability between classes, while
others may increase the separability. Rather than manually sift for useful
random projection vectors, in this work, we propose Greedy Ensembles of
Weighted Extreme Learning Machines (GEWELMs).

The fundamental idea behind GEWELMs is to train a sufficiently large
number of WELMs and then select those which have UAR above a certain
threshold for the development partition. We arbitrarily fix the threshold as
the value corresponding to 90th percentile of the UAR of all WELMs in the
ensemble. We do appreciate the fact that GEWELMs can have a tendency to
over-fit to the development partition, hence we train two sets of GEWELMs.
The first regime is called T2D-GEWELMs, which is the conventional training
on the training partition and testing on the development partition, and the
second is called D2T-GEWELMs, where we train on the development partition
and test on the training partition. This serves to regularise the selection of
WELMs in the ensemble by mandating that the set of random projections used
for a particular WELM have acceptable performance for both T2D-GEWELMs
and D2T-GEWELMs.

5.7 Experimental Results and Discussion

We perform various experiments in order to ascertain the efficacy of methods
proposed in previous section. These experiments are detailed in the following
sub-sections.

5.7.1 Session-wise Classification

The first experiment we perform is to investigate whether it is better to perform
classification over the entire recording as a single entity or to classify each
session independently and later perform fusion to yield a label for the recording.

To this end, we set up the following experiment. We compute audio features
using the four feature sets from the openSmile toolkit [30], as discussed in
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Table 5.2: UAR (%) achieved for classification on the development partition
for four standard audio features using LIBLINEAR, with features computed

(a) session-wise and (b) entire recording as a single entity

Feature Set
UAR (%)

entire recording session-wise

Prosody 33.33 48.41
IS10-Paraling. 38.89 48.15
ComParE 39.95 48.15
eGeMAPS 36.51 49.74

Section 5.6.3, and perform classification. These features are computed, both,
over the entire recording as a whole, and for each session of the recording.
Finally, classification is performed using grid search for solver and cost using
the LIBLINEAR toolkit. As clearly evident from Table 5.2, the classification
accuracy is higher when classification is performed for each session and fusion
is performed to yield labels for the recording. In fact, when prosody features
are computed whilst considering the entire recording as a single entity, the
UAR is at chance level. This result makes sense given recordings are well
over a minute, while behaviour typically changes over a much smaller time
duration [34,152].

5.7.2 Turbulence Features for Audio/Visual Modalities

The second experiment we perform is on the efficacy of turbulence features
discussed in Section 5.6.1 to capture the differences in feature trajectories of
both audio and visual features.

From visual modality, we seek to capture both movement and emotional
changes. For this we use the horizontal and vertical eye-gaze angle, the
three-dimensional head-pose, and strength of six Facial Action Units (FAUs)
computed via the OpenFace toolkit v2.0 [32]. These FAUs include: (1) AU02_r,
which is the outer brow raiser, (2) AU05_r, which is the upper lid raiser, (3)
AU06_r, which is the cheek raiser, (4) AU12_r, which is the lip corner puller, (5)
AU20_r, which is the lip stretcher, and (6) AU45_r, which represents blinking.
Early experimentation suggested that AU06_r and AU12_r were not useful
for the task at hand, therefore, we did not consider them for subsequent
experimentation. We must mention here that our aim is not to rule out the
usefulness of these FAUs altogether, and may perform further experiments at
a later date.

From audio modality, we compute turbulence features over contours of
pitch (F0), and the first five formants (F1–F5). Our inspiration for using pitch
was based on the success of turbulence features for pitch contours from the

116



Chapter 5

Table 5.3: UAR (%) achieved for classification on the development partition
for turbulence features computed for feature contours of visual features

Features
GEWELMs LIBLINEAR

per session aggregate aggregate

AU_02r 43.06 48.70 48.68
AU_05r 42.18 44.18 44.97
AU_20r 42.35 53.97 48.41
AU_45r 41.06 42.59 37.30
gaze angle (x) 46.25 46.03 45.77
gaze angle (y) 39.95 42.33 47.62
Pose (Rx) 41.60 47.62 44.44
Pose (Ry) 46.64 47.35 50.26
Pose (Rz) 45.18 48.94 47.35

Table 5.4: UAR (%) achieved for classification on the development partition
for turbulence features computed for feature contours of audio features

Features
GEWELMs LIBLINEAR

per session aggregate aggregate

F0 40.68 48.94 45.77
F1 41.52 53.44 45.22
F2 38.42 49.74 36.77
F3 41.36 52.38 39.15
F4 39.03 42.33 46.03
F5 42.84 49.47 44.71

depression sub-challenge from AVEC 2017 [34], whereas formants were deemed
useful for classification for bipolar disorder in [184].

Performance of turbulence features computed for audio/visual modalities
are summarised in Table 5.3 (visual modality) and Table 5.4 (audio modality).
In addition to the LIBLINEAR toolkit, we also perform classification using
GEWELMS (see Section 5.6.4 for details).

5.7.3 Fisher Vector encoding of ComParE LLDs

The next experiment we performed is based on Fisher Vector encoding of
ComParE LLDs (see Section 5.6.2 for details). In order to investigate the
impact of the number of GMM clusters, we compute FVs for six values of GMM
clusters i.e. 16, 32, 48, 96, 128, 192. Classification accuracy achieved with FV
features is summarised in Table 5.5, where one can observe that this approach
yields the highest UAR amongst all other features. These results highlight
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Table 5.5: UAR (%) achieved for classification on the development partition
for Fisher Vector features

# Clusters
GEWELMs LIBLINEAR

per session aggregate aggregate

16 46.07 53.97 55.56
32 48.08 62.17 56.08
48 48.23 59.26 55.56
96 45.74 55.82 57.41
128 45.27 51.85 59.79
192 48.47 63.49 55.03

Table 5.6: Comparison of UAR(%) achieved for classification on the
development partition using GEWELMs and LIBLINEAR toolkit for

standard feature sets

Features
GEWELMs LIBLINEAR

per session aggregate aggregate

Prosody 47.06 50.00 48.41
IS10-Paraling. 42.23 55.29 48.15
ComParE 43.35 54.23 48.15
eGeMAPS 48.65 51.85 49.74

two important points: (1) ComParE LLDs contain valuable information which
is relevant for screening of bipolar disorder from acoustics of speech, and (2)
Fisher Vector encoding of ComParE LLDs is a viable approach for classification
of bipolar disorder from speech (at least for the given dataset). Furthermore,
while we do not observe a correlation between number of GMM clusters and
classification accuracy for GEWELMs, there is generally steady increase in
performance for classifiers trained using the LIBLINEAR toolkit.

5.7.4 Classification using openSmile feature sets

Our final experiment on the development partition is based on computing
classification accuracy using each of the four standard-feature sets provided
with the openSmile toolkit. This experiment is an extension to results discussed
in Table 5.2. Here our aim is to compare the classification performance achieved
via GEWELMs with that achieved using the LIBLINEAR toolkit. One can
clearly note that GEWELMs consistently perform better for all cases, in
particular IS10-Paraling. and eGeMAPS feature sets.
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Table 5.7: Summary of baseline and proposed methods on the test partition

Features Modality UAR

Baseline Methods

eGeMAPS A 50.00
DeepSpectrum A 44.44
FAUs V 46.30
eGeMAPS + FAUs A+V 57.41
DeepSpectrum + FAUs A+V 44.44

Proposed Methods

attempt 1 V 57.41
attempt 2 A 42.59
attempt 3 A 48.15
attempt 4 A+V 51.85
attempt 5 A+V 46.30

5.7.5 Results on the Test Partition

Organisers of the AVEC 2018 workshop kept the labels for the test partition to
themselves so that participants can develop methods for automated screening
of bipolar disorder using the training and development partitions, and test the
efficacy of their proposed methods on the test partition — without the bias of
overfitting the test partition. Each participating team was allocated a total of
five attempts at predicting the labels of the test partition.

In Table 5.7, we have summarised the results of our proposed methods for
screening of bipolar disorder using both, audio and visual modalities. Our first
attempt was majority-voting based fusion of turbulence features computed
for feature trajectories of facial features. We used all features mentioned in
Table 5.3 except AU_45r (which represents blinking), since the UAR achieved
through this feature on the development partition was quite small. On the
test partition, we achieved a UAR = 57.41% whilst using these features. This
matches the baseline UAR for the challenge, which was achieved after fusion
of audio-visual features which achieved best performance on the development
partition. It is important to mention here that for visual modality only, our
proposed features beat the baseline by a difference of UAR = 11.11% (i.e.
57.41% to 46.30%), which amounts to an improvement of more than 19%.

Our second attempt, however, was not as fruitful when it comes to accuracy
on the test partition. Here, we submitted predictions on the test partition
based on turbulence features for pitch and formant frequencies. While these
features have a reasonable performance on the development partition, as shown
in Table 5.4, these features achieved a UAR = 42.59% on the test partition.

Our third attempt on the test partition was based on predictions achieved
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using Fisher vector features. On the development partition alone, these
features achieved best results for both GEWELMs and LIBLINEAR toolkit.
However, rather than simply choosing a single best performing model, we
chose to use majority vote based fusion of predictions obtained through both
GEWELMs and LIBLINEAR toolkit with the condition that performance on
the development partition be greater than or equal to UAR = 55.00% (this
threshold was chosen arbitrarily). Using this approach, we achieved a UAR
= 48.15% on the test partition. While this result is better than our second
attempt, we do note a significant drop in the performance of these features
from the development to the test partition, which is likely due to overfitting on
the development partition. Nevertheless, the performance is still better than
the baseline DeepSpectrum features [336], which achieved a UAR = 58.20%
on the development partition, which decreased to UAR = 44.44% on the test
partition. It could be that there exists a difference between characteristics of
patients with bipolar disorder within the development and test partitions.

Our fourth attempt on the test partition included majority-vote based fu-
sion of predictions obtained from the following features: (1) FV 32-GMM with
LIBLINEAR toolkit classifiers, (2) FV 32-GMM with GEWELMs, (3) predic-
tions from the first submission which achieved UAR = 57.41%, (4) eGeMAPS
with LIBLINEAR (baseline), and (5) FAU features with LIBLINEAR toolkit
classifier (baseline). Our motivation to use the features from the baseline paper
was that these features have been reported to produce highest performance,
and when combined with our features could increase the UAR. On the test
partition, we achieved a UAR = 51.85% which is better than that achieved
with 2nd and 3rd attempts, but is still smaller than our best result on the test
partition i.e. UAR = 57.41%.

For our final attempt on the test partition, we perform majority fusion
on predictions achieved via FV 32-GMM with GEWELMs, predictions from
the first submission, and the result of probability-based fusion of predictions
eGeMAPS and FAUs from the baseline paper. Thus we combine our best
result on the test partition, the best result for the test partition as per the
baseline paper, and our best result on the development partition. However, we
only achieved a UAR = 46.30% for the test partition, which is far below our
expectations given that predictions were majority fusion of best results on the
development and test partitions.

Given limited attempts on the test partition, we could not identify the
cause of overfitting on the development partition, although we posit that there
are likely to be some confounding factors which influence our machine learning
models.

5.7.6 Comparison with submissions from other researchers

As per Ringeval et al. [337], in total 41 teams participated in the AVEC 2018
Bipolar Disorder challenge, 11 teams submitting results, and 4 papers were
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accepted for oral presentation at the AVEC workshop. Our paper was amongst
the 4 papers to be accepted. Other researchers whose papers were accepted
include Du et al. [338], Xing et al. [339], and Yang et al. [340]. In subsequent
paragraphs, we provide a summary of the work carried out by these researchers
and end this section by comparing the final results of the AVEC 2018 Bipolar
Disorder challenge.

