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Advances in Sustainable Catalysis: A
Computational Perspective
Matthew G. Quesne*, Fabrizio Silveri, Nora H. de Leeuw and C. Richard A. Catlow

School of Chemistry, Cardiff University, Cardiff, United Kingdom

The enormous challenge of moving our societies to a more sustainable future offers
several exciting opportunities for computational chemists. The first principles approach
to “catalysis by design” will enable new and much greener chemical routes to produce
vital fuels and fine chemicals. This prospective outlines a wide variety of case studies to
underscore how the use of theoretical techniques, from QM/MM to unrestricted DFT and
periodic boundary conditions, can be applied to biocatalysis and to both homogeneous
and heterogenous catalysts of all sizes and morphologies to provide invaluable insights
into the reaction mechanisms they catalyze.
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heterogeneous catalysis

INTRODUCTION

The challenge of moving toward a greener and more sustainable society will inevitably require the
drastic transformation of many aspects of modern culture and economy, with all areas of resource
management and production needing radical overhaul (Liu et al., 2015; Little et al., 2016; Bakshi
et al., 2018). From a green chemistry standpoint this means the reengineering of chemical pathways
that: (i) make the most efficient use of natural resources (Hellweg and Canals, 2014; Bakshi et al.,
2015, 2018; Jaramillo and Destouni, 2015), (ii) reduce the volume of hazardous/polluting reagents
and solvents (Clark et al., 2015; Clarke et al., 2018), and (iii) promote the substitution of fossil fuel
resources with renewable alternatives (Gallezot, 2012; Wettstein et al., 2012; Sheldon, 2014, 2016;
Den et al., 2018; Talebian-Kiakalaieh et al., 2018). Achieving all these goals will require the design of
novel and efficient catalysts that are active under mild conditions and can be produced sustainably
without leading to unacceptably high levels of toxic pollutants (Beletskaya and Kustov, 2010;
Polshettiwar and Varma, 2010; Chua and Pumera, 2015; Egorova and Ananikov, 2016). However,
before any of these new catalysts can be developed a fundamental understanding of the properties
of the currently most efficient and environmentally sustainable options has to be obtained, in order
to enable the design of their replacement (Campbell et al., 2016; Hutchings et al., 2016; Pelletier and
Basset, 2016; Friend and Xu, 2017; Chen et al., 2018; Kornienko et al., 2018; Caddell Haatveit et al.,
2019). Computational models have proved to be one of the most efficient and least resource heavy
ways of obtaining such information and have now become an invaluable component in the field as
a whole (Nørskov et al., 2009; Hansgen et al., 2010; Medford et al., 2015; Sutton and Vlachos, 2015;
Greeley, 2016; Grajciar et al., 2018). In recent years, joint experimental and theoretical catalytic
studies have become routine and have proven crucial to any fundamental understanding of catalysis
at the molecular level, which will be underscored in detail in the proceeding example sections of
this perspective (Hirunsit et al., 2015; Van Speybroeck et al., 2015; Yu et al., 2017; Kulkarni et al.,
2018; Zhu et al., 2018).

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2019.00182
http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2019.00182&domain=pdf&date_stamp=2019-04-12
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:quesnem@cardiff.ac.uk
https://doi.org/10.3389/fchem.2019.00182
https://www.frontiersin.org/articles/10.3389/fchem.2019.00182/full
http://loop.frontiersin.org/people/123327/overview
http://loop.frontiersin.org/people/699051/overview


Quesne et al. Catalysis by Design: A Theoretical View-Point

Quantum
Mechanical/Molecular Mechanics
Computational chemistry really came of age during the
1960s, with the advent of mainframe computers; however,
early breakthroughs in approximating the wavefunction of
many electron systems date back almost 30 years earlier
with the development of the Møller-Plesset second-order
perturbation wavefunction theory (MP2) (Møller and Plesset,
1934). One major and much more recent development was
the applicability of density functional theory (DFT), especially
after the incorporation of the gradient approximations into the
exchange correlation function (Becke, 1993). However, not all
DFT functionals are created equally and at the turn of the
millennium John Perdew proposed a climbing scale coined the
“Jacob’s ladder” with pure GGA functional near the bottom
and hybrid functionals close to the top (Perdew and Schmidt,
2001; Sousa et al., 2007). In practice, this often means that in
silico homogenous catalytic systems, which are often modeled
with hybrid functionals (Green et al., 2014; Wójcik et al., 2016;
Wojdyła and Borowski, 2016; Delarmelina et al., 2017; Dabral
et al., 2018), produce results that are closer to experimental values
then those obtained when modeling heterogenous catalysts,
where pure GGA are frequently the only efficient functionals
to be implemented periodically (Hammond et al., 2012; Zhao
et al., 2015; Ishikawa et al., 2017; Kunkel et al., 2018; Morales-Gar
et al., 2018; Fang et al., 2019; Wang et al., 2019). Unfortunately,
there is no universal functional and the most appropriate
exchange–correlation term must be assessed on a system specific
basis by benchmarking theoretically obtained electronic or
catalytic properties to those observed experimentally (Laurent
and Jacquemin, 2013; de Visser et al., 2014; Hickey and Rowley,
2014; Cantú Reinhard et al., 2016); additionally, the amount of
Hartree–Fock component included in the exchange component
of the most commonly used hybrid functionals can be modified
to produce a better match between experimental and in silico
values (Reiher et al., 2001; Walker et al., 2013). Increasingly,
the importance of systematically benchmarking the functional of
choice to experimentally determined properties of heterogenous
catalysts is also becoming widely understood (Janthon et al., 2013,
2014; Quesne et al., 2018; Zhang et al., 2018). Implementing such
well-benchmarked quantum mechanical techniques, has led to
an explosion in studies that highlight fundamental aspects of
the reaction mechanisms catalyzed by (i) enzymatic biocatalysts
(Meunier et al., 2004; Li et al., 2012; Quesne et al., 2013; Blomberg
et al., 2014; de Visser et al., 2014), (ii) homogenous catalysts
(Kumar et al., 2010; Prokop et al., 2011; Neu et al., 2014; Sahu
et al., 2014; Yang et al., 2016), and (iii) heterogenous catalytic
materials (Alfredsson and Catlow, 2002; Sun and Liu, 2011;
Cadi-Essadek et al., 2015, 2016; Quesne et al., 2018; Schilling
and Luber, 2018; Silveri et al., 2019). Moreover, when such
techniques are combined with classical molecular mechanics or
dynamics, hybrid QM/MM cluster models can be constructed
that act as relatively computationally inexpensive methods for
studying large catalysts from microporous and mesoporous
materials (O’Malley et al., 2016; Catlow et al., 2017b; Nastase
et al., 2019) to heterogenous nanocatalysts (Xie et al., 2017; Lu
et al., 2019) and are often especially useful during the study

of enzymatic reaction mechanisms (Gao and Truhlar, 2002;
Senn and Thiel, 2007, 2009; van der Kamp and Mulholland,
2013). Indeed, one of the initial motivations for the development
of the QM/MM method in the 1970s was to investigate such
biocatalyzed reaction (Warshel and Levitt, 1976); although,
despite the techniques early development, it was not until
much later that the methodology really came into its own and
the technique started to become widely applied (Field et al.,
1990; Rothlisberger et al., 2000). As previously mentioned,
QM/MM methods are now being increasingly used to model
heterogenous catalysts, for example in modeling catalytic process
in zeolites (Nastase et al., 2019) and supported nano-catalysts
(Xie et al., 2017; Lu et al., 2019). An illustrative example of one
such ionic catalyst is shown in Figure 1, where a QM region
with a circumference of 10 Å has been applied to a slab of
magnesium oxide.

