
Astronomy & Astrophysics manuscript no. 34441corr c©ESO 2019
May 7, 2019

The Close AGN Reference Survey (CARS)

Comparative analysis of the structural properties of star-forming and
non-star-forming galaxy bars?

J. Neumann1, 2, D.A. Gadotti3, L. Wisotzki1, B. Husemann4, G. Busch5, F. Combes6,
S.M. Croom7, T.A. Davis8, M. Gaspari9??, M. Krumpe1, M.A. Pérez-Torres10, J. Scharwächter11,

I. Smirnova-Pinchukova4, G.R. Tremblay12, and T. Urrutia1

1 Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14480 Potsdam, Germany
e-mail: jusneuma.astro@gmail.com

2 European Southern Observatory (ESO), Alonso de Córdova 3107, Casilla 19001, Santiago, Chile
3 European Southern Observatory (ESO), Karl-Schwarzschild-Str.2, 85748 Garching b. München, Germany
4 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
5 I. Physikalisches Institut der Universität zu Köln, Zülpicher Str. 77, 50937, Köln, Germany
6 Observatoire de Paris, LERMA, Collège de France, CNRS, PSL Univ., Sorbonne University, UPMC, Paris, France
7 Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia
8 School of Physics & Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff, CF24 3AA, UK
9 Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544-1001, USA

10 Instituto de Astrofísica de Andalucía, Glorieta de las Astronomía, s/n, E-18008 Granada, Spain
11 Gemini Observatory, 670 N. A’ohoku Pl., Hilo, HI 96720, USA
12 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA

Received XXX; accepted XXX

ABSTRACT

The absence of star formation in the bar region that has been reported for some galaxies can theoretically be explained by shear.
However, it is not clear how star-forming (SF) bars fit into this picture and how the dynamical state of the bar is related to other
properties of the host galaxy. We used integral-field spectroscopy from VLT/MUSE to investigate how star formation within bars is
connected to structural properties of the bar and the host galaxy. We derived spatially resolved Hα fluxes from MUSE observations
from the CARS survey to estimate star formation rates in the bars of 16 nearby (0.01 < z < 0.06) disc galaxies with stellar masses
between 1010 M� and 1011 M�. We further performed a detailed multicomponent photometric decomposition on images derived from
the data cubes. We find that bars clearly divide into SF and non-star-forming (non-SF) types, of which eight are SF and eight are non-SF.
Whatever the responsible quenching mechanism is, it is a quick process compared to the lifetime of the bar. The star formation of the
bar appears to be linked to the flatness of the surface brightness profile in the sense that only the flattest bars (nbar ≤ 0.4) are actively SF(
SFRb > 0.5 M� yr−1

)
. Both parameters are uncorrelated with Hubble type. We find that star formation is 1.75 times stronger on the

leading than on the trailing edge and is radially decreasing. The conditions to host non-SF bars might be connected to the presence
of inner rings. Additionally, from testing an AGN feeding scenario, we report that the star formation rate of the bar is uncorrelated
with AGN bolometric luminosity. The results of this study may only apply to type-1 AGN hosts and need to be confirmed for the full
population of barred galaxies.

Key words. galaxies: star formation – galaxies: structure – galaxies: evolution – galaxies: formation – galaxies: photometry – galaxies:
active

1. Introduction

One of the main questions that is of great importance in our un-
derstanding of the formation and evolution of galaxies is which
processes are responsible for quenching and triggering star forma-
tion. Bars play a major role in the redistribution of baryons and
dark matter, and therefore bars are expected to have a significant
effect on where and when star formation can occur.

Galactic bars are commonly observed elongated stellar struc-
tures across galaxy discs. These structures have ellipticities and
? Based on observations collected at the European Organisation for

Astronomical Research in the Southern Hemisphere under ESO pro-
gramme(s) 094.B-0345(A) and 095.B-0015(A)
?? Lyman Spitzer Jr. Fellow

lengths of varying sizes with median values of the order of ε ≈ 0.6
and Lbar ≈ 4.5 kpc, respectively (Gadotti 2011). They form spon-
taneously from disc instabilities either in secular evolution or
induced during a fly-by or merger event. The fraction of bars in
disc galaxies in the local Universe is as high as 70%–80% (e.g. Es-
kridge et al. 2000; Menéndez-Delmestre et al. 2007; Aguerri et al.
2009; Masters et al. 2011; Buta et al. 2015; Erwin 2018). Bars are
very important for many internal processes and work as engine of
secular evolution and dynamics of disc galaxies (e.g. Kormendy
& Kennicutt 2004). These structures transfer angular momentum
outwards and funnel gas to the centre of the galaxy, where it
can build up structures such as nuclear rings and disc-like bulges
(Debattista et al. 2006; Athanassoula 2013; Sellwood 2014). Bars
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may feed supermassive black holes and trigger nuclear starbursts,
although there is no clear correlation between the presence of a
bar and an active galactic nucleus (AGN) (Shlosman et al. 1989;
Ho et al. 1997; Coelho & Gadotti 2011; Cheung et al. 2015).

The effect of stellar bars on star formation activity in the
host galaxy is a widely discussed subject. It has been shown by
several authors that bars are responsible for an enhancement of
central star formation caused by gas inflow through the bar (e.g.
Hawarden et al. 1986; Martinet & Friedli 1997; Lin et al. 2017;
Catalán-Torrecilla et al. 2017). Yet, the global star formation rate
(SFR) seems not to depend on the presence of a bar (Kennicutt
1994) or might even be lower for barred galaxies (Cheung et al.
2013; Kim et al. 2017). These observations are in agreement with
a theory in which bars transport gas towards the centre, where it
triggers star formation and the gas reservoir gets depleted, which
is followed by a decrease of the global SFR.

In this study, we shed light on another local aspect of the
interplay between bars and star formation. An interesting phe-
nomenon was observed and discussed in García-Barreto et al.
(1996), Phillips (1993), and Phillips (1996): some galaxies show
a significant amount of star formation within the bar component
itself, while others have bars that are quiescent. These studies
also point out that late-type spiral galaxies preferably have star-
forming (SF) bars, while early-type spirals have non-star-forming
(non-SF) bars. Ryder & Dopita (1993) found a reciprocal rela-
tionship between the number of H ii regions in the bar and in an
inner ring component. Verley et al. (2007) proposed three differ-
ent classes of barred galaxies with respect to its star formation
activity based on Hα measurements: (1) galaxies with strong
central star formation, star formation at the ends of the bar and in
the spiral arms, and no star formation within the bar; (2) smooth
galaxies with no central star formation; and (3) galaxies with
star formation within the bar region. These authors explained
these categories with an evolutionary sequence from (3) via (1)
to (2), where gas is driven towards the centre and subsequently
consumed. Interestingly, they could not reproduce the quiescent
bars in category (1) with simulations. In these simulations, SFR
calculations are mainly based on gas densities. So, how is the star
formation inhibited in these bars?

In a study of CO(1-0) observations of the barred galaxy
NGC1530, Reynaud & Downes (1998) found strong velocity
gradients in the molecular gas in the bar, which coincide with
regions of weak Hα. These velocity gradients perpendicular to
the bar major axis cause a shearing effect on the gas. The authors
argued that the shear could prevent gas clouds that are travelling
along the bar to collapse and form stars. These observed velocity
gradients agree with simulations in which they are associated
with straight dust lanes on the leading edge of strong bars (e.g.
Athanassoula 1992). In a sub-parsec resolution Milky Way-like
simulation Emsellem et al. (2015) showed the distribution of
shear, gas density, and star formation across the galaxy. In sum-
mary, these authors found that stars are forming in regions of
high gas density and low shear, that is at the end of the bar and
in the spiral arms, while along the central part of the bar the
shear is strongest and no stars are formed. Using the same type
of simulation, Renaud et al. (2015) pointed out that the tangential
velocity gradient is much smaller at the edge of the bar than in
the innermost region, which makes star formation more likely to
occur at the edges. Additionally, orbital crowding at the tip of the
bar leads to enhanced star formation in these regions. Simulations
by Khoperskov et al. (2018) have shown how the presence of
a bar in massive gas-rich galaxies quenches the SFR over time
both globally and within the radial extent of the bar. These au-
thors have detected an increasing velocity dispersion within the

bar region through shear during the bar formation phase that is
seemingly responsible for the reduction of the SFR.

These observations and simulations provide a theory that
explains the inhibition of star formation in stellar bars caused by
shear. Yet, it is still not understood why some galaxies may have
these velocity gradients while others may not (given that they
show SF bars). If shear is the explanation of the differences seen
in star formation activity in bars, then how is the presence of shear
related to structural properties of the bar and the host galaxy?
How is this changing during the evolutionary development of the
bar?

The present work intends to contribute to a better understand-
ing of the nature of star formation in galaxy bars by investigating
major structural properties of the bars and their host galaxies in
relation to the star formation activity within the bar. It makes use
of spatially resolved spectroscopic data from the Multi-Unit Spec-
troscopic Explorer (MUSE; Bacon et al. 2010), which is essential
for accurately measuring emission line fluxes and being able to
pinpoint the location where they were emitted. Hence, this allows
us to separate star formation within the bar region from star for-
mation outside the bar. We perform a 2D image decomposition
to obtain basic parameters of the different components of the
galaxy and use Hα flux from emission line fitting as tracer of star
formation. We then compare the various parameters and discuss
the implications of our results. Throughout the paper we assume a
flat topology with a Hubble constant of H0 = 67.8 km s−1 Mpc−1

and Ωm = 0.308 (Planck Collaboration et al. 2016).

2. Data and sample

As part of the Close AGN Reference Survey (CARS; Husemann
et al. 2017)1, this work makes use of multiwavelength observa-
tions of 41 nearby (0.01 < z < 0.06) luminous type-1 AGN
host disc galaxies drawn from the Hamburg/ESO survey (HES;
Wisotzki et al. 2000). The analysis presented in this work is al-
most exclusively based on data from integral field spectroscopy
(IFS) observed with MUSE on the Very Large Telescope (VLT)
at Paranal. The MUSE instrument covers a 1 squared arcmin
field of view (FOV) with a spatial sampling of 0.2′′/pixel. It
covers almost the full optical wavelength range from 470 nm to
930 nm with a mean spectral resolution of R ∼ 3000. The large
FOV combined with the fine spatial sampling makes MUSE the
ideal instrument to study spatially resolved spectral properties
of galaxies, such as SFRs in different structural components. In
addition, this study makes use of complementary infrared imag-
ing data from SOAR/SPARTAN2 (proj. ID: 2015B-Yale/0617),
NTT/SOFI3 (proj. ID: 083.B-0739(A)), and LBT/LUCI4 (see
Busch et al. 2014), which are only included to aid in morpho-
logical galaxy classification as well as to perform sanity checks
during the photometric fitting procedure.