Du et al. [338] propose a deep learning based system called IncepLSTM to
capture multi-scale temporal information from acoustic LLDs for the task of
predicting severity of bipolar disorder. IncepLSTM essentially integrates a CNN
based Inception module [89,341,342] and LSTM [343]. We find it interesting
that Du et al. mention our previous work on depression recognition [34] (and
Section 4.7.1 as their inspiration for proposing a deep learning based solution for
multi-scale aggregation of temporal information. In addition to the proposed
IncepLSTM, they also propose a severity-sensitivity loss, inspired from the
triplet loss [91], for the task at hand. The severity-sensitivity loss aims to jointly
optimise the cost of minimising the distance between examples from the same
class and maximising the distance between different classes. They compare
the performance of their proposed system against three baselines: (a) SVM
classifier learnt using MFCCs LLDs along with its velocity and acceleration
contours, (b) SVM classifier learnt using eGeMAPS features [58], and (c) SVM
classifier learnt using DeepSpectum features [336]. As per results reported in
their paper, IncepLSTM achieved better UAR on the development partition
as compared to the three baselines. These results suggest that CNN based
inception module cascaded with LSTM is a powerful model to capture the
temporal information from acoustic LLDs. However, it is also important to
mention here that Du et al. did not report results on the test partition which
would have provided an unbiased evidence about the efficacy of their proposed
system.

Xing et al. [339] base their work on the previous work of Gong et al. [131]
who had demonstrated that audio, visual, and text features sorted according to
the context of spoken language are useful for the task of automated screening of
depression. However, since organisers of AVEC 2018 challenges did not provide
interview transcripts as part of the dataset, Xing et al. used Google Cloud
Platform (GCP) to generate transcripts for interview sessions. Next, using these
transcripts, they organised audio/visual recordings into three sets i.e positive,
negative, and neutral, on the basis of the valence of spoken language. Similar
to Gong et al., Xing et al. then computed a large set of audio, visual, and
text features. For the audio modality, they computed eGeMAPS and MFCC
features, for the visual modality, they computed MHH based histograms [300]
for action units as well as evidence of Ekman’s seven basic emotions which they
computed using the Faceplusplus toolkit [344]. Finally, for the text modality,
they computed a set of linguistic features from the SALAT toolkit [309], for
which they sought inspiration from previous work by Dang et al. [158] who
used linguistic features from the SALAT toolkit for the task of automated
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depression screening.
Given that Xing et al. computed a large number of features, they used

Analysis of Variance (ANOVA) [35] for feature selection in order to identify
most useful features for the task at hand. Finally, they used eXtreme Gradient
Boosting (XGBoost) [345], an algorithm which has been successfully used for
various data science competitions, for the purpose of classification. However,
rather than using XGBoost directly for the tertiary classification task, they use
a hierarchical approach where the tertiary classification task is simplified into
pairs of binary classification tasks. As per results reported in their paper, they
achieve an impressive UAR = 86.77% on the development partition. However,
the accuracy on the test partition drops down to 57.41%. The difference
between the accuracies on the development and test partitions suggest that
their models overfit the development partition. This is not uncommon when
feature selection is used to optimise performance directly for the development
partition without using a separate hold out partition.

The third paper accepted for the AVEC 2018 Bipolar Disorder challenge
was the work of Yang et al. [340]. They proposed histogram based arousal
features for ‘bipolar depression classification’. It is important to mention
here that depression was amongst the exclusion criteria when subjects were
recruited for AVEC 2018 Bipolar Disorder dataset. Thus it was ensured that
no subject in the dataset suffers from depression.

Nevertheless, the idea behind their proposed approach is quite interesting.
They hypothesise that individuals with different severity of bipolar disorder
have varying degrees of arousal and surmise that features derived from their
arousal score can be used to screen for bipolar disorder. However, since arousal
scores were not provided as part of the dataset, they had to first train a model
to predict arousal of subjects in the AVEC 2018 dataset. To this end, they
trained the LSTM-RNN model of He et al. [346] on the AVEC 2015 Affective
dataset [347] and then used the trained model to predict arousal scores of
subjects in the AVEC 2018 Bipolar Disorder dataset. These arousal scores were
then aggregated using histograms to yield a fixed length global representation
of the arousal scores for the entire recording.

Similar to their previous work [306], they also computed a large number
of features from audio/visual modalities including audio features using the
OpenSmile toolkit [30], visual features to capture body movement using the
OpenPose [348], and facial action units. Given the large number of features,
they used correlation based feature selection [349] along with brute force
sequential forward search algorithm [350] and an SVM classifier to reduce the
dimensionality of their feature set. Finally, they used DNN and Random Forest
classifier based model fusion framework for classifying subjects according to the
severity of their mania. As per results reported in their paper, they achieved a
UAR = 71.41% on the development partition and a UAR = 57.41% on the
test partition.

As it is obvious from the survey of publications from the AVEC 2018
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Table 5.8: Summary of results for AVEC 2018 Bipolar Disorder Challenge

References
UAR

Dev Test

Ringeval et al. [39] (baseline) 63.50 57.41
Du et al. [338] 65.10 –
Xing et al. [339] 86.77 57.41
Yang et al. [340] 71.41 57.41
Syed et al. [351] – 57.41

Bipolar Disorder challenge provided in this section, the ceiling UAR on the
test appears to be 57.41%. The baseline paper of Ringeval et al. [39] as well as
work of three participants of the challenge (including us) were able to match
the challenge baseline on the test partition but not beat it. This observation is
certainly surprising since our work as well as the works of Xing et al. and Yang
et al. is fundamentally different. Our result of 57.41% on the test partition
was obtained via turbulence features computed for facial action units, Xing
et al. compute a large number of audio, visual, and text features along with
feature selection gradient boosting based classification to achieve the same
performance test, and Yang et al. used a large set of features along with feature
selection and an ensemble of DNN and Random Forest classifier to achieve the
same score.

We surmise that the ceiling value for test partition UAR could be be-
cause some subjects in the test partition have grossly different behavioural
characteristics which cannot be learned from the subjects in the training and
development partitions. Nevertheless, as it stands, our work matches the state
of art for the AVEC 2018 Bipolar Disorder challenges.

5.8 Time-Complexity Analysis

In this section, we provide an analysis of computational complexity of our
proposed methods in terms of time-complexity. Time-complexity is defined as
the computational complexity which describes the amount of time it takes to
execute an algorithm [352].

In order to quantify time-complexity for our proposed algorithms, we
measured their run-time using Matlab’s tic/toc functions which provide the
elapsed time during code execution. All time-complexity experiments reported
in this section were performed on a personal computer with the following
specifications: Intel Core i7-4790 CPU @ 3.60 GHz, 32.0 GB RAM, Windows 7
OS, and running Matlab 2018a. While these experiments were being conducted,
no other simultaneous task was being performed on the PC, except standard
background processes of Windows 7. Therefore, it is important to emphasise
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that while this method can provide meaningful analysis into time-complexity,
it is a crude method nonetheless.

We report time-complexity of four algorithms used in this thesis, namely,
FV encoding of acoustic LLDs, turbulence features, LibLinear classifier, and
GEWELMs classifier. It is pertinent to mention here that for FV encoding
we used the Vlfeat toolkit [321], whereas for LibLinear, we used the LibLinear
toolkit [171]. Both of these toolkits offer highly optimise Matlab executable
(mex) files for the task at hand. Meanwhile, for turbulence features and
GEWELMS classifier we wrote our code in Matlab.

We trained GMM with acoustic LLDs from the ComParE feature set,
with the number of clusters increased iteratively from 5 to 1000. Each GMM
was allowed to train for up to a maximum of 100 iterations. For computing
time-complexity of turbulence features, we took pitch feature as an example.
Meanwhile, we used the same parameters for LibLinear and GEWELMS are
reported in Section 5.6.4.

We start with the time-complexity for FV features. As previous discussed
in Section 4.7.3, the generation of FV features consists of two main parts. The
first part constitutes training a generative background model based on the
GMM, whereas the second part involves computation of FV features. Therefore,
we shall report the time-complexity of each of these parts separately.

The time-complexity for the process of training GMMs is illustrated in
Figure 5.1a, where we plot the run-times against the number of clusters for the
GMM. Here, one can note that the time-complexity curve follows a logarithmic
trend which means that order of time-complexity is also logarithmic with
respect to the number of clusters. The time-complexity for the process of
computing FV features is illustrated in Figure 5.1b, where, again, we compare
the run-times against the number of clusters. Here, one can note that the
time-complexity curve follows a linear trend which means that order of time-
complexity is linear. It is important to mention here that the run-times shown
in Figure 5.1b is the average run-time of 22444 samples.

In Figure 5.2, we plot the time-complexity for LibLinear and GEWELMs
classifiers for FV features as function of the number of clusters for GMM.
While the run-time curves for LibLinear and GEWELMs follow a logarithmic
trend with respect to the number of clusters, one can note that GEWELMs
requires considerably less run-time as compared to LibLinear. In order to
compare the run-times for these classifiers, we also plotted their them against
each other and found that GEWELMs is approximately 15 times faster than
LibLinear.

Finally, in Figure 5.3, we plot the time-complexity for turbulence features.
In addition to the AVEC 2018 challenge on bipolar disorder recognition, the
multi-resolution feature aggregation approach offered by turbulence features
was also used for AVEC 2017 challenge on depression severity prediction.
Given that turbulence features are computed for feature contours, we provide
time-complexity as a function of the length of feature contour. The curve
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(a) Run-time-complexity for training GMM models

(b) Run-time-complexity for the process of computing FV features

Figure 5.1: Run-time-complexity for training GMMs and computing FV
features as a function of the number of clusters for the GMM
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(a) Time-complexity for LibLinear

(b) Time-complexity for GEWELMs

(c) Ratio of time-complexities for LibLinear and GEWELMs

Figure 5.2: Run-time-complexity for LibLinear and GEWELMs classifiers
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Figure 5.3: Run-time-complexity for turbulence features as a function of the
length of feature contour

in Figure 5.3 shows that computation of turbulence feature requires small
run-times (in the order of milliseconds), which highlights the advantage of
these features. Furthermore, we note that the time-complexity of turbulence
features has approximately linear characteristics. Similar to the process used
for FV features, we also computed the run-times for LibLinear and GEWELMs
classifier when turbulence features were provided as input. Unlike FV features,
where the dimensionality of feature vectors grew linearly with the number of
GMM clusters, the dimensionality of the feature vector for turbulence features
is always fixed to 45. We report that the run-time for LibLinear classifier
for turbulence features is 6.20 seconds whereas the run-time for GEWELMs
classifier is 4.44 seconds.

5.9 Towards Automated Clustering for FV
features

So far in our work, we have used cross-validation accuracy on the development
partition in order to determine the optimal number of clusters. However,
as clear from Figure 5.2, cross-validation can be time-consuming process.
Therefore, in this section, we seek to investigate the feasibility of selecting
the optimal number of clusters for FV features based on how well the GMM
represents the training data. While doing so, we would still like to pursue
our main objective i.e. to achieve maximum cross-validation accuracy on the
development partition (so that it can also generalise on to the test partition).

To this end, we shall use the log-likelihood value of the GMM as a measure
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Figure 5.4: Negative-loglikelihood (NLL) and delta-NLL for GMM models
with various cluster sizes

of about how well the GMM fits the training data [95]. The objective while
training the GMM is to optimise the mean, covariance, and mixture weights for
the GMM such that the log-likelihood (LL) value is maximised or conversely,
the negative log-likelihood (NLL) value is minimised.

Similar to the experiments conducted for time-complexity analyses, we train
GMM with acoustic LLDs from the ComParE feature set, with the number
of clusters increased iteratively from 5 to 1000. Each GMM was allowed to
train for up to a maximum of 100 iterations. Training of GMMs and the
computation of FV features was performed using the Vlfeat toolkit, and both
LibLinear and GEWELMs classifiers were used to compute the cross-validation
accuracy in terms of UAR on the development partition.

In Figure 5.4, we plot the NLL for GMM against the number of clusters.
It is clear that the curve contains three different segments. The first segment,
to the far left, contains a steep downward slope for NLL which represents the
improvement in the GMM’s ability to represent its training data. The second
segment, located between the regions of steep downward slope and the flat
region is a transitionary in which improvement in the performance of GMM
provides diminishing returns. Note that increase the number of clusters comes
at the cost of increasing time-complexity, as discussed in previous section. The
third segment of the curve consists of the region where there is little to no
improvement in the NLL.

