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ABSTRACT 

Tibiofemoral focal cartilage defects (FCDs) are lesions of the smooth articular surface of the knee caused 
by maladaptive overload and predispose the knee to osteoarthritis (OA), a major clinical issue. However, 
the pathways involved in their pathophysiology and progression, particularly in humans, are not well 
understood. It is clinically useful to characterise this since the outcomes of conventional treatments such 
as microfracture surgery which aim to repair the lost or damaged cartilage are heterogeneous and less than 
adequate. This study investigates mechanical and biological pathways of FCD pathogenesis that could be 
useful in the development of comprehensive treatment strategies, as well as to address the shortfalls of 
microfracture surgery. 
 
Lower limb biomechanical and neuromuscular function was investigated using gait analysis techniques 
including 3D motion capture analysis, electromyography and principal component analysis of waveforms 
in a cohort of tibiofemoral medial and lateral compartment FCD subjects relative to healthy control subjects 
during the performance of level gait. Both medial and lateral knee FCD subjects exhibited biomechanical 
indicators of increased dynamic loading of the respective affected knee compartment, which was 
concomitant with dynamic frontal plane knee malalignment. A proportion of FCD subjects, notably medial 
knee affected types presented adaptive biomechanical gait strategies reflective of pain avoidance that 
appears to be related to loading of the chondral defect site during gait. Differences in the activation of lower 
limb muscles during gait was also found, most prominently in medial FCD subjects who abnormally co-
contracted their thigh muscles during load bearing, reflective of compensation for knee instability. 
Longitudinal assessment of biomechanical and neuromuscular function was also carried out six-months 
following microfracture surgery, which revealed heterogeneous functional outcomes that were 
independent of subject-perceived outcomes (reduced pain, symptoms and increased functional ability). 
Some improvement in function was experienced by lateral knee FCD subjects, in contrast to overall 
worsening function in medial FCD subjects.       
    
A total of seventeen biomarkers of bone remodelling, cartilage degradation, bone mechanical loading and 
inflammation were examined using immunoassays in knee FCD synovial fluid and serum samples relative 
to knee OA and healthy control samples, respectively. Many synovial fluid biomarkers were reflected poorly 
in serum, however high levels of bone resorption (CTX-I) and glutamate were found in FCD serum relative 
to controls, as well as decreasing anti-inflammatory cytokine IL-10 levels concomitant with advancing 
disease state (i.e. control > FCD > OA). In synovial fluid analysis, inflammatory dysregulation (increased IL-
6 and IL-8 and decreased IL-10 and IL-13) and high osteoprotegerin (OPG) levels were found in OA relative 
to FCD subject joint fluids. Discrete principal component analysis identified distinct phenotypes of FCD and 
OA fluids relating to sclerostin and anti-inflammatory cytokine levels. Furthermore, follow-up analysis of 
serum biomarkers six-months following microfracture surgery revealed decreased CTX-I and glutamate, as 
well as increased anti-inflammatory cytokine levels associated with positive patient-reported outcomes, in 
contrast to decreased IL-10 and IFN-γ with negative reported outcomes.      
 
Finally, associations between biomechanical indicators of altered knee biomechanical loading and synovial 
fluid biomarkers relating to previous objectives were explored in FCD and OA subjects, whilst controlling 
for demographic factors. The magnitude of knee peak loading, cumulative loading or degree of knee 
malalignment significantly predicted pro-inflammatory cytokine and bone resorption activity when 
combining FCD and OA data. However, in FCD knees alone, dynamic joint malalignment associated with 
increased bone remodelling (CTX-I and ALP). Furthermore, discrete PCA identified high knee loaders from 
each group that were associated with high pro-inflammatory activity, increased osteoclast activation 
(RANKL-OPG) and reduced symptoms. 
 
This study provides new evidence of aberrant biomechanical and biological factors associated with FCD 
pathogenesis and progression, as well as the association between them, that improves our understanding 
of the heterogeneity of the condition and outcomes to microfracture surgery. The failure of microfracture 
surgery to address functional and biological deficiencies in some subjects is a critical factor that needs to 
be addressed in future areas of treatment for optimum outcomes. 
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Motivation  

With the ever-increasing age population of our world, degenerative knee diseases such 

as osteoarthritis (OA) are becoming increasingly relevant. Joint arthritis conditions are 

collectively the most common causes of long-term disability, with OA affecting 15% 

people worldwide and accounting for 2.4% of all years lived with disability worldwide, 

affecting at least 242 million people of multiple at-risk groups including the elderly, 

sedentary or athletic lifestyle types (Osteoarthritis Research Society International White 

Paper, 2016). The cause or set of causes of OA are complex and mounting evidence has 

suggested that OA is best described as a set of diseases at varying stages with distinct 

etiologic characteristics that have a common end-point, that is, total joint dysfunction 

and the requirement for knee replacement surgery (Dell'Isola et al., 2016, Driban et al., 

2010). Identifying and characterising at-risk groups of etiological phenotypes may 

improve our ability to prevent or treat individuals predisposed to OA, to lower the 

clinical burden the end-stage of disease has on our healthcare systems and population 

quality of life.  

Focal cartilage defects (FCDs) of the knee are a degenerative condition defined as 

chondral lesions of the articulating cartilage surface, which predispose the joint to OA in 

their natural course (Brittberg et al., 1994, Spahn and Hofmann, 2014, Davies-Tuck et al., 

2008b). Unlike with knee OA, the cause of FCDs can most likely be attributed to 

mechanical insult of joint tissues, whether it be an injury or prolonged overload, due to 

the focal nature of the cartilage damage typically found in the tibiofemoral weight-

bearing region of the knee. However, very little is understood about the progressive 

mechanisms of FCD pathogenesis, which is concerning, since it has been shown 

approximately 30% of individuals that bear them go on to require knee replacements 

within 10 years (Spahn and Hofmann, 2014). FCDs are conventionally treated with 

cartilage repair techniques such as microfracture surgery and autologous chondrocyte 

implantation (ACI) which aim to halt chondral damage progression by replacing lost 

cartilage. However long-term outcomes are poor since many go on to require revision 

surgery and total knee replacements (Knutsen et al., 2016, Solheim et al., 2016).   

The poor outcomes of treatment may be related to the complex and multiscale pathology 

of knee degenerative conditions such as FCDs and OA, which involves mechanical (e.g. 

joint overloading), biological (e.g. joint inflammation) and structural (e.g. bone 

remodelling) pathways (Andriacchi and Favre, 2014). Knee OA gait analysis studies have 

importantly evidenced the altered knee loading patterns resultant of aberrant lower 
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limb biomechanical function that correlate with disease progression (Felson, 2013). 

Whereas clinical OA studies have identified changes in biomarker concentrations 

reflective of dysregulated homeostatic mechanisms and cell metabolism in the joint 

(Kraus et al., 2017, Mobasheri et al., 2017, Attur et al., 2013). Although crucial advances 

have been made in elucidating these pathways in patients with established OA, there is 

a deficit of evidence characterising them in individuals with symptomatic FCDs at risk of 

OA development. Advancing our knowledge of aberrant knee biomechanics and tissue 

biology in individuals with symptomatic FCDs, as well as the poorly understood 

association between them, may reveal new pathways of disease and improve our 

approach to treatment strategies. Furthermore, identification of diagnostic and 

prognostic markers of FCD presence and progression could be useful in the comparison 

of the increasing number of conventional and future treatments, to aid clinical decision 

making for the most effective treatment choices. 

This PhD studentship was funded by the Sêr Cymru National Research Network (NRN) 

for Advanced Engineering and Materials, Cardiff University and our collaborating 

industrial partner Hospital Innovations, an orthopaedic product specialist and 

distributer. One of the goals from this studentship was to bridge the gap between bench 

and bedside, by working alongside researchers, clinicians and industrial collaborators 

and sharing information with the collective goal of solving translational research needs 

of the engineering discipline. Secondly, to take a multidisciplinary approach to the 

research challenge by working across the Cardiff University Schools of Engineering and 

Biosciences which permitted access to interdisciplinary facilities, alongside the Arthritis 

Research UK Biomechanics and Bioengineering centre (ARUK BBC) and Cardiff & Vale 

Orthopaedic Centre (CAVOC) which provided access to clinical liaison, NHS patients and 

data required to carry out this research project.    



Chapter 1 

 
18 

 

1.1 Aims and Objectives 

This PhD thesis aims to advance our understanding of the characteristic features and 

etiologic factors of progressive knee FCDs, as well as the shortfalls of current surgical 

practice, such as microfracture surgery, to aid clinical decision making in the choice of 

effective treatments.  

The body of work intends to achieve this by satisfying three overarching objectives:  

Objective 1 (Chapter 3) - To identify biomechanical and neuromuscular pathways of 

tibiofemoral FCD pathogenesis in patients and assess longitudinal functional outcomes of 

microfracture surgery 

Chapter 3 utilises 3D motion analysis combined with electromyography techniques to 

identify the pathomechanic features of tibiofemoral FCD lower limb function by cross-

sectional comparison to healthy function. Secondly, to assess functional outcomes of 

microfracture surgery that could reveal mechanical pathways of long-term failure and 

generate predictive functional markers of positive or poor outcomes. Finally, to identify 

knee FCD functional groups which exhibit distinct biomechanical and neuromuscular 

characteristics that may benefit from targeted intervention. 

Objective 2 (Chapter 4) - To identify biological pathways and biomarkers of tibiofemoral 

FCD pathogenesis and outcomes by investigating molecules relating to OA pathology in 

synovial fluid and serum of tibiofemoral FCD subjects undergoing microfracture surgery   

Chapter 4 firstly utilizes immunoassays to quantify and compare a range of biomarkers 

associated with bone and cartilage remodelling, degradation, mechano-biology and 

inflammation in synovial fluid and serum of tibiofemoral FCD subjects relative to 

established OA and control groups (respectively), to reveal biological pathways and 

biomarkers of pathogenesis. Secondly, to investigate longitudinal changes and 

biomarker patterns reflective of positive or poor outcomes of microfracture surgery, 

which may be informative of long-term failure mechanisms. Finally, to investigate inter- 

and intra-disease group variances by combining linear combinations of biomarkers, to 

identify phenotypic groups that may benefit from targeted therapy. 

  



Chapter 1 

 
19 

 

Objective 3 (Chapter 5) - To characterise the effect of altered knee mechanical loading on 

joint biology in tibiofemoral FCD and OA pathogenesis 

Chapter 5 explores the association between indicators of altered tibiofemoral FCD and 

OA knee biomechanical loading and synovial fluid biomarkers relating to previous 

objectives, to elucidate mechanisms of pathogenesis and progression as well as address 

the shortfalls of microfracture surgery. 
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1.2 Background and Literature Review 

1.2.1 Function of articular tissues of the knee joint 

The human knee joint is a complex structure whose function is to permit smooth and 

stable ambulation, whilst efficiently managing up to 3.5 times body weight on a day-to-

day basis (Kutzner et al., 2010). In order to achieve this, the musculoskeletal tissue that 

comprises the knee joint is highly adapted to ensure longevity of the joint through a 

lifetime of mechanical insult (MacKinnon, 2005).  

Osteochondral tissue found on the femoral, tibial and patellar surfaces are one set of 

structures that are organised to deal with transmission of high stresses and strains 

(Ulrich-Vinther et al., 2003). Cartilage is made up of a series of extracellular matrix (ECM) 

layers, which are differentiated by the alignment of type-II collagen fibres, aggrecans and 

cartilage cells (chondrocytes) throughout the tissue (Figure 1.2-1). These elements are 

organised to direct the force across the entire surface area of the contact regions 

between the femur and tibia, thus reducing focal areas of stress (MacKinnon, 2005). The 

surface is composed of hyaline cartilage, a very low friction gliding surface aided by the 

lubrication of synovial fluid to maximally reduce wear. This is a crucial property due to 

the avascular nature of cartilage, resulting in slow tissue turnover rates and very limited 

regenerating potential. Its hydrophilic properties aided by the high abundance of 

embedded proteoglycans gives cartilage its viscoelasticity, and therefore it’s shock 

absorbing properties (Ulrich-Vinther et al., 2003).  

Beyond the deeper regions of cartilage approaching bone resides the calcified cartilage 

– a stiffer tissue found to be a compromise between bone and cartilage which permits a 

smooth transition of the load between these tissues of very different mechanical and 

biochemical properties. Finally, the subchondral bone; a dense plate of high trabecular 

bone volume which lines the ends of bones, separating and protecting the mechanically 

inferior cancellous bone from joint stresses (MacKinnon, 2005). Subchondral bone 

consists of mineralised matrix, composed of predominantly of type-I collagen fibres, 
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hydroxyapatite, calcium and phosphate with embedded bone cells, including osteocytes 

within in the matrix and osteoblasts and osteoclasts on the surfaces. 

The knee is stabilized by several structures that permit constrained articulation of the 

joint to provide stability. Of those are ligaments, which are comprised of bundles of dense 

connective tissues of collagenous fibres and sheaths (Flandry and Hommel, 2011). There 

are four major ligaments, the anterior and posterior cruciate ligaments (ACL and PCL), 

and the medial and lateral collateral ligaments (MCL and LCL), as well as capsular 

ligaments that line the joint capsule. In addition to preventing unwanted rotation of the 

joint, they add to the important proprioceptive function of joint tissues, generating 

feedback in response to strain that allow identification of knee position (Frank, 2004). 

The menisci are two ‘horse-shoe’ shaped tissues also involved in knee stability, guiding 

the rotation of the femur over the tibia during articulation. However, the primary role of 

the menisci involves the dispersion of joint loads across the wide surface of the knee to 

aid cartilaginous structures in reducing focal forces (Makris et al., 2011, Buckwalter and 

Mankin, 1998).       

  

Figure 1.2-1 - Illustration (left) and histological cross-section (right) of the osteochondral 

interface at the joint surface. 
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1.2.1 Knee osteoarthritis 

Knee osteoarthritis (OA) is a multifactorial degenerative whole-joint disease in which 

the function of the knee is impaired, due to degradation of articular cartilage in the joint 

that protects the underlying subchondral bone, from intra-articular inflammation, bone 

marrow lesions, and changes in peri-articular subchondral bone (Goldring and Goldring, 

2007). These physiological changes result in debilitating symptoms such as acute and 

chronic knee pain, swelling and stiffening of the joint, consequently resulting in complete 

knee dysfunction and reduced quality of life.  In the UK, around 18.2% over the age of 45 

years are currently affected with osteoarthritis (OA), a major clinical issue and burden 

on the NHS (Arthritis Research UK, 2017).  

OA is classically diagnosed using weight-bearing radiographs of the knee with 

identification of characteristic features including joint space narrowing (JSN), 

osteophyte lipping, sclerosis and bony deformations (Figure 1.2-2).  

Once known as ‘wear and tear’ arthritis due to its high prevalence in the overused joint, 

we now understand that a there is large range of risk factors that lead to the initiation 

and progression of OA; blunt trauma from injury, malalignment of the mechanical joint 

axis, simple overuse of the joint, as well as morphological abnormalities resultant of 

genetic traits are some of the causes commonly reported (Goldring and Goldring, 2007, 

Osteophyte 

JSN 

Figure 1.2-2 - Weight-bearing radiograph of healthy knee and OA knee with joint space 

narrowing (JSN) and osteophyte lipping 
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Loeser et al., 2012). OA is referred to as the ‘silent disease’, as it is often the case that 

accumulating musculoskeletal derangements can occur undetected until the damage 

become irreversible. This is primarily because cartilage is not innervated, thus affected 

subjects experience very limited or intermittent pain in the early stages which permits 

damage to progress unattended (Ulrich-Vinther et al., 2003, Heijink et al., 2012). It 

appears that only when other factors such as acute joint inflammation or exposure of 

subchondral bone due to excessive loss of cartilage occurs, that severe pain is 

experienced, which for a large number of cases is only experienced towards the 

irrevocable end stage of the disease. 

There are multiple available treatments for relieving OA, however the current gold 

standard treatment for ‘end-stage’ OA is total knee replacement (TKR) surgery or knee 

arthroplasty– a costly, non-tissue preserving, invasive and joint altering procedure, 

which requires months of post-operative recovery and rehabilitation with unsatisfying 

outcomes (Goldring and Goldring, 2007). Furthermore, the survival rate for TKR 

implants appears to decline rapidly beyond 10 years due to implant loosening, wearing, 

reoccurring inflammation and pain, which means they are only appropriate for the older 

population if the increasingly destructive revision surgeries are to be avoided (Murray 

et al., 1993, Civinini et al., 2017). When projecting forwards from historical data in the 

US alone, the demand for TKRs is expected to grow by 673% by the year 2030 due to our 

increasing age population, therefore there is a demand for newer advancements for 

screening, diagnosing and preventing this condition from an earlier stage (Kurtz et al., 

2007). Identifying and characterising at-risk groups of etiological phenotypes may 

improve our ability to prevent or treat individuals predisposed to OA, to lower the 

clinical burden the end-stage of disease has on our healthcare systems and population 

quality of life. 
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1.2.1 Knee focal cartilage defects 

FCDs are defined as focal loss of the smooth articular cartilage that spans the femoral 

condyle, tibial plateau or patella, often associated with OA-like symptoms including acute 

joint pain during weight-bearing activities, joint stiffening and inflammation (Spahn and 

Hofmann, 2014, Heir et al., 2010). The presence of FCDs is concomitant with tissue 

damage all the way down to the underlying subchondral bone, evident by their 

associations with bone marrow lesions detected by magnetic resonance imaging (Dore 

et al., 2010, Muratovic et al., 2016). However, the clinical definitions which involve 

grading systems for FCDs are more representative of the degree of visible chondral 

damage in the joint (Lasmar et al., 2011). The general consensus is that visible damage 

down to, but not breaching subchondral bone is referred to as a cartilage defect, whereas 

additional visible degradation (loss) of subchondral bone tissue is referred to as an 

osteochondral defect (Bhosale and Richardson, 2008, Davies-Tuck et al., 2008b). There 

are several clinical grading systems used clinically to define FCD stage, which are used 

as a guide for clinical decision making as the most appropriate choice of treatment. Of 

them, the Outerbridge system (Figure 1.2-3) is most commonly used today (Slattery and 

Kweon, 2018). 