From the CARS sample of 41 objects 37 galaxies have been
observed with MUSE. We selected all galaxies that host a bar
component based on our own visual classification by two of
the authors, Neumann and Gadotti, in consultation with each
other. Some bars may have been missed, especially very weak

1 www.cars-survey.org
2 The Spartan Infrared Camera (SPARTAN; Loh et al. 2004) mounted
on the Southern Astrophysical Research (SOAR) Telescope.
3 The Son OF Isaac (SOFI; Moorwood et al. 1998) on the New Tech-
nology Telescope (NTT).
4 The Large Binocular Telescope Near-infrared Utility with Camera
and Integral Field Unit for Extragalactic Research (LUCI; Seifert et al.
2003) on the Large Binocular Telescope (LBT).
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Fig. 1. MUSE collapsed i-band images overlaid with contours of continuum subtracted Hα emission from the original data cubes (AGN+host). This
figure shows our complete sample. Inset plots are added for galaxies where bars are difficult to recognise. These inset plots present residual images
when subtracting a simple point source + exponential disc model from the galaxy.

bars or bars in galaxies at high inclination or small apparent
size. These are typical challenges and limitations that affect the
studies of bars in general. However, the high quality of the data
used for the classifications, namely the high signal-to-noise (S/N)
images from the MUSE collapsed cubes in combination with
the infrared images that are less affected by dust obscuration,
favour an optimal search for bars. That selection gave us 19
barred galaxies, 2 of which had to be excluded because they did
not have MUSE data and 1 galaxy was not entirely covered by
the MUSE FOV and was therefore not useful for our analysis
either. Our final sample comprises 16 barred galaxies of Hubble
types between SBa and SBcd, with stellar masses ranging from
1010 to 1011 M� and inclinations between approximately 0◦ <
i < 63◦. Visual Hubble type classification was performed by
two of the authors, Neumann and Gadotti, independently and

then averaged. The subsample of non-barred CARS galaxies is
not remarkably different from the barred galaxy sample in terms
of Hubble types. Besides 9 ellipticals and 2 irregular/merger
galaxies, this subsample comprises 11 galaxies of Hubble types
from S0 to Sc compared to the 16 barred galaxies of types Sa to
Scd. The stellar masses were estimated from (g − i) colours and
i-band absolute magnitudes following the empirically calibrated
relation in Taylor et al. (2011). We used simple point-source/host-
galaxy decompositions on g- and i-band collapsed MUSE images
to integrate the magnitudes on the AGN-subtracted broadband
images.5 The inclination is estimated from the observed axial
ratio of the disc component in the multicomponent decomposition

5 Emission lines were not masked when collapsing the cubes. Since the
calibrated relation was established from broadband imaging of a large
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described in Sect. 3 assuming an intrinsic thickness of q0 =
0.2 (e.g. Cortese et al. 2014). All of the galaxies in the CARS
survey were selected to host type-1 AGNs, however, owing to
misclassification, 1 of our 16 galaxies (HE0045-2145) does not
host an AGN. Fig. 1 shows collapsed i-band images from the
MUSE cubes overlaid with Hα contours of all galaxies in our
sample. An overview of the main parameters of our sample can
be found in Table 2.

The implications of the presence of an AGN on our analysis
constitute an interesting and important topic. If bars are respon-
sible for fueling AGN by driving gas inflows and if the nuclear
activity depends on certain bar characteristics, then the selection
of AGN host galaxies for this work could possibly introduce a
bias on the type of bars and the hosts they are residing in. While
we leave a full analysis with a control sample of AGN-free barred
galaxies for a future paper, it is important to discuss some of the
implications the selection could have on the results of this study.

We point out that our investigation of star formation along
bars uses a type-1 AGN sample that avoids potential AGN mis-
classification depending on the Baldwin, Phillips, & Terlevich
diagram (BPT diagram; Baldwin et al. 1981, see also Sect. 5)
selection critera for type-2 AGN as used in many previous papers
studying the effect of bars on AGN fueling (Oh et al. 2012; Alonso
et al. 2014; Galloway et al. 2015; Alonso et al. 2018). Some BPT
classifications for type-2 AGN are prone to be contaminated by
low-ionisation nuclear emission-line region (LINER) galaxies
which do not necessarily host AGN (e.g. Singh et al. 2013). In
addition, the CARS sample was drawn from the Hamburg/ESO
survey selecting the most luminous AGN within a certain redshift
range without applying any specific criteria on the host galaxy
properties. Therefore, it is hard to study trends as a function of
AGN luminosity, and the results from this study may only apply
to type-1 AGN hosts. Further work is needed to confirm whether
these results can be extended to the full population of barred
galaxies.

The selection of barred galaxies from this sample did not
introduce any obvious additional bias regarding Hubble types or
galaxy properties. The presence of an AGN implies that there
must be some gas in the centre of the galaxy that somehow must
have been pushed inwards. However, different temporal and spa-
tial scales of the activity of the nucleus and a large-scale bar do
not permit a direct conclusion about a correlation that extends to
kiloparsec scales. We elaborate on this discussion further and test
an AGN feeding scenario in Sect. 7.2 and briefly address AGN
feedback in Sect. 8. A deeper study of AGN feeding and feedback
in CARS galaxies will be the subject of upcoming papers from
the collaboration.

3. Photometric decomposition

Two-dimensional image decomposition has become a widely
used technique to retrieve structural properties of galaxies. The
accuracy, but also the degeneracy of the results depend on many
factors such as the amount of detail that is desired to model,
the quality of the observations, and the human based decision
on which galaxy components to include in the modelling. The
most basic approach is to fit a two-component bulge-disc model,
which is simple enough to be conducted in an automatic way for
a large sample of objects and – to some extent – good enough
to get rough estimates of parameters such as disc scale length,
bulge-to-total light ratio (B/T), or bulge Sérsic index (nb) (e.g.

sample of galaxies, their contribution to the flux is already accounted
for.

Allen et al. 2006). However, it becomes rapidly more complex,
if a higher accuracy of these parameters is desired. For example,
the neglect of bars, when fitting barred galaxies, can lead to an
overestimation of B/T by a factor of 2 (Gadotti 2008; see also
Aguerri et al. 2005; Salo et al. 2015). Similarly, not considering a
point source in an AGN host galaxy, results on average in larger
B/T and nb and smaller effective radii of the bulge re,b (Gadotti
2008). This bias is strongest in bright type-1 AGN. Moreover,
the majority of galaxies have been found to have disc breaks
(Erwin et al. 2005; Pohlen & Trujillo 2006; Erwin et al. 2008;
Marino et al. 2016). Ignoring the disc break in the fit can lead to
an underestimation of B/T and bar-to-total light ratio (Bar/T) by
∼ 10% and 25%, respectively, and differences in the disc scale
length (h) of ∼ 40% (Kim et al. 2014; see also Gao & Ho 2017).
Hence, it is indispensable to analyse carefully which components
to include in the model.

In recent decades many programs have been made publicly
available to perform 2D photometric decomposition, such as
g i m 2 d (Simard et al. 2002), g a l f i t (Peng et al. 2002, 2010),
bu d da (de Souza et al. 2004), and g a s p 2 d (Méndez-Abreu
et al. 2008). For our analysis, we used i m f i t (v.1.5) by Erwin
(2015)6. The most important component for this work is the bar
of the galaxy, for which we are not only interested in the basic
parameters, as for example Sérsic index (nbar), ellipticity (εbar),
and Bar/T, but we also want to determine the exact region from the
position, length, ellipticity, and position angle (PA) that is covered
by the bar. This is important information to distinguish between
the star formation that is happening within the bar and outside the
bar. Bars have been modelled in 2D decompositions either with
Sérsic (Sérsic 1963) or Ferrer (Ferrers 1877; Binney & Tremaine
1987) functions (e.g. Laurikainen et al. 2005, 2007, 2010; Gadotti
2008; Weinzirl et al. 2009; Peng et al. 2010; Méndez-Abreu et al.
2017). Kim et al. (2015) and Gao & Ho (2017) showed that both
profiles can describe the main shape of the bar and the results
should not be influenced by the choice of the fitting function.
In our model we call this component our main bar component
(bar1).

Kim et al. (2015) also stressed that bars should ideally not
be modelled as a single component. It is known that during the
evolution of the bar it experiences a buckling instability phase
that leads to a vertical thickening of the inner part of the bar
with respect to the equatorial plane, as shown for example in
Combes et al. (1990), Kuijken & Merrifield (1995), Athanas-
soula & Bureau (1999), Bureau & Athanassoula (1999), Bureau
& Athanassoula (2005), and Athanassoula (2005). In edge-on
galaxies, this has been observed as boxy-, peanut-, or x-shaped
feature (Jarvis 1986; de Souza & Dos Anjos 1987) and it is even
visible in only moderately inclined galaxies (Athanassoula &
Beaton 2006; Erwin & Debattista 2013). It appears that the same
physical component manifests itself morphologically also as a
barlens when seen face-on (Laurikainen et al. 2011; Athanassoula
et al. 2015; Laurikainen & Salo 2017). We thus adopted a two-
component bar model for all the galaxies where an inner boxy
bar or barlens is clearly visible; in our model, this is denoted as
bar2.

Furthermore, in many cases there is evidence for a very elon-
gated light excess in the residual image of the bar after the fit. It
has approximately the length of the outer part of the bar, but is
much thinner. It can be seen in Fig. 2 and in residual images of
previous works (e.g. Gadotti 2008; Athanassoula et al. 2015). For
these galaxies, we decided to add a third bar component in the
model. This decision is purely empirically motivated. We stress

6 http://www.mpe.mpg.de/∼erwin/code/imfit/
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Table 1. Overview of model components used in the photometric decom-
position.

Model component Function
Point source Gaussian with a 0.1 px width

Bulge Sérsic
Disc Exponential
Bar1 Sérsic with generalised ellipses
Bar2 Sérsic with generalised ellipses
Bar3 Sérsic with generalised ellipses
Ring Gaussian ring

Background FlatSky

Notes. The three bar components given are all parts of the same bar.
In detail, bar1 is the main long part of the bar, bar2 is the broadened
inner part of the bar, and bar3 is the very thin and long part (see text for
details).

these are all parts of the same bar. From 2D and 3D orbital theory
we know that bars are built from families of periodic orbits with
different extents, elongations, and orientations. (e.g. Contopoulos
& Papayannopoulos 1980; Athanassoula et al. 1983; Pfenniger
1984; Skokos et al. 2002a,b). While the usual single bar com-
ponent fits the main orbits that constitute the backbone of the
bar, the very narrow extra component in the residual might be a
signature of very elongated orbits along the bar major axis. We
include this component in our model when necessary; we call this
in our model bar3. Additionally, a ring was fitted when present.
This is important to accurately determine the Sérsic index of the
main bar component.