Most QM/MM studies begin with a crystal structure that
is often deposited and stored online, whereby database of
everything from zeolites (Baerlocher and McCusker, 2010) to
enzymes (Berman et al., 2000) as well as the primitive cells of
ionic material (Hellenbrandt, 2014) are available to researchers.
Heterogeneous catalysts tend to be very ordered with relatively
small primitive cells that can be optimized using a 3D periodic
scheme (Ghorbanpour et al., 2014); as incorporated in codes
such as VASP (Kresse and Furthmüller, 1996a), CASTEP (Clark
et al., 2005), and CRYSTAL (Dovesi et al., 2014), prior to
the preparation of a larger supercell for QM/MM treatment.
However, even with heterogenous catalysts, there may be a
need for some post-optimization modification of the crystal
structure to introduce defects and active sites; as is often the case
with zeolites whereby Brønsted acid sites need to be included,
which involves substitution of silicon atoms by aluminum and
charge compensation by protons (Sastre et al., 2002; O’Malley
et al., 2016; Nastase et al., 2019). Conversely, large catalysts with
disordered tertiary structures often require a far more extensive
preparation protocol, which is especially true for enzymatic
catalysts, since it is often impossible to crystallize an active
enzyme/substrate complex and heavy atom positions need to be
modified to create reactant starting structures (Quesne et al.,
2014). Additionally, all residues need to be protonated because
hydrogen atoms do not have enough electron density to be
resolved accurately; which is typically done to a specific pH value
with a PROPKA server (Dolinsky et al., 2007). Finally, since most
crystallization techniques reduce the water content inside the
protein core, a detailed molecular dynamics protocol needs to be
run to solvate themodel using one of the biomolecular force fields
designed specifically for proteins (Oostenbrink et al., 2004; Wang
et al., 2004; Brooks et al., 2009).

Once a working model of the catalyst and substrate is
obtained, the large system needs to be split into a minimum
of two regions. Typically, the much smaller region contains
all the atoms that need to be describe quantum mechanically
(QM region) and the other much larger region contains all the
remaining atoms (MM region); which are described at a much
lower level of theory, often with classical molecular mechanics.
Since creating these regions may necessitate the breaking of
either covalent or ionic bonds, an accurate description of the
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FIGURE 1 | Illustrative representation of a typical QM/MM set-up of an example metal–oxide, MgO. A QM region with a circumference of 10 Å is shown with large red
and green spheres, with point charges colored brown. (A) Top–view from above the slab, (B) side–on from the slab edge.

interactions between different regions is critical for the correct
electronic structure of the QM region. Currently the most
common method for dealing with the valence issue in covalent
systems, such as zeolites and biocatalysts, requires capping
boundary atoms with hydrogen linkers (Senn and Thiel, 2009;
Catlow et al., 2017a). When modeling ionic catalysts, interatomic
potentials are often used to describe the MM region and an
electrostatic embedding protocol is used to provide a countering
polarizing environment to the ions at the border of the QM
region (Bredow et al., 1996; Sokol et al., 2004).

Although, electrostatic embedding is also commonly applied
to QM/MMmodels of covalent catalysts (Field et al., 1990) there
is also the possibility of using a reduced mechanical embedding
approach (Maseras and Morokuma, 1995). Both techniques
model electrostatic interactions between atoms either side of the
QM/MM boundary; however, MM charges are only included
in the QM Hamiltonian with electrostatic embedding, which
makes it the only appropriate methodology for ionic catalysts.
In mechanical embedding protocols, electrostatic interaction
between the two regions are assigned classically and so changes
in the polarization of QM atoms due to electron transport (i.e.,
during a chemical reaction) is unaccounted for by changes in
charge distribution (Chung et al., 2015). Importantly, the use
of an electrostatic embedding protocol often produces results
that are very sensitive to the choice of a given QM region, with
convergence studies reporting that the absolute mean deviation
between 40 different QM regions increased from 1.7 kcal mol−1

to ∼5 kcal mol−1 when moving from a mechanical to an
electrostatic embedding protocol (Hu et al., 2011). Therefore,
the use of an electrostatic embedding protocol may lead to less
accurate results for the study of covalent catalysts in cases where
the boundaries of the QM/MM regions are chosen poorly. This
problem is negated in for example QM/MM case study reported

here, where ChemShell was used as a platform to create quickly
create several different QM regions for benchmarking and the
boundary regions were very carefully chosen to only cut through
sp3 hybridized C–C bonds (Sherwood et al., 2003; Lu et al., 2019).

After a model of the catalyst is created, there are two
major schemes for calculating the reaction landscape. Subtractive
protocols are very commonly used in the study of reaction
landscapes catalyzed by covalent catalysts, such as zeolites
(Namuangruk et al., 2004; Vreven and Morokuma, 2006) and
enzymes (Quesne et al., 2014; Wojdyla and Borowski, 2018).
In two-layer subtractive protocols, only the QM region is
capped with linker atoms because the whole system is also
calculated at the MM level of theory, which would means that
the MM energy of the QM region needs to be subtracted
[EMM(QMregion)] from the total energy to avoid double counting
(see Equation 1). The QM/MM case study presented in this
perspective utilizes the alternative additive approach, shown in
Equation (2), whereby, only the MM region is calculated at
the MM level of theory (EMM). This negates the need for a
subtraction step but requires the addition of a specific coupling
term to describe the QM/MM border region (Eborder), which
includes bonding, electrostatic and Van der Waals interactions
between the two regions (Sherwood et al., 2003). Importantly,
when calculating using a mechanical embedding approach to
calculate energy landscapes for covalent catalysts, it has been
reported that both protocols should provide identical results
(Cao and Ryde, 2018).

EtotalQM/MM = EwholeMM + EQM
(

QMregion

)

− EMM

(

QMregion

)

(1)

EtotalQM/MM = EMM + EQM
(

QMregion

)

+ Eborder (2)

Frontiers in Chemistry | www.frontiersin.org 3 April 2019 | Volume 7 | Article 182

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Quesne et al. Catalysis by Design: A Theoretical View-Point