In order to gauge the improvement with respect to NLL as a function of
the number of clusters, we compute change in NLL between adjacent points on
the x-axis (i.e. the cluster number) based on the work of [353], and plot this
in Figure 5.4. Here, it is clear that increasing the number of clusters beyond
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80 offers only negligible improvement in the NLL. Moving forward, we shall
now limit our analysis to a maximum of 200 clusters rather than a maximum
of 1000 clusters and conduct further investigation.

In addition to NLL, it is also possible to select the number of clusters based
on the methods of Akaike information criterion (AIC) [354]. AIC penalises the
NLL of models based on their computational complexity by a factor equivalent
to 2𝑘 to the NLL, where 𝑘 is the number of parameters in the GMM. In
Figure 5.5, we show results for NLL and AIC along with their deltas for GMMs
with number of clusters between 5 and 200. It is apparent that NLL and AIC
have similar interpretations.

Finally, in Figure 5.6, we plot the cross-validation UAR on the development
partition for FV features using both LibLinear and GEWELMs classifiers.
Here one can note that the UAR generally improves for up to 80 clusters,
which is in line with our understanding from cluster selection based on NLL.
There are, however, considerable variations in the cross-validation UAR which
are expected – we are essentially optimising the number of clusters for GMM
as well as the parameters of LibLinear and GEWELMs classifiers on previously
unseen data. Nevertheless, our method for automatic clustering can be used to
reduce some of time-complexity for features based on Fisher Vector encoding.

5.10 Summary

In this chapter we introduced two new approaches for the task of automated
screening of bipolar disorder from audio-visual recordings; namely turbulence
features and Fisher Vector encoding of ComParE LLDs. We also introduced
GEWELMs based classification of these features and demonstrated the efficacy
of these methods on both, the development and test partitions.

To conclude, we summarise the key contributions of our work as follows:

∙ We report that for the task of predicting severity of mania, turbulence
features computed for visual modality performed better than the audio
modality. In fact, the best result achieved by us on the test partition i.e.
UAR = 57.41% uses turbulence features for visual modality. This result
exactly matches the best result published as the official baseline, which
was a result of fusion of features from audio and visual modalities.

∙ Fisher Vector encoding of ComParE LLDs achieved best performance
in terms of classification accuracy amongst all other features on the
development partition. However, their superior performance could not
be replicated on the test partition, likely because of overfitting on the
development partition. Given limited attempts on the test partition, we
could not identify the cause of overfitting on the development partition,
although we posit that there are likely to be some confounding factors
which influence our machine learning models.
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(a) NLL and delta-NLL

(b) AIC and delta-AIC

Figure 5.5: Model fitting measures for GMM models with various cluster sizes

∙ We investigated the efficacy of four standard feature sets from the openS-
mile toolkit i.e. Prosody, IS10-Paralinguistics, ComParE functionals, and
eGeMAPS features. We found IS10-Paralinguististics and eGeMAPS
feature sets to be most useful. It is important to mention here that while
organisers report that eGeMAPS features achieve a UAR = 55.03% on
the development partition [39], we could not replicate this result, even
though we used same experimental settings as reported by them.

∙ We also investigated whether it is better in terms of accuracy to perform
classification over the entire recording as a single entity or to classify
each session independently and later perform fusion to yield a label
for the recording. Based on our experiments, we report that session
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Figure 5.6: Cross-validation UAR with LibLinear and GEWELMs classifiers

based classification is a better option when it comes to classification
accuracy. This is somewhat contrary to the findings of Ciftci et al. [33],
who reported no advantage of similar segmentation.

∙ We report the time-complexity of our proposed methods i.e. FV features
for acoustic LLDs, turbulence features for acoustic and visual LLDs, and
GEWELMs.

∙ We proposed a semi-automated method for shortlisting a range of po-
tentially useful clusters based on the negative log-likelihood (NLL) and
Akaike information criterion (AIC) values for the GMM. This method
provides an alternate to cluster selection based on the cross-validation
accuracy on the development partition.

∙ In our attempt of crafting features based on background knowledge of
bipolar disorder, we found that certain aspects of behaviour of subjects
cannot be probed directly from audio-visual recordings. For example,
lack of requirement for sleep is a key behavioural indicator for individuals
with mania as per the YMRS [22,23]. Now, unless the subject is explicitly
asked a question about their sleeping habits, it may not be possible to
ascertain how much sleep a particular subject has been having. We
attempted to quantify sleepiness using AU45, which represents blinking,
but this approach performed poorly.

Similarly, sexual activity/interest is another aspect of the YMRS which
cannot be directly gauged from audio-visual recordings. For the AVEC
2018 BDS, we found that such questions were not asked by the subjects
in the audio/visual recordings which are provided as part of the dataset.
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While our aim was to propose features inspired from behavioural charac-
teristics of individuals with mania as per the YMRS, it is necessary to
acknowledge the existence of inherent limitations of this approach.

To conclude, we had proposed a number of methods for automated screen-
ing of bipolar disorder, in particular predicting severity of mania. We have
successfully demonstrated the efficacy of these methods for the task at hand.
While these results are competitive with respect to the AVEC 2018 Bipolar
Disorder sub-challenge, we believe there is still a lot of room for improvement
when it comes to classification accuracy.
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Automated Screening for
Autism Spectrum Disorder

6.1 Introduction

The World Health Organisation (WHO) describes Autism Spectrum Disorder
(ASD) as a range of behavioural conditions which lead to impaired social
interaction and communication (both, verbal and non-verbal). Individuals
with ASD typically have a narrow range of interests, and pursue activities
which are odd, stereotyped, and generally repetitive [355]. These traits hinder
social engagement, making life very difficult for people who have this disorder.

The Centers for Disease Control and Prevention (CDC) [356] report that
about 1 in 59 children in the United States of America has been identified with
ASD; boys are 4 times more likely to be affected by this disorder compared to
girls. In the UK, these rates are much smaller, but still significant. According
to the National Autistic Society, a charity for autistic people in the United
Kingdom [357], there are around 700,000 people on the autism spectrum in
the UK — that is more than 1 in 100 as per the 2011 UK census figures. ASD
is reported to occur in all racial, ethnic, and socio-economic groups.

Although autism is incurable, early detection of ASD is critical for significant
improvement in the quality of life for the affected individuals. According to the
WHO [355], therapy sessions initiated while these individuals are still young
can exploit the brain’s plasticity to increase the chances of success at alleviating
certain social engagement deficits. This is where automated screening can
help, due to its potential advantages over conventional screening methods (as
discussed previously in Section 1.4).

The rest of this chapter is organised as follows: we start with statements
of novelty and contributions of our work on the development of automated
methods for screening of ASD. We follow this with a literature survey to
identify speech features which have high discriminative power when it comes
to identifying individuals with ASD. We then describe the dataset which we
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use in our work. This is followed by a discussion on a feature engineering and
classification mechanism to screen for ASD using speech features. We then
provide a discussion on the efficacy of standard feature sets for the task at
hand. Finally, we end the chapter with a summary of contributions of our
work.

6.2 Novelty and Contributions

Our work on the development of automated screening methods for Autism
Spectrum Disorder (ASD) is novel in the sense that we performed numerous
experiments and provide discussion on the effects of ASD on speech, in light of
research literature, for a previously unpublished dataset. We started from raw
audio/visual recordings of children with ASD as they talked with an interviewer
and performed manual annotation for speech belonging to children so that it
can be processed further.

The contributions of our work are listed as follows:

∙ We propose a feature engineering and classification mechanism for auto-
mated screening of ASD from speech for subjects in our dataset. The
efficacy of this mechanism is demonstrated in terms of classification
accuracy and the identification of highly discriminative speech features
using Mann-Whitney U-test based statistical analysis [43] and effect size
for statistically significant features [44,45].

The reader is referred to Section 6.5 for details about this contribution.

∙ We investigate the influence of speech segmentation on classification
accuracy. To this end we performed experiments using six different
segmentation rules. Our results suggest that classification accuracy is
dependent on the duration of voiced speech in each speech segment.

The reader is referred to Section 6.5 for details about this contribution.

∙ We report on the basis of our experiments that traditional voice quality
features such as shimmer, jitter, and HNR are not able to provide
discrimination between speech of individuals from TD and ASD groups.
In addition, we report that features from the COVAREP voice quality
feature set are able to discriminative between the speech of individuals
from the two groups.

The reader is referred to Section 6.6.3 and Section 6.6.4 about details of
this contribution.

∙ We report on the basis of our experiments that spectral characteristics of
speech individuals from TD and ASD groups are indeed different. This is
an important observation because it suggests that individuals with ASD
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may also suffer from changes at vocal tract level, similar to individuals
with mental disorders.

The reader is referred to Section 6.5.5 and Section 6.6.3 about details of
this contribution.

6.3 Literature Survey

According to the latest edition of Diagnostic and Statistical Manual of Mental
Disorders (DSM-5) [18], ASD is a neuro-developmental disorder which is
characterised by two key traits. The first trait of individuals with ASD
includes deficiency in social interaction and communication skills, whereas the
second trait is that these individuals also indulge in restricted and repetitive
behaviours. As per the discussion provided in the work of Brukner-Wertman
et al. [358], both of these traits need to be present before an individual can be
diagnosed as having ASD.

A number of studies have investigated the differences between social sig-
nals of individuals with ASD and typically developing (TD) individuals in
order to lay ground work for development of automated screening methods.
These signals include facial expressions [68, 359], eye movement [360], body
movement [361–364], and speech [141,263,276,365–368].

In this thesis we explicitly focus on the speech of individuals with ASD.
Our aim is to identify speech features, in light of published research literature,
which have high discriminative power when it comes to identifying individuals
with ASD from those who do not. Therefore, in line with our discussion on
automated screening for disorders from audio modality (see Section 3.4), we
undertake a literature survey in terms of three aspects of speech production
i.e. prosody, voice quality, and spectral characteristics.

6.3.1 Prosody Analysis

Abnormal and disordered prosody is an established marker for communication
deficits. Individuals with ASD are known to have speaking styles ranging from
flat, monotonous, variable, ‘sing-songy’, and ‘machine-like’ to ‘just bizarre’ [46,
182,369].

Fusaroli et al. [46], undertook a thorough and systematic survey of com-
putational methods for screening of ASD, focussing on audio modality. In
their survey, they report that only 2 out of 16 studies found average pitch
to be statistically significant between TD and ASD group. Pitch variability
(measured as range) was found to be statistically significant in 12 out of 22
studies; 11 of those reported pitch variability being larger for individuals with
ASD, while only 1 reported a smaller pitch variability for the ASD group.
Interestingly, DePape et al. [182] reported wider pitch for high functioning
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ASD and narrower pitch for medium functioning ASD; implying that pitch
variability may depend on subcategories of ASD.

Intensity is an important aspect of prosody and represents stress towards
a particular utterance. Fusorali et al. [46] found the average intensity to be
statistically significant for only 1 out of 8 studies, and the intensity variability
to be statistically significant for 1 out of 2 studies, whereas all other studies
reported null findings for intensity based features. The two studies which did
report statistically significant results, found ASD group to have smaller intensity.
It must be mentioned here that intensity measures are highly dependent on the
relative position of the subject and the microphone, so intensity features may
not be useful in practical cases where microphone placement is not consistent
for all subjects in the study.

We also note from Table 1 in Fusaroli et al. [46] that speaking tasks for
these experiments varied between various types of scripted and spontaneous
speech, each of which can modulate prosody differently. Therefore, one needs
to appreciate the heterogeneity of experiments in addition to any change in
speech prosody due to ASD.

6.3.2 Voice Quality Analysis

Voice quality was considered as an extension of prosody [370], and is known
to vary with respect to underlying emotional state [233,371,372]. Given that
the ASD causes impaired behaviour and social communication, there is good
reason to investigate the efficacy of voice quality analysis for screening ASD.

The winners of the Interspeech ComParE 2013 Autism sub-challenge, Asgari
et al. [141] used HNR, jitter, and shimmer to classify between speech of typically
developing (TD) and atypically developing (ATD) children. They did, however,
use a harmonic modelling approach to recreate speech signal with minimal
noise interference, prior to computing voice quality features i.e. they did not
compute voice quality features for raw speech recordings.