In summary, we fit a selection of the galaxy components given
in Table 1 and we only include a component if we have clear
visual indications of its presence. Out of the 16 galaxies 8 were
modelled with a single bar component, 5 needed two components,
and 3 galaxies were fitted with all three bar components.

All fits were performed independently on pseudo SDSS i-
band images from the MUSE data cubes and on R-band or J-band
images from either SOAR/SPARTAN, NTT/SOFI, or LBT/LUCI.
During the fitting of the R-band and J-band images, we identified
some problems to model accurately the point-spread function
and some of the images were taken with rather short exposure
times. Furthermore, only observations from MUSE were avail-
able for the complete sample, which gives us the advantage of
consistency. After a careful comparison, we opted to use only
the results performed on the MUSE i-band images. However, the
decompositions on the broadband images were a useful control
set to tune the initial parameter values and evaluate intermediate
results during the fitting procedure. The point-spread function
was determined by fitting Moffat profiles to at least two point
sources in the FOV of each image. The stripes in the background
of the images as seen for example in Fig. 1 – a known effect from
the integral field unit – are very shallow and do not affect the
decomposition.

Fig. 2 shows for the galaxy HE 1108-2813 from left to right
the collapsed i-band image from MUSE, the model, residual im-
age, and surface brightness profile. The profile was derived by
fitting ellipses to the isophotes in the images with the i r a f7 task
e l l i p s e. In a first step, we fitted the data image with the parame-
ters for PA and ellipticity left free. Leaving these parameters free

7 i r a f is distributed by the National Optical Astronomy Observatories,
which are operated by the Association of Universities for Research in
Astronomy, Inc., under cooperative agreement with the National Science
Foundation.

has the advantage that the surface brightness profile highlights at
each distance the predominant source that contributes to the total
surface brightness. Then, we used the same set of values from
the first fit to perform the same task on the model images in non-
fitting mode just measuring the surface brightness on the same
ellipses. This can be done via the i n e l l i p option. A summary
of the parameters from the decomposition is given in Table 2.

4. Measuring the length of the bar

There is no unambiguous way to determine the length of the bar,
and authors have determined this value in many different ways in
the past; there is no sharp transition, but bars join smoothly the
outer disc. A common approach is to use the isophotal ellipticity
profile of the galaxy and define the bar length as the distance
from the centre (on the x-axis) at the first maximum ellipticity
(on the y-axis; see Wozniak & Pierce 1991). We call this Lpeak.
This maximum is usually associated with the ellipses close to the
end of the bar, after which the bar transitions into the disc causing
the ellipticity to drop. If the bar is strong, this drop may be very
fast, but weak bars tend to show a slow decline in ellipticity (e.g.
Gadotti et al. 2007).

Many different approaches of measuring the length of the
bar for simulated galaxies were tested and compared in Athanas-
soula & Misiriotis (2002). These authors found that the max-
imum ellipticity method generally provides the smallest value
for the bar length. Alternatively, the first minimum after the el-
lipticity peak (Lmin) or a sudden change of the PA (LPA) can
be used (Erwin & Sparke 2003). Erwin (2005) showed that
L = minimum(Lmin, LPA) correlates very well with Lpeak with
a Spearman correlation coefficient of ρ = 0.96 and the average of
both values matches best the visual bar size measurement (Lvis).

In this work, we derived an estimate by a combination of
different proxies for the bar length, such as ellipticity peak and
minimum, the change in PA and – in specific cases – the radius
of an inner ring, as explained below. We performed the fitting
of the isophotes with the i r a f task e l l i p s e as described in
the previous section. We then determined, where it was possible,
the location of the ellipticity peak Lpeak and the location of the
proximate minimum after the drop Lmin. We further used the
radial profile of the PA to identify sudden changes in the PA after
the ellipticity peak. The position where the PA changed about
10◦ as compared to the PA at Lpeak is denoted as LPA. Our first
estimate of the bar length is defined as follows:

Lbar,0 = AVG(Lpeak,MIN(Lmin, LPA)). (1)

It is not always possible to determine the length of the bar
with the ellipticity or the PA profile. Sometimes the end of the bar
transitions smoothly into a ring or spiral arms of the galaxy and
no clear ellipticity drop or change in PA can be identified. In other
cases the ellipticity can get distorted in the presence of strong
dust lanes. Hence, a careful case-by-case evaluation including a
visual inspection of the image is necessary. The final bar estimate
is

Lbar = MIN(Lbar,0, Lring) or Lvis. (2)

We only had to use a visual estimation in the case of
HE2233+0124. A typical ellipticity profile of a galaxy is ex-
emplarily shown for HE2211-3903 in Fig. 3
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Fig. 2. Photometric decomposition of MUSE collapsed i-band image of galaxy HE 1108-28138. From left to right: data image, model, residual=data-
model, and surface brightness profile from isophotal fitting. The colour map in the residual image is stretched to show faint details. The surface
brightness profiles in the right-most panel show a separation into all components that were included in the fit. The thick coral line shows the sum of
all model components and the black line the observed data. A set of figures that shows the decomposition of the complete sample can be found in
the Appendix C.

Table 2. Summary of the main parameters from the 2D decomposition, bar length measurement, and morphological classification.

Galaxy Type Incl[◦] PS/T B/T Bar/T R/T D/T h [′′] nbar1 nbar2 nbar3 Lbar [′′]
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

HE0021-1819 SBab 16 0.03 0.20 0.08 (100/0/0) 0.10 0.59 3.44 0.76 – – 2.84
HE0045-2145 SBab 5 0.16 0.02 0.23 (68/0/32) – 0.59 6.89 0.34 – 0.16 8.30
HE0108-4743 SBc 13 0.10 – 0.10 (100/0/0) – 0.80 4.02 0.97 – – 4.98
HE0114-0015 SBab 40 0.05 0.14 0.27 (75/0/25) – 0.54 4.23 0.28 – 0.06 3.60
HE0119-0118 SBab 2 0.23 – 0.12 (100/0/0) – 0.65 3.37 0.37 – – 4.84
HE0253-1641 SBab 30 0.39 – 0.16 (100/0/0) – 0.45 5.80 0.75 – – 9.16
HE0433-1028 SBcd 57 0.19 0.06 0.21 (77/0/23) – 0.54 6.00 0.09 – 0.05 14.78
HE0934+0119 SBab 38 0.45 – 0.18 (73/0/27) – 0.36 4.98 0.22 – 0.05 6.78
HE1011-0403 SBb 26 0.42 0.02 0.17 (100/0/0) – 0.39 4.51 0.50 – – 6.59
HE1017-0305 SBc 54 0.24 0.02 0.16 (65/9/26) 0.01 0.58 6.83 0.38 0.05 0.18 5.37
HE1029-1831 SBab 38 0.15 0.26 0.15 (100/0/0) – 0.44 4.45 0.21 – – 3.78
HE1108-2813 SBc 51 0.17 – 0.22 (46/23/31) – 0.62 5.38 0.26 0.24 0.07 9.35
HE1330-1013 SBc 40 0.06 0.02 0.18 (82/18/0) 0.06 0.69 11.20 0.64 0.26 – 11.56
HE2211-3903 SBbc 4 0.20 0.02 0.17 (52/36/12) 0.01 0.60 7.12 0.60 0.39 0.05 8.44
HE2222-0026 SBa 7 0.42 – 0.15 (100/0/0) – 0.44 2.06 0.55 – – 3.25
HE2233+0124 SBb 63 0.13 0.11 0.14 (100/0/0) – 0.62 5.22 0.73 – – 4.52

Notes. (1) Galaxy name; (2) Hubble type from our own visual classification by two of the authors, Neumann and Gadotti; (3) inclination of the
galaxy calculated from the ellipticity of the disc component in the decomposition assuming an intrinsic thickness of the disc of q0 = 0.2; (4)-(8)
luminosity fractions of point source, bulge, bar, ring and disc, respectively; in (6) we are additionally showing the relative contribution in percentage
of each bar component (bar1/bar2/bar3) to the total luminosity of the bar; (9) disc scale length; (10)-(12) Sérsic indices of the main, second
(broadened) and third (narrow) bar component, respectively; (13) length of the bar.

5. Derivation of SFR from dust-corrected Hα
emission lines

Since individual stars are unresolved in our galaxy sample, mea-
surements of star formation activity rely on tracers of star forma-
tion in the spectrum of integrated light. A big pool of diagnostic
methods across the electromagnetic spectrum from ultraviolet
(UV) to far-infrared has been established over the years (for a
review, see Kennicutt 1998; Kennicutt & Evans 2012). While the
young stellar population can be directly observed in UV emission,
this method has the disadvantage that a significant fraction of the
UV light is absorbed by dust and re-emitted in the far-infrared.
Furthermore, for the analysis of nearby galaxies this method is
limited to space telescope observations. Alternatively, recombi-
nation lines in the optical that trace the re-emission of ionised
hydrogen in H ii regions can be used. The Hα line has become
very popular for a measurement of the SFR. This is one of the
strongest emission lines and it is less affected by dust obscura-

tion than UV tracers. For local galaxies, Hα is within the MUSE
spectral range (470-930 nm). In this section, we describe the pro-
cedure for getting spatially resolved SFR maps from the MUSE
observations.

Prior to the emission line analysis, a deblending of AGN and
host galaxy is performed using the software Q D e b l e n d3 D
(Husemann et al. 2013, 2014). The stellar continuum and emis-
sion lines are then modelled on the AGN-substracted cubes with
the code PyPa r a d i s e (Walcher et al. 2015; Husemann et al.
2016) that uses a linear combination of stellar template spec-
tra convolved with a Gaussian line-of-sight velocity kernel. The
fitting is done in three steps. First, the continuum is fitted for
co-added spectra in Voronoi bins with target S/N∼10. Second,
the continuum is fitted on a spaxel-by-spaxel basis with fixed
kinematics according to the underlying Voronoi cell. Finally, the
emission lines are modelled in the residual spectra using a single
Gaussian component. A Monte Carlo simulation is used to esti-
mate errors by refitting the data 100 times after modulating the
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Fig. 3. Results from the isophotal fitting routine e l l i p s e in i r a f for
the MUSE collapsed i-band image for galaxy HE 2211-3903 to estimate
the bar length. The vertical lines show the different estimates of the
length of the bar as described in more detail in the text.

input data by the formal errors (for more details of the functional-
ity of PyPa r a d i s e , see also De Rosa et al. 2018; Weaver et al.
2018).