Other Computational Techniques
One of the main alternatives to the QM/MM technique for the
study of reaction mechanisms catalyzed by enzymes involves
the use of QM cluster models that focus on the biocatalyst’s
active site region and immediate surroundings. The models
can consist of dozens to hundreds of atoms, which are all
treated with a highly accurate level of computational theory.
Generally, the majority of the substrate binding pocket is
included with priority given to charged hydrophylic residues
that form strong hydrogen bonds or π-staking interactions with
either the substrate or co-factors, which inevitably are also
included (Siegbahn and Crabtree, 1997; Borowski et al., 2004;
Hernández-Ortega et al., 2014, 2015; Miłaczewska et al., 2018).
Thus, these models should faithfully mimic substrate position
as well as the enzyme’s catalytic activity; however, the need to
add geometric constraints to these models can sometime restrict
substrate mobility. Of course there are many advantages and
disadvantages to both techniques, which have been well discussed
elsewhere (Blomberg et al., 2014; de Visser et al., 2014; Borowski
et al., 2015; Quesne et al., 2016a). Molecular cluster approaches
have also been used successfully to calculate adsorbate energies
and simulate frequencies for many heterogenous catalysts (Haase
and Sauer, 1994; Pelmenschikov et al., 1995, 1998; Zygmunt
et al., 1998; Dangi et al., 2010); however, the neglecting of
long-range Coulomb interactions as well as the lack of realistic
steric constraints can reduce the effectiveness of such techniques
for calculating reaction pathways. Dynamical approaches such
as metadynamics (Barducci et al., 2011; Qian, 2012), umbrella
sampling (Kästner, 2011), transition path sampling (Bolhuis
et al., 2002) as well as many others (Meliá et al., 2012; Roca
et al., 2012), can also be applied to catalyst reactivity, where they
can be very advantageous in the study of free energy landscapes
and rare-events, which is especially true for large systems where
there are many degrees of freedom to be considered along
with many energetically close “representative” transition states
(Tsai et al., 2002). Metadynamics aims to sample the three–
dimensional free energy surface of a reaction landscape using
one of several “collective” variable associated with the transfer
atom(s) (Laio and Parrinello, 2002; Iannuzzi et al., 2003; Ensing
et al., 2005; Laio et al., 2005) and has been extensively applied
to zeolite (Moors et al., 2013; Van Der Mynsbrugge et al.,
2014; Dewispelaere et al., 2015; Hajek et al., 2016; Cnudde
et al., 2017) and enzyme (Petersen et al., 2009; McGeagh
et al., 2011; Lira-Navarrete et al., 2014; Raich et al., 2016;
O’Hagan et al., 2019) catalyzed reaction. Such techniques work
best when a reaction coordinate can be assigned to a simple
set of collective variables that apply to distinct groups inside
the reactant(s); however, in cases where the reaction path is
uncertain more degrees of freedom can be explored using a
transition path sampling protocol. Such methods incorporate
Monte Carlo techniques into a molecular dynamical algorithm to
locate a number of potential transition states connecting different
minima (Bolhuis et al., 2002; Petersen et al., 2009) and have
also been extensively applied to both enzyme (Swiderek et al.,
2014; Althorpe et al., 2016) and zeolite (Lo et al., 2005; Bucko
et al., 2009) catalyzed reaction pathways. Of course, the holy-grail
of modeling is to drive the first-principles design of these very

large macro-catalysts from the ground up using knowledge about
their functional building blocks and related existing catalysts to
predict the three-dimensional structure of the whole in silico.
Exciting developments in this field are being developed for both
microporous (Wells and Sartbaeva, 2015; Nearchou et al., 2018)
and biological catalysts (Zanghellini et al., 2006; Kiss et al., 2013)
and aim to explore a much larger structural space than exists
in the naturally occurring catalysts, opening up the potential
for novel route toward sustainable chemical reactions (Muñoz
Robles et al., 2015; Rodríguez-Guerra et al., 2018).

Neither QM/MM methods nor large restricted cluster model
techniques are required for small homogenous catalysts, where
a reasonable gas phase system can often be created using all of
the catalyst and substrate atoms (Draksharapu et al., 2015; Sahoo
et al., 2015; Greer et al., 2019). However, this is often not the case
for the computational study of heterogenous catalysts, which are
most commonly investigated using a periodic treatment to enable
proper description of the band structure of a solid (Blöchl et al.,
1994; Kresse and Furthmüller, 1996a,b). Notwithstanding the
increased use of many of the advanced techniques as mentioned
above, for these materials it is still extremely common to use
periodic boundary conditions to simulate an infinite solid surface
(Grau-Crespo et al., 2003, 2006; Janthon et al., 2013). It is also
important to note that QM/MM approaches can be especially
unsuitable for calculating metallic catalysts that have extended
states that are not localized to and extend beyond the QM
boundary. Examples of such systems are discussed in the final
section of this perspective, whereby, the electronic properties and
catalytic activity of various transition metal carbides are modeled
in reciprocal rather the real space. The only cases where an
unrestricted, molecular, DFT type protocol may be warranted is
either when the number of atoms in the solid state catalyst are
too few for banding to occur (Abuelela et al., 2012; Liu and Lee,
2012; Feng et al., 2018; Zheng et al., 2018), or when a specific
geometric feature such as an edge site in a strongly ionic or
covalent catalyst is under investigation (Pelmenschikov et al.,
1996; Chieregato et al., 2014; Pasini et al., 2014; Geng et al., 2018).
The example sections that follow, provide case studies where all
these techniques have been applied to a wide range of different
catalysts and work to highlight the potential for improving the
sustainability of various chemical protocols by computationally
led “catalysis by design.”

APPLICATIONS OF QUANTUM
MECHANICS/MOLECULAR
MECHANICS (QM/MM)

Green Biocatalysis of Terminal Olefins
From Fatty Acids
It is widely recognized that there is an urgent need for the
development of sustainable replacements to crude oil (Kerr, 2007;
Shafiee and Topal, 2009; Murray and King, 2012). Sustainable
generation of bio-fuels utilizing biocatalytic pathways from fatty
acid feedstocks has been identified as a promising area of research
(Stephanopoulos, 2007; Kung et al., 2012; Peralta-Yahya et al.,
2012; Straathof, 2014). However, much of these biosynthetic
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FIGURE 2 | Active site region of P450 OleT, from PDB 4L40 (Belcher et al.,
2014) with heme in purple and the fatty acid substrate in dark green. Figure
modified using atomic coordinate reported previously (Ji et al., 2015; Faponle
et al., 2016).

processes require whole cell techniques that reduce efficiency.
Many of the alternative chemical synthesis protocols, used to
transform fatty acids into terminal alkenes, are very far from
green and require palladium catalysts and high temperatures
(Gooßen and Rodríguez, 2004; Liu et al., 2014). In recent years, it
has been reported that the bacterial P450 peroxygenases OleTJE

is able to catalyze the conversion of fatty acids to olefins without
the need for additional cellular electron transfer machinery, since
H2O2 and not O2 is used as the oxidant (Rude et al., 2011;
Wang et al., 2014; Dennig et al., 2015; Grant et al., 2015). These
medium-chain terminal olefins make excellent feedstocks for
biofuels because they can be substituted for diesel without major
engine modification and have improved temperature tolerance
as well as a high energy content (Peralta-Yahya et al., 2012;
Lennen and Pfleger, 2013). However, whilst such research does
offer the possibility of an environmentally friendly route for the
production of bio-fuels, at present, industrial application are
limited by the abundance of side-products (alcohols). Therefore,
before industrial applications can proceed there needs to be
a more fundamental understanding into the origin of the
bifurcation of the olefin and alcohol pathways. Two combined
DFT and QM/MM studies have recently been published that
investigate this bifurcation in depth, with the aim of steering bio-
engineering of OLeTJE to improve product selectivity (Ji et al.,
2015; Faponle et al., 2016), and these studies will be discussed in
our first example section.

As mentioned above OleTJE is a cytochrome P450, a family
of enzymes that are ubiquitous and highly conserved throughout
nature (Groves, 2003; Meunier et al., 2004; Ortiz de Montellano,
2004; Denisov et al., 2005; de Montellano, 2010; Kadish et al.,
2010). Importantly, this enzyme family exhibits an extreme
functional diversity in the reaction mechanisms they catalyze:
from the metabolism of harmful drug molecules in the liver
(Ji et al., 2015), to hormone biosynthesis (Guengerich, 2001;

Posner and O’Neill, 2004; Munro et al., 2007) and they
have also been commercially implemented in the cosmetics
industry (Reinhard and de Visser, 2017). The active site
region of OleT is depicted in Figure 2, and highlights the
conserved thiolate linkage (Cys365) coordinated to an iron
center of the heme co-factor, which are common features
of all P450s (Poulos et al., 1985; Schlichting et al., 2000;
Auclair et al., 2001). This resting state is primed to activate
hydrogen peroxide via a hydrogen atom isomerization to form,
the highly active iron(IV)-oxo heme cation radical species,
Compound I (Cpd I) (de Visser et al., 2003; Shaik et al., 2005;
Rittle and Green, 2010). Whilst there is significant structural
homogeneity amongst the P450s, they often diverge in the
residues close to their active sites; in general those enzyme
that possess relatively tight binding pockets such as P450cam
oxidizing smaller substrate and those who incorporate more
open active regions such as P450BM3 catalyzing larger substrate,
like fatty acids (Gelb et al., 1982; Atkins and Sligar, 1987;
Ruettinger et al., 1989; Davydov et al., 1999). In addition to
the reduction in energy and toxic material consumption, many
P450 isozymes demonstrate improved product regioselectivity
over more conventional catalysts; therefore, their industrial
application could lead to a reduced volume of wasteful side-
products and therefore the biotechnological approach can be
considered superior in terms of environmental sustainability
(Grogan, 2011; O’Reilly et al., 2011). The question then concerns
which aspects of OleTJE causes its atypical product infidelity
and can an in-depth computational investigation of its activity
drive future bio-engineering of this enzyme toward selective
bio-fuel production.