Figure 1.2-3: Outerbridge grading system (Slattery and Kweon, 2018, Lasmar et al., 2011). 

Outerbridge grade 0 – normal articular cartilage 

 

Outerbridge grade I – articular cartilage with softening and swelling 

 

Outerbridge grade II – partial-thickness articular cartilage defect with 

fissures on the surface that do not breach subchondral bone or 

exceed 1.5cm in diameter 

Outerbridge grade III – articular cartilage fissuring to the level of 

subchondral bone in an area with a diameter more than 1.5cm 

 

Outerbridge grade IV – articular cartilage with exposed subchondral 

bone 
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The knee FCD population is heterogeneous. Chondral damage is found on either the 

medial or lateral compartment of the knee, in weight-bearing or non-weight bearing 

regions and appears to be etiologically diverse. However, a common ground of their 

presence is their relation to an event or set of events relating to mechanical insult of the 

joint. Such events can include blunt trauma (such as a sporting injury), repetitive 

increased loading (obesity, marathon running) or ageing of the joint cartilage (Davies-

Tuck et al., 2008b, Magnussen et al., 2008). This is particularly the case in joint injury 

subjects, where the site of the lesion is often reflective of the injury that has taken place 

(Mithoefer et al., 2006). Although these risk factors may be related to their initial 

induction, they are not necessarily explanatory of their long-term pathogenesis or 

natural progression in severity and size, since this seems to occur inconsistently 

throughout the affected population (Tetteh et al., 2012, Spahn and Hofmann, 2014).  

In longitudinal studies of FCD progression in the joint using MRI methods (Figure 1.2-4), 

it is found that they progress in severity. One study of 84 subjects with medial and lateral 

tibiofemoral or patellofemoral FCDs revealed between 38-70% of the population 

experienced increased Outerbridge cartilage defect scores over two years, whereas 27-

46% experienced no change at all, and 2-18% showed regression of the defect score 

(Wang et al., 2006). Although age, gender, BMI, physical activity, bone size and baseline 

cartilage defect score were all tested for associations with progression/regression of 

lesions, only baseline score was found to be associated. In another similar study 

Figure 1.2-4 – Turbo Spin Echo (TSE) Magnetic Resonance Imaging (MRI) scan of a healthy 

knee (left) and a typical tibiofemoral Outerbridge grade III knee FCD of a subject from this thesis 

(right). 
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investigating the same factors in 117 subjects over the course of two years, it was found 

that 81% of FCDs progressed at any site in the knee, 15% remained stable and 4% 

decreased, which appeared to associate with bone size and increasing age (Davies-Tuck 

et al., 2008b). The clear heterogeneous long-term pathogenesis of FCDs infers that more 

complex underlying pathways exist that introduce risk to the population, which may not 

always be explained by demographics and lifestyle characteristics alone. 

It is uncommon that knee FCDs exist in isolation of other knee co-morbidities. In large 

multicentre study of 684 males and 80 females investigating the presence of focal lesions 

in subjects who have had ACL tears, Tandogan and colleagues reported that nineteen 

percent of the knees had one or more chondral lesions, sixty percent of which were 

located in the medial tibiofemoral compartment (Tandogan et al., 2004). This association 

has been further substantiated by a prospective study of 541 patients undergoing ACL 

reconstruction, where it was found that increased time from initial ACL injury predicted 

the presence of meniscal tears and chondral damage in the joint (Kluczynski et al., 2013). 

Whereas a more recent prospective study of 764 knee injury patients showed an 

increased incidence of chondral defects with time since both meniscal injury and ACL 

injury individually (de Campos et al., 2016). Aside from articular tissues, the presence of 

underlying bone marrow lesions (BMLs), which are defined as focal areas of bone edema 

and disorganised tissue, have shown to strongly correlate with the presence and severity 

of FCDs (Dore et al., 2010, Muratovic et al., 2016). These findings suggest the likely 

involvement of knee co-morbidities in FCD pathogenesis, each of which have been 

suggested by others to be large risk factors for OA progression (Felson et al., 2000, 

Andriacchi and Favre, 2014). 

The presence of knee FCDs in the joint are thought to be clinically problematic in that 

they may also predispose the joint to OA. Spahn and Hofmann reported that in 115 

patients with isolated FCDs of the medial knee compartment, around 30% went on to 

undergo total knee replacement surgery within 10 years (Spahn and Hofmann, 2014). 

Furthermore, in a review of 374 knee compartments affected with pre-OA or OA 

radiographic classification, it was demonstrated that the presence of chondral or full-

thickness defects in the joint appeared to significantly increase the risk of developing 

more focal regions of chondral damage and predicted radiographic OA severity 

(Guermazi et al., 2017). This evidence is suggestive that altered joint physiology of the 

joint involved with the presence of FCDs may be a driving factor for knee damage 

following FCD induction. However, the mechanisms involved in their development are 
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poorly understood, with very limited literature describing the suspected mechanical, 

biological and structural pathways involved in their pathogenesis.   

1.2.1 Surgical treatment of FCDs and microfracture surgery 

Surgical intervention for the treatment of knee FCDs is very common and often reported 

to be more effective than conservative management alone. Conservative management 

largely involves the use of analgesic and non-steroidal anti-inflammatory drugs 

(NSAIDS) to reduce pain, since currently there are no approved drugs that can prevent 

or even restrain progression of degenerative knee pathologies (Osteoarthritis Research 

Society International White Paper, 2016). Surgical intervention is usually limited to 

cartilage repair techniques, which aims to replace the lost cartilage on the joint surfaces 

(Bhosale and Richardson, 2008, Magnussen et al., 2008). These procedures are suggested 

to negate pain and halt progression of chondral or osteochondral progressive damage. 

Current strategies range from stimulating the body’s own repair response, to insertion 

of bio-active materials intended to replicate the mechanical function of the replaced 

tissue (Magnussen et al., 2008, Pascual-Garrido et al., 2017). However, these strategies 

are not curative, but only fixative and do not restore full function of the joint (Pascual-

Garrido et al., 2017).  

The ideal surgical intervention for chondral injuries would restore the high weight-

bearing organised hyaline-type cartilage with similar properties to the surrounding 

tissue. However, the two most common treatment options, microfracture and autologous 

chondrocyte implantation (ACI), generate fibro-cartilage, a highly disorganised and 

mechanically inferior tissue that lacks the biomechanical properties necessary to 

withstand forces surrounding the knee (Brittberg et al., 1994). This makes the 

neocartilage susceptible to dissociation from surrounding tissue, functional loss and 

mechanical deterioration, which leads to relatively high revision surgery rates 

(Magnussen et al., 2008, Falah et al., 2010). 

Microfracture surgery, a method once referred to as ‘Pridie drilling’ due to its initial 

application by K. Pridie and G. Gordon in 1959, is a conventional surgical technique 

aimed at resurfacing knee chondral lesions by means of drilling into the subchondral 

bone to repopulate the hyaline surface with bone marrow-derived mesenchymal stem 

cells (BM-MSCs) and blood (Pridie and Gordon, 1959). With formation of a blood clot 

within the lesion and controlled weight-bearing, BM-MSCs will yield a fibrocartilage to 

protect the underlying subchondral bone and remaining surround cartilage from further 
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degeneration (Pridie and Gordon, 1959, Mithoefer, 2013). However, the long-term 

benefits are commonly reported to be less than desired (Magnussen et al., 2008, Falah et 

al., 2010). In a study of 3,498 patients undergoing microfracture surgery, 9-18% patients 

required revision surgery within 1 year, 18-30% within 3 years and 32-41% within 5 

years. Of those, 22% went on to require total knee arthroplasties (Layton et al., 2015). 

These statistics importantly highlight the demand for investigating current shortfalls of 

cartilage repair strategies such as microfracture surgery and identification of treatment 

groups that may benefit from alternative treatments.   

 

Figure 1.2-5 - Illustration of the microfracture surgical technique (Seo et al., 2011). 

Debridement of existing damaged cartilage (left), creation of microfractures breaching 

into subchondral bone to release blood and bone marrow (middle), formation of blood 

clot and stable fibro-cartilage tissue (right).   

The heterogeneous nature of FCD pathogenesis and treatment outcomes infers that 

clinical groups exist that may exhibit distinct etiological or progressive mechanisms of 

FCD pathogenesis. Despite its evident shortcomings, microfracture surgery serves a good 

model for exploring the response to treatment, since it is a commonly used, repeatable 

procedure with limited variation in technique between surgeons (Seo et al., 2011, 

Pascual-Garrido et al., 2017). Furthermore, as it is a minimally invasive method, it allows 

exploration of the longitudinal response to cartilage repair without the major influence 

surgical wounds may have on the outcomes.  
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1.2.2 The role of mechanical loading in joint homeostasis and disease 

In the healthy knee, bone and cartilage are continually adapting to load distributions in 

the joint by reshaping, or ‘remodelling’ their structures, and are dependent on 

physiological mechanical signals to maintain these mechanisms and retain normal tissue 

functions (Arokoski et al., 2000, Robling and Turner, 2009). There are a number of 

external mechanical signals of different origin and type (e.g. compression or shear) 

acting at the knee during ambulation, including structural loading generated by 

gravitational forces that create ground reaction forces (GRFs) in response to body 

weight, forces produced by contraction of muscles, strains caused by the mechanical 

properties of tissue structures, as well as inertial forces (Andriacchi and Muendermann, 

2006). Together, these forces create the mechanical environment that tissues and cells 

in the joint require to remodel structures and maintain homeostatic conditions, 

permitting effective functioning of the knee.      

In order for tissues to respond to knee forces, most cell types of the joint tissues including 

cartilage cells (chondrocytes), bone cells (osteocytes, osteoblasts and osteoclasts), as 

well as ligament fibroblasts respond to mechanical changes in their environment 

through signalling pathways in a process called ‘mechanotransduction’ (Salter et al., 

2002, Liedert et al., 2006, Millward-Sadler and Salter, 2004, Robling and Turner, 2009, 

Sanchez-Adams et al., 2014). These cells possess the proteins necessary for transduction 

of mechanical signals, or ‘biomechanical’ signals, that act on the cell through deformation 

of the extracellular matrix (ECM) or shear fluid stress, including stretch-activated 

calcium (Ca2+) channels, cadherins and integrins, which regulate homeostatic signalling 

processes in health and disease (Liedert et al., 2006). These proteins transmit signals 

through the activation of a network of intra-cellular components including enzymes and 

transcription factor to the nucleus, that eventually results in the expression of genes that 

regulate the cells adaptive behaviour (Figure 1.2-6). 
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Figure 1.2-6 – Schematic depicting commonly studied mechanotransduction pathways 

in chondrocytes. Adapted from (Lee and Salter, 2015). External mechanical forces 

derived from lower limb joint loading cause deformation of the extracellular matrix 

(ECM), stimulating integrin, connexin, and stretch-activated ion channel 

mechanoreceptors at the cell surface, or intracellular cytoskeletal filaments, all of which 

transduce external forces into intracellular signalling pathways by activating a series of 

signalling molecules or permitting ions (such as calcium) to pass through the membrane. 

Mechanotransduction pathways include the focal adhesion kinase (FAK), mitogen-

activated protein kinases (MAPK), nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB), phosphatidylinositol 3-kinase (PI3K) and protein kinace C 

(PKC), which act to regulate homeostatic processes through gene expression, and are 

responsible for cell functioning and differentiation. Interleukin-4 (IL-4) and IL-1β are 

auto- and paracrine inflammatory signalling cytokines which have also been shown to 

be regulated by integrin-dependent mechanotransduction cascade of chondrocytes and 

bone cells in response to mechanical stimulation. Anti-inflammatory cytokine IL-4 has 

beneficial effects in activating anabolic responses by upregulating expression of 

aggrecan and collagen, as well as inhibiting matrix metalloproteinase (MMP) expression. 

On the other hand, production of IL-1β, as seen in OA, stimulates a catabolic response 

with activation of pathways resulting in increased expression of Cyclooxygenase-2 and 

MMPs, resulting in tissue degradation and destruction, as well as activation of pain 

pathways through the production of prostaglandins E2. 

In the healthy joint, it has been reported in several studies that spatial thicknesses and 

structural composition of cartilage and bone in the knee correspond to regions of weight-

bearing (Van Rossom et al., 2017, Day et al., 2004, Andriacchi et al., 2009). It is the general 
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consensus that thicker and stiffer tissues are able to better manage higher loads and 

therefore cartilage and bone structurally adapt to suit the mechanical environment they 

are subjected to. Interestingly, in vitro studies have shown that there appears to be a 

physiological range of strains that leads to optimal healthy biosynthetic responses of 

cells, and higher or normal (pathophysiological) strains leads to abnormal cell 

behaviour, reflective of biological differences measures in the disease joint (Goldring and 

Goldring, 2007, Loeser et al., 2012, Bader et al., 2011, Buckwalter and Mankin, 1998). 

These studies involve 2D or 3D (e.g. hydrogel-based) cell culture systems, as well as 

tissue explant studies, which induce a mechanical load of a given frequency and 

magnitude on the cultured cells or tissues, and output in the form of molecular 

biomarkers or changes in the extracellular environment resultant from cell activity is 

measured. It has been demonstrated in chondrocyte cultures that high (0.1-1Hz) 

frequencies of loading and low amplitudes strains (in the range of 0.6-10.5%) results in 

increased proteoglycan production, whereas low frequencies showed very little 

biosynthetic activity (Sah et al., 1989, Thomas et al., 2011). These observations suggest 

that cartilage and bone become conditioned to daily cyclic load distribution patterns and 

as long as normal patterns are maintained, healthy joint homeostasis is maintained 

(Seedhom, 2006, Andriacchi et al., 2009). 

It is well-recognised that in people that suffer knee injuries, damage to joint structures 

results in changes of the normal kinematics of the joint during ambulation (Andriacchi 

and Muendermann, 2006). These functional changes are considered a major risk factor 

for joint degeneration, since many injury patients go on to develop post-traumatic OA 

(PTOA), a fast progressing phenotype of degenerative disease of the knee. Furthermore, 

it has been shown in animal models that destabilising the joint results in structural and 

biological changes similar to that in progressive OA (Legrand et al., 2017, Gilbert et al., 

2018). The leading consensus is that altered cyclic loading distributions and patterns of 

non-adapted regions of tissue due to the changed kinematics of the knee may be 

responsible, since measures of knee loading in humans are strongly associated with and 

predictors of the progression of knee damage and treatment outcomes (Felson et al., 

2000).  

It is also relevant to note that in most degenerative joint pathologies such as FCDs and 

OA, the most progressive damage is often focal in nature, typically affecting one 

compartment (medial or lateral side) of the knee in the weight-bearing region with little 

to no damage of the other (Felson, 2013, Goldring and Goldring, 2007). These 

progressive structural changes are concomitant with significantly elevated or decreased 
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levels of molecules representative of biological processes such as cartilage metabolism 

(breaking down and recycling of ECM components such as COMP), bone remodelling 

(degradation and rebuilding of new bone) and inflammation, which are in more recent 

years shown to be implicated in joint tissue destruction during the course of disease 

(Hunter et al., 2014, Kraus et al., 2017).  

In vitro biological research has aimed to understand the disparity of cellular responses 

to physiological and pathophysiological mechanical stimulation, where it is evident that 

enhanced loading conditions elicit dysregulated inflammatory gene expression, aberrant 

activation of catabolic pathways in chondrocytes and remodelling pathways in bone cells 

(Goldring and Otero, 2011, Kapoor et al., 2011). Whereas animal studies have taught us 

through the use of post-traumatic OA (PTOA) joint destabilization models of the early 

initiating factors and subsequent stages post-injury, driven by both inflammation and 

mechanics, such as leukocyte infiltration, synovitis and tissue architectural changes that 

lead to eventual joint dysfunction (Scanzello, 2017, Legrand et al., 2017, Gilbert et al., 

2000). Finally, human functional studies have evidenced the link between altered 

patterns of knee biomechanical loading and OA disease progression, which appears to be 

consistent with structural tissue changes detected by MRI methods (Van Rossom et al., 

2017, Andriacchi and Favre, 2014).  Taken together, it is clearly evident that mechanical, 

biological and structural pathways are involved in the pathogenesis of degenerative joint 

disease. 
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Despite these critical advances, there is very little evidence elucidating the relationship 

between altered biomechanical loading and aberrant biology particularly in in vivo 

studies of the human knee. A demonstration of these links would validate previous 

findings from in vitro studies and widen the scope for comprehensive therapeutic 

strategies to enhance the efficacy and longevity of intervention (Kraus et al., 2011). This 

is particularly the case for tibiofemoral FCD subjects, who as to reiterate are exposed to 

higher risks for developing knee OA, as well as high failure rates for current conventional 

treatments. Individuals with symptomatic, progressive knee FCDs are a valid human in 

vivo model for studying the link between joint loading and biology, since progressing 

tissue damage in the joint is unicompartmental and focal in nature. Furthermore, their 

incidence is highly correlated to the morbidity of tissues that provide stability of the knee 

during ambulation. An important focus over the course of this thesis is to further 

characterise mechanical and biological pathways involved in FCD pathogenesis, as well 

as the important link between them, to further understand the heterogeneous 

progression and treatment outcomes in this population. 