The Hα flux has to be corrected for dust attenuation to de-
rive accurate SFRs. Since the intrinsic ratio of the emission lines
Hα/Hβ (Balmer decrement) is in ideal conditions set by quan-
tum mechanics, it has been commonly used as a measure of the
effect of dust on the source spectrum of interest. The attenuation
is wavelength dependent and thus changes the observed ratio.
Following Calzetti et al. (1994) and Domínguez et al. (2013) the
intrinsic luminosity Lint can be obtained by

Lint(λ) = Lobs(λ) 100.4 k(λ) E(B−V). (3)

In this equation, Lobs is the observed luminosity and k(λ) is
the reddening curve. In this work we use the reddening curve
from Calzetti et al. (2000). E(B − V) is the colour excess that is
given by

E(B − V) = 1.97 log10

(
(Hα/Hβ)obs

2.86

)
. (4)

After this analysis, it is possible to compute a spatially re-
solved dust-corrected Hα map for each galaxy. We clean this
map by considering only spaxels, where S/NHα > 3, S/NHβ > 3,
Verr < 20 km/s, and σerr < 30 km/s.

The presence of an AGN can contaminate the measurement
of Hα-based SFRs. It is no longer possible to convert Hα flux to
SFRs under the assumption that all Hα is caused by star formation.
In contrast, a new source of photoionisation has to be considered.

The AGN and star formation ionisation can be seen on emission
line diagnostic diagrams, such as the traditional BPT diagram
(Baldwin et al. 1981; Veilleux & Osterbrock 1987). While the
BPT diagram has been widely used to classify galaxies as whole
systems (e.g. Kauffmann et al. 2003), more recently this diagram
has also been applied to analyse different regions of the galaxies
with data from IFS surveys (Singh et al. 2013; Belfiore et al. 2016;
Federrath et al. 2017).

The main idea behind our analysis is to not only classify each
pixel to one or the other ionisation source because the sources
can be mixed and pixels form the so-called mixing sequence on
a BPT diagram, but to define a fraction of Hα per pixel caused
by one mechanism or the other. We performed an emission line
diagnostic that is based on an analysis described in Davies et al.
(2016) with modifications necessary for analysing more compli-
cated BPT diagrams. We defined a number of AGN and SF basis
pixels based on their spatial distribution and BPT position. To fit
the mixed pixels and disentangle the AGN fraction we treated the
pixels as vectors of emission line fluxes and fitted a linear combi-
nation using a Markov chain Monte Carlo (MCMC) algorithm as
follows:

Hα
Hβ

[O iii]
[N ii]
[S ii]


mixed

= fSF ×


Hα
Hβ

[O iii]
[N ii]
[S ii]


SF

+ fAGN ×


Hα
Hβ

[O iii]
[N ii]
[S ii]


AGN

, (5)

where fSF and fAGN are SF and AGN fractions and these values
obey the assumption of no other excitation mechanisms fSF +
fAGN = 1. In the fitting procedure we varied the fractions and the
basis vectors, parameterised with metallicity of SF basis and the
[N ii]/Hα ratio of AGN basis.

We show in Fig. 4 the spatially resolved emission line di-
agnostic for the galaxy HE 1108-2813. Each point in the left
panel of this figure corresponds to one spectrum in the MUSE
cube. The right panel shows the spatial location of the data points
from the BPT diagram overplotted on the i-band image of the
galaxy. Regions are coloured according to the fraction of Hα
that comes from star formation. For comparison, we also show
the theoretical-based maximum starburst line from Kewley et al.
(2001) and the empirically motivated division line from Kauff-
mann et al. (2003). We note that [S ii] is included in the fitting,
but not shown on this BPT. The figure shows that all spaxels that
are most affected by the AGN are centrally concentrated and the
Hα from the bar region and the spiral arms is almost exclusively
caused by star formation.

For each spaxel, we multiplied the dust-corrected Hα flux by
the star formation fraction and converted it into SFR assuming
a Salpeter initial mass function (Salpeter 1955) and using the
Kennicutt (1998) relation

SFR [M� yr−1] = 7.9 × 10−42 L(Hα) [erg s−1] × fSF. (6)

The final SFR map for the galaxy HE 1108-2813 overplotted
with the bar region is shown in Fig. 5. The extent of the bar is
defined by the parameters of the photometric decomposition and
the measurement of the bar length. As approximation, we used
a rectangle with the two sides a and b having the length of the
major and minor axis of the bar. We split the bar further into 3× 9
subregions. A collection of these plots for the entire sample can
be found in Appendix D.

Finally, to estimate the total SFR in the bar region (SFRb), we
rebinned the original spectra in the AGN-subtracted MUSE cubes
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Fig. 4. Left panel: Emission line diagnostic for galaxy HE 1108-2813. Data points are coloured by the fraction of Hα that comes from star formation.
The black solid line is adopted from the theoretical line from Kewley et al. (2001) and the green dashed line from the empirically derived separation
from Kauffmann et al. (2003). We show only points where S/N > 3 for all four emission lines. Right panel: Collapsed MUSE i-band image
overplotted with the data points from the left panel to show the spatial location of these spectra.

within each of the 27 bar subregions and repeated subsequently
the complete analysis as described above. The decision was made
to increase the S/N and get more accurate measurements of the
SFR in the bar, especially in regions of low signal. Additionally,
we divided the SFR by the stellar mass to derive specific star
formation rates (sSFR). Throughout the analysis we used two
different measures of the sSFR:

stSFRb = SFRb/Mt,

sbSFRb = SFRb/(Mt × Bar/T),
(7)

where Mt is the total stellar mass of the galaxy that we es-
timate from g- and i-band magnitudes as explained in Sect. 2
and Mb = Mt × Bar/T is the approximate stellar mass of the bar
component only. To get one clean value to characterise the star
formation activity in the bars, we calculated the SFRb, stSFRb,
and sbSFRb within the rows −3 to −1 and 1 to 3 as annotated in
Fig. 5 that we call the intermediate region of the bar. A summary
of the SFRs for all galaxies can be found in Table 3.

6. Results

The purpose of this work is to investigate whether there is a
connection between the presence or absence of star formation
activity in the bar region and structural properties of the bar
or the host galaxy. Our aim is to search for relations between
the parameters that represent these properties of the bar and to
analyse whether there is a clear separation into two types of bars
or if we observe rather a continuous diversity.

6.1. Star-forming versus quiescent bars

In Fig. 6 we present the distribution of star formation activity
in the intermediate bar region that excludes the outermost and
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Fig. 5. Spatially resolved map of SFRs in the galaxy HE1108-2813. On
top, we show the bar mask for that galaxy, created from the parameters
of the image decomposition and ellipse fitting. The mask is divided into
3 × 9 subcells to analyse how the SFR changes over the bar region. A set
of these maps for the complete sample with additional i-band contours
can be found in Appendix D.

innermost rows of the bar mask. This is to ensure we exclude
contamination from spiral arms or remaining Hα emission from
the AGN. The upper panel shows the SFR of each galaxy bar
against the total stellar mass of the galaxy. The uncertainties of the
SFRs are propagated from the errors of the emission line fluxes. A
clear separation between bars with almost zero star formation and
bars with clear star formation activity becomes evident in that plot.
We choose SFRb = 0.5 M�/yr to be the demarcation between SF
and quiescent (non-SF) bars, represented by the vertical solid line.
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Table 3. Summary of the SFRs from dust-corrected and AGN-masked Hα emission in the intermediate bar region.

Galaxy SFRb log (stSFRb/yr−1) log (sbSFRb/yr−1)
M� yr−1

(1) (2) (3) (4)
HE0021-1819 0.10 ± 0.01 −11.11 ± 0.11 −9.99 ± 0.11
HE0045-2145 1.87 ± 0.19 −9.93 ± 0.11 −9.29 ± 0.11
HE0108-4743 < 1.10 < −10.60 < −9.61
HE0114-0015 2.16 ± 0.22 −10.16 ± 0.11 −9.60 ± 0.11
HE0119-0118 3.77 ± 0.38 −10.12 ± 0.11 −9.21 ± 0.11
HE0253-1641 0.47 ± 0.05 −10.93 ± 0.11 −10.14 ± 0.11
HE0433-1028 7.72 ± 0.77 −9.95 ± 0.11 −9.28 ± 0.11
HE0934+0119 1.34 ± 0.13 −9.92 ± 0.11 −9.19 ± 0.11
HE1011-0403 0.14 ± 0.02 −11.57 ± 0.11 −10.80 ± 0.11
HE1017-0305 < 0.11 − < 11.54 < −10.74
HE1029-1831 8.37 ± 0.84 −9.44 ± 0.11 −8.62 ± 0.11
HE1108-2813 2.53 ± 0.25 −9.88 ± 0.11 −9.22 ± 0.11
HE1330-1013 0.08 ± 0.01 −11.55 ± 0.11 −10.81 ± 0.11
HE2211-3903 0.35 ± 0.04 −11.17 ± 0.11 −10.40 ± 0.11
HE2222-0026 0.11 ± 0.01 −11.07 ± 0.11 −10.24 ± 0.11
HE2233+0124 0.16 ± 0.02 −11.27 ± 0.11 −10.41 ± 0.11

Notes. (1) Galaxy name; (2) SFR in the bar region; (3) logarithm of the sSFR considering the total stellar mass of the galaxy; (4) logarithm of the
sSFR considering only the stellar mass of the bar component. All measurements of star formation are integrated within the intermediate bar region
(rows −3,−2, −1, 1, 2, 3) as defined in the text and in Fig. 5. The SFR in galaxy HE0108-4743 is derived from real detections, but considered as
upper limit because of possible contamination from other physical processes (see Sect. 6.2 for details).

The next two panels below show histograms of the logarithm
of sbSFRb and stSFRb. Both histograms independently confirm
a well-defined separation into two categories of star formation
activity. The absence of an intermediate population indicates that
the quenching process must be quick as compared to the lifetime
of SF and non-SF bars. The limited range in stellar mass may be
responsible that the plot does not change much when using sSFR
or SFR alone. Therefore, in our case it does not make a difference
which parameter is used to divide between SF and non-SF bars,
but sbSFRb might be in general the preferred discriminator.