Bone et al. [195] explored the hypothesis that voice quality features can be
used to quantify perceptual depictions of odd voice quality for children with
ASD. They used jitter, shimmer, HNR, and CPP as voice quality features,
and report that median value of jitter had positive correlation with severity
of ASD, whereas median HNR had negative correlation. Meanwhile, median
value of CPP was not found to be significantly correlated with ASD severity.

While voice quality analysis offers interesting insights into changes in voice
quality due to ASD, Fusaroli et al. [231] highlight that the use of non-standard
acoustic feature descriptors for measuring voice quality has so far meant that
one cannot be conclusive about the effects of ASD on voice quality.
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6.3.3 Spectral Modelling

Spectral modelling approaches have been successful in recognising speech
deficits of individuals with depression, as discussed in Section 3.4.3 . A number
of researchers have surmised that speech impairments due to ASD can also be
identified on the basis of spectral modelling of speech [141,144,145,263,270,
366,367,373–375].

To the best of our knowledge, amongst the first in this regard is the work of
Bonneh et al. [366], who posit that speech abnormalities in ASD are reflected
in its spectral content. They computed long term spectral average (LTAS) to
capture various vocal tract configurations of subjects as they read scripted
sentences. Their work does indeed show that TD and ASD groups have distinct
spectra, with speech of the ASD group having a relatively flat magnitude
spectrum. However, one needs to tread carefully while interpreting these results
since TD and ASD groups in their dataset were recorded at multiple places,
making LTAS prone to picking up channel characteristics in addition to any
speech impairment due to ASD.

A number of researchers followed Bonneh et al.’s work and undertook
experiments on spectral modelling. For example, Kakihara et al. [367] identify
line spectral frequencies and MFCCs to provide enough discrimination between
the TD and ASD groups to provide a classification accuracy of 80.20% on
their dataset. Motlagh et al. [263] identify MFCCs, spectral centroid, and
spectral roll-off amongst other features to be useful for classifying between
speech of TD and ASD groups, achieving classification accuracy of 96.17% for
their dataset.

Spectral modelling approaches were also explored for ComParE 2013
Autism sub-challenge [64]. Kirchoff et al. [373] used feature selection on
6,373-dimensional ComParE 2013 features [30], achieving better results than
the official baseline for the challenge. They report that most of the top features
provided information about speech spectra. Rasanen et al. [374], also used
feature selection (albeit a different method) on ComParE features, and also
report that spectral features were amongst the most discriminative. Meanwhile,
Martinez et al. [375] use shifted delta coefficients spectral features proposed
in [376] to capture long-term information of speech, although these features
alone did not beat the official baseline.

The winners of the sub-challenge Asgari et al. [141] estimated parameters of
a harmonic model of voiced speech and use it to reconstruct the speech signal
in order to limit the amount of noise. Then from the reconstructed (essentially
noise-free) speech signal, they quantified voice quality using HNR, shimmer,
and jitter to achieve a UAR of 93.58% — the highest for the ComParE 2013
Autism sub-challenge.

Arguably the most important publication from the ComParE 2013 Autism
sub-challenge was the work of Bone et al. [270]. They observed through informal
listening that participants of the TD group in the corpus had reverberation
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noise, and verified this by plotting LTAS of speech recordings (see Figure 1 in
their paper). Next, they trained a single cluster GMM on the LTAS features
targeting the range of frequencies over which reverberation was evident from
the LTAS plots. They achieved an accuracy 79.70% for classifying between
TD and ATD groups — high accuracy but below baseline, and 51.40% for
classifying between TD and the three categories of ATD group — better than
baseline. As it turned out [29], Bone et al. [270] were able to classify between
TD and ATD groups by explicitly focussing on differences due to recording
environment. We find the work from Bone et al. [270] significant because it
exposed the pitfalls of blindly applying machine learning algorithms for clinical
applications i.e. without taking efforts to establish a link between clinical
knowledge and computer science experimentations. We revisit the significance
of their work in Section 6.5.5.

More recently, Pokorny et al. [145] used the extended Geneva Minimalistic
Acoustic Parameter Set (eGeMAPS) feature set [58] for classification between
vocalisations of infants from TD and ASD groups. They list top features in
terms of effect size computed for Mann-Whitney tests [43]. Amongst these,
they report that six of the top ten features are spectral features, underpinning
the potential efficacy of spectral features.

Baird et al. [144], computed a number of standard feature sets from previous
ComParE challenges including IS09-emotion from ComParE 2009 [377], IS10-
paralinguistics from ComParE 2010 [329], and ComParE 2013 features [64],
and used linear SVMs [116] for classification. It is important to mention here
that each of these feature sets contain a variety of spectral features. Baird et al.
also used a deep learning framework based on CNNs to process spectrograms
of speech recordings. By comparing results from Table 3 and Table 4 of their
paper, one finds that every standard feature set performs better than the deep
learning solution.

While it is evident from the surveyed literature that individuals with ASD
do indeed have perceptually distinct characteristics to their speech, research so
far has been inconclusive on what is the best way to quantify this distinctiveness:
be it from prosody, voice quality, spectral modelling or a combination of these.
Amongst these, speech prosody appears to be the most relevant aspect of
speech production which can be probed to screening individuals with ASD.
This is primarily because prosody is strongly correlated with communication
skills [138], and impaired communication skills is known to exist in individuals
with ASD [18].

We find no evidence — beyond experimental results on private datasets
— for speech production at voice source and vocal tract level to be adversely
affected by ASD. There is no reason, therefore, to suggest that voice quality and
spectral modelling features should be useful. The DSM-5 manual [18] itself also
does not provide guidelines which would support muscle control/motor changes
in the vocal production system due to ASD, unlike, for example, depression
which causes psychomotor changes. The DSM-5 manual explicitly focusses
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on impaired social communication and restricted and repetitive behaviour as
markers for ASD.

There also exists a lingering controversy that the dataset used for Autism
sub-challenge at ComParE 2013, i.e. the Child Pathological Speech Database
(CPSD), was affected channel noise due to different recording environment
for typically developing and atypically developing groups [29, 195]. Results
reported from the sub-challenge therefore need to be interpreted cautiously as
they may well be compromised.

6.4 Dataset

We use the dataset collected by Dr. Catherine Jones from the School of
Psychology, Cardiff University. It consists of audio/visual recordings of 49
school going children, out of which 27 belong to the TD group, with 17 males
and 10 females. The ASD group consists of 22 subjects, with 18 males and 4
females. The mean and the standard deviation of the age for the TD group is
10.30 years and 0.88, respectively. The mean and the standard deviation of
the age for the ASD group is 10.13 and 1.91, respectively.

The recordings assume two scenarios, both of which consist of spontaneous
speech from subjects as they talk to the camera (they were instructed to do
so). In order to ensure that there was enough speech data from each subject,
as in [378] an interviewer is present behind the camera and intervenes only if
a subject stops talking before at least two minutes worth of recording takes
place. In the first scenario, the subjects describe their bedroom, whereas in
the second scenario, subjects describe a cartoon that they have watched as
part of the experiment.

The TD/ASD dataset is part of video recordings of these scenarios which
have been annotated by the author of this thesis using ELAN software [41,42],
such that only sections of the interview process which contain the speech from
the subjects were retained to create the dataset — video modality is not a
part of the dataset. The dataset also does not contain any speech from the
interviewer or very long silences during the interview.

Our experiments in this thesis are limited to this TD/ASD dataset, although
we do draw from results and conclusions from published literature. Limitation
in terms of dataset is because of ethical restrictions due to which we could not
get access to datasets from at least three different research groups, i.e. works
of Motlagh et al. [263], Bone et al. [195], and Baird et al. [144]. Similar ethical
restrictions do not permit us to share our dataset either.

6.5 Screening for ASD from Speech

In this section, we discuss in detail our feature engineering and classification
mechanism for automated screening for ASD from speech of subjects in our
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dataset. Our proposed feature engineering mechanism consists of a four
step process which includes speech segmentation, feature extraction, feature
description, and feature selection. Since our dataset is rather small in size, we
use 8-fold subject-dependent cross-validation, and report accuracy in terms of
mean accuracy over the 8 folds. In order to describe the process flow we take
the first cross-validation fold as an example, unless stated otherwise.

6.5.1 Speech Segmentation

Speech segmentation is a pre-processing step which is used to divide a continu-
ous speech recording in such a way that relevant information for the task at
hand is retained, while extraneous information is removed as much as possible.
For example, for a speaker recognition task, speech from subjects may be the
relevant information but background noise is extraneous information. While
this pre-processing step is not mandatory, it can significantly improve results.

In order to convince the reader of the significance of speech segmentation
for automated screening of ASD, we provide a brief overview of the three
types of speech as a preamble to speech segmentation. Speech can be classified
as either voiced, unvoiced, or silence. Voiced speech is a result of vibrations
from the vocal cords and is harmonic in nature. Unvoiced speech also carries
verbal information, but unlike voiced speech, vocal cords do not vibrate. It
therefore does not include harmonic components. For example, in English
language, the sound produced for consonant ‘z’ is voiced speech whereas the
sound produced for consonant ‘s’ is unvoiced speech [379]. Silence, meanwhile,
does not include speech — neither voiced, nor unvoiced. It is still important
for speech communication since it is used to convey prosodic information, and
maintain speech intelligibility (long connected segments of speech may be
unintelligible).

Nevertheless, for most practical applications, samples within speech record-
ings are classified as either voiced or unvoiced using a voice activity detector
(VAD) [62,380–382]. As noted by Koutrouvelis et al. [382], segments of speech
recordings identified as unvoiced, do not strictly mean unvoiced speech, as these
can also be silence. This is an important point to consider since one would
not want to include too much of silence in speech recordings, as these features
would only represent the recording environment, not a speech impairment due
to, say, ASD.

To the best of our knowledge, there is no consensus on what is the best
approach for segmentation. For example, Scherer et al. [173] create new
segments for the DIAC-WOZ dataset if silence greater than 300 ms is detected.
It is reminded for the reader’s knowledge that the DIAC–WOZ dataset was used
for AVEC 2016 DCC [12] and AVEC 2017 DSC [13]. Williamson et al. [128],
the winners of the AVEC 2014 DSC [11], retained silence up to 750 ms.
Meanwhile, data provided by the organisers of Interspeech Computational
Paralinguistics Challenge (ComParE 2018) [148] for the Atypical Affect sub-
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Figure 6.1: Illustration of speech segmentation, with t = 150 ms.

challenge performed ‘manual’ segmentation of speech recordings but did not
elaborate further.

In this work, we perform experiments with six different segmentation rules,
and report classification accuracy for each of these. Speech segmentation
is implemented by pre-processing speech signals using the following rules
depending on the duration of unvoiced speech/silence to retain.

Rule 1 : All contiguous voiced and unvoiced samples form a speech
segment as long as the duration of unvoiced speech does not exceed t
seconds (a tunable parameter), failing which a new speech segment is
created.

Rule 2 : Every speech segment must have at least 100 ms of contiguous
voiced samples.

Rule 3 : All unvoiced samples at the beginning and the end of a speech
segment must be removed.

The distinction between voiced and unvoiced samples is made using de-
cisions from a voice activity detector based on [383], provided as part of the
VOICEBOX toolbox [384]. Rule 1 controls the amount of unvoiced speech
permitted within a speech segment. Rule 2 ensures that a speech segment
created through Rule 1 comprises of at least four short time frames, each of
which is 25 ms (typically used for short-time analysis of speech). Through
experimental analysis we found that at least 100 ms of contiguous voiced
samples are necessary to capture features which contribute to improvement
in classification accuracy. Finally, Rule 3 discards all unvoiced samples from
either end of the speech segment, which may not have been removed by Rules
1 and 2.
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An illustration of speech segmentation is given in Figure 6.1, where a sample
speech signal acquired over a period of 10 seconds is divided into 5 segments.
Each band in green represents a speech segment, created on the basis of the
three rules. The bands in red represent samples which have been rejected. It is
interesting to note that this particular setting for speech segmentation rejects
some samples which may represent speech, but there aren’t enough samples to
satisfy Rule 2.