Figure 1.2-7 – The multiple considerations proposed for understanding of the adaptative 

and maladaptive response of joint tissues such as cartilage in health and disease  

(Andriacchi and Favre, 2014)  
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1.2.3 The study of lower limb function in OA research 

The initiation and progression of progressive joint pathologies such as knee OA have 

been related to the biomechanical function of the joint during ambulation (Andriacchi 

and Favre, 2014). There is growing evidence to suggest that functional alterations of the 

mechanical kinematic and loading patterns the knee is subjected to on a daily basis, 

particularly in activities of cyclic loading such as walking, have a profound influence on 

the initiation, progression, severity and therapeutic outcomes for degenerative knee 

pathology (Chen et al., 2017, Felson, 2013, Andriacchi and Favre, 2014). 3-dimensional 

motion analysis has been widely adopted for investigating biomechanical pathways in 

disease, by calculating the disparity in dynamic measures representative of movement 

or loading of the knee that may be explanatory of changes in joint tissue structures 

during the course of the disease (Andriacchi and Muendermann, 2006). This involves the 

use of gait laboratories equipped with motion capture systems involving infra-red (IR) 

optoelectric cameras and floor-embedded force plates (Favre and Jolles, 2016). The 

measurement of marker trajectories attached to the subjects lower limbs of the subject 

combined with ground reaction force data from the force plates allows for non-invasive 

estimation of joint kinematics (i.e. joint angles and translations) and kinetics (i.e. joint 

moments), used to estimate loading patterns at the knee during activities such as walking 

(Figure 1.2-8).  
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Biomechanical waveform data representing ground reaction forces (GRFs), joint angles 

and joint moments from the frontal plane (adduction/abduction) and sagittal plane 

(flexion-extension) are typically assessed. Joint moments are commonly examined in 

biomechanics literature which are calculated as a product of the GRF vector and the 

distance between the centre of joint rotation and the vector (moment arm) to generate 

measures of the rotational forces applied at the joints. Due to the known geometry of the 

knee, it is possible to interpret how the calculated rotational forces may be associated 

Figure 1.2-8 – Typical pipeline for gait analysis methods. Retro-reflective markers are 

attached to the various anatomical landmarks of the subject. A series of gait trials across 

the laboratory is performed whilst marker trajectory and ground reaction force (GRF) 

data is collected (A & B). A static calibration procedure is used to generate subject-

specific models based on the marker positions and anthropometric data (C). Data is 

processed using the musculoskeletal model to calculate the positions and orientations 

of examined segments (i.e. foot, shank, thigh, pelvis) which allows estimations of joint 

angles (D & E), whereas an inverse dynamics calculation is performed using angle data 

and GRFs to estimate joint kinetics such as moments or powers. Joint angle or moment 

waveforms are extracted and used for biomechanical analysis of gait (F).   
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with the altered loading of joint tissues (Favre and Jolles, 2016). These features are useful 

to consider since as previously noted, altered joint mechanics that occurs over large 

number of cycles during daily activities is likely responsible for aberrant joint biological 

changes (Andriacchi and Favre, 2014, Felson, 2013).  

For example, the dynamic external knee adduction moment (KAM) is one such 

parameter commonly investigated (Figure 1.2-9), which describes the frontal plane 

dynamic ‘bending’ forces at the knee resulting from knee alignment and weight-bearing 

(Heiden et al., 2009). Patient gait analysis studies utilising instrumented knee implants 

that directly measured forces in the knee have shown strong correlations between 

medial-to-lateral knee compartmental force distributions and magnitudes of the KAM 

waveform, which validates its use as a surrogate measure of compartmental knee loading 

(Zhao et al., 2007, Kutzner et al., 2013). The KAM has shown to be increased in the knee 

OA population, which is consistent with the medial compartmental damage commonly 

associated.       

Currently there are many research groups including our own aiming to characterise 

lower limb biomechanical function in knee patient groups, to understand progressive 

biomechanical pathways of pathogenesis and assess longitudinal outcomes of 

interventions aiming to restore joint function. Assessment of biomechanical waveform 

parameters of gait have revealed meaningful differences in disease groups such as OA or 

ACL-injury relative to controls, that has provided evidence of altered joint loading 

patterns and thus identified possible risk factors of progression (Felson et al., 2000, 

Mundermann et al., 2005a, Deluzio and Astephen, 2007, Astephen et al., 2008). 

Furthermore, longitudinal gait analysis studies have been used to assess the load altering 

Figure 1.2-9 - The knee adduction moment (KAM) waveform is calculated from the 

GRF that passes medially to the knee and the distance between the centre of knee 

rotation and the GRF vector (moment arm). Knee OA subjects typically experience 

higher KAMs than normal.  
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effects of interventions targeted at changing the kinematics and forces at the knee 

(Mundermann et al., 2004). For example, the KAM has been extensively used to assess 

the efficacy of high tibial osteotomy (HTO) surgery, a surgery aimed at realigning the 

frontal plane knee joint axis, for offloading the medial compartment in medial knee OA 

subjects (Favre and Jolles, 2016). Within our research group, lower limb function of 

patients with progressive knee OA undergoing high tibial osteotomy (HTO) total knee 

replacement (TKR) surgery has been investigated (Jones et al., 2006, Whatling, 2009, 

Watling, 2014). These studies have revealed distinct biomechanical features of moderate 

to severe OA patients during gait reflective of knee overloading and pain adaptations, 

which have proven to be useful predictors of outcomes to HTO and TKR surgery. The 

high heterogeneity of treatment outcomes to these surgeries appears to be related to 

biomechanical function prior to surgery.  

Aside from biomechanical measures, there has also been interest in investigating the 

neuromuscular function of knee pathology subjects, which involves investigating the 

sensory (proprioceptive) and motor impairments affecting muscle contraction 

(activation) patterning during ambulation. Using electromyography (EMG) techniques 

which measure the electrical signals generated by contracting muscles, several studies 

have evidenced abnormal recruitment and co-contraction activity of lower limb flexor 

and extensor muscles during gait in patients with knee OA (Hubley-Kozey et al., 2008, 

Lewek et al., 2005, Takacs et al., 2013). This has revealed possible alterations in postural 

control and gait adaptations to knee pain and instability, which could be relevant to 

functioning of the knee related to disease (Duffell et al., 2014). It has been hypothesised 

that abnormal co-contraction patterns of the quadriceps and hamstrings may contribute 

to increased compressive forces at the knee, implicating neuromuscular function with 

mechanical pathways of pathogenesis (Lewek et al., 2005). Furthermore, long-term 

changes in postural control in compensatory mechanisms of pain avoidance is thought 

to contribute to muscle activation imbalances or weakening due to over- or underactivity 

of important stabilising muscles, which is thought to be a critical risk factor for OA 

development (Hortobagyi et al., 2005, Takacs et al., 2013).    

In gait analysis studies, biomechanical and muscle activation waveforms are usually 

truncated to be representative of features during events of the gait cycle. Since the 

features of interest are typically during weight-bearing of the affected knee, moment 

waveforms are reported in a time-series normalised to percentage of stance phase 

(Figure 1.2-10), whereas joint angles and muscle activation waveforms are expressed for 

the whole gait cycle (heel-strike to heel-strike) which includes swing phase (not included 
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in the figure). The magnitude of the waveforms on the other hand are expressed as 

relevant units (i.e. joint angles in degrees, joint moments as %bodyweight*height and 

muscle activation as %maximum contraction) to permit comparison of the waveforms 

between subjects or between groups. Ultimately, it is the magnitude and shape 

differences of these waveforms that allows for a meaningful interpretation of group 

differences.   

There is clear evidence of the value of gait analysis in elucidating the role of 

biomechanical in knee OA, however this has not been characterised in subjects with knee 

FCDs, a condition where mechanical pathways are likely involved. Within this thesis, gait 

analysis techniques combined with EMG will be used for the first time to assess lower 

limb kinematic, kinetic and neuromuscular function in subjects bearing medial or lateral 

knee FCDs in relation to healthy subjects, to identify mechanical pathways of FCD 

pathogenesis that could explain disease progression or treatment outcomes of 

microfracture surgery. 

1.2.4 The study of biological molecules in degenerative knee disease 

research 

The pathogenesis of OA is characterised by successive stages of molecular derangements 

initiated by micro- and macro-injuries that results in the activation of maladaptive repair 

responses, followed by larger anatomical changes that culminate in full joint dysfunction. 

Within our research group, the longitudinal joint tissue response to knee injury by non-

invasive ACL rupture has been characterised in mice revealed distinct biological events. 

This includes a time-dependent increase in the number of inflammatory-activated 

macrophage populations in the intra-articular space and upregulated gene expression of 

Figure 1.2-10 – Events of the gait cycle during stance-phase 
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pro-inflammatory cytokines, nitric oxide synthase and tissue matrix degrading enzymes 

consistent with bone remodelling and tissue architectural changes such as cartilage 

damage (Gilbert et al., 2018).    

Organisations such as the Osteoarthritis Biomarkers Network (OBN), the Biomarkers 

Working Group (BWG), as well as the Osteoarthritis research Society International 

(OARSI) initiative aim to define a set of reliable biomarkers of normal or pathogenic 

processes associated with pre-OA and OA phenotypes in humans (Attur et al., 2013, 

Kraus et al., 2011, Lotz et al., 2013). Within these large multicentre projects, biological 

fluids such as synovial fluid, peripheral blood and urine are commonly explored for 

molecules reflective of the tissue response to injury, disease progression as well as 

therapeutic outcomes (Hunter et al., 2014, Kraus et al., 2017). Ultimately, biomarkers of 

OA could be used as either exploratory tools for investigative research, or as clinical tools 

such as for the diagnosis and prognosis of disease stage or surrogates for clinical trial 

end-points.  

Although a few promising candidates exist, there is no single biomarker that can reliably 

and repeatably diagnose or prognose pre-OA or OA in humans (Lotz et al., 2013, Watt, 

2018, Kraus et al., 2017). The validation of robust biomarkers for clinical research is 

becoming increasingly important due to the growing number of available treatments for 

early stages of disease. Most interventional studies use clinical end-points based on 

patient-reported (e.g., pain and symptoms) and imaging (X-ray and MRI) criteria. 

Although such assessments are valuable, they not sensitive to the molecular 

derangements that occur during early stages of the disease or in response to treatments, 

making it difficult to distinguish between them to identify those of highest efficacy (Lotz 

et al., 2013, Kraus et al., 2011, Kraus et al., 2017). For this reason, identification of valid 

biomarkers may generate more rapid therapeutic outcomes to treatments than is 

currently used in interventional studies (Kraus et al., 2011). Furthermore, although 

current hard clinical end-points provide information about the point-of-failure, they do 

not provide information for reasons of failure. Relating alterations of biological pathways 

with positive or poor outcomes to intervention may aid in the development and 

optimisation of future treatments.  

Animal and clinical observations have taught us that the structural changes in joint 

tissues such as subchondral bone and cartilage during the course of OA are associated 

with changes in biological molecules that are thought to either facilitate and/or are 

resultant of cell metabolic or anabolic processes (remodelling), structural tissue 

degradation or inflammation (Scanzello et al., 2008, Karsdal et al., 2010). The 
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quantification of such molecules allows for investigating biological pathways of disease, 

to further characterise the etiological or progressive factors involved in dysregulated 

homeostatic functions which may aid to develop biomarkers or new target pathways for 

new biological treatments including Disease Modifying Osteoarthritis Drugs (DMOADs). 

In more recent years in vitro biological research has highlighted the cross-talk between 

functions of the immune system, cartilage and bone biology, therefore it may be 

increasingly relevant to investigate them together for this purpose (Legrand et al., 2017). 

Furthermore, although pre-clinical and clinical research has revealed potential biological 

mechanisms, targets and biomarkers of OA disease progression, there is little evidence 

for FCD specific pathology. 

1.2.4.1 Biomarkers of cartilage and bone turnover and degradation 

Products of bone and cartilage extra-cellular matrix (ECM) changes related to tissue 

remodelling and degradation are the most commonly examined biomarkers in animal 

and human OA studies and have been recognised as promising diagnostic and prognostic 

biomarkers by multi-centre organisations such as the OBN, BWG and the OARSI 

initiative, particularly for their utility in serum and urine (Attur et al., 2013, Kraus et al., 

2011, Lotz et al., 2013). This is not surprising considering cartilage degradation as well 

as alterations in bone mineralisation and structure are hallmarks of OA (Goldring and 

Goldring, 2007).  

A plethora of evidence has revealed disease group specific alterations in biomarkers of 

bone remodelling pathways, which describes the signals orchestrating turnover of 

skeletal tissue. Bone remodels continuously, an important process in repair and 

adaptation of bone to daily physiological loading (Day et al., 2004). It is thought this 

occurs through mechanotransduction pathways as well as the repair response to micro-

fractures generated from tissue strain, resultant of structural compression. There are 

two cell types known to be directly active in bone remodelling - osteoblasts which 

synthesise new mineralised bone (formation) and osteoclasts which break it down 

(resorption) as illustrated in Figure 1.2-11. Studies of OA often quantify the 

concentrations of alkaline phosphatase (ALP) and C-terminal telopeptide of collagen 

type-I (CTX-I) in synovial fluid or serum, which are representative of osteoblastic bone 

formation activity and osteoclastic bone resorption activity, respectively (Burr and 

Gallant, 2012). Changes in the concentrations of these biomarkers could be reflective of 

the many observed changes in bone surrounding the joint, such as bone marrow lesions 

(BMLs), osteophyte formation and sclerosis of subchondral bone (Hunter et al., 2014).  
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Figure 1.2-11 – Illustration of the bone remodelling process. Bone resorption activity 

involves the recruitment and activation of mature osteoclasts that release matrix 

degrading enzyme to remove old bone. Bone formation involves the recruitment and 

maturation of osteoblasts which secrete new matrix components to replace lost old bone 

with new mineralised bone (Burr and Gallant, 2012).   

Interestingly, it has been shown that bone remodelling activity variably changes in early 

to late-stages of OA. However, the mechanisms of this are complex and still unclear (Burr 

and Gallant, 2012, Maruotti et al., 2017). The process relies on a complex network of 

signalling molecules such as growth factors, inflammatory cytokines and amino acids 

such as glutamate produced by themselves (autocrine) from neighbouring cells 

(paracrine) including osteocytes, inflammatory cells and chondrocytes (Gibon et al., 

2016, Galea et al., 2017). The activation of various receptors on the osteoblast and 

osteoclast surface then initiates intra-cellular signalling pathways such as the janus 

kinase (JAK)-STAT pathway, activator protein 1 (AP-1) transcription factor pathway, or 

the nuclear factor Kappa-light-chain-enhancer of activated B cells (NF- κB) pathway 

(Figure 1.2-12). One well-recognised mechanism is the canonical bone resorption 

pathway, which is dependent on the activation of Receptor Activator of Nuclear factor 

Kappa-light-chain-enhancer of activated B cells (RANK) found on the surface of 

osteoclasts, which when activated by RANK ligand (RANKL) located on activated 

osteoblasts and some immune cells stimulates osteoclast maturity (osteoclastogenesis) 

and osteoclast resorption activity through multiple intracellular mechanisms, including 

the NF-κB and AP-1 pathways. However, osteoprotegerin (OPG), a signalling molecule 

also secreted by osteoblasts can inhibit the activation of the canonical resorption 

pathway binding to and deactivating RANKL. Thus, the relative quantities of RANKL and 

OPG in the joint as a ratio (RANKL-OPG) can be a useful biomarker of the net activation 

of canonical bone resorption of subchondral bone (Tat et al., 2009). Is has been suggested 

by previous authors that abnormal regulation of RANKL-OPG by osteoblasts is one of the 
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largest contributors to bone abnormal bone remodelling and mineralisation (Maruotti et 

al., 2017). 

Structural degradation of cartilage during the course of OA was once thought to be due 

to ‘wear and tear’ of the joint, however it has become much clearer that biological 

mechanisms of degradation are involved in the process. When chondrocytes are 

stimulated by chondral damage, inflammatory cytokines or pathophysiological 

mechanical signals due to altered loading of the joint, they shift towards a catabolic state, 

producing inflammatory cytokines, matrix degrading enzymes including MMPs that 

degrade structural collagens as well as aggrecanases such a disintegrin and 

metalloproteinase with a thrombospondins (ADAMTS) which cleave the important 

Figure 1.2-12 - Schematic of common pathways involved in activating bone 

resorption including the JAK-STAT, NF-κB and AP-1 transcription pathways. 