Biofuel Production: What Drives Enzymatic
Regioselective Toward the Olefin
The bifurcated reaction mechanism proposed in Scheme 1, has
been previously validated by computational models that predict
the initial formation of a Cpd I species that exhibits spin-state
selective product distribution (de Visser et al., 2001; Kamachi and
Yoshizawa, 2003; Kumar et al., 2004b; Shaik et al., 2005; Quesne
et al., 2016b). Computational studies that modeled only the first
coordination sphere of Cpd I are in very good agreement with
experimental observations (Rettie et al., 1987; Loch et al., 1995;
Forkert and Lee, 1997; Sadeque et al., 1997; Lee et al., 1998; Wen
et al., 2001; Gunes et al., 2007), whereby in general these models
showed that Cpd I in the doublet spin state predominantly
catalysis alcohol formation via small hydroxyl rebound barriers,
whilst the quartet species can destabilize the radical intermediate
and catalyze a broader range of products (de Visser et al., 2001,
2013). However, in order to confirm the veracity of this proposed
mechanism for OleTJE and to provide a deeper understanding
of the effect of the protein environment on product specificity a
combination of DFT and QM/MM techniques were required (Ji
et al., 2015; Faponle et al., 2016).

These studies initially relied on small DFT models in order
to evaluate the extent to which product specificity was driven
by substrate properties, since in vitro experiments had shown
that a member of this enzyme family catalyzes the exclusive
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SCHEME 1 | Proposed hydroxylation and desaturation pathways, as catalyzed by P450 OleT.

hydroxylation of ethane (ET) to ethanol and the desaturation
of dihydroanthracene (DHA), whilst valpronic acid (VA) can go
through either pathway (Groves and McClusky, 1976). However,
whilst the minimal DFT models did manage to predict the
exclusive production of ethanol from ET, both DHA and VA
showed similar reaction profiles, whereby, the doublet spin state
catalyzed a combination of products via barrierless reaction
mechanisms, whilst the quartet spin state catalyzed only the
alcohol production via much lower hydroxyl rebound barriers.
Therefore, the kinetic control exhibited by this active site model
has proven insufficient for the understanding the different
product selectivity reported for DHA and VA (Groves and
McClusky, 1976). Importantly, this observation indicates that
such a minimal model system may also be insufficient for
the study of regioselectivity in product formation, as catalyzed
by OleTJE. Excitingly, if product selectivity in these cases
can be assigned to environmental factors remote from the
first coordination sphere of the co-factor, then it may be
possible to modify product selectivity through bio-engineering
of OleTJE.

Therefore, to investigate the origin of the lack of fidelity
in product regioselectivity vis-a-vis desaturation vs. α-
hydroxylation of long chain fatty acids, as catalyzed by OleTJE,
a detailed QM/MM protocol was initiated. The QM/MM model
was designed starting from the crystal structure coordinates
of the enzyme/substrate complex (see Figure 2) (Belcher et al.,
2014). These crystal coordinates represent the enzymes resting

state and therefore were modified to approximate the heavy
atoms of the Cpd I active species, in a manner previously
reported (Porro et al., 2009; Postils et al., 2018). Finally,
the active enzyme/substrate reactant species was solvated,
protonated, equilibrated and split into QM and MM regions
before the reaction coordinates could be followed, using a well-
established protocol (Kumar et al., 2011; Quesne et al., 2014). The
QM/MM calculations employ a combination of the CHARMM27
force field (Brooks et al., 2009), as implemented in DL_POLY
(Smith et al., 2002) and UB3LYP/SV(P) method as implemented
in TURBOMOLE (Ahlrichs et al., 1989) with a solvent sphere
of 35Å placed around the whole enzyme/substrate complex.
All calculations were performed using the ChemShell code
(Sherwood et al., 2003) as a platform to run an electrostatically
embedded, additive QM/MM scheme. As hoped, this model
did show that the presence of the protein environment had a
major impact on product selectivity; whereby the ground state
switched from the doublet, found in the small DFT model,
to a quartet. More importantly, the product selectivity also
flips with the decarboxylation barrier reduced from 17.8 to 5.1
kcal mol−1, which is below the 6.6 kcal mol−1 found for the
hydroxyl rebound step. Thus, the ordering of the two barriers
is reversed from that seen with the DFT model, where the
alcohol production was favored by >10 kcal mol−1. A more
detailed study found that this reversal in the barrier ordering
was strongly dependent on the position of the hydrogen atom
that was to be abstracted (Faponle et al., 2016). The energy
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FIGURE 3 | QM/MM model of the ground state radical intermediate of
hydrogen atom abstraction catalyzed by OleTJE. Hydrogen bonding networks
are linked with blue dashed lines and the heme co–enzyme is colored purple.
The MM region is shown as brown secondary structure alpha–helices and
beta–sheets; whilst, all atoms specifically highlighted are included in the QM
region. Figure modified using atomic coordinate reported previously (Ji et al.,
2015; Faponle et al., 2016).

barriers for hydrogen atom abstraction from the beta carbon
of the fatty acid was very slightly lower than that seen with the
alpha carbon. Importantly, hydrogen abstraction at the alpha
position favored the alcohol production, whilst olefin production
was dominant in the slightly more favorable beta radical
intermediate. Intriguingly, while olefin production is favored
using the QM/MM methodology, the two barriers are within
the margin of error of the theory, which could help explain the
mix product distribution seen experimentally (Rude et al., 2011;
Wang et al., 2014,Dennig et al., 2015; Grant et al., 2015).

The hydrogen bonding networks present in the ground
state radical hydroxyl-intermediate are highlighted in Figure 3

and provide an insight into the origin of the reversal of
product selectivity seen between the two methods. Often
the use of a well-designed QM/MM protocol is the only
way faithfully to replicate the local solvation environment
surrounding an enzymes active region (Borowski et al., 2015;
Quesne et al., 2016a). This phenomenon is evident here,
with water networks surrounding the iron(IV)-hydroxo of the
radical intermediate forming a bridge to a guanidine group
of Arg245, which in turn increases the energy required for
the rotation of the hydroxyl group, which is required to
position the correct orbital overlap to initiate a rebound of
the hydroxyl-group toward the substrate radical. Importantly,
OleTJE has an especially large binding pocket, allowing greater
solvation of its active site. The effect of this is obvious when
comparing the active site region of OleTJE to other P450s
such as P450cam, which tend to exclude much of the water

from their active site (Poulos et al., 1987; Auclair et al.,
2001). Thus, these results indicate that OleTJE is able to
effectively elevate the hydroxyl rebound barrier for radical
recombination and therefore enable the pathway toward olefin
production to become competitive. These results taken together
are very encouraging with regard to the potential of directed
bioengineering of a OleT based isoenzymes that is able to
sustainably and selectively produce biofuels from terminal
olefins, without the need for harsh reaction conditions or wasteful
redox partners.