6.5.2 Feature Extraction

We compute various short-time features which describe temporal and spectral
information of the speech signal (given below). It is important to mention here
these experiments were completed prior to us adopting the Geneva Minimalistic
Acoustic Parameter Set (GeMAPS) feature set [58]. Our work was primarily
motivated by the work of Alghowinem et al. [203,224] on automated screening
for depression.

Temporal features: ZCR, energy, energy entropy in time-domain

Spectral features: Chroma vector, formants, spectral centroid, spectral
shape, spectral flux, HNR, energy entropy in frequency-domain, pitch,
spectral roll-off, MFCCs and cepstral peak prominence (CPP)

Except for pitch and CPP, all features are computed over each short-time
frame of 25 ms overlapped by a period of 10 ms. Pitch features are computed
over a duration of 100 ms and CPP features every 10 ms which are in line with
the default settings of the COVAREP toolbox [62]. All other features were
computed using Audio Analysis Library [65], with default settings. In total,
we computed 42 speech LLDs.

6.5.3 Feature Aggregation

The next step is to summarise information provided by LLDs mentioned in
Section 6.5.2 in the form of derived features and aggregated features. This is
achieved through a four stage feature description processes.

Stage 1 involves creating two sets of features. The first set is a copy of
LLDs without any further processing on them. We name them RAW features.
The second set consists of the z-scores values (mean centred and normalised
by unit standard deviation) of the features for each segment. We call these
Stage-1 features, and the process is repeated for all 42 features. For example,
CPP_RAW is a Stage-1 feature.

At the second stage, we aim to extract dynamics of Stage-1 features which
result due to changes in the characteristics of the speech signal. Therefore,
we create three subsets for each of the raw and normalised sets from Stage-1.
The first subset consists of features as they are i.e. without further processing.
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The other two subsets contain the 1𝑠𝑡 and 2𝑛𝑑 derivatives over time of the raw
and normalised sets. Therefore we have 6 Stage-2 features for each of the 42
features i.e. raw, z-score of raw, 1𝑠𝑡 derivative of raw, 2𝑛𝑑 derivative of raw,
1𝑠𝑡 derivative of the z-score of raw and 2𝑛𝑑 derivative of the z-score of raw,
and this means that we now have 42 × 6 = 252 Stage-2 features in total. An
example of Stage-2 features is CPP_RAW_2ndDeriv.

In the third stage, we summarise the information described by Stage-2
features for each short-time frame within a segment into a single Stage-3
feature for that segment i.e. compute an aggregate feature. This is achieved
by computing 13 statistical measures, which include mean, trimmed mean (at
10% trimming), standard deviation (StdDev), kurtosis, minimum, maximum,
median, mode, range, inter-quartile range (IQR), dynamic range and the
relative position of the peak value of the feature within the segment. Once
completed, this process brings the total count for the number of Stage-3
features to 3276 i.e. 252 × 13 = 3276. An example of Stage-3 features is
CPP_RAW_2ndDeriv_StdDev.

Finally, we use trimmed mean (at 10% trimming) to collapse each set of
Stage-3 feature points for all speech segments into a single Stage-4 feature
point.

6.5.4 Feature Selection

The machine learning task for training a classifier to distinguish between the
speech of the TD and ASD groups is ill conditioned in our case. This is due
to the relatively small size of the dataset i.e. 49 participants compared to the
number of features i.e. 3276, which may lead to suboptimal training of the
classifier and therefore result in poor classification results. We can, however,
alleviate this problem to an extent by selecting a smaller number of features
based on their ability to discriminate between the two groups, and then supply
the selected features to the classifier.

The feature selection process we implement is based on the filter/wrapper
approach discussed in [100]. Guyon et al. [100] suggest using a correlation
metric to filter each feature on the basis of its discriminative power (univariate
analysis). A wrapper based method is subsequently used to select the set of
features which when used together can improve the classification accuracy
beyond that of an individual feature (multivariate analysis).

As an example, we describe the process flow for feature selection for the first
cross-validation fold as follows: for the filter method, we compute 𝑝-value from
the pairwise 𝑡-test for each individual feature and use the 𝑝-value as the figure
of merit for discrimination ability. While 𝑡-tests are typically used for statistical
hypothesis testing, they can also be used for feature selection [224,385]. Next,
we sort features in ascending order with respect to their 𝑝-values, and retain
features which have 𝑝-values less than 1.53 × 10−5, while rejecting all other
features. This threshold is computed by normalising the standard 𝑝-value cut-
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Table 6.1: The effect of parameter 𝑡 in Rule 1

Rule 1 Classification Mean dataset
parameter (𝑡) accuracy utilisation

∞ 98.96% 100.00%
1000 ms 93.65% 90.87%
500 ms 88.35% 83.26%
200 ms 76.32% 77.22%
75 ms 83.14% 73.67%
25 ms 78.97% 72.58%

off i.e. 0.05 by the number of features i.e. 3276, thereby we apply Bonferroni
Correction [386]. At the completion of the filtering step, we are left with 119
features from a total of 3276.

It is important to mention here that filter based methods only select
features on the basis of their individual discrimination ability (univariate),
and we are naturally interested in exploring the combinations of these features
which can provide even better classification accuracy (multivariate). This is
where wrapper based feature selection methods come into operation. Guyon et
al. [100] discuss a number of wrapper methods for feature selection, however,
similar to the works of Laukka et al. [387] and Bone et al. [270], we use a
brute-force Sequential Forward Search (SFS) algorithm; with classification
accuracy as the objective function for SFS.

6.5.5 Experimental Results and Discussion

We use the SVM classifier [116] with libSVM implementation [169] for training
a model to classify between the speech of TD children and children with ASD.
The dataset is divided into training and test partitions, with the classifier being
trained on the training partition and tested only once on the test partition.
In order to optimise hyper-parameters for SVM, the training partition is
further partitioned into sub-training and sub-development partitions. Several
SVM classifiers are trained with linear and RBF kernels, and a grid search is
carried out to optimise model parameters for maximising classification accuracy
on the sub-development partition. Parameters of the grid search are: cost
𝐶 = {10−7, 10−6, · · · 103} and RBF kernel 𝐺 = {2−8, 2−4, · · · 28}.

Each feature in the training and development partition is normalised to
the range [0,1] and the same normalisation parameters are used for the test
partition as well. Naturally, since the training and test partitions contain
features from different subjects there is no guarantee that features in the test
partition will strictly be normalised to [0,1].
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A summary of classification results is given in Table 6.1. The parameter
𝑡 for Rule 1, described previously in Section 6.5.1, has been optimised for
maximising classification accuracy. The settings include (a) no segmentation,
(b) 1 s, (c) 500 ms, (d) 200 ms, (e) 75 ms and (f) 25 ms. These results show
that not segmenting speech recordings at all actually provides the largest
classification accuracy i.e. 98.96%.

It is important to recall that speech recordings for the dataset were carefully
segmented from longer audio recordings of interaction between interviewer
and participants, such that only speech from participants was present in those
recordings. We therefore believe that not implementing speech segmentation
may work best when it is ensured that the dataset only contains speech from
the participant being screened. This may not work well if the dataset contains
extraneous information.

We had similar observations while conducting experiments for AVEC 2017
DCC, as discussed previously in Section 4.8.2, where we observed there that
retaining unvoiced regions led to smaller prediction errors in terms of RMSE,
as compared to removing unvoiced regions altogether.

An alternate explanation (for higher accuracy achieved without segmenta-
tion) is based on the work of Bone et al. [270] for the ComParE 2013 Autism
sub-challenge [64]. There they argued that recording environment can be a
major confounding factor which can be picked up by automated screening
methods for ASD which rely on speech. The Autism sub-challenge used Child
Pathological Speech Database (CPSD) corpus which was first published in [388].
The flaw of this dataset is that participants from typically developing group
were recorded in their school whereas participants from atypically develop-
ing group were recorded either at their homes or clinics. Bone et al. [270]
demonstrated that it was possible to achieve reasonably high accuracy by
building a classifier which explicitly focused on differentiating between the
classes on the basis of room acoustics (see discussion provided in Section 4
of their paper [270] — thereby proving that the recording environment can
indeed be a major confounding factor.

Bjorn Schuller, the main organiser of Interspeech ComParE 2013 and Fabian
Ringeval, the first author of the paper introducing CPSD corpus [388] acknowl-
edged the impact of different recordings environments on speech recordings as
a significant confounding factor in their recently published paper on lessons
learnt from ComParE 2013 [29].

They performed additional experiments to alleviate the influence of con-
founding factors which arise due to different recording environments. Their
first experiment involved not using spectral features at all, since they surmised
that spectral features captured differences in room acoustics. We believe this
approach is not sustainable since most speech features are computed directly or
indirectly through spectral analysis. As expected, they reported a significant
drop in classification accuracy when all spectral features were removed.

In the second experiment, they removed all static features and used only
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derivatives of feature contours. This approach to alleviate some confounding
factors makes sense since dynamic features are not affected by the room
acoustics, unless the room’s frequency response is also time-varying. Although
Schuller et al. [29] report that the classification accuracy dropped when only
dynamic features were used, we believe that this is a viable approach when
speech recordings are made in different environments.

Now, in light of the works of Bone et al. [270] and Schuller et al. [29], we
decided to investigate features selected by SFS for the first cross-validation
fold for our dataset using the two-tailed Mann-Whitney U-test [43]. While the
SFS algorithm selected 29 features, we list the top 10 features in terms of their
effect size in Table 6.2.

One can note that while most of the top features present are dynamic i.e.
1st or 2nd derivative of feature contours, there are some static features as
well. Although, as attested by the Mann-Whitney U-test 𝑝-values and effect
size, the difference between feature values are not marginal. Furthermore, to
provide an illustration of the efficacy of the selected features we show the
separability of TD/ASD classes after projection of 29 features from the first
CV fold onto two principal components while retaining 78.40% of Eigenvalue
energy in Figure 6.2. feedback from the lessons learned paper from Schuller et
al. [29]

Therefore, on the basis of experiments performed in this thesis and in light
of published literature, we argue that while the DSM-5 [18] does not currently
recognise that speech production is affected by ASD, there is enough evidence
to suggest that ASD does indeed affect it.
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Figure 6.2: Speech features from first CV fold projected onto two principal
components
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6.6 Statistical Analysis for Standard Audio
Feature Sets

In addition to the discussion on our proposed mechanism for feature engineering
and classification for automated screening of ASD from speech, we have also
performed statistical analysis of features defined in three standard feature sets
i.e. the OpenSmile Prosody, the OpenSmile eGeMAPS, and the COVAREP
Voice Quality. Our motivation for undertaking statistical analysis of standard
feature sets are as follows:

∙ The primary motivation for using standard feature sets is that these can
enable comparison between datasets which are private i.e. which cannot
be shared due to ethical restrictions.

While we acknowledge the existence of these restrictions, we argue that
discriminative ability of features can still be shared publicly, thereby
enabling progress in research even across private datasets.

∙ Our secondary motivation is to investigate the efficacy of voice quality
features for discrimination between speech of individuals from TD and
ASD groups. We aim to compare traditional voice quality features such as
shimmer, jitter, and harmonics-to-noise ratio [46] against more recently
developed voice quality features which are available with the COVAREP
feature set [62].

We use the Mann-Whitney U-test for statistical analysis of features, inline
with the works of [145, 389]. The U-test offers a non-parametric means to test
the null hypothesis that it is equally likely that a randomly selected feature
from one group (say TD group) will be less than or greater than a randomly
selected feature from the second group (ASD group).

We thus test the null hypothesis that features from the TD and ASD group
are samples from continuous distributions with equal medians, against the
alternative hypothesis that they are not. We set a 𝑝-value of 0.05 as the cut-off
for significance for feature analysis with the U-test. If the 𝑝-value is indeed
smaller than the cut-off value, we reject the null hypothesis and conclude that
a significant difference does exist between median values of the two features,
meaning that the feature has ability to discriminate between TD and ASD
groups. Inspired by statistical analysis conducted by [28], we do not make any
prior hypothesis on the effectiveness of a particular feature and therefore use
two-tailed U-test for hypothesis testing instead of a single-tailed test. Finally,
we compute the effect size using the z-statistic of the U-test based on the work
of Fritz et al. [45]. Thus, in addition to the 𝑝-values for the U-test, we also
provide the magnitude of the difference between groups.
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6.6.1 Pre-processing

We discussed in Section 6.5.5 that speech segmentation has a significant effect
on the classification accuracy. Therefore, one cannot arbitrarily compute
features from the standard feature sets for our speech recording. We surmise
that one needs to select a segmentation duration so that other researchers have
detailed guidelines on recreating experiments.