RANKL expression by osteoblasts activates the canonical signalling pathway 

in osteoclasts leading to up-regulated gene expression of matrix degrading 

enzymes including matrix-metalloproteinases (MMPs), Tartrate-resistant 

acid phosphatase (TRAP), C-terminal c-Src kinase (Csk), but is inhibited by 

OPG activity (Osta et al., 2014).   
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aggrecan chains that give cartilage its hydrophilic properties (Bader et al., 2011, Gilbert 

et al., 2018, Chen et al., 2017). For this reason, cartilage matrix molecules resultant of 

metabolism such as C-terminal telopeptide of collagen type-II (CTX-II) and hyaluronan 

(HA) are arguably of the most commonly explored OA-related molecules in serum (Lotz 

et al., 2013, Kraus et al., 2017).  

Cartilage oligomeric matrix protein (COMP) is a structural component of cartilage that is 

thought to be involved with organisation of the fibrils that give cartilage its mechanical 

properties, thus making it a good indicator of structural cartilage degradation (Attur et 

al., 2013). Since COMP is produced by chondrocytes, it is also a valid indicator of anabolic 

activities in a reparative state (Clark et al., 1999). Interestingly, cartilage matrix 

components including COMP have been shown to stimulate chondrocyte catabolic 

pathway activation through interacting with integrins on the chondrocyte cell surface, 

stimulating a catabolic feedback loop involving the perpetual breakdown of cartilage 

(Recklies et al., 1998, Bader et al., 2011, Chowdhury et al., 2010). Together, this suggests 

COMP is a good indicator of pathogenic processes of cartilage during the course of 

degenerative knee pathologies.  

1.2.4.2 Biomarkers of mechanical loading of bone 

Bone is thought to be the fastest and most responsive tissue to mechanical loading in the 

body, exhibiting the earliest changes following initiation of OA in animal models 

(Goldring and Goldring, 2007). As previously detailed, the adaptative response to local 

stresses is a repair response, but also ensures the mechanical properties of bone 

underlying regions of high mechanical loading is adequate for its supportive function in 

the joint (Burr and Gallant, 2012). Structural changes in subchondral bone as detected 

by imaging methods such as X-ray and MRI have reported to involved both thinning in 

the early stages of OA to thickening and stiffening (sclerosis) in the later stages (Garnero 

et al., 2001, Hayami et al., 2004), as well as site specific bone marrow lesions composed 

of disorganised bone formation and attrition (Lo et al., 2005). Therefore, there is a desire 

to understand how bone is loaded in the joint, particularly in relation to changes in 

cartilage. It is thought that sclerostin and glutamate are importantly involved in the 

adaptive response mechanism, acting as mechano-tropic agents linking cell 

mechanotransduction pathways and bone cell maturity and activity (Galea et al., 2017, 

Brakspear and Mason, 2012, Mason et al., 1997, Robling et al., 2008).  



Chapter 1 

 
44 

 

Activation of the Wingless/integrated (Wnt) signalling pathway in bone is responsible 

for the upregulated activity of Runt-related transcription factor 2 (Runx2), which 

orchestrates expression of bone formation genes in osteoblasts, including those for the 

synthesis of ALP, OPG, osteocalcin, collagen type-I, bone sialoprotein (BSP) and 

osteopontin. Therefore, as a potent Wnt/β-catenin pathway inhibitor, sclerostin has 

control over important osteogenic pathways in bone (Sebastian and Loots, 2017, Raggatt 

and Partridge, 2010). Sclerostin is produced by osteocytes in resting conditions. 

However, when bone is loaded sclerostin expression is down-regulated due to the 

activation of strain-sensitive surface receptors, ultimately permitting bone formation 

activity by osteoblasts to occur (Lewiecki, 2014, Sebastian and Loots, 2017). This 

mechanism therefore describes a direct feedback mechanism in which bone repair is 

stimulated by mechanical loading with sclerostin as the key regulator (Galea et al., 2017). 

For this reason, sclerostin could be a good biological indicator of subchondral bone 

loading in the healthy and degenerative joint, whereby reduced sclerostin would 

represent higher loads.     

Interestingly, it has been recognised that chondrocytes from sheep and mouse joint 

destabilization post-traumatic OA models exhibit expression of sclerostin in regions of 

focal cartilage damage, whilst reduced sclerostin expression was detected in regions of 

sclerotic subchondral bone (Chan et al., 2011, Lewiecki, 2014). Sclerostin is biologically 

active in chondrocytes, inhibiting Wnt/β-catenin activation responsible for catabolic 

MMP and ADAMTS expression, but also decreasing expression of collagen type-II and 

aggrecan. Due to these contrasting effects which have been verified more recently, this 

response has sparked controversy over whether or not up-regulated sclerostin it is a 

chondro-protective mechanism (Chang et al., 2018)). The emerging consensus is that 

extracellular release could be an auto- and paracrine signalling response to the high 

mechanical stress and/or pro-inflammatory conditions to protect local regions of 

cartilage from excess degradation. 

Although the sclerostin pathway is well-established, the role of glutamate and 

glutamatergic signalling in the response to loading still requires further clarification, 

however there is early evidence of its involvement in OA (Brakspear and Mason, 2012). 

An earlier study by Mason and colleagues (1997) showed that an osteogenic load 

externally applied (10 N, 10Hz) to rat ulna resulted in a down-regulation of glutamate 

aspartate transporter (EAAT) expression in bone. This is suggestive of a mechano-

regulatory mechanism involving glutamate signalling, since EAATs terminate glutamate 

signalling by removing it from the extracellular space in the synapse. Since later 
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discoveries of functional components such as proteins required for calcium-mediated 

exocytosis of glutamate, it has been hypothesised that opening of osteocyte stretch- and 

voltage-sensitive calcium channels as a result of mechanical loading may result in Ca2+-

mediated release of glutamate into the extracellular space (Mason, 2004). Combined 

with the down-regulation of glutamate transporters, the evidence supports the 

accumulation of glutamate within the joint following continued response to load – a 

possible mechano-regulatory signalling system.  

Other studies including from our research group have evidenced the possible role of 

glutamate signalling in most joint tissues, since functional components of glutamate 

signalling including ionotropic (iGluRs) and metabotropic (mGluR) glutamate receptors 

have been found on the surface of osteoblasts, osteoclasts, osteocytes, chondrocytes and 

fibroblasts (Cowan et al., 2012, Bonnet et al., 2015, Wen et al., 2015, Brakspear and 

Mason, 2012). Collectively, several studies have proven by the use of glutamate receptor 

antagonists that glutamatergic signalling is important in the regulation of osteoblastic 

bone formation activities (Ho et al., 2005, Lin et al., 2009), osteoclast differentiation and 

resorption activity (Merle et al., 2003, Mentaverri et al., 2003), nociceptive pathways 

(Bonnet et al., 2015, Wen et al., 2015) as well as inflammatory pathways (Flood et al., 

2007). Furthermore, inhibiting glutamatergic signalling in mouse models of 

inflammatory arthritis inhibits histological cartilage, bone and synovium OA-related 

changes, as well as pain-related behaviour (Bonnet et al., 2015), suggesting glutamate 

may be a key player in the pathogenesis and pain experienced during OA.     

 

Figure 1.2-13 - Proposed glutamate signalling interactions in bone based on previous 

evidence by Brakspear and Mason (2012). Opening of osteocyte stretch-sensitive 
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calcium (Ca2+) channels in response to mechanical load results in release of glutamate 

(black circles) into the extra-cellular space. Mechanical loading down-regulates 

glutamate transporter (EAAT) expression (Mason et al., 1997), resulting in increased net 

extracellular glutamate. High glutamate levels activate iGluRs (NMDA/AMPA) on the 

surface of osteoblasts and osteoclasts (Wen et al., 2015), which activate intracellular 

bone formation (Ho et al., 2005, Hinoi et al., 2003) and resorption (Merle et al., 2003, 

Mentaverri et al., 2003) pathways. Therefore, glutamatergic signalling may act as a 

mechano-tropic mechanism of transduction of mechanical cues and coupling of bone 

remodelling. 

1.2.4.3 Biomarkers of inflammation 

All tissues in the joint play a role in the pathophysiology of OA through the mediation of 

inflammatory cytokines and chemokines, a complex network of influential regulators of 

which the dysregulation many investigators claim drives the pathogenesis of OA 

(Wojdasiewicz et al., 2014, Mobasheri et al., 2017, Kapoor et al., 2011, Mobasheri, 2013). 

Increased presence of pro-inflammatory mediators such as interleukin-1β (IL-1β), IL-6, 

IL-8, tissue necrosis factor-α (TNF-α) and interferon- γ (IFN-γ) have consistently been 

linked to self-propagation of inflammatory factors, joint tissue structural alterations 

through the promotion of tissue turnover pathways (Figure 1.2-12), upregulation of 

matrix-degrading enzymes such as MMPs and ADAMTSs, production of destructive and 

pain inducing molecules such as prostaglandins E2 (PGE2) and nitric oxide (NO), as well 

as worsening of clinical factors such as joint pain and OA-related symptoms  (Fernandes 

et al., 2002, Lotz et al., 2013). These molecules arise from specific inflammatory tissues 

such as the synovium, infiltrating leukocytes, or traumatised bone and cartilage cells, and 

facilitate autocrine and paracrine signalling to stimulate the production of themselves in 

a destructive positive feedback loop in the course of OA (Wojdasiewicz et al., 2014, Lotz 

et al., 2013).    

Anti-inflammatory mediators such as IL-4, IL-10 and IL-13 on the other hand play an 

antagonistic role to disease progression, through the inhibition of pro-inflammatory 

cytokine activity, direct downregulation of tissue turnover pathways (such as the 

RANK/RANKL/OPG canonical pathway in bone), and suppression of destructive factors 

(Wojdasiewicz et al., 2014, Onoe et al., 1996, Scanzello, 2017). Aside from utility as useful 

biomarkers of disease pathogenesis, a better understanding of individual functions and 

roles of inflammatory mediators in disease is of interest for the development of effective 

anti-cytokine therapies (Kapoor et al., 2011). 
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Pro-inflammatory mediators have been widely acknowledged for their diagnostic and 

prognostic potential for clinical knee OA (Fernandes et al., 2002, Kapoor et al., 2011, Liu-

Bryan and Terkeltaub, 2015), as well as progression of knee FCDs (Cuellar et al., 2016, 

Tsuchida et al., 2012, Streich et al., 2011). There has been a particular interest in the 

involvement of inflammation in the acute response to injury, since the up-regulation of 

pro-inflammatory cytokine expression and release appears to be the earliest reported 

response following injury in PTOA animal models or injured human subjects, preceding 

degenerative changes (Scanzello, 2017, Gilbert et al., 2018). Several large multi-centre 

cohort studies involving the Knee Injury Cohort at the Kennedy (KICK) cohort of 150 

subjects (Watt et al., 2016) and the Knee Anterior Cruciate Ligament, Non-surgical 

versus Surgical Treatment (KANON) cohort of over 121 subjects (Struglics et al., 2015) 

have reported that pro-inflammatory cytokines including IL-1β, IL-6, TNF-α and 

chemokines such as IL-8 and monocyte chemotactic protein-1 (MCP-1), are elevated 

following injury up to five years in synovial fluid and correlate with patient-reported 

outcomes such as pain and symptoms, making them strong candidate biomarkers for 

early disease pathogeneses.   

1.2.5 Joint homeostasis in health and osteoarthritis 

Joint homeostasis is dependent on intra-scale biomechanical signalling, which ranges 

from full body ambulatory mechanics to the local mechanical environment of the cell 

(Andriacchi and Favre, 2014, Felson, 2013). Most cell types in joint tissues including 

chondrocytes, osteocytes, osteoblasts and osteoclasts respond to mechanical load as a 

means of regulating growth, cellular differentiation, and metabolism in the joint tissue 

extracellular matrix (Sanchez-Adams et al., 2014, Blain et al., 2001, Bader et al., 2011, 

Sah et al., 1989). Maintenance of a balanced synthesis and degradation cycle is essential 

for normal morphology and thus function of the knee. In the microenvironment, 

physiological ranges of matrix deformation, hydrostatic and osmotic pressure, altered 

matrix water content and oscillatory fluid flow are all capable of individually stimulating 

a cell signalling response (Hoey et al., 2012, Fitzgerald et al., 2006, Liedert et al., 2006, 

Robling and Turner, 2009). In a state of rest (no joint loading), catabolic activity 

signalling is dominant, which is required to remove damaged tissues exposed to loading 

that may have lost structural function (Figure 1.3-14). Whereas activated signalling 

pathways following loading are reflective of biosynthetic anabolic responses, which are 

thought to be responsible for the repair and replacement of damaged tissues caused by 

joint use (Figure 1.3-15). The overall resulting turnover process allows for repair, 
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growth and remodelling of skeletal tissues  (Loeser, 2014). The following figures 

represent some of the major pathways involved in these distinct phases of homeostasis. 

1.2.5.1 Effect of loading on joint homeostatic mechanisms 

Figure 1.3-14 – Schematic representing homeostatic mechanisms during resting 

conditions. Chondrocytic anti-inflammatory cytokine (e.g. IL-4) expression and intra-

cellular calcium signalling is down-regulated due to lack of mechanical stimulation, 

permitting activity of the NF-κB intracellular signalling pathway (Sanchez-Adams et al., 

2014, Salter et al., 2001). This results in the upregulation of chondrocytic catabolic 

expression of matrix degrading proteases (MMPs) and aggrecanases (ADAMTS), as well 
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as increased pro-inflammatory cytokine (IL-1β and TNF-α) synthesis, which promote 

catabolism in an autocrine and paracrine manner (Leong et al., 2010, Loeser, 2014). In 

subchondral bone, resting osteocytes release sclerostin, which binds to low-density 

lipoprotein receptor-related protein 5 or 6 (LRP5/6) and Frizzled co-receptors on the 

osteoblastic surface and potently inhibits the Wnt/β-catenin pathway, interrupting 

osteogenesis and osteoblastic bone formation activity, including via activity of the 

osteogenic transcription factor Runx2 (Robling et al., 2008, Li et al., 2005). Due to the 

activity of parathyroid hormone (PTH), vitamin D and pro-inflammatory cytokines (IL-1 

and IL-6), osteoblasts express RANKL, which binds to RANK on the surface of premature 

osteoclasts and stimulates osteoclastogenesis and increased bone resorption activity 

(Lewiecki, 2014, Sebastian and Loots, 2017). Bone resorption by osteoclasts involves the 

secretion of proteases (MMP-9, -13 and Cathepsin K) and tartrate-resistant acid 

phosphatase (TRAP), which break down old bone.  
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Figure 1.3-15 – Schematic representing homeostatic mechanisms in response to 

physiological loading. The stimulation of stretch-activated ion channels (e.g. Transient 

receptor potential cation channel subfamily V member 4) and integrins (e.g. α5β1) on 

the chondrocyte surface leads increased intracellular Ca2+ levels and the release of anti-

inflammatory cytokines (e.g. IL-4), which in an autocrine and paracrine (cytokines only) 

manner, upregulate gene expression for the synthesis of matrix components (e.g. 

collagen type II and aggrecans), and counteracts protease (MMP-3) expression and the 

synthesis of pro-inflammatory mediators including PGE2, IL-1β and TNF-α (Millward-
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Sadler and Salter, 2004, Wong and Carter, 2003, Bader et al., 2011). Activation of these 

surface molecules is also thought to play a role in many aspects of chondrocyte function, 

including proliferation, chondrocyte adhesion, chondrogenesis and survival through 

intracellular calcium and cytoskeletal signalling pathways (Hirsch et al., 1997, Sanchez-

Adams et al., 2014). For example, integrin-dependent activation of phosphoinositide3 

kinase (P13k) regulates PKB/Akt activity which has multiple roles such as the inhibition 

of apoptosis and pro-apoptotic molecules (Guan et al., 2014). In bone, osteocytes 

downregulate sclerostin expression, a potent inhibitor of Wnt signalling, leading to 

heightened activity of the canonical Wnt (β-catenin) signalling pathway in osteoblasts, 

responsible for stimulating Runx2-dependent expression of anabolic genes (e.g. type I 

collagen and ALP) responsible for the formation of new mineralised bone (Osta et al., 

2014, Sebastian and Loots, 2017). Loaded osteoblasts release osteoprotegerin (OPG), an 

autocrine and paracrine inhibitor of the osteoblastic RANKL-dependent NF-κB pathway 

in osteoclasts, leading to reduced osteoclast maturation and resorption activity (Tat et 

al., 2009, Sanchez et al., 2009). This results in an overall increase in bone remodelling 

with a bias toward new bone formation. 