ACTIVE SITE CLUSTER MODELS

The Promise of Sustainable Routes for the
Catalysis of Spin Forbidden O2 Activation
Activating molecular oxygen in its triplet ground state is a very
important step in many industrial processes (Wang et al., 2001;
Liang et al., 2011; Suntivich et al., 2011). However, currently
harsh conditions are generally required along with the use of
a precious metal cofactor, which are in low-earth abundance
and whose extraction has high environmental cost (Murthi
et al., 2004; Zhang et al., 2007; Kotobuki et al., 2009; Widmann
and Behm, 2014). This is due to the high stability and low
reactivity of triplet O2, whose oxidation of substrates is often
spin forbidden. Therefore, it is important to look at nature
in order to develop more sustainable chemical pathway for
oxygen reduction, which also drastically reduces the heavy metal
component of the catalyst (Solomon and Stahl, 2018). However,
most biocatalysts not only require metal cofactors but also
organic co-enzymes, which in turn require the use of whole
cell cultures to be regenerated, and these limitations reduce
the utility of such enzymes in industrial processes (Solomon
et al., 2000; Bugg and Ramaswamy, 2008; Quesne et al., 2015;
de Visser, 2018). There is however, a small subgroup of these
dioxygenases that are able to direct the spin-forbidden triplet
to singlet conversion of molecular oxygen without the need of
either a redox active metal co-factor or a sacrificial organic co-
enzyme (Fetzner and Steiner, 2010). One of the few examples of
this type of enzyme is the (1H)-3-hydroxy-4-oxoquinaldine 2,4-
dioxygenase (HOD), which catalyzes dioxygenation of (1H)-3
hydroxy-4-oxoquinaldine (QND), leading to cleavage of the N-
heteroaromatic ring (Bauer et al., 1996). Therefore, in our second
example section, HOD was chosen as the subject of a couple
of detailed studies (Hernández-Ortega et al., 2014, 2015), based
on the DFT cluster model approach, into the basis of co-factor
and flavin free activation of O2. It is anticipated that a detailed
first-principles understanding of the origin of this activity could
help direct the future design of industrial catalysts that can more
environmentally perform spin-forbidden oxygenation reactions.

Biocatalytic Activity of
Metal-Independent Dioxygenases
These studies employed variable sized DFT models, shown in
Figure 4, where enzyme thermodynamics and kinetics were
determined by models of only the substrate and molecular
oxygen (highlighted in red). Of the two larger active site cluster
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FIGURE 4 | Illustration of the active site region of HOD and a schematic representation of the three DFT cluster models. Model A (red) simply contains the substrate
and O2, Model B (blue circle) also the residues in blue, and Model B includes all residues depicted. Figure modified using atomic coordinate reported previously
(Hernández-Ortega et al., 2014, 2015).

FIGURE 5 | Comparison of the geometric changes between the initial QM/MM optimized structures and those obtained using a DFT cluster model, for three HOD
variants. (I) Wild type HOD, (II) D126A, and (III) H251A. All systems were optimized at B3LYP/6-31+G*/Cluster//QMMM level of theory with important atomic
distances from DFT (left) and QMMM (right) optimization given in Å. Figure modified using atomic coordinate reported previously (Hernández-Ortega et al., 2014, 2015).
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models, the smaller one incorporated only the atoms in the blue
circle, whereby, truncated versions of His251, Asp126, Ser101, and
Trp160 and the backbone of Trp36 were added. The largest cluster
model included all the atoms of the smaller ones as well as
three water molecules and three additional imidazole groups,
representing His38, His100, and His102 (black). Since the initial
study focused purely on the formation of a substrate anion by
a proton abstraction (Hernández-Ortega et al., 2014), oxygen
was only present in the cluster models of the second study
into the rate-limiting spin-forbidden activation of triplet oxygen,
by the activated QND (Hernández-Ortega et al., 2015). The
protocol for setting up the cluster models was very similar to that
discussed in the previous section, whereby, the crystal structure
was initially protonated, solvated, equilibrated and optimized.
The crystal structure of the wild type enzyme was taken from
the protein data bank (PDB) file 2WJ4 (Steiner et al., 2010),
whilst the mutant variants were prepared in silico by modifying
either a carboxylate or an imidazole group. As is shown in
Figure 4, the QM regions of the two mutants lacked atoms for
either a carboxylate or a carboxylate and imidazole group, for
D126A and H251A, respectively. These structures were then
equilibrated and optimized in the same manner described for
OleTJE (above), whereby a solvent sphere of 35 Å was placed
around the whole system and the functional UB3LYP (Lee et al.,
1988; Becke, 1993) in combination with the 6–31G(3d,p) basis
set was used for the QM region. Therefore, whilst for this
example QM/MM was not employed to investigate the kinetics
of QND oxidation by HOD, it was used to obtain cluster model
starting structures that represented protonated, solvated and
optimized coordinates.

This approach was required to obtain reasonable starting
structures for the cluster models, which were also calculated
using the same UB3LYP/6–31G(3d,p) methodology, only this
time implemented in the Gaussian software package (Frisch
et al., 2009). However, after the large cluster models were
excised and optimized it became evident that the two technique
gave radically different geometries, as can be seen in Figure 5.
Much of these effects can be attributed to changes in substrate
orientation that might to some extent be constrained by
residues remote from the active site region. The precise position
of the substrate seems to be significantly model dependent,
although, there does appear to be a general migration away
from hydrogen bonding networks with Trp36 and Ser101,
in all models. Even though it could be argued that either
increasing the cluster size or putting more constraints on
the substrate might increase the match between the reactant
geometries obtained by the two techniques, it was decided
that such techniques would be too costly and could lead
to unphysically high barriers along the reaction path. It is
also important to note that the initial QM/MM optimized
starting structures show there to be barely any effect of residue
modification on substrate positioning, which may indicate that
the QM/MM models are too inflexible to accurately simulate
point-mutations. Alternatively, it is very possible that these
two point-mutations would not be expected to produce a
large amount of tertiary structure changes, and even if they
did would require much more intensive molecular dynamics

TABLE 1 | QND deprotonation by His residues, using active site models of
different HOD variants and minimal models of the His/Asp dyad.

1E + ZPE 1G

WT −0.9 −0.8

D126A 13.1 14.0

H251A 28.0 27.8

His251-H 13.4 13.3

His251-Asp126 1.8 1.8

All Zero point (ZPE) and Gibbs free energies for QND deprotonation were obtained at

UB3LYP/6–31G(3d,p) level of theory. All energies are given in kcal mol−1 and relate the

deprotonated QND to reactant species.

simulations to replicate in silico. In either case, as demonstrated
below, it was shown that the cluster models were sufficient
to provide important electronic insights into the origin of the
experimentally observed differences in catalytic activity between
the different variants.