We therefore propose the following set of pre-processing steps.

∙ A speech segment should have at least 150 ms of voiced speech. This
is roughly based on the requirement for Summation of the Residual
Harmonics (SRH) based pitch tracker [380] available with the COVAREP
toolbox [31] i.e. to have at least 100 ms worth of speech recording. By
fixing a requirement to have 150 ms or more of voiced speech, our aim is
to prioritise computing features from voiced speech rather than unvoiced
speech. This is because unvoiced speech as detected from voice activity
detectors can also mean silence [382].

∙ Unvoiced speech up to a duration of 300 ms needs to be tolerated. In
case unvoiced speech is greater than 300 ms, then any duration greater
than 300 ms is removed and the speech signal is stitched back together.
We select 300 ms duration since it is used for the DIAC-WOZ corpus
which was used for depression recognition sub-challenges for AVEC 2016
DCC [12] and AVEC 2017 DSC [13]. These settings appear to have been
accepted by the research community at large.

∙ We use voice activity detector (VAD) [381] from Drugman et al. for
identifying voiced and unvoiced speech in speech recordings. Drugman et
al. provide open source implementation for this code which is available
with COVAREP toolbox. The authors also integrate features from prior
work of Sadjadi et al. [390] to further increase robustness of their VAD.
We fix 0.5 as the threshold for voice probability to differentiate between
voiced and unvoiced speech.

∙ Finally, we use min-max normalisation to ensure that the dynamic range
of the speech signal lies within [-1,1] prior to computing features.

6.6.2 OpenSmile Prosody Feature Set

Abnormal and disorder prosody is an established clinical marker for communica-
tion deficits which occur due to ASD [182,369,391]. Given this, we investigate
the discriminative power of pitch and loudness; two features commonly used
to characterise speech prosody [46].

To this end, we use the OpenSmile Prosody feature [30] to compute the
pitch (in both linear and log scale) and loudness. For these features, a set
of seven functionals are computed, which include mean, standard deviation,
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Table 6.3: Mann-Whitney U-test analysis of prosody features with pitch range
52–622 Hz (default setting)

Feature Name TD med. ASD med. 𝑝 𝑧 𝑟

BEDROOM

logPitch (range) 6.15e+00 3.76e+00 1.85e-03 3.11 0.45
Pitch (range) 8.84e+01 4.86e+01 5.05e-03 2.80 0.40
logPitch (stddev) 2.76e+00 2.05e+00 1.19e-02 2.51 0.36
Pitch (stddev) 4.22e+01 2.65e+01 1.88e-02 2.35 0.34
Loudness (slp) -6.41e-06 -2.43e-05 1.88e-02 2.35 0.34
logPitch (Perc. 90) 4.17e+01 3.90e+01 2.48e-02 2.25 0.32
Pitch (Perc. 90) 3.06e+02 2.62e+02 2.90e-02 2.18 0.32
Pitch (mean) 2.60e+02 2.33e+02 3.57e-02 2.10 0.30
logPitch (mean) 3.86e+01 3.68e+01 4.15e-02 2.04 0.29
Loudness (stddev) 5.53e-01 4.85e-01 4.37e-02 2.02 0.29
Loudness (Perc. 10) 4.03e-01 6.22e-01 1.49e-03 -3.18 -0.46

CARTOON

logPitch (range) 6.72e+00 3.13e+00 4.20e-05 4.10 0.62
Pitch (range) 1.03e+02 4.27e+01 2.56e-04 3.66 0.56
Pitch (stddev) 4.82e+01 2.63e+01 1.00e-03 3.29 0.50
Pitch (Perc. 90) 3.10e+02 2.57e+02 1.00e-03 3.29 0.50
logPitch (Perc. 90) 4.19e+01 3.87e+01 1.10e-03 3.26 0.50
logPitch (stddev) 3.09e+00 1.95e+00 1.30e-03 3.22 0.49
Loudness (stddev) 6.35e-01 4.63e-01 6.88e-03 2.70 0.41
Loudness (range) 1.62e+00 1.19e+00 1.50e-02 2.43 0.37
Pitch (mean) 2.60e+02 2.30e+02 3.44e-02 2.12 0.32
logPitch (mean) 3.87e+01 3.66e+01 4.90e-02 1.97 0.30
Loudness (Perc. 10) 4.51e-01 5.45e-01 7.41e-03 -2.68 -0.41

the 10th percentile, the 90th percentile, and the outlier robust range which is
computed as the difference between 99th percentile and the 1st percentile.

We start our work by first investigating the influence of pitch ceiling on
the discriminative ability of prosody features. The basis of this investigation is
the work of Kiss et al. [276] who report that pitch ceiling can influence the
discriminative power of pitch based features. To this end, we compute prosody
features for two pitch ranges: (a) 52–622 Hz i.e. the default setting for the
OpenSmile Prosody feature set and (b) 50–700 Hz i.e. the range typically used
for speech of children [46]. Results in terms of Mann-Whitney U-test for this
investigation are summarised in Table 6.3 for the pitch range of 52–622 Hz and
in Table 6.4 for the pitch range 50–700 Hz. Here we report the median values
for TD and ASD groups, the 𝑝-value of the Mann-Whitney U-test, its 𝑧-value,
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Table 6.4: Mann-Whitney U-test analysis of prosody features with pitch range
50–700 Hz

Feature Name TD med. ASD med. 𝑝 𝑧 𝑟

BEDROOM

logPitch (Range) 6.15e+0 3.76e+0 1.72e-3 3.13 0.45
Pitch (Range) 8.86e+1 4.94e+1 4.74e-3 2.82 0.41
logPitch (stddev) 2.77e+0 2.05e+0 1.42e-2 2.45 0.35
loudness (slp) -6.41e-6 -2.43e-5 1.88e-2 2.35 0.34
Pitch (stddev) 4.23e+1 2.66e+1 2.22e-2 2.29 0.33
logPitch (Perc. 90) 4.17e+1 3.90e+1 2.35e-2 2.27 0.33
Pitch (Perc. 90) 3.06e+2 2.62e+2 2.61e-2 2.22 0.32
Pitch(mean) 2.60e+2 2.33e+2 3.57e-2 2.10 0.30
logPitch(mean) 3.86e+1 3.68e+1 3.95e-2 2.06 0.30
Loudness (stddev) 5.53e-1 4.85e-1 4.37e-2 2.02 0.29
Loudness (Perc. 10) 4.03e-1 6.22e-1 1.49e-3 -3.18 -0.46

CARTOON

logPitch (Range) 6.70e+0 3.13e+0 4.20e-5 4.10 0.62
Pitch (Range) 1.03e+2 4.31e+1 2.56e-4 3.66 0.56
Pitch (stddev) 4.99e+1 3.14e+1 8.43e-4 3.34 0.51
logPitch (stddev) 3.09e+0 2.12e+0 1.00e-3 3.29 0.50
Pitch (Perc. 90) 3.11e+2 2.58e+2 1.10e-3 3.26 0.50
logPitch (Perc. 90) 4.19e+1 3.87e+1 1.19e-3 3.24 0.49
Loudness (stddev) 6.35e-1 4.63e-1 6.88e-3 2.70 0.41
Loudness (Range) 1.62e+0 1.19e+0 1.50e-2 2.43 0.37
Pitch( mean) 2.60e+2 2.31e+2 3.44e-2 2.12 0.32
logPitch (mean) 3.87e+1 3.66e+1 4.62e-2 1.99 0.30
Loudness (Perc. 10) 4.51e-1 5.45e-1 7.41e-3 -2.68 -0.41

and the effect size 𝑟. A comparison of these tables reveals that pitch ceiling
only has a minor affect on the discriminator power of pitch based features,
although one can argue that the default pitch range of Prosody features i.e.
622 Hz is close to the pitch range for children (700 Hz) therefore the influence
of pitch ceiling is small.

Nevertheless, based on Fusaroli et al. [46], we continue our investigation of
prosody features using results from the pitch ceiling of 50–700 Hz, i.e. results
as summarised in Table 6.4. Here we observe that pitch and loudness variability
is generally larger for the TD group as compared to the ASD group. Moreover,
the average pitch is also greater for subjects from the TD group as compared
to subjects from the ASD group. This reinforces the point of view that
individuals with ASD have diminished affect in their speech communication,
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with a perceptually monotonic speech. These results are in line with the
works of DePape et al. [182] and Kaland et al. [392] who also reported similar
observations.

We also report that we do not find a difference between the discriminative
power of linear scale and log scale pitch features, even though Bone et al. [195]
preferred log scale pitch features based on the understanding that log scale
pitch features were more perceptually relevant. Finally, we report that we did
not observe difference in observations for Prosody features between BEDROOM
and CARTOON experiments.

6.6.3 OpenSmile eGeMAPS Feature Set

We now investigate the efficacy of features from the extended Geneva mini-
malistic acoustic parameter set (eGeMAPS) feature set [58]. The eGeMAPS
feature set contains an expert knowledge based minimalistic set of features
which provide information about prosody, voice quality, formants, and spec-
tral characteristics of speech. These features have proven to be effective in
recognising changes in voice production due to emotional affect and physiol-
ogy [58]. Furthermore, in recent past, Pokorny et al. [145] had also carried out
Mann-Whitney U-test based statistical analysis for eGeMAPS feature set as
part of their work on screening for ASD from speech. Therefore it makes sense
to investigate the efficacy of these features for our dataset as well.

We compute eGeMAPS feature set using the OpenSmile toolkit [30]. This
feature set contains 88 features which are based on functionals of acoustic
LLDs. A summary of these features is provided in Table 6.5 as a reference,
although we strongly encourage the reader to refer the tutorial on eGeMAPS
feature set by Eyben et al. [58].

The results of eGeMAPS features computed for BEDROOM and CAR-
TOON experiments are shown in Tables 6.6 and 6.7, respectively. The obser-
vation that TD participants have larger pitch and loudness variability is found
true from eGeMAPS features as well.

Interestingly, we do not find any of the traditional voice quality features such
as shimmer, jitter, and HNR to be discriminative beyond the 𝑝-value threshold.
This means that those voice quality features are not useful for discriminating
between speech of individuals with ASD. However, our investigation into the
affect of ASD on voice quality is not complete, and will continue in the next
section.

Meanwhile, we find several spectral features to have high discriminative
power. For example, the slpUV500-1500 (mean) feature which provides infor-
mation about the slope for unvoiced speech in the spectral range of 500-1500
Hz is not only statistically significant but also has an effect size of 0.73 for
the BEDROOM experiment and an effect size of 0.60 for the CARTOON
experiment. Conversely, we note that the feature slpUV500-1500 (stddev)
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has an effect size of -0.57 for the BEDROOM experiment and an effect size of
-0.65 for the CARTOON experiment.

These results are intriguing because there is a chance that these features,
based on unvoiced speech, may have picked up the recording environment,
as opposed to speech impairment due to ASD. It is reminded that like other
datasets with speech recording of TD and ASD groups [64,145,366,388], our
dataset also includes somewhat different recording environments. While it
causes an undesired bias in datasets, there are usually ethical restrictions
which force that subjects, especially those with special needs, be recorded in
environments where they feel most comfortable.

A counter argument to potential bias in the dataset is that spectral charac-
teristics of unvoiced speech is indeed a valid difference between the two groups.
In a recently published paper, Pokorny et al. [145] used eGeMAPS features and
reported unvoiced spectral slp to be the most discriminatory in terms of effect
size of Mann-Whitney tests — similar to our finding. They explicitly mention
that there was no background noise in their speech recordings, although since
their dataset is also private so one cannot verify their claim independently. Fur-
thermore, in their work on exploring a small set of robust features for emotion
recognition from speech, Tahon et al. [393] also found unvoiced speech features
to be more useful than voiced speech features. Nevertheless, we believe that it
is too soon to accept or reject the efficacy of features computed from unvoiced
speech at this moment due to the scarcity of publicly available datasets and
the fact that only a few researchers working on ASD have provided results for
eGeMAPS features.