1.2.5.2 Homeostatic mechanisms during different stages of the OA 

process 

Biological homeostasis is disrupted in osteoarthritis due to mechanical and biochemical 

changes in the joint that bias the synthesis-degradation balance. When the extracellular 

matrix is damaged, chondrocytes and bone cells show a distinct repair response in an 

attempt to recover, but due to the extent of damage and complexity of these tissues, 

anabolic activities cannot effectively restore functional tissue (Karsdal et al., 2014, Zhu 

et al., 2009). Histological studies have provided a plethora of evidence of joint tidemark 

advancement (the boundary between bone and cartilage) in OA tissues, and thus it is 

recognised that re-establishment of the endochondral ossification process is likely a key 

contributor to the process of OA  progression (Burr and Gallant, 2012). As this 

development process is rekindled, the thickness of calcified tissue advances into the 

cartilage matrix in a process called tidemark duplication, reducing the thickness of tissue 

with functional hyaline properties. The biomechanical changes in hyaline cartilage due 

to these changes is thought to play an important part in the accelerated deterioration of 

cartilage (Andriacchi and Favre, 2014) 

The association of bone remodelling and cartilage thinning throughout the course of OA 

is a dynamic process initiated by maladaptive overloading (e.g. blunt trauma or 

prolonged) that aberrant activation of mechanotransduction pathways in the affected 

cells, eventually changing the molecular composition of tissues (Lee & Salter, 2015). It is 

well recognised that joint cells respond differently to physiological versus 
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pathophysiological ranges of load stimulus, which drive differential mechanisms of 

homeostasis which often become increasingly unbalanced in the overloaded joint during 

the course of OA (Martel-Pelletier, 1999, Arokoski et al., 2000). Subchondral bone 

exhibits differences in tissue remodelling rates within the tissue concomitant with the 

altered loading patterns experienced, which can lead to regions of bone sclerosis and 

attrition often found in the form of bone marrow lesions (Burr, 2004). These paradoxical 

observations are consistent with the spatial separation of these processes in the affected 

joint (Burr and Gallant, 2012). The consequential changes in thickness or stiffness of the 

subchondral bone plate can further contribute to altered biomechanical and 

compositional properties of the tissues, which ultimately alter the cellular response to 

joint loading. Aside from mechanical factors, biochemical factors such as inflammatory 

mediators, stress-response factors as well as matrix components released resultant of 

increased loading can further drive pathogenesis through aberrant stimulation of cell 

receptor-ligand interactions (Day et al., 2004). This leads to perpetual catabolic feedback 

loops that synergistically with altered loading patterns throughout the course of OA 

contribute to the eventual destruction and dysfunction of the joint.  
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Figure 1.3-16 - Schematic representing currently hypothesised mechanisms of early OA 

pathogenesis. The superficial layer of cartilage first degrades due to abnormal 

mechanical insult, and eventually changes are seen in the internal structural and cell 

organisation. The increased forces experienced by chondrocytes and exposure to ECM 

breakdown components (e.g. fibronectin, collagen and COMP fragments) overstimulates 

the toll-like-receptor (TLR) and integrin-dependent (e.g. α5β1) pathways in 

chondrocytes and synovial cells, which are involved in the activation of NF-κB and MAPK 
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p38 intracellular signalling pathways (Bader et al., 2011, Martel-Pelletier, 1999, Loeser 

et al., 2012). This leads to enhanced synthesis of stress-response factors (e.g. PGE2 and 

NO), pro-inflammatory mediators (e.g. IL-1β, IL-6 and TNF-α) and proteolytic enzymes 

(MMP-1, MMP-3, MMP-8, MMP-13) and ADAMTS-4 and 5 (Chowdhury et al., 2010, Kim 

et al., 2006b, Fernandes et al., 2002, Hwang et al., 2015). These external and autocrine 

factors in combination stimulate a hypertrophic repair phase, whereby chondrocytes 

exhibit accelerated proliferation and anabolic activity in the form of matrix component 

synthesis (e.g. collagen type II, collagen type X and aggrecan). This is partially influenced 

by the release of anabolic factors including insulin-like growth factor (IGF-1) and TGF-β 

by stimulated chondrocytes, a staple trait for early OA (Favero et al., 2015, Goldring and 

Otero, 2011). However, due to the loss of the superficial layer, glycosaminoglycans is 

eventually lost from the matrix and replaced with water, leading to softening of the 

hyaline tissue (Favero et al., 2015, Blaker et al., 2017). Release of pro-inflammatory 

mediators (e.g. IL-1β and TNF-α) and TGF-β from the deteriorating cartilage also 

stimulates bone remodelling, due to the heightened activation of the NF-κB, SMAD-

dependent and MAPK pathways in osteoblasts and osteoclasts (Osta et al., 2014). Pro-

inflammatory cytokines IL-1β and IL-6 influence the expression of RANKL by 

osteoblasts, activating RANK on the surface of osteoclasts which increases osteoclast 

maturation and resorption activity through the NF-κB-dependent pathway (Steeve et al., 

2004). Aberrant bone remodelling is also influenced by the pathophysiological 

subchondral bone loading experienced due to loss of cartilage. Sclerostin is heavily 

downregulated by osteocytes, increasing osteogenic activity (Robling et al., 2008, 

Robling and Turner, 2009). Increased release of intracellular glutamate stores and 

down-regulation of glutamate transporters leads to high extracellular glutamate, which 

acts on bone cell ionotropic glutamate (NMDA/AMPA) receptors to stimulate pro-

inflammatory activity, osteoclast maturation and resorption activity, as well as 

osteoblast activity (Brakspear and Mason, 2012, Flood et al., 2007, Mason, 2004). This 

enhanced bone remodelling activity leads to increased porosity and eventual thinning of 

the subchondral plate, resulting in mechanically inferior bone, altering biomechanical 

factors such as stiffness and further catalysing destruction through abnormal 

biomechanical cues.  
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Figure 1.3-17 - In the later stages of OA, most of the cartilaginous structure of the hyaline 

surface is lost, with heavy denudation of the osteochondral tidemark and thus increased 

cross-talk between cartilage and bone (Karsdal et al., 2014, Findlay and Kuliwaba, 2016). 

The stimulation of synoviocytes by heightened pro-inflammatory cytokine (e.g. IL-1 and 

TNF-α) production leads to the development of synovitis, synovial tissue hyperplasia and 

thus heavy involvement in the amplification of catabolic signalling via production of pro-
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inflammatory cytokines, and pro-inflammatory mediators (e.g. PGE2 and NO). The 

remaining hypertrophic chondrocytes produce mainly collagen type X instead of type II, 

but otherwise reducing synthetic activity to a minimum (Attur et al., 1998, Pelletier et 

al., 2001). This is partially due to the expression and release of local sclerostin in 

response to damage, a possible chondroprotective mechanism that paradoxically 

inhibits Wnt/β-catenin-dependent expression of anabolic (e.g. Col II) and catabolic 

(MMP, ADAMTS) genes, to avoid further destruction of cartilage (Chang et al., 2018). 

Abnormal stresses across subchondral bone and increased movement of growth factors 

(e.g. TGFβ and IGF-1) into bone due to the increased cartilage-bone crosstalk from the 

cartilage repair response results in renewing of the endochondral ossification process 

(van der Kraan and van den Berg, 2007). This leads to the growth of new bone at the joint 

extremeties and entheseal sites in the form of osteophytes.     

1.2.6 Conclusion 

The involvement of mechanical, biological and structural pathways in degenerative joint 

conditions such as FCDs and OA are undoubtedly involved, however the interaction 

between these pathways require further investigation. The knee FCD population are a 

good human disease model of joint overload, given that the aetiology or progression of 

the condition is often attributed to joint injury or morbidity of tissues that provide 

stability of the knee during ambulation. Furthermore, we possess the tools to investigate 

in vivo kinematics and mechanical loading of the joint and lower limb function, as well as 

cross-sectional and longitudinal biological differences in the joint that may reveal new 

pathways or indicators of FCD pathogenesis that have not previously been described. A 

new approach investigating these areas both independently and relatively may reveal 

new pathways that could lead to the development of more comprehensive treatment 

strategies. 
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Overview 

This chapter aims to outline the experimental design and methodology for: 

• The objective assessment of lower function during gait using 3D motion analysis 

• Synovial fluid and serum biomarker quantification using immunoassay 

• Collection of clinical data 

For each of these aspects, methods for data collection and generation of variables for 

analysis will be outlined. Study design and methodology described in this chapter are 

common to multiple chapters within this thesis, however specific chapter data analysis 

methods will be outlined within the chapter methods sections.   

2.1 Study Design 

2.1.1 Study approval 

The identification, recruitment and analysis of healthy volunteers, NHS patients with 

knee FCDs undergoing microfracture surgery and unilateral OA undergoing high tibial 

osteotomy (HTO) surgery was approved by the Research Ethics Committee for Wales 

and Cardiff & Vale University Health Board under the Arthritis Research UK 

Biomechanics and Bioengineering Centre (ARUK BBC) umbrella approval (REC: 12-OAE-

4976-9). This permitted the collection and assessment of clinical data surgical and access 

to historical patient records regarding the involved condition, assessment of patient gait 

using approved 3D motion analysis protocols, as well as the collection and analysis of 

synovial fluid and serum of removed genetic data. The following courses were 

attended/documents were obtained for the approval of all methodology carried out with 

NHS patients during the course of this study: 

• Good clinical practice training and certificate 

• Informed consent training and certificate 

• Disclosure and Barring Service (DBS) check 

• Honorary research contract issued by Cardiff and Vale University Health Board 

• Phlebotomy Training Level 2 certificate  
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2.1.2 Cohorts and study criteria 

This study was designed to evaluate cross-sectional and longitudinal differences in 

biomechanical, biological and clinical variables of a single FCD cohort in relation to 

healthy volunteers as controls and established OA subjects as a disease comparator 

group representing higher disease advancement/severity.   

Although a single FCD group was maintained throughout the study, it was not possible 

to maintain consistent comparator cohorts due to limitations of data collection and 

accessibility to fluid samples (section 7.2). This led to a total of four overall cohorts 

assessed throughout the thesis: 

2.1.2.1 FCD Subjects 

The FCD cohort were the primary cohort assessed within this thesis that remained 

consistent among all chapters. These were NHS patients in line for microfracture 

surgery, who presented single, isolated Outerbridge grade II chondral lesions in the 

weight-bearing region of the tibiofemoral joint. Subjects included had long-term 

pathology and progressive symptoms thought to be resultant of a past injury (10 

subjects; mean time since injury (SD) = 4.9 (3.1) years) or from non-specific causes of an 

unknown time (3 subjects), however no subjects were thought to be experiencing acute 

phase inflammation from recent injury/impact. Injuries reported included: sports 

injuries (rugby/football), ultra-marathon running, martial arts and accidental impact 

from falling. Subjects with minor meniscal loss/injury or ACL tears/injury were included, 

but those of total meniscal loss of the affected compartment or complete ACL rupture 

were discounted from the study as they were considered major confounding co-

morbidities in the analysis. Furthermore, subjects with confirmed clinical osteoarthritis 

(KL grade II - IV) were excluded.  

Initial assessments for the diagnosis of tibiofemoral FCDs consisted of clinical 1.5 tesla 

MRI scans, which confirmed chondral damage in the joint. Patients with identified grade 

II tibiofemoral lesions were listed on the orthopaedic surgery list as ‘arthroscopy and 

microfracture surgery’, of which were shortlisted for recruitment. Following initial 

contact from clinical liaison at the Cardiff & Vale Orthopaedic Centre (CAVOC), the 

candidate was recruited via telephone with by the following criteria: 

• Ability to understand the study information sheets and give informed consent 

• An ability to walk 10m without a walking aid 
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• No history of, or planned major surgery on the hip, ankle or back 

• No subject-reported pain or impaired function of the hip, ankle or back 

• No other condition including neurological, musculoskeletal or visual condition 

that may alter the way subjects perform activities of daily living; walking, stair 

ascent/decent, sitting-to-standing 

• Within the age range of 18 – 75 

Suitable candidates were sent the ‘ARUK Patient Information Sheet’ to read, outlining the 

study protocol and additional ethical considerations, and given at least 24 hours before 

making the decision to take part in the study. Willing candidates were then consented 

using the ‘ARUK MOCAP Consent Form’ (Appendix B.1) and the ‘ARUK SAMPLES Consent 

form’ (Appendix B.2) during the day of study prior to assessment or fluid collection. 

2.1.2.2 Control subjects 

Control subjects were involved in both gait analysis and serum biomarker quantification 

aspects of this thesis. Inclusion of subjects in the comparator analyses involved outlier 

identification methods for both biomechanical and biological variables, since it was not 

possible to assess for potential undiagnosed joint damage using MRI. Recruitment of 

non-pathological controls was done through study advertisement in the form of posters, 

university-wide email promotion and word of mouth. When volunteers showed interest 

in the study, they were first screened using the following inclusion criteria:  

• Ability to understand the study information sheets and give informed consent 

• No history of major traumatic lower limb joint injury, or lower back injury 

• No history of lower limb joint surgery, or lower back surgery 

• No subject-reported pain or impaired function of the knee, hip, ankle or back 

• No other condition including neurological, musculoskeletal or visual condition 

that may alter the way subjects perform activities of daily living; walking, stair 

ascent/decent, sitting-to-standing 

• Within the age range of 18 - 80 

Suitable volunteers were given the ARUK ‘Healthy Volunteer’ information sheets for 

Motion Capture Analysis to read, outlining the study protocol and additional ethical 

considerations, before agreeing to take part in the study. Willing candidates were then 

consented using the ARUK Healthy Volunteer Consent form. 
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2.1.2.3 OA subjects 

The unicompartmental OA (uOA) cohort presented KL grade II – IV knee osteoarthritis 

in the medial knee compartment and were diagnosed with radiographic static knee 

malalignment (1.9° – 15.4°). KL grading is defined as (Brandt et al., 1991):  

KL grade II – ‘definite joint space narrowing (JSN) and possible osteophytic lipping’ 

KL grade III – ‘multiple osteophytes, definite JSN, sclerosis, possible bony deformity’ 

KL grade IV – ‘large osteophytes, marked JSN, severe sclerosis and definite bone 
deformity’ 

The uOA group were chosen as a comparator representative of disease 

advancement/severity rather than severe total joint OA since knee FCDs have been 

commonly reported to predispose to unilateral OA on their natural course, rather than 

total joint OA which may occur in much later stages (Davies-Tuck et al., 2008b, Carnes et 

al., 2012, Spahn and Hofmann, 2014). Unilateral OA joint tissue damage, similarly to 

tibiofemoral FCD damage, is focal in nature, typically isolated to a single compartment of 

the knee. Therefore, it is likely they experience similar pathophysiological and etiological 

characteristics. Finally, unilateral OA subjects are generally younger with lower BMIs 

relative to severe OA subjects, which means they are more demographically matched. 

This was an important consideration for analysis since age and BMI are thought to be 

confounding factors due to their influence on biomechanical gait measures (Loeser et al., 

2016, Felson et al., 2000, Andriacchi and Muendermann, 2006) and biomarkers of tissue 

turnover, degradation and inflammation (Chung et al., 2009, Dore et al., 2010, Gibon et 

al., 2016). 

Patients with symptomatic joint OA confirmed by clinical radiographic assessment were 

referred to CAVOC and recruited by other researchers through the clinical pipeline. uOA 

subjects were listed on the orthopaedic surgery list for high tibial osteotomy (HTO) 

surgery to realign the mechanical joint axis. Following initial contact from clinical liaison, 

the patient was contacted by a researcher and the following recruitment criteria were 

applied:  

• Ability to understand the study information sheets and give informed consent 

• Ability to walk 15m without a walking aid 

• No history of, or planned major surgery on the hip, ankle or back 

• No other condition including neurological, musculoskeletal or visual condition 

that may alter the way subjects perform activities of daily living; walking, stair 

ascent/decent, sitting-to-standing 
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• Within the age range of 18 – 75 

Suitable candidates were sent the ‘ARUK Patient Information Sheet’ to read, outlining the 

study protocol and additional ethical considerations, and given at least 24 hours before 

making the decision to take part in the study. Willing candidates were then consented 

using the ‘ARUK MOCAP Consent Form’ (Appendix B.1) and the ‘ARUK SAMPLES Consent 

form’ (Appendix B.2) during the day of study prior to assessment or fluid collection. 

2.1.3 Cohort assignments 

These final cohort assignments to each subsequent chapter is presented in Table 2.1-1:  

Table 2.1-1 – Cohort chapter assignments 

Chapter Analysis type FCD Control 
Unilateral 

OA 

3 Gait analysis ✔ ✔  

4 

Synovial fluid  
biomarker analysis 

✔  ✔ 

Serum biomarker 
analysis 

✔ ✔  

5 
Combined gait analysis 

& synovial fluid 
biomarker analysis 

✔  ✔ 

  



Chapter 2 

 
63 

 

2.1.4 Time points for longitudinal assessment of FCD subjects 

undergoing microfracture surgery 

A secondary objective of chapters 3 and 4 were to assess functional, biological and 

clinical longitudinal outcomes of microfracture surgery utilizing indicators of FCD 

pathogenesis identified from cross-section analyses. To meet these objectives, two time-

points were decided (Figure 2-1). Gait analysis was carried out once prior to surgery 

(Time-point 1) and again six-months following surgery (Time-point 2). Whereas 

synovial fluid and serum were collected at time of surgery and again at Time-point 2. 