6.2. Bar Sérsic index

Our results show no obvious correlations between star formation
activity and structural parameters as for example B/T , Bar/T ,
nbulge, Lbar/h, h or the type and number of parameters included
in the fit, except for the bar Sérsic index nbar, which is shown
in Fig. 7. The parameter nbar is the Sérsic index of the main bar
component bar1. In this figure, we plot the specific SFR of the
intermediate region of the bar against nbar. First of all, we observe
that all bars have Sérsic indices smaller than 1, which is typical
for a bar component. A Sérsic function with an index less than
1 produces a concave function that shows little variation in the
central part and bends down towards larger radii. The smaller
the Sérsic index the sharper is the drop at the end of the bar
and the flatter is the central part of the profile. The term flat
is often used to describe shallow surface brightness profiles in
a log-linear plot. Furthermore, the applied separation into SF
and non-SF bars that we adopt from Fig. 6 concurs with a trend
from very low to larger Sérsic indices, respectively. One outlier
from this observed trend is discussed separately in the end of this
subsection. A statistical test for a correlation between these two
parameters yields a Spearman’s rank correlation coefficient of
ρ = −0.72±0.05, which clearly indicates the presence of a strong
correlation. Kim et al. (2015) found that massive galaxies mainly
have flat bars with nbar < 0.4, while less massive galaxies have

close to exponential (nbar ≥ 0.8) light profiles. Our comparison
of galaxy mass and Sérsic index presented in Fig. 8 shows that
all galaxies in our sample are predominantly massive (M? >
1010 M�) and there is no correlation between nbar and M?. The
scatter in nbar for the given mass range does not disagree with the
presented results in (Kim et al. 2015, their Fig. 2). We conclude
that the observed correlation of the Sérsic index with the sSFR in
our analysis cannot be explained by galaxy mass.

In order to address the question whether the light from re-
cently formed hot young stars in SF bars is responsible for flat-
tening the light profile of the bar, we performed an additional
multiband fit for a test case using the galaxy with the flattest and
SF bar HE0433-1028. We ran a simultaneous decomposition on
the collapsed g-, r-, i-, and z-band images from the MUSE cube
using g a l f i t m (Häußler et al. 2013) a modified version of g a l -
f i t. The Sérsic index did not change across the four bands within
a small interval of ∆nbar = 0.02. Given this result, it should be
safe to assume that additional light due to ongoing star formation
is not a dominant cause of flat bars.

The estimation of uncertainties for parameters from 2D im-
age decompositions is usually a difficult endeavour. Especially
an increasing number of model components augments the degen-
eracy between the parameters and concurrently the human factor
becomes more important. Most of the available codes provide
a χ2 value to measure the goodness of fit. This has been shown
generally to underestimate the uncertainty (e.g. Häussler et al.
2007; Gadotti 2009; Erwin 2015) in galaxy decompositions and,
if at all, can only be used as a lower limit. To date, there is no com-
mon method that has been proven to give robust estimates of the
error budget. In Appendix A.1, we discuss two different methods:
one that is based on bootstrap resampling and one that follows
a MCMC approach. Individual error bars for both methods can
be seen and compared in Fig. A.1, where we also discuss that
the errors from MCMC are probably too large and the bootstrap
error should be preferred. In Fig. 7, 8, and 10 we show only the

Article number, page 9 of 28



A&A proofs: manuscript no. 34441corr

10−1 100 101

SFRbar [M�/yr]

1010

1011

M
?

[M
�

]

−11.0 −10.5 −10.0 −9.5 −9.0 −8.5

log (SFRbar /M?,bar / [yr−1])

0

2

4

N
g
a
l

non-SF

SF

−12.0 −11.5 −11.0 −10.5 −10.0 −9.5

log (SFRbar /M?,total / [yr−1])

0

1

2

3

4

N
g
a
l

non-SF

SF

Fig. 6. Total integrated SFRs in the intermediate bar region of each
galaxy that includes the rows −3 to −1 and 1 to 3 as defined in Fig. 5.
Upper panel: SFRb for each galaxy vs. total stellar mass. A separation
between almost zero SFRs and SFRb & 1 M�/yr is clearly apparent. A
vertical black line at SFRb = 0.5 M�/yr shows our classification into SF
and non-SF bars. Middle panel: Histogram of sSFRs when accounting
only for the mass of the bar. In light green and light blue we show non-SF
and SF bars according to their location in the upper panel. Going from
SFRb to sbSFRb does not change the separation. Lower panel: The same
as the middle panel but dividing SFRb by the total stellar mass of the
galaxy. Again, the classification does not change.

more reliable bootstrap errors. Both bootstrap and MCMC are
implemented functionalities in i m f i t .

The galaxy HE0108-4743 stands out from the general trend
found for the other galaxies in the sample. Despite a rather large
Sérsic index, it shows high star formation activity in the bar
region. However, the Hα found in this galaxy is not limited to
the bar region or spiral arms, but rather seems to be a continuous
feature across the whole galaxy. Possibly, there has been a burst
of star formation that occurred everywhere in the galaxy. This
could mean that different processes are in place as compared to
just the typical evolution of star formation in galaxy bars. The
SFR of the bar should therefore be considered as an upper limit.

Another special case is HE2222-0026. In contrast to the other
galaxies with non-SF bars in our sample, in this galaxy we do not
observe any Hα in the outer disc and we only observe very little
along the bar. Furthermore, the total molecular gas mass is rather
low M(H2) = 0.5 × 109 M� (Bertram et al. 2007). In this special

case, the absence of star formation in the bar is simply explained
by a global lack of fueling gas.

6.3. Bar surface brightness profile

The Sérsic function seems to yield satisfying results when it is
used to fit bar components, but there are weaknesses that are
important to keep in mind. The difference between Sérsic profiles
in the central flat part of functions with very low Sérsic indices is
small, as a result of which the Sérsic index of the model is very
sensitive to small variations in the data for flat bars. It is mainly
governed by the strength of the cut-off in the profile, hence the
end of the bar. This is problematic in the case of weak bars or the
presence of inner rings or smooth transitions into spiral arms.

To test our bar fits for such cases, we chose a direct exam-
ination of the light profile as best approach. Unfortunately, the
total integrated surface brightness profile confronts us with a sum
of light that originates from all galaxy components. Even in the
radial range where the bar dominates the light profile, it is not
straightforward to recognise the light distribution of the bar only.
For example, the presence of a central point source, an inner ring
or strong spiral arms can alter substantially the surface brightness
profile of the galaxy across a range of radii. The most appropriate
solution seems to be to use our multicomponent decomposition
yet having the major drawback that it already assumes certain
model functions for the various components. The extent to which
our assumption influences our result is determined by how much
the specific bar model constrains the fit of the other galaxy com-
ponents in the decomposition.

We calculated the residual light profiles of the bar
by subtracting all model components from the data im-
age except the bar itself. For example, if the galaxy was
best fitted with a ps+bulge+bar+disc, then we calculate
residualbar = datatotal − (modelps + modelbulge + modeldisc). In
Fig. 9, we show the bar residuals together with the disc profiles
for each galaxy. For comparison, we also plot the Sérsic model
of the bar. In the case of multiple bar components in our fit, we
show only the main component bar1. All non-SF bars are on the
left side and all SF accordingly on the right side.

While keeping in mind the special case of HE0108-4743 the
following observations can be made. For non-SF bars, the bar
profiles are approximately exponential within the bar extent. The
scale length of the bar is smaller than that of the disc. Considering
the smaller scale length of the bar and a generally larger central
surface brightness as compared to the disc, both profiles of the
bar and the disc are in the majority of the cases crossing.

For SF bars, the variation of the profiles with radial distance
is generally higher than among the non-SF bars. The inner parts
tend to be flatter with a scale length of similar size to that of the
disc. Further out, the profiles show a sharp drop that usually starts
before the measured end of the bar.

In summary, the surface brightness profiles of SF bars are
similar to those of their corresponding discs in the inner 50–80%
of their lengths, where they reach a drop-off point. In contrast,
non-SF bars have much smaller scale lengths with no clear down
bending at the end or near the end of the bar. Compared to the bar
Sérsic index, we note that both methods are able to make the same
distinction between both classes of objects. However, the results
of nbar give the impression that non-SF bars are more similar
to their discs by having close to exponential Sérsic indices; yet
the direct observations of the profiles yield contrary conclusions
since their scale lengths are substantially shorter than the scale
lengths of their host discs. All in all, nbar can be used as a measure
of the flatness of the bar, but a bar with a close-to-exponential
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histograms for both parameters. There is a clear separation in log (sbSFRb) as we have seen before. The separation is also apparent in nbar with only
marginal overlap. The galaxy HE0108-4743 annotated in black is discussed separately in the text. HE0045-2145 (indicated with a brown arrow) is
the only galaxy not hosting an AGN in the sample. The error bars for nbar show the 68% confidence intervals from the posterior distribution of our
bootstrap resampling method. More details about the uncertainties can be found in the main text and Appendix A.1. In the top right corner, we show
the Spearman’s rank correlation coefficient ρ and the t-value for a null-hypothesis test.
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Fig. 8. Comparison between total stellar mass and bar Sérsic index. Error
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the calibration in Taylor et al. (2011) on the y-axis. The Spearman’s
rank correlation coefficient ρ and the t-value for a null-hypothesis test
are given in the top right corner. The results show no indication for a
correlation between the two parameters in the given mass range.

index should not be considered to be more similar to the disc than
a bar with a smaller index.

6.4. Morphology of host galaxy

Some previous studies have reported that the aforementioned
bar features correlate with the morphological type of the host
galaxy. Early-type disc galaxies have been found to have flat (e.g.
Elmegreen & Elmegreen 1985; Elmegreen et al. 1996; Ohta 1996)
and non-SF bars (e.g. Phillips 1996). In contrast, late-type discs
have supposedly exponential and SF bars.

We performed a classification into Hubble types (see Sect. 2
and Table 2) and compared them with the parameters nbar and
sbSFRb in Fig. 10. The distributions show no significant differ-
ences between early-type (Hubble type T ≤ 3, 10 objects) and
late-type (T > 3, 6 objects) spiral galaxies for either of the pa-
rameters. A k-sample Anderson-Darling test shows that they are
consistent with being drawn from the same parent population.