Finally, we observe that several features based on formant frequencies
also register as statistically significant. This result is in line with the work of
Lyakso et al. [389] who also found formant frequencies to be useful for screening
individuals with ASD using speech.

6.6.4 COVAREP Voice Quality Feature Set

The Cooperative Voice Analysis Repository for Speech Technologies (CO-
VAREP) feature set is a standard feature set which was introduced by Drugman
et al. [31] in 2014, with the most recent update taking place in May 2018.

As discussed in Section 3.4.2, the COVAREP toolbox provides a number of
new voice quality features which include normalised amplitude quotient (NAQ),
quasi-open quotient (QOQ), parabolic spectral parameter (PSP), maxima
dispersion quotient (MDQ), harmonic-to-noise ratio (HNR), corrected difference
of first two harmonic amplitudes (H1H2), cepstral peak prominence (CPP), and
peak slope (PS). These voice features have shown promise, especially for the
task of automated screening of depression [125,126,394]. Since the COVAREP
toolbox computes acoustic LLDs only, we use mean, standard deviation, and
range functionals to create a global representation of the feature for the entire
recording.
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Table 6.5: Summary of features in the eGeMAPS feature set

Features Functionals V/UV/VUV/–

Prosody

Pitch mean, stddev, Perc20, Perc50 V
Perc80, range(Perc20,Perc80)

mean of rising/falling slp
stddev of rising/falling slp

Loudness mean, stddev, Perc20, Perc50 VUV
Perc80, range(Perc20,Perc80)

mean of rising/falling slp
stddev of rising/falling slp

Loudness peaks per sec – –

Voiced segs. per sec – –

Voiced segs. length mean & stddev –

UnVoiced segs. length mean & stddev –

Equivalent sound level – –

Voice Quality

Jitter mean & stddev V

Shimmer mean & stddev V

HNR mean & stddev V

Spectral

Alpha ratio mean & stddev V & U

Hammarberg index mean & stddev V & U

Slope slp0-500 mean & stddev V & U

Slope slp500-1500 mean & stddev V & U

H1-H2 mean & stddev V

H1-A3 mean & stddev V

MFCCs 1-4 mean & stddev V & U

Spec. flux mean & stddev V & U

Formants

Formants 1-3 mean & stddev V

Formants 1-3 BW mean & stddev V

Formants 1-3 rel. energy mean & stddev V
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Table 6.6: Mann-Whitney U-test analysis of eGeMAPS features for
BEDROOM experiment

Feature Name TD med. ASD med. 𝑝 𝑧 𝑟

slpUV500-1500 (mean) -8.79e-3 -1.47e-2 3.78e-7 5.08 0.73
Pitch (range) 3.70e+0 2.32e+0 4.19e-4 3.53 0.51
SpecFluxV (stddev) 6.28e-1 5.28e-1 8.33e-4 3.34 0.48
Loudness (stddev) 5.25e-1 4.35e-1 1.85e-3 3.11 0.45
SpecFlux (stddev) 7.88e-1 6.52e-1 2.79e-3 2.99 0.43
slpV500-1500 (mean) -2.19e-2 -2.51e-2 3.19e-3 2.95 0.43
MFCC4 (stddev) 3.12e-1 2.17e-1 5.74e-3 2.76 0.40
H1-H2 (mean) 7.14e+0 3.82e+0 7.37e-3 2.68 0.39
MFCC1 (stddev) 5.01e-1 4.37e-1 1.59e-2 2.41 0.35
Pitch (Perc. 80) 4.06e+1 3.78e+1 1.78e-2 2.37 0.34
F1 (stddev) 2.52e-1 2.29e-1 1.88e-2 2.35 0.34
MFCC3 (stddev) 2.42e+0 1.22e+0 1.99e-2 2.33 0.34
Pitch (stddev) 7.61e-2 5.73e-2 2.22e-2 2.29 0.33
MFCC3 (mean) 4.98e+0 2.94e+0 2.75e-2 2.20 0.32
Pitch (mean) 3.86e+1 3.67e+1 4.59e-2 2.00 0.29
H1-H2 (stddev) 1.45e+0 2.26e+0 4.37e-2 -2.02 -0.29
slpUV0-500 (mean) -3.36e-2 -2.24e-2 4.15e-2 -2.04 -0.29
Loudness (Perc. 20) 5.58e-1 6.97e-1 2.75e-2 -2.20 -0.32
MFCC4 (stddev) -1.14e+0 -8.93e-1 1.27e-2 -2.49 -0.36
F1BW (mean) 1.35e+3 1.40e+3 1.27e-2 -2.49 -0.36
F2BW (mean) 1.13e+3 1.21e+3 5.29e-4 -3.47 -0.50
slpV500-1500 (stddev) -6.56e-1 -5.01e-1 8.82e-5 -3.92 -0.57

Similar to Prosody features, we first investigated the influence of pitch
ceiling on the discriminative power voice quality features. To this end, we com-
pared results for features computed with the default ceiling of the COVAREP
toolkit i.e. 500 Hz with features computed with a pitch ceiling of 700 Hz. Our
results indicated there was no effect on voice quality features due to difference
in pitch ceiling. However, in continuation of our approach used for Prosody,
we shall report results for features computed with a pitch ceiling of 700 Hz, as
summarised in Table 6.8.

An interesting observation from Table 6.8 is that several voice quality
features from the COVAREP toolkit register as statistically significant even
though none of the traditional voice quality features registered as statistically
significant during our statistical analysis of the eGeMAPS dataset.

Amongst these, one finds that feature values for MDQ_stddev, H1H2 (stddev),
peakslp (stddev) are larger for the TD group whereas Rd_conf (range) and
Rd_conf (stddev) are larger for the ASD group. These results demonstrate
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Table 6.7: Mann-Whitney U-test analysis of eGeMAPS features for
CARTOON experiment

Feature Name TD med. ASD med. 𝑝 𝑧 𝑟

Pitch (range) 3.94e+0 1.94e+0 1.13e-5 4.39 0.67
slpUV500-1500 (mean) -8.08e-3 -1.47e-2 8.67e-5 3.93 0.60
slpV500-1500 (mean) -2.06e-2 -2.57e-2 5.39e-4 3.46 0.53
Loudness (stddev) 5.38e-1 4.35e-1 5.90e-4 3.44 0.52
SpecFluxV (stddev) 6.24e-1 5.24e-1 1.10e-3 3.26 0.50
SpecFlux (stddev) 7.97e-1 6.67e-1 1.67e-3 3.14 0.48
MFCC1V (stddev) 3.53e-1 2.15e-1 1.67e-3 3.14 0.48
Pitch (stddev) 8.21e-2 5.83e-2 3.47e-3 2.92 0.45
Loudness (stddev slp) 7.18e+0 5.54e+0 5.11e-3 2.80 0.43
Pitch (Perc. 80) 4.04e+1 3.75e+1 9.20e-3 2.60 0.40
MFCC1 (stddev) 4.65e-1 4.09e-1 2.69e-2 2.21 0.34
Loudness (range) 1.04e+0 8.23e-1 2.86e-2 2.19 0.33
F1BW (mean) 1.34e+3 1.36e+3 3.88e-2 -2.07 -0.32
F2BW (mean) 1.10e+3 1.17e+3 3.73e-4 -3.56 -0.54
slpV500-1500 (stddev) -6.21e-1 -4.59e-1 2.20e-5 -4.24 -0.65

the promise of voice quality features from the COVAREP toolkit for the task
of discriminating between speech of individuals from TD and ASD groups.
Thus, through this work, we propose, for the very first time, the use of these
features for the task at hand.

There is, however, a caveat to the use of COVAREP feature set. In line
with our discussion in Section 3.4.2, we believe one cannot use voice quality
features to discriminate speech on a perceptual scale between breathy to tense
unless one has the value of these features for modal voice of each subject, even
if these features can discriminate between TD and ASD groups. This is because
the amplitude of these features is known to be subject dependent [234,241],
which means that with a reference for modal voice, one cannot conclude that
individuals with TD have a breathier or tense voice compared to the ASD
group.

6.7 Summary

In this chapter we discussed our work towards the development of automated
methods for screening Autism Spectrum Disorder. The contributions of our
work are listed as follows:

∙ We manually annotated audio/visual recordings of interview sessions
using ELAN software [41, 42] to mark segments of recordings which only

157



Chapter 6

Table 6.8: Mann-Whitney U-test analysis of Voice Quality features

Feature Name TD med. ASD med. 𝑝 𝑧 𝑟

BEDROOM

MDQ (range) 2.07e-1 1.72e-1 1.47e-4 3.80 0.55
MDQ (stddev) 2.74e-2 2.37e-2 3.31e-4 3.59 0.52
Ps (stddev) 6.50e-2 5.37e-2 6.16e-4 3.42 0.49
H1-H2 (stddev) 6.45e+0 5.52e+0 1.12e-3 3.26 0.47
PSP (range) 2.47e+0 1.68e+0 2.12e-3 3.07 0.44
PSP (stddev) 3.48e-1 1.75e-1 2.43e-3 3.03 0.44
Ps (range) 3.87e-1 3.22e-1 3.41e-3 2.93 0.42
MDQ (mean) 1.30e-1 1.36e-1 3.95e-2 -2.06 -0.30
Rd (stddev) 7.68e-2 8.46e-2 2.90e-2 -2.18 -0.32
NAQ (mean) 8.65e-2 1.31e-1 1.13e-2 -2.53 -0.37
QOQ (range) 7.36e-1 8.35e-1 8.34e-3 -2.64 -0.38
QOQ (mean) 2.55e-1 4.40e-1 2.79e-3 -2.99 -0.43

CARTOON

Ps (stddev) 6.67e-2 4.71e-02 2.82e-04 3.63 0.55
H1-H2 (stddev) 6.40e+0 5.40e+00 1.42e-03 3.19 0.49
Ps (range) 4.02e-1 3.52e-01 1.06e-02 2.56 0.39
Rd (stddev) 7.73e-2 8.59e-02 3.04e-02 -2.16 -0.33
Rd (range) 5.42e-1 6.01e-01 2.22e-02 -2.29 -0.35

contain speech of subjects. This enabled us to undertake investigation
into automated screening for ASD using speech.

While our current work is limited to analysis of speech, our efforts for
annotation of these recordings opens up avenues for future research.
For example, analysis of facial expressions and body movement when
children either speak or are spoken to by the interviewer. Using these
annotations, models can also be built to investigate synchrony of dyadic
communication between children and interviewer.

We acknowledge and credit Dr. Catherine Jones (from Cardiff University’s
School of Psychology) and her team for collecting and providing us these
audio/visual recordings. Our work focuses explicitly on social signal
processing, not data collection.

∙ We discussed our feature engineering and classification mechanism for
automated screening of ASD from speech for subjects in our dataset.
The proposed feature engineering mechanism consists of a four step
process which includes speech segmentation, feature extraction, feature
description, and feature selection.
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The efficacy of this mechanism was demonstrated in terms of classification
accuracy and the identification of highly discriminative speech features
using Mann-Whitney U-test based statistical analysis [43] and effect size
for statistically significant features [44,45].

∙ We investigated the influence of speech segmentation on classification
accuracy. To this end we performed experiments using six different
segmentation rules. Our results suggest that classification accuracy is
dependent on the duration of voiced speech in each speech segment.

∙ We performed several experiments to identify discriminative features
defined in three standard feature sets i.e. the COVAREP [31], openS-
mile Prosody [30], and openSmile eGeMAPS [58].

Our motivation stems from the fact that most researchers working towards
the development of automated screening methods for ASD cannot share
their dataset due to ethical restrictions. While we acknowledge the
existence of such restrictions (we cannot share our dataset either), we
argue that discriminative power of features in standard feature sets can be
reported openly even if the dataset itself cannot be shared due to ethical
restrictions. This will enable progress in research for the development of
automated screening methods even across private datasets.

∙ We report from experiments conducted using the standard feature sets
that subjects with ASD have smaller pitch and loudness variability (in
terms of standard deviation), which suggests monotonic speech. This is
in line with findings in [46].