Time-point 1 was typically within 1 week prior to surgery (mean (SD): 3.5(±3.4) days), 

which depended on the date of the pre-administration prior to surgery and availability 

of the subject. The six-month time point was decided based on several factors including:  

(1) The limitation of the data collection period – The time period for data collection was 

initially limited to 1.5 years post-study approval, to allow time for data-processing and 

analysis of the full dataset.  

(2) The rarity of the subjects for analysis – Due to the low number of subjects diagnosed 

with knee FCDs in the NHS patient lists, it was not possible to recruit the required 

number of subjects within a short time-frame. A six-month time-point ensured a higher 

number of subjects could return for follow-up assessments within the given time frame. 

(3) The willingness of participants to return for follow up assessments – Due to the 

demand of time required from each subject involved in the study (up to four hours of gait 

analysis), it was not possible to recruit subjects for multiple time-points. 

(4) The minimum number of months post-surgery when clinical factors including pain, 

symptoms and self-perceived function were found to indicate post-operative outcome. – 

This was recommended by the consultant orthopaedic surgeon involved in the study, 

where it was believed a 6-month time point was most commonly when differing 

response to treatment is reported.  

Figure 2-1 - Timeline for assessment of FCD subjects. At time-point 1, gait analysis was carried 

out subjects were recruited for assessment of biomechanical function 
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2.2 Clinical data collection 

2.2.1 Subject-reported questionnaires (clinical scores) 

Subject-reported questionnaires used in OA research are designed to capture relevant 

clinical information regarding disease related factors such as symptoms and pain. Due to 

the score-based system (most commonly Likert scales) often employed, this allows the 

generation of semi-quantitative data representative of these factors that can be used in 

standard statistical analyses as continuous or categorical variables to investigate 

associations to biomechanical, biological or other quantitative variables. 

The Knee Osteoarthritis Outcome Score (KOOS) is one more commonly used in the knee 

pathology field and has been validated for measuring the patient-reported outcomes of 

several orthopaedic surgeries including ACL reconstruction, meniscectomy and total 

knee replacement (Rodriguez-Merchan, 2012). It was designed to be used for knee injury 

patients that are at risk of PTOA following ACL injury, meniscal loss or chondral damage, 

therefore making it fitting for this thesis’ objectives (Roos et al., 1998, Roos and 

Lohmander, 2003). The KOOS is now also commonly used in advanced disease stage 

research including severe OA, which makes it an ideal candidate considering the 

comparator groups within this study. A broad range of clinical factors are evaluated over 

five subscales and forty-two individual Likert-based questions (Appendix C.1), including: 

• Symptoms – e.g. knee stiffness, locking, instability) 

• Pain – e.g. acute pain, resting pain, pain during various daily activities 

• Ability to perform activities of daily living - e.g. walking and stair ascent/descent 

• Ability to perform sports and exercises - e.g. squatting, running, jumping 

• Quality of life – e.g. mood, affected lifestyle   

Each question is scored, and then total scores are converted into composite scores for 

each subscale with a range of 0 – 100 (100 being the best possible condition and 0 being 

the worst possible condition). Within this study, the KOOS was used cross-sectionally to 

evaluate test group differences at baseline as well as longitudinally to assess the six-

month outcomes of microfracture surgery. KOOS scores were also used as continuous 

variables in chapters 4 and 5 to relate to biological variables and in multivariate analysis 

models. 

All individual FCD and OA subject KOOS scores are found in Appendix A.2 
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2.2.2 Clinical notes 

To aid interpretations or explore explanatory causes of biomechanical and biological 

differences between individuals or groups, relevant clinical information was collected 

from patient clinical and surgical notes reported by clinical liaison including consultant 

orthopaedic surgeons and general practitioners. These included: 

• Disease severity scores – i.e. Kellgren-Lawrence grades, Outerbridge scores 

• Affected knee compartment 

• Co-morbidities – such as ligament tears, meniscal tears, meniscal loss / extrusion 

• ACL laxity (Pivot-shift) test results 

• Static knee alignment – radiographs for OA subjects, clinical examination for FCD 

• Prior surgical or non-surgical history of condition 

• Time since initial injury 

• GP and consultant notes or letters 

• Analgesic or NSAID use on day of surgery  

• Surgical plan 

• Surgical outcomes 

Height, weight, history of condition and analgesic / NSAID use within 48 hours prior to 

the gait session were recorded during the gait analysis sessions (at baseline and at six-

month time-point). All FCD locations were recorded as in ‘weight-bearing’ region of 

medial or lateral knee compartment, however anterior or posterior locations were not 

reported. K-L grades were not recorded for FCD subjects due to lack of radiographs 

captured (this is not common in standard clinical procedures at this stage of disease) as 

it was deemed ‘unnecessary’ exposure to X-rays. Outerbridge grades were not collected 

for OA subjects since HTO surgery does not involve exposure of the knee surfaces to 

allow cartilage scoring.   

Clinical findings for FCD and OA subjects are found in Appendix A.1 
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2.3 The objective assessment of lower limb function using 3D 

gait analysis  

2.3.1 Laboratory hardware  

All motion capture data was collected at the Musculoskeletal Biomechanics and 

Bioengineering Centre gait analysis laboratory at Cardiff University (). The laboratory 

hardware consisted of nine Qualisys Oqus 7 optoelectric infrared (IR) cameras (Qualisys, 

Sweden) positioned around the perimeter of the lab, six hidden floor-embedded force 

plates positioned along an eight-metre walkway running throughout the centre of the 

laboratory (Bertec Corporation, Ohio, USA), and fourteen wireless electromyography 

(EMG) electrodes (Delsys Inc, Massachusetts, USA). 

The IR cameras emit IR light from a set of light emitting diodes, which is reflected back 

to the cameras by a set of polystyrene retro-reflective markers placed on the subjects 

body. The reflected light is detected by sensors in the camera, which was set to capture 

at 120Hz. Using the reflected light, the cameras can individually generate 2D images of 

marker locations within its field of view, which when combined with multiple calibrated 

cameras can generate accurate 3D reconstructions of marker locations. The cameras 

were therefore positioned to optimally cover the area of the lab containing the force-

plates whilst maximally increasing the likelihood of adjoining cameras viewing the same 

markers. This is because increasing the number of IR-cameras viewing a marker at one 

Figure 2-2 - Musculoskeletal Biomechanics Research Facility motion analysis laboratory 
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time increases the accuracy of calculations of its co-ordinates due to the increased 

information available for reconstruction of data. 

The floor embedded force plates use 4-strain gauge-based load cells to detect forces in 3 

axes, allowing the measurement of vertical, frontal and sagittal plane ground reaction 

forces (GRFs) to floor contact at a sample rate of 1080Hz, to be synchronous with the IR 

cameras. The plates are of dimensions 60cm by 60cm, designed and placed optimally to 

account for individual subject variations in step length and foot size. The raw voltages 

produced by the load cells were amplified by a gain of -5 to +5 to account for the -10 to 

+10 operating window of the analogue board that processes its signals. Dummy force-

plates (wooden blocks) were also placed alongside active force-plates with a similar 

vinyl coating so that subjects were not able to target them, as this would result in 

voluntary gait alterations. 

Trigno™ EMG electrodes were wireless electrodes that are attachable to the skin surface 

following preparation. The electrodes record electrical activity of the muscle contraction 

in millivolts (mV) at a sample rate of 1000Hz. Two sets of electrodes are housed within 

the base of each component with a differential amplifier. Electrical signals from both 

electrodes are collected simultaneously and then subtraction algorithms are used 

eliminate noise (i.e. common frequencies caused by contact with skin and ambient 

electromagnetic radiation caused by surrounding electrical equipment or from the 

inherent noise in the EMG components themselves) from the signal output.     

The IR cameras, force-plates and EMG electrodes were all connected to a 56-channel 

analogue board which allowed simultaneous recording of kinematic, kinetic and EMG 

data with synchronisation using a Delsys trigger module (Delsys Inc, USA) that sent out 

a TTL pulse sent via a single trigger, ultimately used to start and to stop recording. 

2.3.2 3D Motion capture 

2.3.2.1 Motion capture system calibration 

Prior to data collection sessions, establishment of a global laboratory co-ordinate system 

(GCS), as well as IR-camera and force-plate calibration was carried out. This was 

repeated prior to every motion analysis session to account for potential changes in the 

camera view areas, since due to the weight of the cameras they are subject to ‘drooping’ 

over time, as well as manual adjustments by other researchers.  
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The establishment of an orthogonal global co-ordinate system (GCS) was achieved by 

aligning an L-frame in the centre of the lab, such that the long arm was facing along the 

length of the laboratory which defines the y-axis, and the short arm was perpendicular 

representing the x-axis. A vertical z-axis was generated based on the orthogonal axis to 

the first two, which projects from the adjoining centre of the L-frame. The marker at the 

adjoining corner of the frame defines the global origin (0, 0, 0), whereby all the 3D 

reconstructed data coordinates generated from the cameras during data capture are 

described relative to, based on the GCS definition.  

Next, calibration of the IR-cameras was carried out using the calibration wand method. 

This consisted of moving a calibration wand with a fixed dimension and two rigidly 

connected reflective markers through the field of analysis whilst the cameras were 

recording – typically above the walkway area and in particular above the force-plates, 

where kinematic and kinetic measurements are required. Based on the wands movement 

relative to the statically defined L-frame during the calibration recording, a calculation 

is carried out to determine where the cameras locations and orientations are relative to 

one another and the GCS based on their 2D views of the wand markers and L-frame 

markers. Once the calibration recording was completed, 3D positions of the markers are 

reconstructed in Qualisys and errors were returned for every camera representative of 

the residuals between them for estimated dynamic wand marker location – typically 

between 0.4 to 0.8mm. If residual errors exceed 1mm, the calibration procedure was 

repeated to avoid poor marker tracking during the subject recordings. Finally, the 

calibrated volume is visually assessed to determine any major gaps in which the 

calibration wand was not moved through that could result in poor marker tracking for 

that given area in the field of analysis.  

Additionally, force-plates were recalibrated due to previous session measured locations 

changing based on potential camera movement. This consisted of attaching metal frames 

that fit around the corners of the plates with markers attached in-line with the corners. 

3D co-ordinates were then generated for force-plate locations and dimensions relative 

to the GCS, which was required for accurate calculation of the centre of pressure (CoP). 

Only once all the steps for motion capture system calibration were successfully 

completed, subject motion capture proceeded. 
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2.3.2.2 Patient and control group pre-preparation 

All patients and control subjects were treated the same in relation to motion capture 

analysis, and thus the following protocol encompasses all data collection methods: 

Subjects were asked to wear loose-fitting, non-reflecting clothing in order to allow full 

mobility and reduce false marker detection artefacts induced by undesired reflection of 

IR-light, respectively. Retro-reflective markers must be visible to cameras and were 

attached to skin, therefore clothing typically consisted of shorts for males and females, 

as well as a loose-fitting top or sports bra for females.  

Prior to patient preparation, anthropometric measures were taken, including height and 

weight, which were used to calculate the body mass index (BMI) and %BW*H, a 

normalisation metric for the calculation of GRF and kinetic parameters. 

2.3.2.3 Electromyographic capture of muscle activation 

Next, placement and securing of EMG electrodes was carried out based on the protocol 

in Figure 2.4-2. Seven lower limb muscles targets were selected for analysis from 

previous recommendations of muscles with minimal cross-talk for the accurate 

detection of lower limb surface signals during gait (Hermens et al., 2000). Quadriceps, 

hamstrings and gastrocnemii were specifically chosen for analysis due to their 

commonly reported involvement in early- to late-stage OA function (Duffell et al., 2014, 

Heiden et al., 2009, Takacs et al., 2013, Hubley-Kozey et al., 2013) as discussed in more 

detail in chapter 1.       
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Figure 2-3 - Electromyography electrode placement protocol. Numbers represent electrode 

labels. Rectus femoris (2, 10); Vastus lateralis (3, 11); Vastus medialis (4, 12); Biceps femoris (5, 

13); Semitendinosus (6, 14); Gastrocnemius lateral (7, 15); Gastrocnemius medial (8, 16). 

Placement of EMG electrodes was based on a modified version of the Surface 

Electromyography for the Non-invasive Assessment of Muscles (SENIAM) guidelines 

(Hermans and Freriks, 1997). This firstly involved locating target muscle bellies, 

achieved by a combination of asking the patients to tense individual sets of muscles 

whilst visually inspecting, as well as palpation of the muscle region. Muscle bellies that 

were difficult to palpate or not visible were placed using a repeatable method using limb 

measurement estimations based on SENIAM guidelines (Hermans and Freriks, 1997, 

Hermens et al., 2000).  

Skin preparation consisted of first dry shaving skin around placement area to remove 

hair, skin exfoliation to remove dead skin and application of electro-gel to improve the 

conductivity of muscle signals. Alignment of individual muscles was pre-determined 

based on anatomic diagrams and EMG electrodes were placed aligned with the muscle 

belly. To reduce inter-operator reproducibility error, all muscle belly locating, skin 

preparation and placement of electrodes was performed by a single researcher. Finally, 

electrodes were secured using elastin tubing (Tubigrip).  

2.3.2.4 Retro-reflective marker placement and marker-set 

55 retro-reflective markers in total were used for motion capture data collection. The 

markers were specifically designed for motion analysis and consisted of a plastic hollow 
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spherical base with a reflective coating. No preparation was required other than applying 

double-sided tape to the markers prior to attaching them to the skin. Placement of 

markers was consistent with the Helen Hayes marker-set protocol (Collins et al., 2009, 

Kadaba et al., 1990) which allows accurate tracking of each segment (i.e. hip, femur, tibia 

and foot) in six degrees-of-freedom, but has been modified to include extra markers, as 

illustrated in Figure 2-4 These extra markers include medial knee, medial malleolus and 

iliac crest which permitted improved calculation of joint centre of rotations using 

regression methods (section 2.4.3.2) for more accurate estimation of joint centres 

(Cereatti et al., 2006). 

 

 

Figure 2-4 - Motion capture marker protocol. Blue markers are anatomical markers used to 

define 3D musculoskeletal model.  Red markers are tracking markers used to measure how 

segments move with relation to each other to calculate angles and moments.  

 Anatomical markers (blue) defined in the protocol were used to define segment 

dimensions and centre of rotations using the static trial, whereas tracking markers (red) 

were used for calculations of how segments translate and rotate in relation to each other. 

Four tracking markers were used per segment, since at least 3 are required for 

calculation of rotations and translations in the three planes (i.e. sagittal, frontal and 

transverse) which permits for single marker drop-outs due to obstructions from clothing 

or equipment.  
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For anatomical markers, all specified bony landmarks corresponding to segment 

definitions were palpated to find body protrusions which were defined as the optimal 

location for placement for repeatability, apart from the sacral marker which was 

determined by surrounding visual landmarks. Tracking markers were placed around the 

central region of tracked segments for the thigh and shank in a consistent manner using 

visual cues, and foot tracking markers were located using a combination of palpation of 

bony landmarks, as well as visual cues.  

2.3.2.5 Static calibration 

Once all retro-reflective markers and EMG electrodes were placed and secured, static 

calibration proceeded. Static calibrations are essentially one second recorded snapshots 

of the placed markers, required in later stages to generate 3D models in Visual3D 

software. The subject remains still in view of the cameras so that Visual 3D software can 

accurately model where the markers are in relation to each other. In any instance where 

a marker had fallen off during a trial, another static calibration was captured in order 

that the Visual3D model be updated of the new marker locations with respect to each 

other. 

2.3.2.6 Walking trials 

The subjects were asked to walk at a self-selected speed along the force-plate walkway 

in bare feet towards a focal spot on the opposite side of the lab with a 3m run up prior to 

contact with the force-plates. Whilst recording data, two researchers were present to 

observe successful force-plate hits which involved the placement of all contact areas of 

the foot within the centre, at least ~2cm away from the edge of the plate. One researcher 

observed alignment of the foot along the length of the walkway, whilst the other 

observed foot placement perpendicular to the walkway. Walking trials commented until 

at least six successful force-plate hits from each limb was obtained. Walking trials were 

reviewed following each successful trial to ensure correct contact with the force-plates 

and that no data artefacts (i.e. false marker recording from light reflections, markers 

obscured by clothing or equipment, abnormal force or EMG signals) were present.   
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2.3.2.7 Sources of error in data collection 

Errors in defining the location of the force-plates relative to the GCS due to incorrect 

placement of the L-frame or force-plate calibration frame can result in errors in 

reconstructions of the force vectors in relation to the applied centre of pressure. If the 

generated force vector is inconsistent with the relative marker location data, 

inaccuracies will be present in the calculations of kinetic parameters around the 

examined joint.  

Misalignment of EMG electrodes with muscle bellies can result in poor signal from the 

muscle causing low signal-to-noise ratios which may increase errors in final calculation 

of normalised muscle activation waveforms, as well as increase cross-talk from 

surrounding muscles, thus reducing specificity of the signal. Whereas misplacement of 

retro-reflective markers on skin, particularly for anatomical landmarks, leads to 

inaccurate calculation of joint centres. This can lead to large errors in the calculation of 

joint rotations and moments from musculoskeletal models.  

The goal of motion capture is to accurately record the movement of bone segments 

relative to each other, to allow estimations of segment rotations and joint moments. 