Our sample comprises four galaxies with an inner ring
(HE0021-1819, HE1017-0305, HE1330-1013, and HE2211-
3903). An inner ring is usually defined as the ring-like structure
that lies just outside the bar. Interestingly, all four galaxies are
non-SF within the bar, while they show some star formation along
the ring. However, not all non-SF bars co-exist with inner rings.
Inner rings may be connected to the star formation activity in
the bar (or absence thereof), but their presence is not a necessary
condition for non-SF bars.
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Fig. 9. Residual surface brightness bar and disc profiles. On the x-axis we plot the radial distance from the centre of the galaxy along the bar major
axis normalised by the bar length. The latter is shown by a vertical black line. On the y-axis we plot the surface brightness. The bar residuals
are indicated in red. The orange line shows the surface brightness of the model bar component using a Sérsic profile. The blue line shows the
exponential disc profile. All profiles were extracted from the 2D image using the ellipse fitting method. The subplots are grouped according to our
classification into SF and non-SF bars.

6.5. Spatial distribution of star formation

In addition to distinguishing between star formation that is hap-
pening inside or outside the bar, we can also pinpoint the direct
location (in 2D projection) of SF sites within the bar. In Fig. 5 we
showed the bar mask used for this measurement. Instead of using
the total sum of star formation in the bar, it is also possible to plot
a radial profile of SFR for each galaxy. Fig. 11 shows the SFR
along the bar major axis (row number −4 to 4 in Fig. 5). Each bin
shows the sum of the three columns −1 to 1, it is therefore not a
cut across the major axis, but contains the whole SFR within the
width of the bar.

In addition to the applied method to disentangle Hα flux from
AGN and star formation, we also excluded the central bin from
this plot. We do not observe any significant difference between
both sides of the bar. On average, the figure shows a trend of
decreasing SFR with radial distance for SF bars, although the
scatter is large and some individual objects show the opposite
trend. The cause of that could be an effect of gas density or
other local variables. This trend agrees with findings of radial
decreasing numbers of core-collapse supernovae (e.g. Hakobyan

et al. 2009; Herrero-Illana et al. 2012), which have been found to
follow Hα distributions in SF galaxies (Anderson & James 2009).

A look at the distribution across the three columns of the
mask (going perpendicular to the bar major axis) helps us to
understand whether the star formation is preferentially happen-
ing either on the leading or the trailing edges of the bar. We
define the direction of rotation of the bar under the assump-
tion that spiral arms are trailing in our galaxies. In Fig. 12 we
plot the SFR of the leading edge against the SFR of the trail-
ing edge. We recognise that for all but one bar the star forma-
tion is stronger on the leading edge. There is an even strong
indication for a correlation between the SFR on both edges. A
Pearson test for linear correlation yields a correlation coefficient
of ρ = 0.96 ± 0.01. The result of a linear regression is given
by SFRtrailing = (0.58 ± 0.09) × SFRleading + (0.00 ± 0.01). The
prevalence of star formation on the leading edge of the bar is
in good agreement with previous observations (e.g. Sheth et al.
2002) and simulations (Athanassoula 1992; Renaud et al. 2015).
Observationally, molecular gas clouds are predominantly found
on the leading edges. This has been confirmed in simulations
by converging flows and large-scale shocks that yield higher gas
densities. Additionally, Renaud et al. (2015) found that tangential
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Fig. 10. Morphology of the host galaxies. Comparison between early-
type (Hubble type T ≤ 3, 10 objects) and late-type (T > 3, 6 objects)
spiral galaxies. Upper panel: Distribution of the Sérsic index of the
primary bar component nbar. Lower panel: Distribution of the sSFR
in the bar region sbSFRb. The median errors of nbar and log (sbSFRb)
are shown in the upper right corner. A typical error of Hubble type
classifications for spiral galaxies is σ = 1.01 T-types (based on >700
classification of 5 observers, Walcher et al. 2014). A k-sample Anderson-
Darling test yields that the hypothesis that the early- and late-type galaxy
samples are drawn from the same parent distribution cannot be rejected
for either the Sérsic index nor sbSFRb with significance levels of 92%
and 55%, respectively.

velocity gradients are less strong on the leading edge that makes
it easier for the gas clouds to collapse and form stars. The spiral-
like pattern that can be seen in the SFR maps in Fig. 5 and Figs.
D.1 to D.3 is typical. This pattern follows the leading edges of
the bar (frequently traced by dust lanes), which is built inside
corotation from the x1 orbits parallel to the bar. If there are two
inner Lindblad resonances (ILR) there are x2 orbits perpendicular
to the bar, and a possible nuclear bar inside a nuclear ring, to
trigger further gas infall to the centre of the galaxy. (Athanassoula
1992; see also Kim et al. 2012; Sormani et al. 2015; Fragkoudi
et al. 2016).

7. Discussion

7.1. Comparison with previous works

7.1.1. Flatness of the bar

In Elmegreen & Elmegreen (1985), the authors classified 15
barred galaxies into bars with flat and exponential-like surface
brightness profiles based on I-band surface photometry on photo-
graphic plates. A bar is described as flat if the major axis profile
is flatter than the outer profile along the spiral arm and it is ex-
ponential if it is similar or even steeper than the spiral profile.
They further subdivide the flat bars into a group of bars with flat
interbar intensity profiles and a group with much faster interbar
intensity decrease. When compared to Hubble types, flat bars are
preferably found in early-type spiral galaxies, while late-type spi-
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Fig. 11. Upper panel: Distribution of the SFRs across the bar parallel
to the bar major axis. Each data point shows the integrated SFR (y-axis)
within the corresponding row (x-axis) in the bar mask as indicated in Fig.
5. Each line corresponds to one object. The SF bars are shown in blue
and non-SF bars are indicated in green. The central row is not shown
since the SFR is very uncertain, because of over or under subtraction of
AGN contamination. Lower panel: Median of both sides of the bar and
all objects within each category. The shaded regions show the median
average deviation (MAD). On average, the SFR of SF bars is decreasing
with distance.
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Fig. 12. Comparison between the SFR on the leading and on the trailing
edge of the bar. The black solid line shows a hypothetical one-to-one
correlation. The data suggest a linear correlation that was tested with the
Pearson correlation coefficient that yields ρ = 0.96 ± 0.01. The violet
solid line shows a linear regression of the form y = m · x + c with the
parameter estimates m = 0.58 ± 0.09 and c = 0.00 ± 0.01. On average,
the SFR is stronger on the leading edge of the bar by a factor of 1.76.

rals tend to have exponential bars. These findings were confirmed
in Elmegreen et al. (1996) with a (partially overlapping) sample
of 19 barred galaxies in the B, I, J, and K band on CCD detectors.
In the latter work, they do not use the spiral arm profiles, but a
straight continuation of the major axis profiles into the disc. They
also plot minor axis profiles instead of interbar averages. The
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main result is that flat bars are located in SBb-SBc galaxies and
exponential bars in SBc-SBm types.

In this work, we do not find a correlation between Hubble type
and flatness of the bar. Our estimate of the flatness is based on the
Sérsic index of the main bar component from a 2D photometric de-
composition. A comparison of this estimate with residual bar light
profiles in Sect. 6.3 confirmed our classification. In addition, for
the purpose of a cleaner comparison to Elmegreen & Elmegreen
(1985), we constructed major and minor axis light profiles for
our sample shown in Fig. B.1. By purely examining the major
axis profiles, we find only four bars that are exponential-like, i.e.
HE0021-1819, HE0108-4743, HE2222-0026, and HE2233+0124.
The Sérsic indices of these bars are between 0.55 ≤ nbar ≤ 0.97,
thus, they are among the larger values. Their Hubble types range
from SBa to SBc. All other bars have flatter profiles. This analysis
confirms our result that there is no preferred Hubble type for a
flat or for an exponential bar. Both types of bars occur from SBab
to SBc. However, we do not cover types later than SBcd.

Given the limited sample sizes and the subjectivity of Hubble
type classification, we refrain from claiming global statements,
but with our detailed analysis of surface brightness profiles of
galaxy bars using high quality data, we caution that a relation
between the flatness of the bar and Hubble type is not as simple
as hitherto thought.

7.1.2. Star formation within the bar

A correlation between Hubble type and star formation along the
bar was reported in Phillips (1993), Phillips (1996) and García-
Barreto et al. (1996). In these works the authors use narrowband
Hα images to analyse the distribution of SF sites in the galaxies.
The sample in Phillips (1993) comprised 15 barred spiral galaxies
of SBb to SBc Hubble types. He found that SBb galaxies have
moderate to no star formation along the bar, while SBc galaxies
have luminous H ii regions within the bar. In Phillips (1996), in
addition to the previously mentioned sample the author included
Hα observations from the literature (without precise specifica-
tion), concluding that galaxies of SBb and earlier types show no
star formation in the bar, whereas bars in SBbc and later galaxies
are actively SF. Similarly, García-Barreto et al. (1996) found that
18 out of 52 barred spiral galaxies in their sample show star for-
mation within the bar. Five of these 18 galaxies are SBb or earlier
and 13 galaxies are SBbc or later.

In this work, we conducted a detailed measurement of SFRs
based on dust-corrected and AGN-star formation deblended Hα
measurements in spatially resolved, well-defined regions within
the bar. Our Fig. 10 shows no correlation of star formation activity
in the bar with Hubble type. In fact, galaxies of the same type can
host both SF and non-SF bars. A nice example shows the compar-
ison of HE1108-2813 with HE1017-0305. Both galaxies are clas-
sified as SBc, yet the former is actively SF (SFRb = 2.53 M� yr−1)
within the bar and the latter is not (SFRb < 0.11 M� yr−1). This
can clearly be seen already in the Hα contours in the images
in Fig. 1. In summary, we show that bars of all Hubble types
between SBa and SBcd can be SF and non-SF.

7.2. AGN feeding

Simulations have succesfully shown that the gravitational poten-
tial of a large-scale bar induces gas inflow towards the centre
of the galaxy through torques and angular momentum transfer.
Thereby they are able to provide the fuel for nuclear activity
(Shlosman et al. 1989, 1990; Piner et al. 1995; Fragkoudi et al.

2016). Such inflows have been seen observationally in Holmes
et al. (2015), who finds non-circular flows in Hα velocity fields
in 12 out of 29 galaxies with 11 of 12 stemming from bars.

Observational evidence trying to link the presence of a bar
to AGN activity is still not conclusive. To test the scenario of
bar-driven AGN feeding, studies have compared the incidence
of bars in active and non-active galaxies as well as the incidence
of AGN in barred and unbarred galaxies. While some of these
studies report results that support the hypothesis that bars fuel
AGN (Knapen et al. 2000; Coelho & Gadotti 2011; Oh et al.
2012; Alonso et al. 2014; Galloway et al. 2015), others find no
significant correlations (Mulchaey & Regan 1997; Ho et al. 1997;
Cheung et al. 2015). Oh et al. (2012) point out the importance of
breaking degenerate correlations between bar effects and galaxy
properties.