The first study used a combined experimental and theoretical
(cluster model) approach in order to investigate the preliminary
proton abstraction step, which forms the active substrate anion.
This combination technique underscored the importance of
the histidine/aspartate dyad, since on its own His251 is not
basic enough to abstract a proton from QND. Therefore, a
strong hydrogen bond with Asp126 is required to catalyze
QND deprotonation, which is evident by the >13 kcal mol−1

endothermicity of the smallest model shown in Table 1. These
findings were replicated experimentally with the production of
two mutant variants D126A and H251A, which each targeted
one of the dyad residues with a point-mutation to an alanine.
Eachmutation caused a substantial drop in enzyme activity. Stop-
flow experiments assessed deprotonation rate constants (kH) that
were 5- to 40-fold lower in D126A and too low to measure
in the H251A variant. Importantly, initial optimizations with
both cluster and QM/MM models of wild-type HOD showed
spontaneous proton transfer from the substrate; whilst, a stable
hydrogenated QND species was found in both mutant clusters.
The driving force for these different initial states is validated
by the theoretical models, whereby, the wild-type models were
the only ones to show exothermic deprotonation steps, with the
thermodynamics of the D126A and H251A models pointing the
equilibrium toward (QND)–OH (see Table 1). These substrate
deprotonation energies report the bond formation energy of
the His(x)–H, where His100 substitutes His251 in the H251A
variant, minus the bond dissociation energy of the (QND)-
H bond that is broken. As shown in Table 1, when these
energies are calculated the slightly exothermic nature of the
wild-type cluster model is set against endothermic energies of
>10 kcal mol −1 for D126A and ∼30 kcal mol −1 for H251A.
Finally, it was determined that the origin of the loss in proton
abstraction ability seen in the D126A variant was an increase in
the proton affinity of His251 by 12 kcal mol −1 upon coordination
with Asp126.

At the time of publication, the computational results of the
second study were somewhat controversial (Thierbach et al.,
2014; Silva, 2016). This study focused on the spin-forbidden
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FIGURE 6 | The two calculated reaction mechanisms for the oxidation of QND. The proposed pathway (blue) was assessed as less favorable than the alternative
(red). A graphical representation of the alternative triplet intermediate is also shown (left). Figure modified using atomic coordinate reported previously
(Hernández-Ortega et al., 2014, 2015).

incorporation of triplet oxygen into the singlet product, the
mechanism of which has wide implications for green chemistry.
In this study the authors concluded that the rate-limiting
oxygen activation step proceeded via an initial short lived
oxygen bond triplet intermediate (Hernández-Ortega et al.,
2015). Spin trapping experiments had been used to propose an
alternative mechanism, whereby an initial long range electron
transfer created a superoxo radical species that was then able
to recombine with the substrate radical (see Figure 6) (Müller
et al., 1987; Thierbach et al., 2014; Kralj et al., 2015). However,
the authors of this theoretical study determined that their
calculations indicated the experimentally observed radical could
be more correctly assigned to the radical rearrangement that
transformed the QND(–) substrate into the 3I1 intermediate
with the aid of an elongation of the C2–C3 bond and the
rehybridization of these two carbon centers from sp2 to sp3. The
theoretical findings were additionally strengthened by transient
state stop-flow experiments, which were completely unable to
detect any signature that could have been assigned to the
proposed RCT intermediate. These studies provided a greater
fundamental knowledge of this novel class of dioxygenases that
could have important implications for future development of
novel green catalytic routes to spin forbidden oxygen activation.
These results indicate that the stabilization of a short-lived triplet
intermediate, which last long enough for spin state crossing,
could be key to future catalyst design.

HOMOGENOUS CATALYSTS MODELED
WITH UNRESTRICTED DFT

Oxidation of Methane to Methanol
Using density functional theory (DFT) methodology to
characterize and rationally tune bioinorganic, earth-abundant
and environmentally compatible homogenous catalysts, is
a major field of combined computational and experimental
research (Kumar et al., 2010; Prokop et al., 2011; Neu et al.,
2014; Sahu et al., 2014; Yang et al., 2016). DFT techniques
have been used to study the selective halogenation (Quesne
and de Visser, 2012), nitrogenation (Timmins et al., 2018),
and oxygenation (Jastrzebski et al., 2014) abilities of many
such catalysts. Indeed, work on the selective dioxygenation
of catechol by tris(2-pyridylmethyl)amine (TPA) has shown
promise for the potential of a sustainable, green-catalytic route
for nylon production via dimethyl adipate (Jastrzebski et al.,
2013, 2014). Homogenous catalysts are often able to catalyze
reaction mechanisms selectively at far lower temperatures and
pressures then conventional routes. Indeed, selectivity can be
one of the most important environmental benefits of choosing
homogenous catalysts because of the increased yields and
lower side-products. However, it is important to consider the
potential of homogeneous catalysts increasing the volumes of
contamination and waste, as well as the excess energy required
for product separation and catalyst recycling, which is often
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greater than observed using heterogenous catalysts (Lam et al.,
2010; Tan et al., 2013). Therefore, it is crucial to consider to
what extent there could be an overall environmental benefit
to using homogenous catalysis over the more conventional
heterogenous routes (Corma and García, 2003; Astruc, 2007;
Baroi and Dalai, 2015). The example catalyst presented here,
is very novel for possessing the ability of converting methane
to methanol at low temperatures and ambient pressures
(Kudrik and Sorokin, 2008; Sorokin et al., 2008, 2010; Isci
et al., 2009; Kudrik et al., 2012). Whilst the reactivity of
this bio-mimetic catalyst has been well characterized, the
origin of its efficiency was poorly understood. Therefore, a
detailed an in-depth computational study was undertaken
to understand the aspects of its catalysis that enabled such
high activity toward methane hydroxylation, so that such
a fundamental understanding of reactivity could be used
to further improve the activity of this or related catalysts
(Quesne et al., 2016b).

As discussed in the olefin production section, the P450
super family of enzymes are amongst the most efficient and
powerful catalysts for oxidizing C-H bonds. However, despite
the extreme amount of substrate diversity, there is no natural
pathway that utilized a P450 isoenzyme and is also powerful
enough to activate the 104.9 kcal mol −1 strong C–H bond
of methane. In fact, under guest/host activation conditions,
methane was the only short chain alkane that P450BM3 was
unable to oxidize (Kawakami et al., 2011, 2013; Zilly et al.,
2011). Bioengineering does a little better than nature with
CYP153A6 actually showing some oxidation activity toward
methane, although, with an extremely slow turnover frequency
of 0.02–0.05 (Chen et al., 2012). These observations are in
stark contrast with the µ-nitrido-bridged diiron-oxo porphyrin
catalyst discussed in this section, which has demonstrated high
oxidative activity toward methane and is based on a dimer of
two of the co-enzymes found in P450s (Kudrik and Sorokin,
2008; Sorokin et al., 2008, 2010; Isci et al., 2009; Kudrik et al.,
2012). The active site of P450 enzymes consists of thiolate
linked iron-oxo porphyrin (see Figure 1). Importantly, the
observation that the use of perfluoro-carboxylic acid to enable
alkane activation by P450BM3 proved insufficient for methane
oxidation provides evidence against a mechanism whereby
the lack of P450 activity is simply due to the absence of a
isoenzyme that is able to accommodate methane in its active
site (Kawakami et al., 2011, 2013). An alternative explanation
for the inferior activity, toward the oxidation of methane,
demonstrated by P450s over the diiron porphyrin catalysts
is seen in the numerous studies into the effect of different
axial ligands in the catalytic activity of iron-porphyrins (Gross
and Nimri, 1994; Czarnecki et al., 1996; Song et al., 2005;
Takahashi et al., 2012). Regardless of the relative importance of
either of these affects, the origin of the massive improvement
seen in the diiron porphyrin dimer above the mono-porphyrin
bio-catalyst is of crucial important for the future design
of the next generation of powerful oxidants for sustainable
methanol production.