However, as a subject moves, soft tissues including muscle, fat and skin move 

independently of the bone due to muscle contractions and inertial effects on tissues. As 

markers are attached to the skin, this can lead to inaccuracies in the calculation of 

segment kinematics. This is a well-recognised limitation of motion analysis which has 

been validated by the disparity of kinematic calculations using skin markers compared 

to bone pins, however currently there is no solution to eliminate this in skin-marker 

based motion capture (Benoit et al., 2006). However, it is possible to reduce the overall 

influence on calculation by placement of tracking markers on differing anatomic 

locations of the segments including the lateral, anterior and posterior shank and thigh as 

demonstrated in the marker protocol Figure 2-4.  

2.3.3 Generation of biomechanical variables 

2.3.3.1 Visual 3D 

Visual 3D (C-motion, USA) is an academic and commercial biomechanics research 

software that provides in-software tools used for the generation of musculoskeletal 

models, calculation of biomechanics data (including spatio-temporal parameters, muscle 

activity waveforms or kinematic and kinetic waveform data), processing of waveform 
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data (such as normalisation, filtering, and rectification) and parameterisation of 

waveform data (such as calculation of maximum or minimum values). In-software 

pipeline tools also allows for the generation of scripts to run a sequence of functions to 

eliminate the requirement of manual processing. Marker data, force data and EMG data 

recorded and saved within Qualisys Track Manager as a .qtm file is exported as .c3d for 

compatibility with Visual 3D for processing.  

2.3.3.2 Musculoskeletal model generation 

A six degree of freedom musculoskeletal model (three rotations, three translations for 

every joint) was generated for each subject, which included generation of eight segments 

from anatomical markers. 

 

Figure 2-5 - 3D Musculoskeletal model defined using 9 segments from anatomical markers in 

Figure 2-4 and targets defined in   
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Table 2.3-1: Thorax/spine, left and right thigh, left and right shank, left and right foot. 

 Each segment was defined by anatomical markers as follows: 
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Table 2.3-1 - Anatomical markers used to build each model segment 

Segment Proximal target Distal target 

Thorax L R Shoulder L R Iliac crest 

Pelvis L R ASIS Sacral 

Thigh 
Hip joint centre 

Table 2.4-2 
L R Epicondyles 

Shank L R Epicondyles L R Malleoli 

Foot L R Malleolus 1st + 5th MP Joint 

The centre of rotations were calculated for each segment in the static model based on 

previous recommendations (Bell et al., 1990, Collins et al., 2009, Goulermas et al., 2005) 

and described in terms of their mediolateral (ML), anteroposterior (AP) and axial offset 

coordinates relative to the segment/anatomical markers that define the segment 

dimensions: 

Table 2.3-2 – Centre of rotation definitions. Dist (R-L #) = Distance between right and left #. 

Joint 
Centre 

Offset from ML AP Axial 

Right Hip Pelvis centre 
0.36*Dist  

(R – L ASIS) 
-0.19*Dist 

(R – L ASIS) 
-0.30*Dist 

(R – L ASIS) 

Left Hip Pelvis centre 
-0.36*Dist  

(R – L ASIS) 
0.19*Dist 

(R – L ASIS) 
0.30*Dist 

(R – L ASIS) 

Knee R Epicondyle 
0.5* Dist  

(R – L epicondyle) 
- - 

Ankle R Malleolus 
0.5*Dist  

(R – L malleolus) 
- - 

2.3.3.3 Calculation of kinematic data 

The joint coordinate system for expression of lower limb kinematics defined by Grood 

and Santay (1983) is widely accepted (Wu and Cavanah 1995). The position and rotation 

of each segment was determined relative to either the lab coordinate system origin or 

relative to a reference segment, which can be either the proximal or distal segment to 

that joint. In motion analysis gait studies, rotations of lower limb segments (i.e. thigh, 
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shank and foot) are often expressed relative to either proximal or distal segments 

(Buczek et al., 2010). Within this study, the proximal reference system was used. For 

example, the rotation of shank was calculated relative to the thigh segment. 

The rotations were described using the default Visual 3D Cardan sequence system, which 

uses the ordered sequence of rotation (x, y and z) that assumes the X axis is the 

medial/lateral direction (flexion-extension), Y axis is in the anterior/posterior direction 

(abduction/adduction) and Z is the axial direction (longitudinal rotation), which is based 

on ISB recommendations (Kadaba et al., 1990). The output of these rotational 

calculations for each joint in the motion capture recordings is in the form of x, y and z 

rotations in relation to the reference segment for each frame of the captured recording, 

which presented as a time-series makes up kinematic biomechanical waveforms.  

The direction (i.e. positive, negative) of the calculated angles were described such that 

flexion, adduction and internal rotation are positive: 

• Flexion (+) / Extension (-) angles 

• Adduction (+) / Abduction (-) angles 

• Internal rotation (+) / external rotation (-) angles 

Joint angle data used for waveform analysis were broken down into individual angle 

waveforms representative of rotations for a single gait cycle (heel-strike to heel-strike). 

The number of captured data points in the time-series was normalised to % gait cycle 

so that one point on the waveform was equal to a single percent.    

Figure 2-6 – Example of calculated dynamic angle waveform outputs from linking musculoskeletal 

model-based data to movement trial data  
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2.3.4 Calculation of kinetic data 

Ground reaction forces (GRFs) vectors in the x, y and z plane are measured within 

calibrated string-gauge components of the force-plates previously described which 

allowed the calculation of vertical, mediolateral and anteroposterior force vectors. All 

GRFs were normalised to bodyweight to make meaningful comparisons within inter-

subject and inter-group comparisons.  

The external joint moment is the rotational force acting at the joint created by the ground 

reaction force in each plane produced during locomotion, which is counteracted by the 

internal moments that are produced by muscles and ligaments to keep the joint stable. 

External moments are often used to describe knee function, since they can act as 

surrogate measures to the forces acting locally at each joint and can be used to 

understand the function of active and passive stabilizers (Robertson et al., 2013). Joint 

moments in each plane are calculated as a product of the effect of inertial forces, the 

planar GRF and the shortest distance (moment- or lever-arm) between the centre of joint 

rotation and the GRF vector (Figure 2-7), which depends on the centre of pressure, 

centre of mass and mechanical axis alignment of the joint. 

Figure 2-7 - Example of factors required for calculation of knee adduction 

moment (Lewinson and Stefanyshyn, 2016) 
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There is no standard reference frame for expression of joint moments (Schache 2008). 

Moments can be expressed using the distal segment coordinate system (Gok 2002, 

Kaufman 2001), the proximal segment coordinate system (Schache and Baker 2007), or 

the joint coordinate system, which is a combination of both systems (Astephen 2008, 

Landry 2007). Within this study, moments were calculated using the distal segment 

resolution co-ordinate system for resolving forces at the examined joint, in order to 

integrate and compare with the pool of previously collected motion analysis data in our 

research group. Similarly to angles, joint moments were calculated at each frame and 

converted into time-series data for waveform analysis. Moments were also normalised 

to %Bodyweight*Height, since calculations take into account GRFs and the moment lever 

arm which is affected by limb length. This is to allow meaningful relevant inter-subject 

comparisons. The direction of the moments acting at the joint were described similarly 

to angles, such that: 

• Flexion (+) / Extension (-) moments 

• Adduction (+) / Abduction (-) moments 

• Internal rotation (+) / external rotation (-) moments 

Joint moment data used for waveform analysis were broken into individual moment 

waveforms representative of a single stance-phase cycle (heel-strike to toe-off), since 

calculated joint moments of interest are those of when the GRF is acting at the joint (i.e. 

when the joint is being loaded).  

2.3.5 Calculation of spatio-temporal parameters 

Visual 3D pipeline tools were also used to calculate several spatio-temporal parameters: 

Table 2.3-3 - Calculations for spatio-temporal measures 

Parameter Calculation 

Gait speed 
Distance of heel-strike to heel-strike divided by 

time of a single gait cycle 

Stance time Time of heel-strike to toe-off 

Swing time Time of toe-off to heel-strike 

Double limb support time 
Time whereby both feet at in contact with the 

ground 
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2.3.6 Generation of muscle activation waveforms 

As previously mentioned, raw EMG signals are differentially amplified within the Trigno 

electrodes to eliminate noise from electromagnetic radiation such as from power lines, 

leaving the signals that make up the difference at the two electrodes from the muscle. 

However, differential amplification only removed a proportion of the noise that is not 

part of the wanted EMG signal (Chowdhury et al., 2013). Furthermore, the amplitude of 

EMG signals is stochastic and therefore further elimination of unwanted frequencies and 

further processing is required to generate a meaningful signal for comparison, 

particularly since waveform analysis was carried out in this thesis. The following steps 

were carried out in Visual 3D using pipeline tools for processing of EMG signals: 

 

Figure 2-8 - Example of raw EMG data captured using Trigno sensors (A) and final processed 

muscle activation waveform signals (B) 

(1) DC offset correction – Average raw EMG signal values were calculated and then 

subtracted from the total signal to correct for DC offset of the signal from zero 

(2) Bandwidth filtering – A high-pass filter with a frequency cut-off of 20Hz followed 

by a low-pass filter with a cut-off of 400Hz were applied to eliminate noise 

contamination 

(3) Signal rectification – Full-wave rectification was used to convert negative signal 

data into positive data by converting to the absolute value of each data point 

A 

B 
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(4) Linear envelope – The linear envelope of the signal was computed by calculating 

root mean square (RMS) values for 100ms moving windows, to create a smooth 

signal waveform 

(5) Peak dynamic normalisation – The EMG signal was divided by the maximum 

value of the EMG signal for that trial, so that the magnitude of the waveform is 

expressed as muscle activity relative to the maximum activity achieved during 

that trial 

Processed muscle activation waveforms over whole trials were broken into individual 

waveforms representative of single gait cycles (heel-strike to heel-strike) for inter-

subject or inter-group comparisons using waveform analysis methods. 

2.4 Methods for analysis of temporal waveform data 

The calculated dynamic biomechanical or muscle waveform data characterising lower 

limb function exists as temporal waveforms of normalised magnitude of the examined 

parameter against percentage of stance phase or gait cycle (from 0 – 100%). There are 

characteristics of this data that must considered for a meaningful analysis:  

Firstly, there are a large amount of data owing to biomechanical interpretation. Each 

waveform is composed of 101 points, each of which describes kinematic movement and 

kinetic information, much of which may not be useful to group comparison. Due to the 

high dimensionality of the data, simple comparison of variance testing is not applicable. 

Secondly, there is considerable variability in the data which may be related to kinematic 

and kinetic differences that either occur between subjects, considered inherent inter-

subject variability, or that occurs between groups which is of primary interest. Extracting 

salient information from that which is considered noise is challenging, and so methods 

to retain the most important discriminatory features are often explored (Chau, 2001). 

Typically, there are two approaches to evaluate temporal waveform data employed in 

biomechanics studies, both aimed at reducing the data into discrete summative 

measures for statistical testing. Parameterisation, which involves extracting discrete 

parameters such as waveform peaks (e.g. minimal and maximal values) and integrals 

(area under the curve), and multivariate methods that consider the entire waveform, 

such as principal component analysis (PCA) and factor analysis. Although discrete 

parameterisation generates an easily interpretable set of variables that describe key 

features of the waveform, much of the important and potentially discriminatory 
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temporal information is discarded. Another limitation of parameterisation is that 

consistent quantification of comparable features is not always possible, due to the highly 

variable nature of human locomotion.  

As discussed previously, the calculation of joint angles and moment waveforms can be 

prone to offsets due to errors in marker placement and force-plate calibration (2.4.2.7). 

Considering the last two points discussed above, it is only possible to detect meaningful 

differences when the inter-group differences are much more prominent than both inter-

subject differences caused by offset error and inherent inter-subject variability, 

rendering it unreliable for detecting group differences. 

Each point of a waveform is related to adjacent points in the parameter, as well as those 

of other waveforms within the same point of the gait cycle. Multivariate statistical 

techniques such as PCA take advantage of the collinear multidimensional nature of 

waveform data. Both supervised (compute using prior grouping information about the 

variables) or unsupervised methods exist, which both serve to reduce data and highlight 

patterns in potentially correlated multivariate data related to common modes, or 

‘features’ of variance. PCA has advantages over other methods. Firstly, it transforms the 

data into a smaller set of linearly independent unique variables which can be interpreted, 

of which only a few are needed to adequately explain the original data. Secondly, it 

generates a set of ‘scores’ for each subject, based on their data relative to the model, 

allowing further exploratory analyses such as comparison of means (e.g. t-tests), 

regression, clustering methods as well as discriminatory analyses. Due to advantages 

and the large number of gait biomechanics studies employing PCA in current literature, 

it was used for the primary analysis within this thesis for analysis of biomechanics data. 

PCA has previously been utilized more than other multivariate methods, thus allowing 

for better comparability to previous studies.    

2.4.1 Principal component analysis of biomechanical waveforms 

Mathematically, PCA takes a number (p) of potentially correlated variables 𝑿 =

𝒙𝟏, 𝒙𝟐, … , 𝒙𝒑 from n observations and converts them into a reduced number of 

independent, uncorrelated variables 𝒁 = 𝒛𝟏, 𝒛𝟐, … , 𝒛𝒑 through orthogonal 

transformations, which are arranged in a hierarchy of decreasing sample variances. The 

resulting variables, known as principal components (PCs), are summative measures 

related to the original shape of the examined waveform that are representative of 

common variances of the waveform. Within this study, PCA was applied to biomechanical 
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and muscle activation waveforms within Inspect 3D, software developed by C-motion, 

who also developed the biomechanical modelling software (Visual 3D) discussed 

previously. Their applied method was developed with Dr. Kevin Deluzio, who first 

introduced the application within the musculoskeletal biomechanics field as a data 

reduction tool to investigate differences between OA and control subject gait (Deluzio et 

al., 1997). It has since been used extensively in the field for analysis of biomechanical and 

muscle activation waveforms (Hubley-Kozey et al., 2008, Landry et al., 2007, Chau, 

2001). A method for PCA was also adopted by Jones (2004) at Cardiff University 

alongside a classification method based on Dempster-Shafer Theory of Evidence, which 

has successfully been used to detect improvement of OA function following total knee 

replacement (TKR) surgery (Jones et al., 2006).     

Since the method used presented within this thesis was that integrated within Inspect 

3D, the methods described below are representative, and further extended and adapted 

from those outlined in (Robertson et al., 2013) of which Deluzio’s methods are based: 

Calculating principal components   

Since within this study the original data exists as time-series data, it can be represented 

as a matrix 

𝐗 =  [

𝒙𝟏𝟏 ⋯ 𝒙𝟏𝒑

⋮ ⋱ ⋮
𝒙𝒏𝟏 ⋯ 𝒙𝒏𝒑

] 

(1.0) 

whereby n is the number of subjects to be included in the model, and p is the number of 

time-points (samples), which in this study are 101 samples normalised to percentage of 

the gait cycle/stance phase (0 – 100%). PCA is applied to the columns of X so that the 

correlated variables are the p normalised samples observed on n subjects.   

The next step is to calculate the covariance matrix S, in order to express the variance 

structure contained within the original data matrix. This is necessary to understand the 

variance in the waveform over time and how subject waveforms vary from each other.  

S = [

𝑠11 ⋯ 𝑠1𝑝

⋮ ⋱ ⋮
𝑠𝑝1 ⋯ 𝑠𝑝𝑝

]      

 (1.1) 
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By calculating the mean of the i th column of X, followed by the average squared distance 

between the mean and all n waveform values at that instantaneous point in time, the 

diagonal factors 𝒔𝒊𝒊 can be determined, which represent variance at each point of the 

waveform:  

𝑺𝒊𝒊 =
∑ (𝒙𝒌𝒊− 𝒙𝒊)𝒏

𝒌=𝟏

𝒏−𝟏
      

(1.2) 

Where i represents the column and n the number of subjects. The covariance between 

each pair of time instants are represented by off-diagonal elements, 𝒔𝒊𝒋 

𝑺𝒊𝒋 =
∑ (𝒙𝒌𝒊 − 𝒙𝒊)(𝒙𝒌𝒋 − 𝒙𝒋)𝒏

𝒌=𝟏

𝒏−𝟏
      

(1.3) 

where 𝒊 and 𝒋 are two of the columns and 𝒏 is the number of subjects. There is a linear 

relationship between the two variables when the covariances are not 0. A correlation 

coefficient can then be calculated to evaluate this relationship:  

𝒓𝒊𝒋 =
𝒔𝒊𝒋

𝒔𝒊𝒋𝒔𝒋𝒋
       

(1.4) 

The covariance matrix S contains the variability structure from the original data, and the 

off-diagonal elements are non-zero in general, meaning that the columns of the original 

data waveforms are correlated. The PCs are extracted from this covariance matrix S. 

Since the final set of PCs are uncorrelated, they are associated with a covariance matrix 

that has all the off-diagonal elements equal to 0. Through a process called 

diagonalization, otherwise known as orthogonal decomposition in linear algebra, the 

original data covariance matrix S is transformed to the PC covariance matrix D.   