Additionally, the influence of bars on AGN has also been stud-
ied by measuring the strength of the nuclear activity as compared
to the presence and strength of the bar. Cisternas et al. (2013) stud-
ied the activity of low-luminosity AGN in 41 barred host galax-
ies with Chandra X-ray observations and near-infrared Spitzer
data and found no correlation between nuclear activity and bar
strength, irrespective of galaxy luminosity, stellar mass, Hubble
type, and bulge size. Goulding et al. (2017) approached the prob-
lem that AGN activity changes on much smaller timescales com-
pared to the lifetime of bars by stacking Chandra X-ray sources
as proxy for a time-averaged accretion. These authors also con-
cluded that bars have little or no effect on the nuclear activity.
Another possible explanation for a lack of correlation in some
studies apart from different timescales is provided by Fragkoudi
et al. (2016) who found in their simulations that boxy/peanut
bulges reduce the gas inflow rate by more than an order of magni-
tude. By contrast, in an extensive study of ∼ 5000 AGN Alonso
et al. (2018) have found that AGN in barred galaxies show an
excess of nuclear activity (as measured from L[O iii]) and accretion
rate as compared to AGN in unbarred galaxies.

In this context, it is interesting to investigate whether the
capability of a bar to transport gas to the centre and fuel AGN
depends on bar properties other than the bar strength. The non-SF
and SF bar types in our sample might reflect the dynamical state
and age of the bar or its gas content. In the following we test if
the star formation activity in the bars of our sample correlates
with nuclear activity.

In the upper panel of Fig. 13 we plot SFRb against the AGN
bolometric luminosity (Lbol) which we derive from the host-
subtracted (see AGN-host deblending procedure, explained in
Sect. 5) monochromatic luminosity λLλ (5100 Å) at rest-frame
wavelength of 5100 Å following Wandel et al. (1999) and Kaspi
et al. (2000). The lower panel shows sbSFRb against the Ed-
dington ratio (Lbol/Ledd). There is no indication for a correlation
between these parameters in either of the two plots. However, the
restricted range in AGN luminosities (∼ 1 dex) and Eddington
ratios (∼ 1.5 dex) limits an optimal comparative study. Although
bars may enhance the nuclear activity, the effect of SF and non-
SF bars does not show clear differences. Nevertheless, a causal
connection between bars and AGN activity is difficult to observe
owing to the different timescales of long-living stellar bars, vari-
able AGN activity, and tracers of ongoing star formation such as
Hα.

7.3. Implications on the evolution of stellar bars

Stellar bars form spontaneously from instabilities in the galactic
disc (e.g. Athanassoula 2013). It seems reasonable to assume that
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Fig. 13. Testing AGN feeding: comparison between star formation ac-
tivity in the bar and nuclear activity in the host galaxy. Upper panel:
SFR in the bar region against bolometric luminosity of the AGN. Lower
panel: sSFR in the bar against Eddington ratio. The Spearman’s rank
correlation coefficient ρ and its t-value for a null-hypothesis are given in
the top left corner of each panel. HE0045-2145 is not included because
it does not host an AGN.

as they form from the disc material, they start with similar prop-
erties as the underlying disc in terms of radial surface brightness
profile (exponential) and ongoing star formation activity (SF) in
the early stages of their formation and evolution. As they evolve,
bars grow stronger and longer and eventually must stop forming
stars because of depletion of gas, as long as there is no exter-
nal replenishment. Additionally, other processes such as shear
may be in place that restrict star formation locally and accelerate
the quenching process in the bar. This scenario can be seen for
example in the simulation of Khoperskov et al. (2018).

In the present paper, we show that the flattest bars (nbar . 0.4)
– those with very shallow profiles in the log-linear radial surface
brightness diagram – are actively SF and bars that are less flat
(0.4 . nbar . 0.8) are non-SF. If bars evolve from one type into
the other, this suggests either that young bars have shallower
profiles that grow steeper over time or that non-SF bars can start
forming stars at later stages of their evolution. The non-correlation
of SFR in the bar with B/T and Hubble T -type can be explained
by a variability of gas in the bar during the evolution.

If we look at the parameters of our sample, we see that this
study is missing low-mass galaxies

(
M? < 1010 M�

)
, exponential

bars (nbar > 0.8) , and very late Hubble types (SBcd-SBm). Ex-
ponential bars have been connected to low-mass galaxies (Kim
et al. 2015) and late-type spirals (Elmegreen & Elmegreen 1985).
Late-type galaxies of low stellar masses with exponential bars,
which have been associated with star formation in the bar, could
be an important population of bars to complement the evolution-
ary picture. Nevertheless, our results indicate that the SF bars
in our sample are not part of that population. In other words,
earlier-type spirals in massive galaxies can host flat and SF bars.

Another important part of the puzzle is the presence of inner
rings. Ring-like structures in disc galaxies are often associated

with dynamical orbital resonances; but see also Romero-Gómez
et al. (2006, 2007) in which the manifold theory is employed
to explain such structures. The most important resonances in a
barred galaxy are the outer Lindblad resonance (OLR), the coro-
tation resonance (CR) and the inner Lindblad resonance (ILR).
Usually the OLR is located at about twice the bar length, the CR
just outside the bar region and the ILR well within the bar region
(e.g. Comerón et al. 2014). The non-axisymmetric potential of a
barred galaxy induces gravitational torques that drive gas outside
the CR outwards where it accumulates at the OLR. Gas inside the
CR is driven inward towards the ILR and/or the inner 4/1 reso-
nance, which is also called ultra-harmonic resonance (UHR) just
inside corotation (Schwarz 1984; Buta & Combes 1996). This
resonant accumulation of gas can lead to the formation of outer
rings at the OLR, inner rings between the UHR, and the CR and
nuclear rings at the ILR (see also Buta 1986; Rautiainen & Salo
2000)

All four galaxies with inner rings in our sample host non-SF
bars. However, not all non-SF bars host inner rings (see Sect.
6.4). This indicates that the conditions for a galaxy to quench
star formation in the bar might be necessary, but they are not
sufficient conditions to develop an inner ring. It could also be a
timescale effect. During the evolution of the bar it depletes itself
from gas, hence the star formation decreases, while at the same
time gas accumulates near the UHR fueling an inner ring. After
the formation of the ring it becomes more difficult to replenish the
bar region with gas, especially if the galaxy is relatively isolated.
This scenario is in agreement with the reciprocal relationship of
H ii regions between the bar and an inner ring found by Ryder &
Dopita (1993). A similar relationship should also be observable
between star formation in bars and nuclear rings and would be an
interesting subject for a future work.

8. Conclusions

We have used MUSE/VLT IFS data from the CARS survey to ac-
curately photometrically decompose a sample of 16 local barred
spiral galaxies including up to 7 different components. We ad-
ditionally derived spatially resolved SFRs from dust-corrected
Hα line fluxes and analysed the total amount and the spatial dis-
tribution of star formation within the bar component. From a
detailed comparison of the obtained parameters, we summarise
the following conclusions:

1. There are two classes of galaxy bars: those that show signifi-
cant star formation (SF bars) and those that have very little
to no star formation activity (non-SF bars). A third category
of bars with fading star formation in the centre as proposed
by Verley et al. (2007) could not be probed because of AGN
dominated photoionisation in the central region. The clear
separation in sbSFRb between SF and non-SF bars indicates
that the quenching process must be fast as compared to the
lifetime of SF and non-SF bars.

2. The SFRb and sbSFRb correlate with the Sérsic index nbar
of the main bar component; in fact, we observe a separation
between SF and low-index (nbar . 0.4) bars and non-SF and
high-index (0.4 . nbar . 0.8) bars.

3. We find that SF bars are flatter and have profiles that have
a similar slope to that of the underlying disc up to a radius
where the brightness suddenly drops, whereas non-SF bars
have closer to exponential profiles with a smaller scale length
than the disc and no clear downturn within the bar length. The
flatness of a bar is a term that has been used in the literature to
describe the surface brightness profile of some stellar bars. It
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is, however, misleading since a flat bar can still be exponential,
but with a larger scale length, up to the radius where it turns
down. Flat bars might actually be more similar to their discs
than exponential bars.

4. There is no significant difference in the distribution of sSFR of
the bar (sbSFRb) or bar Sérsic index (nbar) between early-type
and late-type disc galaxies. Both earlier and later types can
have star formation or not and can be flat or exponential. This
is in contrast to previous reports (Elmegreen & Elmegreen
1985; Elmegreen et al. 1996; Ohta 1996; Phillips 1993, 1996).
Compared with this literature the range of Hubble types of
our sample is similar and we only miss the very late types
SBd to SBm, which are however the types previously reported
to host exponential bars. Most of the bars in our sample are
indeed rather flat. Furthermore, neither the samples in the
aforementioned literature nor our sample are of statistically
significant size to make global statements, but – given the
depth of our analysis – this is a cautionary note: a plain
correlation between Hubble type and flatness or star formation
activity might be too simple. Early-type spirals in massive
galaxies can host flat and SF bars.

5. The radial distribution of SFR of SF bars is decreasing with
increasing distance from the centre.

6. Star formation activity is about 1.75 times stronger on the
leading edge than on the trailing edge of the bar, in good agree-
ment with previous works (e.g. Athanassoula 1992; Sheth
et al. 2002; Renaud et al. 2015).

7. The presence of non-SF bars might be related to the presence
of inner rings.

8. The SFRb is not correlated with the bolometric luminosity
of the AGN, nor is sbSFRb correlated with the Eddington
ratio. Hence, there is no evidence that the star formation
activity in the bar affects AGNs feeding. However, given the
potential unknowns of the effects of selecting luminous type-1
AGN and the therefore restricted range of AGN luminosities
and Eddington ratios, the conclusions from this work may
only apply to type-1 AGN hosts. Further work is required to
confirm whether they can be extended to the full population
of barred galaxies.