Origin of the Catalytic Activity of
Diion(IV)oxo Porphyrinod
Over the years, a minimum model of Compound I (see 1,
Figure 7) has been extensively tested and proved to be sufficient
for explaining the first coordination sphere P450s (Yoshizawa
et al., 2001; de Visser et al., 2004; Shaik et al., 2005), which is
the same model ([FeIV(O) (Por+) −SH]) that was mentioned
in our first example section and consisted of an iron-porphyrin
coordinated by an oxo group trans to an SH, representing
the axial cysteine. The µ-nitrido-bridged diiron-oxo porphyrin
model (see 2, Figure 7) replaces the SH group for a nitrogen,
which became a linker for a second iron-porphyrin. The DFT
calculations were performed without any geometric restrictions
on any of the atoms in the model systems and full optimizations
were undertaken for each minima using UB3LYP (Lee et al.,
1988; Becke, 1993), in combination with the initial double-ζ
basis set 6–31G (Ditchfield et al., 1971) on all atoms except for
Fe where LACVP with a Neon core potential was implemented
(BS1). Subsequently, single point gas-phase and solvent corrected
calculation were run using the same functional in combination
with the polarizable and defuse triple-ζ basis sets 6–311+G(d,p)
and LACV3P+ (BS2). Free energy values were calculated at
298.15K and 1 atmosphere of pressure, with such a protocol being
well benchmarked previously (de Visser, 2010).

Figure 7 shows the free energy landscapes for the methane
to methanol reaction as catalyzed by both model catalysts. Since
the energy barriers associated with the hydrogen atom transfer
(HAT) on both the doublet and quartet spin state surfaces are
the same to the first decimal place for catalyst 1, the energy
landscapes of both are considered. This spin state derived
bifurcation in the pathways catalyzed by CpdI is in excellent
agreement with multiple different studies (de Visser et al., 2003,
2014; Kumar et al., 2004a,b) and stands in sharp contrast to the
diiron porphyrin dimer catalyst (2), which exhibits a doublet
ground state with a rate-limiting step that is well separated (by
>40 kcal mol −1) from the hydrogen atom abstraction barrier on
the quartet energy landscape. Such a dominant doublet ground
state is also in excellent agreement with previous work on 2

(Silaghi-Dumitrescu et al., 2011; Ansari et al., 2015; Işci et al.,
2015). Therefore, only the low spin state surface of 2 is included in
Figure 7. The reaction mechanism for both catalysts proceeds via
a rate-limiting hydrogen atom abstraction transition state (TSHA)
leading to a radical hydroxyl intermediate (IH), which is capable
of forming methanol (POH) through radical recombination with
the methyl radical following a hydroxyl rebound barrier (TSOH).
The decrease in the free energy barrier for TSHA of 13.6 kcal mol
−1 for 2 over 1 corresponds to a rate enhancement of ∼1010.
Indeed, such a low barrier would imply that 2was able to catalyze
the oxidation of methane at room temperature, which has been
observed experimentally (Sorokin et al., 2008). The bond length
shown in Figure 7 show that the high energy TSHA seen in 1

is considerably more product like with a shorter O-H and a
longer C-H distance than is the case for 2TSHA. Notwithstanding
these differences, both transition states are generally product
like, which was expected and is a consistent trend in methane
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FIGURE 7 | Free energy methane hydroxylation pathways as catalyzed by the µ-Nitrido-Bridged diiron porphyrin (1) and CpdI (2). Energies calculated at
UB3LYP/BS2//UB3LYP/BS1 level of theory and given in kcal mol −1 relative to the reactant species. Figure modified using atomic coordinate reported previously
(Quesne et al., 2016b).

hydroxylation barriers (Yoshizawa et al., 2001; de Visser et al.,
2004; Shaik et al., 2008).

The divergence in the performance of these two catalysts
can be explained by differences in the electronic structure with
regard to the location of valence electrons, as shown in Figure 8.
The valence electrons for CpdI (1) are shown on the left and
have an occupancy of π2

xz, π2
yz, π∗1

xz , π∗1
yz dominated by the

Fe(IV)oxo combined with a singly occupied a12u on the heme
cation radical. Therefore, CpdI has a ground state with a total
of three unpaired electrons and the close lying doublet and
quartet spin state only diverge electronically by either anti-
ferromagnetically or ferromagnetically coupled heme and FeO
orbitals (de Visser et al., 2003; Porro et al., 2009). In 2 the eight
valence electrons of an axial Fe(IV)-nitrido mix with the seven
of the Fe(IV)oxo and the energy of the a2u orbitals of both
porphyrins are lowered to give an occupancy of π2

x1, π2
y1, π2

x2,

π2
y2, a

2
2u,1, a

2
2u,2, π∗2

x3 , π∗1
y3 . For simplicity only the two occupied

anti-bonding π– orbitals as well as the highest lying a2u orbital
is included in Figure 8. In retrospect such a change is not
unexpected since it has been determined that mixing between
the 3PZ orbital on the axial Sulfur atom, which is absent in 2,
and the a2u porphyrin orbital raises the latter’s energy above
that of the π FeO orbitals and leads to the porphyrin radical
in 1 (Ogliaro et al., 2001). However, the degree to which this
change affects the electron and proton affinities of 2 is somewhat
more surprising, since research has indicated that the kinetics of

HAT reactions is usually correlated to the thermodynamics of
hydrogen atom binding (BDEOH) (Friedrich, 1983; Bordwell and
Cheng, 1991; Mayer, 1998). Figure 9 breaks down the BDEOH

of both catalysts into electron (EA) and proton (1acid) affinity
components. Therefore, for each catalyst BDEOH = 1acid – EA –
IEH, whereby (IEH) describes the ionization energy of a hydrogen
atom. It is clear from Figure 9 that whilst the electron affinity
of the FeO is greater by ∼ 29 kcal mol−1 in the CpdI mimic
this is more than compensated by the >35 kcal mol−1 increase
basicity of the anionic species of 2, which is consistent with other
studies that show the dominance of1acid inBDEOH (Green et al.,
2004; Parsell et al., 2009). Therefore, it is the increase basicity
of the µ-nitrido-bridged diiron-oxo porphyrin that is the origin
of its increased activity and any attempt to further design this
powerful oxidant will have to consider carefully the consequences
of attempting to improve the election affinity by addition of axial
ligands, which could lead to a loss in the orbital reorganization
that is critical to increasing 1acid .

HETEROGENOUS CATALYSIS MODELED
WITH PERIODIC BOUNDARY CONDITIONS

Catalytic Activity of Transition
Metal Carbides
Transition metal carbides (TMCs) are a class of material known
for their catalytic activity since 1973 (Levy and Boudart, 1973).
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FIGURE 8 | Valence bond diagram of methane hydroxylation by models of P450 CpdI (A) and the Diiron porphyrin catalyst (B).

FIGURE 9 | Theoretically determined free energy values for the hydrogenation of catalysts 1 and 2. All solvent corrected free energies were obtained at
UB3LYP/BS2//UB3LYP/BS1 level of theory and are given in kcal mol−1.