∙ We report on the basis of our experiments that traditional voice quality
features such as shimmer, jitter, and HNR are not able to provide
discrimination between speech of individuals from TD and ASD groups.
In addition, we report that features from the COVAREP voice quality
feature set are able to discriminative between the speech of individuals
from the two groups.

∙ Finally, on the basis of experiments performed in this chapter and in
light of published literature, we argue that while the DSM-5 [18] does
not currently recognise that the speech production system is affected by
ASD, there is enough evidence from research literature as well as our
investigation to suggest that ASD may actually have a significant effect
on the vocal production system.

159





Chapter 7

Conclusion and Future Work

7.1 Introduction

In this thesis, the development of automated screening methods for mental
and neuro-developmental disorders was discussed. To this end, we proposed
methods for automated screening of depression, bipolar disorder, and autism
spectrum disorder (ASD) based on audio/visual modalities.

Mental and neuro-developmental disorders are critical health issues which
affect a large number of people. Depression, according to the World Health
Organisation (WHO), is the largest cause of disability worldwide and affects
more than 300 million people [278]. Bipolar disorder affects more than 60
million individuals worldwide [325]. ASD, meanwhile, affects more 1 in 100
people in the UK [357]. Not only do these disorders affect individuals personally,
they also have a significant economic impact.

Clinicians have long reported that early identification of these disorders
followed by suitable treatment can help individuals lead a relatively normal
life or at least improve their quality of life. This has motivated computer
scientists to explore possibilities of developing automated methods to screen
for these disorders. In recent years, there has been a plethora of work towards
development of computational methods for this purpose. However, one finds
that a number of publications focus on brute-force approaches where the
objective is to maximise accuracy for a particular dataset. This is a commonly
followed path in machine learning.

While these approaches are potentially useful for learning new features
which could be representative of these disorders, such approaches may not
be best suited for developing robust computational methods for screening of
these disorders [266]. This is due to a myriad of confounding factors including
human factors, which affect symptoms of these disorders.

The main objective of this thesis was to develop, investigate, and propose
computational methods, in particular features and machine learning pipelines,
which capture the traits of these disorders in accordance with descriptions
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given in the Diagnostic and Statistical Manual (DSM-5) [18]. The DSM-5
manual is a guidebook published by the American Psychiatric Association
which offers common language on mental disorders. Our motivation was to
alleviate, to an extent, the possibility of machine learning algorithms picking
up one of the confounding factors to optimise performance for the dataset —
something which we do not find uncommon in research literature.

For the task of automated screening of depression, we demonstrated the
effectiveness of our proposed approaches on two publicly available datasets [11,
12], as well as the depression recognition challenge at the 2017 edition of the
Audio/Visual Emotion recognition Challenge (AVEC) workshop [13]. Similarly,
for automated screening of bipolar disorder, we demonstrated the efficacy of
our proposed approaches for the 2018 edition of the AVEC workshop [39].
Meanwhile, we found that the task of automated screening for ASD is much
more complicated. Here, confounding factors can overwhelm socials signals
which are effected by ASD. We discuss, in light of research literature, that
significant collaborative work is required between computer scientists and
clinicians to discern social signals which are robust to common confounding
factors. Finally, we discussed Cardiff University’s proposed approaches for 2017
and 2018 editions of computational paralinguistics challenges (ComParE) [146,
148], as well as lessons learned from these challenges.

7.2 Summary of Thesis Achievements

∙ We participated and proposed solutions for four major competitions in
SSP/AC, namely the AVEC 2017 Depression severity prediction sub-
challenge, the AVEC 2018 Bipolar disorder sub-challenge, the ComParE
2017 Cold sub-challenge, and ComParE 2018 challenges. As a result two
of our papers were published and one has been accepted for publication.

∙ We surmised that individuals with mental disorders, such as depression
and bipolar disorder, have uniqueness to their facial muscle movement
and speech which manifest as sudden and erratic changes to contours of
audio/visual features. To this end, we proposed a novel set of temporal
features, which we call turbulence features, to quantify fluctuations in
contours of these features.

We initially proposed turbulence features for predicting depression sever-
ity as part of our solution to the AVEC 2017 Depression severity pre-
diction sub-challenge [13]. We beat the challenge baselines whilst using
turbulence features and stood sixth overall.

Turbulence features were also used as part of our solution for the AVEC
2018 Bipolar disorder sub-challenge. While we did not beat the challenge
baseline, we managed to exactly match it. The overall standings for AVEC
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2018 challenges will be revealed at the ACM Multimedia Conference to
be held in October 2018.

∙ We detailed a methodology to quantify specific craniofacial movements,
which we hypothesised could be indicative of psychomotor retardation
and hence depression. The efficacy of these features was tested in terms
of Pearson’s correlation coefficient with respect to depression severity.
In order to demonstrate the efficacy of these features across datasets,
we used three sets of recordings from two publicly available datasets
from AVEC challenges on depression severity prediction i.e. AVEC
2014 Depression Severity prediction Challenge (DSC) [11] and AVEC
2017 DSC [13]. Given that these features are inspired by knowledge of
psychomotor retardation from the DSM 5 manual [18], we believe that
interpretability of these features will provide meaningful feedback to
clinicians for diagnosis of depression.

∙ We hypothesised that individuals with depression have unique character-
istics to their speech spectra. To this end, we introduced Fisher vector
encoding [36,99] of spectral low level descriptors (LLDs) for quantifying
abnormalities within speech spectra of individuals with depression.

Initially, we demonstrated the efficacy of our proposed approach for the
AVEC 2016 Depression classification sub-challenge (DCC) dataset [12],
where the objective was to identify individuals with and without depres-
sion [37]. Later, we extended the idea by adding temporally-piecewise
aggregation of Fisher vectors as part of our solution to the AVEC 2017
DSC [34]. We beat the challenge baseline whilst using this method.

∙ We introduced Fisher vector encoding of Computational Paralinguistics
Challenge (ComParE) low level descriptors and demonstrate that these
features are viable for predicting the severity of mania.

Our motivation for using ComParE LLDs is based on the fact that these
LLDs contain features which represent information pertaining to speech
prosody, voice quality, and speech spectra [30]. Therefore, intuitively,
by using these LLDs, Fisher Vector features should represent even more
detailed information about the characteristics of speech for individuals
with bipolar disorder, compared to spectral features alone.

We also show that these features perform much better than ComParE
functionals [64] for the AVEC 2018 Bipolar disorder sub-challenge.

∙ We introduced the Greedy Ensembles of Weighted Extreme Learning Ma-
chines (GEWELMs) classifier as part of our solution for the Interspeech
ComParE 2018 challenge, which involved multi-class classification tasks
with a large imbalance of label distribution. GEWELMs combine the
well-known training efficiency of Extreme Learning Machines (ELM) [123]
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with good classification performance. This combination of speed and
accuracy, we speculate, will be especially important in real-time scenarios,
such as automated screening.

We demonstrated the efficacy of GEWELMs not only for ComParE 2018
challenges but also for the AVEC 2018 Bipolar disorder sub-challenge.
Moreover, we compared GEWELMs with implementations of linear
SVM [116] based on libSVM [169] and LIBLINEAR toolkits [171], and
found GEWELMs to perform better than linear SVM.

∙ As part of our work on automated screening methods for Autism Spec-
trum Disorder (ASD), we conduct a number of experiments and provide
discussion on a previously unpublished dataset.

We started with raw audio/visual recordings of children with ASD, pro-
vided by Dr. Catherine Jones from Cardiff School of Psychology, and
performed manual annotation for speech belonging to children. This
enabled us to perform various experiments to investigate the effect of
speech segmentation regimes on the accuracy with which automated
screening methods can differentiate between speech of subjects from
typically developing (TD) and ASD groups. We report the most discrim-
inative features from our proposed feature engineering and classification
mechanism. In addition to this, we report on most discriminative features
from three audio feature sets which are standard in the field of SSP/AC.
Inspired from the work of Kiss et al. [276], we also report on the effects
of pitch ceiling and the choice of software on the discriminative power of
speech based features.

Finally, on the basis of experiments performed as part of our on automated
screening of ASD and in light of published literature, we argue that while
the DSM-5 [18] does not currently recognise that the speech production
system is affected by ASD, there is enough evidence from research
literature as well as our investigation to suggest that ASD may actually
have a significant effect on the vocal production system.

7.3 Limitations

Automated screening for mental and neuro-developmental disorders is still very
much a work in progress. There are a number of limitations which need to be
acknowledged and challenges which need to be overcome in order to bring such
systems into the public sphere. As discussed in Section 3.5, these limitations
arise due to the availability of datasets, the size of these datasets, how ground
truth labels are created, and the existence of confounding factors which affect
the quality of data.

Arguably the biggest limitation of our work is the relatively small size of
datasets which were available to us. We used datasets from AVEC 2014 [11],
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2016 [12], 2017 [13], and 2018 [39] challenges in order to develop methods
for automated screening of depression and bipolar disorder. Amongst these,
the AVEC 2014 dataset contains 300 video recordings, the AVEC 2016/2017
datasets contains 189 video recordings, and the AVEC 2018 contains 218 video
recordings. While these datasets form the largest set of publicly available
multimedia datasets which can be used for the development of automated
screening methods, the size of these datasets is relatively small especially in
light of the difficult task of determining the mental state of individuals. This is,
however, an inherent limitation of the field where data collection and sharing
is restricted due to privacy concerns.

The second limitation of our work is associated with how ground truth labels
are defined in these datasets. While automated screening systems can indeed
bring objectivity to the screening process, these systems are still trained on data
which has inherently subjective labels. This limitation, however, comes directly
from the field of psychology, since mental and neuro-developmental disorders
are at best diagnosed based on behavioural symptoms [28, 33, 264]. In fact, for
the AVEC 2017 challenge on depression severity prediction, we note that certain
participants did not complete the self-assessment questionnaires truthfully
which means that quality of ground truth labels has been compromised (see
Section 3.5.4 for details). Nevertheless, as pointed out by Solomon et al. [28],
despite the inherent flaws of self-assessment forms, they provide at least a
reasonable and quantifiable standard to measure depression against in the
absence of physical tests to detect depression.

Overall, in light of discussion in this thesis, we believe that development
of methods for automated screening of mental and neurological disorders
can greatly benefit from collaboration between researchers from SSP/AC
community and clinicians. Active collaboration can enable informed research
progress which can avoid misleading deliverables, even in the presence of
inherent limitations.

7.4 Future Work

We believe that research conducted as part of this thesis provides us an excellent
opportunity to continue contributing towards the development of automated
screening methods. Following are some pathways to extend our work.

Automated Screening of Depression

In this thesis our focus was directed towards the development of automated
screening methods from audio/visual modalities. However, recent advances
in natural language processing (NLP) [93, 94] mean that the text modality
has a very important role to play. Furthermore, speech-to-text application
programming interfaces (API) provided by vendors such as Google, IBM, and
Microsoft provide us the opportunity to automatically generate transcripts
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for speech recordings. Accordingly, we believe that using speech-to-text APIs
followed by text analysis is a possible extension of our work, especially given
that one can combine results from multiple modalities to develop even better
screening methods.

We would also like to collect new data for individuals with depression from
different cultural backgrounds and language. To this end, we aim to formalise
a plan to collect from psychiatric hospitals in Pakistan in near future.

Automated Screening of Bipolar Disorder

We would like to use speech-to-text APIs to generated transcripts for speech
uttered by subjects in AVEC 2018 Bipolar disorder challenge dataset [33] and
investigate the efficacy of the text modality for screening of bipolar disorder,
especially in context of the DSM-5 manual [18] and the Young Mania Rating
Scale [22]. A possible limitation in this regard is that labels for the test
partition are not available outside the official AVEC challenge, therefore, we
may have to work with a smaller sized dataset.

Automated Screening of Autism Spectrum Disorder

In continuation of our work on automated screening of ASD from speech, we
aim to investigate effects of ASD on facial expressions and head movement for
our dataset. Recently, some researchers have started work in this regard [69,70],
therefore, it will be interesting to compare results from our dataset with theirs.
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