Our analysis is by construction based on a sample of AGN
host galaxies, which raises the question whether the presence of
the AGN affects the SFRs in the bars measured in this work. There
is no obvious answer to that. Not only different and uncertain
timescales when AGN feedback becomes visible, but also the ra-
dial range it affects is still under debate (e.g. Gaspari & Sa̧dowski
2017; Harrison 2017). The impact on the results presented in this
work is frankly unknown. One of the galaxies, HE0045-2145,
which was first misclassified to host an AGN, does not show
exceptional results in any way in our analysis. We suggest a com-
parable study with an AGN-free control sample in the future,
but until then there is no reason to believe that barred galaxies
without AGN would yield different results. Further papers from
the CARS collaboration will address the effect of feedback in the
future.
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Appendix A: Uncertainties of the 2D photometric decomposition

Appendix A.1: Uncertainty of nbar

In this subsection, we discuss two different approaches to estimate the uncertainties of 2D image decompositions; both are implemented
in the code i m f i t. The first method uses a bootstrap technique after finding the best fit result. Per iteration, it resamples and replaces
a fraction of the data points and repeats the fit using the fast Levenberg-Marquardt minimisation algorithm given the best fit parameter
values as initial guesses. We perform the bootstrapping with 1,000 iterations and take the inner 68% range of the posterior distribution
as error. The other approach is based on a MCMC analysis. It starts with multiple walkers that explore the parameter space that is
given by the user as input. It is completely independent from the best fit result. We choose to equal the number of walkers to the
number of free parameters (which range between 11 and 34 depending on the number of model components in the fit) as suggested in
the documentation of the code; we used a 5,000 step burn-in phase and an upper limit of 100,000 steps to terminate the script if no
convergence is reached. Again, the inner 68% range of the posterior distribution is used as an estimation of the error of the best fit.
Given the large number of free parameters, the fit did not converge within a reasonable time for most galaxies even on a multiple-core
machine. This is one reason why the MCMC error bars are probably too large for many galaxies. The results of both approaches are
shown in Fig. A.1. We only plot the nbar parameter. It is clearly visible that the MCMC error bars are much larger than the errors
derived with the bootstrap approach.

For the interpretation of these results it is important to keep in mind that the more components are added to the fit the more
degenerate it becomes. Therefore, it is more likely to be trapped in local minima in the χ2 landscape. The MCMC method strongly
differs from the bootstrap technique in the sense that it explores the whole parameter space completely independently from the best fit
values. However, because of the degeneracies, in many cases the fit did not converge within a reasonable amount of steps. On the
contrary, the bootstrap method with Levenberg-Marquardt minimisation starting at the best fit values is apparently not very likely to
get out of a local minimum. The main question that we should probably ask ourselves is what kind of error we want to estimate:
uncertainties from observational data, uncertainties from a mismatch between model and reality, or uncertainties from human-made
choices for certain model components and initial parameter values. In this context, the results from the MCMC approach demonstrate
the spread of possible solutions, if as little assumptions as possible are made. On the other side, bootstrap provides the error given a
specific model.

The reason why some of the points in the lower left, best fit bootstrap panel are off the one-to-one line is most probably caused
by the different minimisation techniques. The best fit results come from using the slower but more robust Nelder-Mead simplex
minimisation while bootstrap uses the fast Levenberg-Marquardt technique. The exact explanation as to why the different algorithms
lead to these offsets still needs to be explored in more depth given the complexity of the decompositions. We trust our measurements
from the best fit result.

Appendix A.2: Modelling a synthetic galaxy image

Another way to estimate the accuracy of the photometric decomposition fitting procedure is to create synthetic images of galaxies
and subsequently fit these in the exact same manner as was done for the real galaxies. We show as an example the results for one
synthetic galaxy that demonstrates how the input parameters can be retrieved satisfactorily.

The image was created using the mak e i m ag e module of i m f i t. It takes the same component functions that can be used to fit an
image and generates a new image. A psf image can be provided to convolve with the object image before the final output (for further
details see Erwin 2015). We selected six input components: a point source, a bulge, three bar components, and a disc. Additionally,
we added a flat sky background. The input values for the model parameters were generated randomly within certain limitations to
ensure a realistic galaxy image (for example relative sizes and luminosities). After generating the image with mak e i m ag e we added
on top Poisson noise using the mkno i s e function of i r a f.

With no a priori knowledge of the input values, we started the fitting procedure exactly like we did for the real galaxies with a
simple point source + exponential disc model. After inspecting the residual images we added other components to the next fit if we
had clear visual indications of their presence. As last step we performed bootstrapping with 200 iterations to estimate error intervals.
In Table A.1 we summarise the results. In Fig. A.2 we show the image of the generated artificial galaxy, the best fitting model and the
residual image.

We note that most parameters were successfully retrieved within a range of ∼ 5% deviation including specifically the main
bar component bar1 and its Sérsic index. Only the bulge and the thick bar component bar2 show larger deviations from the true
values. This can be explained by similar sizes and luminosities of both components and thus degeneracies between the corresponding
parameters. We point out, however, that the uncertainties in the photometric fits so derived should be considered as lower limits. This
is because the structural components of the synthetic images follow the exact same models employed by the fitting software. This
assumption might not necessarily hold in real galaxies.
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Table A.1. Synthetic galaxy: Input and best fit values for all model parameters.

Parameter Model Input value Best fit value Error Rel. dev. Within errors
component from input 1=true, 0=false

(1) (2) (3) (4) (5) (6) (7)
X0 Position 158.598 158.597 0.003 0.00% 1
Y0 153.462 153.462 0.001 0.00% 1
PA [◦] Point source 0 fixed fixed fixed fixed
ell 0 fixed fixed fixed fixed
I0 [counts] 167000 169900 4985 1.74% 1
σ 0.1 fixed fixed fixed fixed
PA [◦] Bulge 70.970 85.154 52.559 19.99% 1
ell 0.031 0.235 0.284 646.91% 1
n 1.800 1.646 2.240 8.53% 1
Ie [counts] 17.140 16.942 21.102 1.16% 1
re [px] 3.200 3.848 4.295 20.26% 1
PA [◦] Bar1 113.450 113.489 0.088 0.03% 1
ell 0.730 0.731 0.002 0.19% 1
c0 2.000 1.957 0.134 2.16% 1
n 0.320 0.314 0.007 1.92% 1
Ie [counts] 5.200 5.163 0.073 0.71% 1
re [px] 32.170 32.321 0.166 0.47% 1
PA [◦] Bar2 113.450 113.451 2.112 0.00% 1
ell 0.160 0.125 0.036 21.94% 1
c0 24.200 30.707 66.273 26.89% 1
n 0.500 0.794 0.191 58.85% 0
Ie [counts] 9.200 14.577 4.075 58.45% 0
re [px] 5.100 4.776 0.486 6.36% 1
PA [◦] Bar3 113.450 113.570 0.070 0.11% 0
ell 0.900 0.898 0.002 0.22% 1
c0 1.240 1.301 0.255 4.96% 1
n 0.160 0.154 0.010 3.87% 1
Ie [counts] 7.250 7.234 0.125 0.23% 1
re [px] 27.530 27.409 0.253 0.44% 1
PA [◦] Disc 70.970 71.316 0.287 0.49% 0
ell 0.140 0.139 0.001 0.41% 1
I0 [counts] 20.000 20.021 0.073 0.11% 1
h [px] 28.900 28.774 0.050 0.43% 0
Isky [counts] Background 0.0010 0.0004 0.0006 59.92% 1

Notes. The synthetic galaxy was created with six different structural components and a flat sky background. Poisson noise was added afterwards,
but before the fitting procedure. This table gives an overview of the input values as well as all 31 simultaneously fitted free parameters and 3 fixed
parameters. (1) Parameter; (2) structural component of the model; (3) input value to create the synthetic galaxy; (4) best fit value; (5) 1σ error
estimate from bootstrapping with 200 iterations; (6) relative deviation of the best fit value from the input value; and (7) check whether the input
value lies within the 1σ interval of the best fit result.
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Sérsic index of the bar: nbar
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Fig. A.1. Comparison between different methods to fit multicomponent galaxy models to the collapsed 2D MUSE i-band images. This plot only
shows results for the parameter nbar. The label best fit is the best fitting result using the Nelder-Mead simplex minimisation technique and a χ2 fit
statistic for minimisation. The label bootstrap gives the result of resampling the pixel values in the data image with 1,000 iterations after the best fit.
For time-saving reasons it uses the Levenberg-Marquardt minimisation algorithm. The red data points given in the plot indicate the median value of
the 1,000 fits; the error bars show the 0.16 and 0.84 quantiles. The label mcmc is the result of applying a MCMC analysis to the data image instead
of searching for the best fit model. The data points in the plot indicate again the median value of the posterior distribution; the error bars show the
0.16 and 0.84 quantiles.
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Fig. A.2. Photometric decomposition of generated artificial galaxy image. From left to right: data image, model, and residual=data-model. The
greyscale mapping in the residual image is stretched in order to show faint details.
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Appendix B: Major and minor axis surface brightness profiles

In Fig. B.1 we present surface brightness profiles along the major and minor axis of the stellar bars. These were directly extracted
from the collapsed i-band images of the MUSE cubes. We used these profiles to mimic an analysis similar to Elmegreen & Elmegreen
(1985) and Elmegreen et al. (1996) and compare our results with theirs; see Sect. 7.1.1 for further details.
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Fig. B.1. Radial surface brightness profiles along the major (blue) and minor (green) axes of the bar and continued into the disc. The distance on the
x-axis is deprojected and scaled to the galaxy plane. The length of the bar is denoted by vertical black lines
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Appendix C: Photometric image decomposition
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Fig. C.1. Same as Fig. 2. Photometric image decomposition of the complete sample.
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Fig. C.2. continued.
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Fig. C.3. continued.
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Fig. C.4. continued.

Article number, page 25 of 28



A&A proofs: manuscript no. 34441corr

Appendix D: Spatial distribution of star formation

In this section we show the spatial distribution of star formation for the entire sample used in this work. The figures are of the same
format as Fig. 5. The coloured pixels are showing the SFR per spaxel in the MUSE cube overplotted with a 3 × 9 grid outlining the
region of the bar. This grid is used in the next step of the analysis to rebin the spectra in each cell and estimate the corresponding SFR
per bin as described in Sect. 5. Additionally to Fig. 5, here, we also show in blue isophotal contours from the i-band image of the
galaxy. In the case of galaxy HE1108-2813, the PA of the grid has been adjusted carefully (by 7 deg counterclockwise) to capture
fully the star formation that clearly comes from the bar and avoid as much as possible contaminant star formation from spiral arms.
This is caused by the offset of the PA of Hα as compared to the stellar bar towards the leading edge as discussed in Sect. 6.5. The
spiral-like pattern seen in many SFR maps follows the typical pattern of infalling gas along the x1 and x2 orbits of the bar.
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Fig. D.1. Same as Fig. 5. Spatial distribution of SFR of the complete sample. We also show blue contours of the i-band image of the galaxy.
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Fig. D.2. continued.
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Fig. D.3. continued.
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