These materials present different stoichiometries and structures
depending on the position of the metal in the periodic table: Ti
and Zr, on the left-hand side of the d-series, form stable and
non-defective monocarbides, while metals toward the center of
the periodic table present a lower carbon content, as seen in

the widely studied case of Fe3C (Häglund et al., 1993; Oyama,
2008). All these materials, however, are considered valuable for
industrial applications because of their relatively low cost, high
durability and melting points as well as their catalytic activity
(Hwu and Chen, 2005; Qi et al., 2013). TMCs have been tested for
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FIGURE 10 | Correlation between 1Eads of a single hydrogen molecule (red dots) and the d-band centers (blue columns) on different carbides and surfaces. (Left)
Shows the values for ZrC over the four investigated surfaces, (Right) shows the values for (001) surfaces over the four carbides.

a wide variety of catalytic reactions, especially hydrogenation and
dehydrogenation reactions for which their activity has proved to
be qualitatively similar to that of Pt (Levy and Boudart, 1973;
Delannoy et al., 2000). One such avenue of research, that exploits
TMCs as catalysts for the hydrogen evolution reaction (HER), is
particularly relevant to environmentally sustainable chemistry,
as it is considered to be a key element in the transition from
a fossil fuel-based to a hydrogen-based economy. The HER is
the focus of a large amount of research interest worldwide for
its role in alkaline water electrolysis, which produces highly
pure H2, and in hydrogen fuel cells; both these applications
make use of Pt as a catalyst to lower the overpotential required
to perform the reaction down to appropriately 0.2 eV, but
the cost and scarcity of the element (Yang, 2009), as well
as the questionable environmental sustainability of Pt mining
(Maboeta et al., 2006; Saurat and Bringezu, 2008; Glaister and
Mudd, 2010) have driven the research toward catalysts composed
of more earth-abundant elements such as TMCs. A related
application, is the catalytic reduction of CO2 with H2, which
usually aims at the production of CO or CH3OH, often requiring
a surface-mediated proton transfer to transformCO2 into COOH
(Posada-Pérez et al., 2017a).

The bulk and surface properties of TMCs have been well
characterized in the past few years (Vines et al., 2005; Quesne
et al., 2018), but fewer computational studies have been
performed on their catalytic activity. Adsorption and activation
studies have been performed for both H2 and CO2 for a wide
range of early- and mid-series TMCs, with all of these studies
modeling low-index surfaces of the catalysts using periodic
boundary conditions. The (001) surfaces of MoC and Mo2C, the
latter being either Mo- or C-terminated, have been the focus
of a work from Posada-Pérez et al. on hydrogen adsorption
(Posada-Pérez et al., 2017b), which found stable, dissociative
adsorption of H2 on all three materials with no activation barrier
when dispersion interaction correction is taken into account. The
adsorption is found to occur primarily on top of surface carbon
atoms on both materials, with adsorption energies calculated
with the Perdew–Burke–Ernzerhof (PBE) (Perdew et al., 1996)
functional in the −1 to −2.5 eV range, whilst consistently higher
on the metal-rich carbide. Similarly, a study from Silveri et al.

(2019) investigated the adsorption of H2 on TiC, VC, ZrC,
and NbC, using a combination of periodic boundary conditions
and the PBE functional, found adsorption to be exothermic
on these systems’ (001) surfaces as well. Unlike the former,
however, this study was extended to the (011) and (111) surfaces
as well, in order to obtain a more complete picture of the
reactivity of the material. These data highlighted how the stability
of the (001) surface is correlated with a lower reactivity on
all carbides. More generally, all monocarbides show similar
geometric and electronic properties of the adsorption, with the
only major difference between the carbides being the strength
of the adsorption in most cases. The exceptions are the carbon
termination of the (111) surfaces of TiC and VC, which are found
to be unstable in presence of hydrogen. However, the availability
of adsorption energy data for all low-index surfaces across four
carbides allowed these to be correlated with surface properties
such as work function and d-band center position, as shown for
the latter in Figure 10.

Higher coverage states have also been investigated, observing
a decrease in the adsorption energy per atom as well as a similar,
although not linear, decrease in work function, attributable to
the electron transfer from the adsorbed hydrogens to the metallic
slab. The coverage states of each surface of the four carbides were
also predicted at a wide range of temperatures and pressures, and
correlated with the tendency of the hydrogen either to adsorb on
or desorb from the surface. As a result, it was shown how the
strength of the C–H and M–H bonds on the (011) and (111)
surfaces is predicted to hinder the feasibility of catalytic reactions
such as HER on all higher-index surfaces. Conversely, the (001)
surface - previously shown to be the lowest energy termination,
shows a rapidly changing coverage state, suggesting its potential
as an active termination for catalytic reactions involving a surface
mediated hydrogenation and further elucidating the mechanistic
details of the catalytic activity of the carbides. Figure 11 shows
the hydrogen coverage states as a function of the H2 chemical
potential for the TiC (001) surface.

MoC and Mo2C have also been studied computationally for
their capability to adsorb CO2 and dissociate it to CO (Posada-
Pérez et al., 2014). These studies show how both materials
effectively activate carbon dioxide and in the case of the far more
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FIGURE 11 | Surface free energies of surfaces in different hydrogenation
states as a function of the chemical potential of gaseous hydrogen above the
TiC (001) surface. The letter Ŵ indicates the number of atoms on the surface of
the catalyst, with Ŵ = 0 and Ŵ = 8 corresponding, respectively to a coverage
of 0ML and 1ML.

active Mo2C material, it is also possible to observe spontaneous
dissociation. These studies, albeit not elucidating the catalytic
behavior of early- and mid-series transition metal carbides
completely, provide a powerful basis for further theoretical and
experimental work on the catalytic activity of these materials
for reactions such as HER, CO2 reduction and inverse water-
gas shift and demonstrate the power of the periodic DFT
approach to highlight fundamental properties of heterogenous
catalyst. The elucidations of the mechanistic aspects of such
reactions will help greatly in the development of the sustainable
generation of fuels and chemicals as well as guiding the
future design of the catalytic component of the hydrogen
fuel cell—a challenge for which innovative catalysis is of
paramount importance.

SUMMARY AND CONCLUSIONS

The urgent need for society to move toward a greener and
more sustainable future presents a very exciting opportunity for
catalytic chemists. Many of the necessary changes in resource
management and increased energy efficiency will be propelled
by the directed design of new catalysts, for which a detailed
theoretical understanding of the activity of current catalysts is
a crucial part. Many very different computational techniques
are being applied to the characterization of novel catalysts as a
preliminary step to the engineering of new and much greener
chemical route to important products. The implementation of

a QM/MM protocol to the challenge of bioengineering the
enzyme OleTJE, in order to increase its selectivity toward olefin
production is explored in the first case study. This study indicates
that the enzyme was able to effectively elevate a hydroxyl
radical recombination barrier which leads to the alternative olefin
pathway becoming competitive. This process is modulated by
changes in the local solvation environment so there could be the
potential to bioengineer anOleT isoenzyme to selectivity produce
olefin for a sustainable route to bio-fuel production. The next case
study used restricted cluster model calculations to investigate
the ability of HOD to catalyze spin-forbidden oxygen activation.
Interestingly, this study did not confirm the experimentally
proposed reaction mechanism, but instead offered the potential
for a novel green catalytic route for the activation of molecular
oxygen via the stabilization of a triplet intermediate dioxygen
species. The third case study explored the reactivity of a novel
µ-nitrido-bridged diiron-oxo porphyrin that was able to catalyze
the methane to methanol reaction under very mild conditions.
This study used unrestricted DFT methods to determine that the
acidity of the FeO anion was mostly responsible for its increased
activity over the related mono-oxygen porphyrin catalysts. These
results indicated that any improvement of the catalyst could not
be made by sacrificing the novel orbital mixing along the Z-axis.
Therefore, simply increasing the electron affinity of the FeO by
binding a strong electron withdrawing group in the axial position
is likely to be counterproductive. Finally, we consider several
periodic DFT studies into the electronic properties and catalytic
abilities of the low-index facets of early transition metal carbides.
These studies point to the possibility of green catalytic routes
toward the production of fuels and useful chemicals from the
utilization of the green-house gas carbon dioxide; as well as the
potential for these materials to be used as catalysts in hydrogen
fuel cells.
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