𝐔𝐭𝐒𝐔 = 𝐃      

(1.5) 

The matrix U is an orthogonal transformation that realigns the original data into a new 

coordinate system. The new coordinates are the PCs, which are aligned with the direction 



Chapter 2 

 
85 

 

of variation in the data matrix. The columns of U are the eigenvectors of S, often referred 

to as PC loading vectors. D is a diagonal covariance matrix whose elements, 𝜆𝑖 are the 

eigenvalues of S, and each eigenvalue is a measure of the variation associated with each 

PC. The number of nonzero diagonal elements of D is the maximum number of PCs. This 

is equal to the lesser of the number of subjects n, or the length of the waveform p, which 

corresponds to the rank of r of S. Within the context of this study, the rank of S is 101 

(samples), therefore the maximum number of PCs is 101. However, it is noteworthy that 

only a small number of these PCs will be retained in the practical application of the 

method that makes PCA a data reduction method. The last step is to use the matrix U to 

transform the zero-mean centred original data into the new uncorrelated PCs, Z 

𝒁 =  [𝑿 − 𝑿] 𝑼      

(1.6) 

Each column of Z is a PC, and the elements of the column are referred to as PC scores. 

After calculation, the PCs are ordered according to the amount of variance that each 

component explains in the original data, so that the first component explains the 

maximum amount, followed by second component which represents the maximum 

variance in the orthogonal plane to the first, and so on. The variance of each PC is given 

by the eigenvalues, 𝜆𝑖 which are diagonal elements of matrix D. The most commonly used 

measure of the total data variation is the sum of the variances of each variable, which is 

equal to the sum of the diagonal elements of S. The sum of the diagonal elements of a 

matrix, or the ‘trace’ (tr) of a matrix 

𝒕𝒓(𝑺) = 𝒕𝒓(𝑫)       

(1.7) 

In this way it is possible to quantify the portion of total variance explained by the PCs: 

Variance Explained by PCi =  
𝜆𝑖

𝑡𝑟(𝑆)
=

𝜆𝑖

∑ 𝜆
 

(1.8) 

When assessing variance explained by the PCs, both the shape and inter-variability of the 

original waveforms affect the variance captured, and therefore a method to retain the 

most important PCs in often employed.  
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2.4.2 Practical interpretation of PCA applied to waveform data 

Several steps are involved in interpretation of PCA applied to biomechanical and muscle 

activation waveforms, however this is common between the two types. The following 

example given is based on the application of PCA to biomechanical data (knee flexion 

angle) from two groups, to determine waveform features of variance that differ. In order, 

these steps involve: 

1. Applying PCA to the combined (group 1 + group 2) dataset 

2. Selecting the number of principal components to retain 

3. Interpretation of features represented by PCs by assessing loading vectors, 

extreme plots and reconstruction of original data using calculated PCs 

4. Extraction and interpretation of subject and group PC scores 

5. Summative interpretation of findings 

(1) Applying PCA to combined dataset 

Prior to the application of equations outlined in 1.1.3, the raw biomechanical waveforms 

are normalised to 101 points (Figure 2-9), then data from individual subjects of all tested 

groups is combined into a single matrix and formatted as described in equation 1.0. This 

is the case with a single, or multiple groups of data. 

 

Figure 2-9 - Typical biomechanical waveform data for two test groups (green & blue)  

normalised to 101 points (0-100%) of the gait cycle. 

(2) Selecting the number of principal components to retain 

As additional PCs are calculated for a given waveform, a higher cumulative percentage of 

the variance from the original data is represented (Figure 2-10). The PCs representing 
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the highest variance that are first in order usually contain the most relevant information. 

However, it is notable that the highest variance components are not necessarily the most 

discriminatory. Ultimately, PCA is used as a data reduction tool, therefore it is desirable 

to select the minimum number of PCs (new discrete variables for analysis) as possible, 

whilst still representing salient waveform information. Therefore, it is necessary to 

decide on a cut-off, or stopping rule, to find the balance between informative variation 

and noise. In the example (Figure 2-10), it is evident that four PCs cumulatively represent 

over 95% of the variance in the data and with visual inspection of the scree plot, used in 

previous studies to decide PC retention, adding more components does not appear to 

substantially improve the variance explained (Robertson et al., 2013). Whilst PC4 only 

represents 5.19% of the variance of the original waveforms, this is still considered 

adequate to detect group differences over noise, however this can become subjective 

(Chau, 2001).   

To increase objectivity of PC retention methods, previous investigators have defined cut-

off rules based on eigenvalues. Kaiser’s rule was one of the first and most commonly 

adopted, retains factors (PCs) with eigenvalues greater than 1 (Kaiser, 1960). However, 

this rule has been subjected to criticism, due to the high number of components it tends 

to retain which often have no meaningful information (Jackson, 1993). A retention rule 

adopted by Jones (2004, 2006) is to determine factor loadings outside the threshold 

eigenvalue range of -0.71 to 0.71, which are retained. This results in PCs with at least 

50% of the variance from a single point in the waveform considered.  
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Figure 2-10 - Bar plot of variance explained (%) for each PC added to the model, with scree plot 

representing cumulative variance (red line). Four PCs cumulatively explain >95% variance. 

Within this study, a cut-off of 95% cumulative representation of variance was used. Upon 

reconstructing the original waveform data using 95% of the represented variance, many 

of the prominent structures from the original data of most parameters can be seen (see 

point 3), and if meaningful group differences exist they are likely to have been picked up. 

Secondly, it is found particularly with biomechanical and muscle activation waveforms 

that between three to five PCs typically represent up to or above 95% variance per 

parameter. This is a suitable number of variables for downstream comparison of means 

testing (e.g. ANOVAs), however increasing the number of variables by increasing the cut-

off will elevate the likelihood of finding a random significant difference among the data 

or make it very difficult to find differences due to the substantial corrections required 

for multiple testing.   

(3) Interpretation of features represented by PCs by assessing loading vectors, 

extreme plots and PC reconstructions 

To recap, the matrix U is an orthogonal transformation that realigns the original data 

into a new coordinate system. The new coordinates are the PCs, which are aligned with 

the direction of variation in the data matrix. The columns of U are the eigenvectors of S, 

often referred to as PC loading vectors. In the presented example, the loading vectors of 

the first three PCs of the knee flexion angle are shown in Figure 2-11. The loading vectors 

are waveforms themselves of the same number of points as the original waveforms 

therefore can be plotted against the same function, and the vertical axis depicts 
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individual sample coefficients of each vector. When the vector is close to zero, very little 

of the variance at that instant is represented by the PC score, and conversely the regions 

of the vector that are farthest from zero during the series can be interpreted as the most 

represented regions of variance captured by that PC. 

 

Figure 2-11 - Loading vectors for PC1, 2 and 3 of the knee flexion angle. 

As explained in section 1.1.3 (equation 1.6), the PCA model is defined as 𝒁 = [𝑿 − 𝑿]𝑼. 

Since the eigenvector matrix is both orthogonal and normalized (orthonormal), it is 

possible to rearrange the equation so that 𝑿 = 𝒁𝑼𝒕 + 𝑿, allowing reconstruction of the 

original waveform data from the individually calculated PC loading vectors. Ultimately, 

these reconstructions can be used to aid interpretation of the feature of variance 

captured by the PC. Figure 2-12 depicts an example where all individual subject 

waveforms (Figure 2-9) are reconstructed using PC1, PC2 and PC3. The variance 

represented by the PC is visually interpreted as the shape of the overall data in regions 

of the waveform where the vectors do not overlap. For example, in Figure 2-12, PC1 

represents the overall magnitude of the waveform, PC2 the degree of flexion during 70 – 

95% of the gait cycle, and PC3 the range of knee flexion during 0 – 60% of the gait cycle. 

It is also possible to aid interpretation of the PCs in a similar way by utilizing extreme 

plots. For an individual component, this involves plotting each point of the loading vector 

multiplied by the mean PC score, then also ±1 of the standard deviation (Figure 2-12). 

All three vectors within the same plot allows visualisation and interpretation of what the 

data looks like when reconstructed, with single vectors representing standard deviation 

of the grouped reconstructed data rather than all individual waveforms.      
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Figure 2-12 - (A) Reconstructions of individual subject waveform data using PC loading vectors. 

(B) Extreme plots of reconstructed data using PC loading vectors and mean (solid) and ±1 std 

(dotted) PC scores 

(4) Extraction and interpretation of subject and group PC scores 

Individual transformed observations are referred to as PC scores and are represented by 

the individual elements of each column of Z. PC scores are produced by combination of 

the eigenvector coefficients to the original data points. For example, to generate the first 

PC score for subject i, the calculation is: 

𝑍1𝑖 = (𝑥𝑖1 − 𝑥1)𝑢11 + (𝑥𝑖2 − 𝑥2)𝑢21 + ⋯ + (𝑥1𝑝 − 𝑥𝑝)𝑢𝑝1 

(1.9) 
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The PC score, 𝑧1𝑖 is just a linear combination of each time sample (mean corrected) of 

that subject’s waveform and the PC loading vector coefficients. Thus, every observation 

(subject) included in the model is assigned a PC score per calculated PC, which is 

representative of the distance of the shape of that subject’s waveform feature from the 

mean PC feature (calculated from the whole dataset). The more dissimilar the shape of 

the that subjects feature is from the mean, the further away both positive and negative 

direction their PC score is from 0, since the mean is zero-centred. This is more apparent 

when studying the subject waveform reconstructions, whereby the most extreme 

reconstructed individual waveforms are assigned the highest or lowest PC scores. The 

advantage of scores representative of each subject waveforms contribution to the PC is 

that it is possible to then use clustering analysis, regression or comparison of means 

testing (e.g. t-tests) to statistically compare or relate waveform features among different 

test groups. Once the PC scores are calculated, their class label can be elucidated, and 

then downstream testing applied.  

(5) Summative interpretation and presentation of findings 

Within this study, it was of interest to determine statistically differing features of knee 

FCD and control subjects biomechanical and muscle activation waveforms. Due to the 

low sample size, Mann-Whitney U tests were applied to the PC scores between groups to 

test for differences (p≤0.05). Within the biomechanics results section of chapter 2, the 

interpretation of the biomechanical waveform features captured by the PC alongside the 

Mann-Whitney U test outcome (p-values) are reported.  

For features that statistically differed between groups, an extreme plot with the mean 

and ±1 standard deviation curves were also presented (Figure 2-13). The extreme plots 

are colour coded based on the determined PC score group differences. For instance, if 

there was a significant difference (p≤0.05) found between group A (green) who had a 

mean PC score of +2 and group B (blue) who had a mean PC score of -2, the +1 std curve 

will be colour coded blue and the -1 std curve coded green to signify how the overall 

group variances for the given feature differed from the mean plot. This is depicted in 

Figure 2-13, which represents individual subject PC3 reconstructions previously shown 

for the knee flexion angle, in the form of a colour coded extreme plot.    
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Figure 2-13 – Conversion of individual subject PC waveform reconstructions from each group 

(A) to extreme plots representing the mean (grey), +1 standard deviation (green) and -1 

standard deviation (blue) PC waveform reconstructions colour coded to represent group 

differences corresponding to group mean PC scores. 
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2.5  Synovial fluid and serum biomarker quantification 

2.5.1 Serum samples 

2.5.1.1 Collection 

Phlebotomy training was carried out with a UK accredited course (Phlebotomy Training 

Services, London UK) to carry out safe basic venepuncture on recruited adult subjects 

for this study (Certificate Level 2, Phlebotomy Training Services, London). Blood was 

collected once at day of surgery (between 7am and 5pm depending on surgery slot) prior 

to surgery and once again approximately six-months (±14 days) following microfracture 

surgery (between 10am and 1pm), prior to gait analysis.   

Serum and plasma were collected via venepuncture using BD Vacutainer Safety-Lok 

Blood collection Sets (23g needle, 12” Tubing and Luer adaptor) (Fisher Scientific, UK) 

and Greiner Bio-one serum and plasma lithium heparin/EDTA collection tubes (Fisher 

Scientific, UK). The order of draw was conducted based on the Greiner Bio-one 

recommendations, which consisted of serum followed by plasma heparin and then EDTA 

tubes. Following successive collections, tubes were inverted five times and then kept at 

4˚C before transportation to the Biosciences laboratory for processing. Serum tubes 

were left at room temperature to clot for 20 minutes before storing at 4˚C. Blood samples 

were kept no longer than 3 hours at 4˚C before transporting in a sample box with cool 

packs via courier to the Cardiff University School of Biosciences (BIOSI) Pathophysiology 

and Repair (PPR) laboratory. Care was taken not to agitate the samples during transport. 

Upon arrival, blood samples were processed immediately. 

2.5.1.2 Processing 

The protocol for processing of serum was identical to that used in the ARUK centre, 

permitting comparison of collected samples with pooled OA subject samples from the 

centre biobank. For both serum and plasma tubes, samples were first spun in their 

original tubes within a centrifuge at 2000G for 15 minutes, to separate serum/plasma 

from other blood constituents. Then, the clear fluid (plasma/serum) was carefully 

transferred to 1.5ml microcentrifuge tubes (Fisher-Scientific, UK) using a P1000 Gilson 

precision pipette, with care not to agitate the bottom layer of constituents. The clear 

fluids were then spun again at 3000G in a microcentrifuge for 15 minutes, to remove any 
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additional cells and debris. Following centrifugation, supernatants were transferred to 

labelled 500µl cryovials in aliquots of 100µl, with care not to disturb the cell pellet. Final 

aliquoted samples were stored at -80˚C until day of immunoassay.  

2.5.2 Synovial fluid samples 

Synovial fluid samples were obtained from the affected knee by needle aspiration prior 

to introduction of the arthroscope by participating orthopaedic consultant Mr C Wilson. 

Aspirated fluids were transferred to a 5ml falcon tube and sent via courier to the BIOSI 

PPR laboratory in a cool packed container within 30 minutes. The protocol for processing 

of serum was identical to that used in the ARUK centre, permitting comparison of 

collected samples with pooled OA subject samples from the centre biobank. None of the 

collected fluids received contained blood staining, however this information was not 

recorded for pooled OA samples. Immediately upon arrival, synovial fluids underwent 

centrifugation at 5000G for 15 minutes to remove cells. Higher centrifugal forces were 

required for synovial fluid processing due to the increased viscosity of the fluid. 

Supernatants were then gently transferred to 500µl cryovials, in aliquots of 100µl. 

Finally, aliquoted samples were stored at -80˚C until day of immunoassay. 

2.5.3 Immunoassays 

Commercially available multiplex electrochemiluminescence (ECL) or single-plex 

enzyme-linked immunosorbent assays (ELISAs) were utilized to measure absolute 

concentrations of a total of seventeen biomarkers relating to bone and cartilage turnover 

and degradation, mechanical loading of bone and inflammation (Table 2.5-1). Both ECL 

assays and ELISAs were chosen as they have been extensively by clinical studies due to 

their high throughput, high protein specificity and low coefficient of variance of inter- 

and intra-assay signal readings (Watt et al., 2016, Struglics et al., 2015, Li et al., 2016, 

Lequin, 2005). ELISA assays were carried out at the BIOSI PPR Laboratory, whereas MSD 

multiplex assays were carried out at the Central Biotechnology Services centre, Cardiff, 

due to the availability of the specific MSD plate reader required for chemiluminescence 

measurements. Where possible, each sample aliquot was freeze-thawed the minimum 

number of times required to cover all tests and consistently with all other test samples 

to avoid concentration variability caused by repeated freeze-thawed cycles. The 

maximum number of freeze-thaw cycles any sample was exposed to was 2x.  
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Table 2.5-1 – Biomarkers chosen for analysis and reference to their representation in known 

homeostatic processes the joint 

Biomarker Abbrev. Representation in the joint Reference 

Cartilage 
Oligomeric Matrix 

Protein 
COMP 

Cartilage matrix stabiliser, 
chondrocyte matrix 

synthesis activity 

(Recklies et al., 
1998, Chen et al., 

2007, Briggs et al., 
1995, Attur et al., 

2013) 
C-terminal 

telopeptide for 
collagen type I 

CTX-I 
Bone resorption (osteoclast) 

activity 

(Garnero et al., 
2003, Nikahval et 

al., 2016) 

Alkaline 
Phosphatase 

ALP 

Bone formation (osteoblast) 
activity, bone and cartilage 

mineralisation 

(Poole et al., 1989, 
Burr and Gallant, 

2012) 

Receptor activator 
of nuclear factor 

κ-Β ligand 
RANKL 

Canonical osteoclast 
pathway activation 

(Odgren et al., 
2003, Steeve et al., 
2004, Boyce et al., 

2015) 

Osteoprotegerin OPG 
Canonical osteoclast 

pathway inhibitor 

(Odgren et al., 
2003, Steeve et al., 
2004, Boyce et al., 

2015) 

RANKL:OPG ratio RANKL/OPG 

Surrogate measure of net 
canonical osteoclast 
pathway activation 

(Odgren et al., 
2003, Steeve et al., 
2004, Boyce et al., 

2015) 

Glutamate - 

Glutaminergic signalling 
agonist,  

Mechanical regulator of 
bone physiology, 

inflammatory regulator 

(Brakspear and 
Mason, 2012, 

Cowan et al., Wen et 
al., 2015) 

Sclerostin - 

Wnt signalling inhibitor, 
mechanical regulator of 

bone physiology 

(Robling et al., 
2008, Sebastian and 

Loots, 2017) 

Tumor necrosis 
factor alpha 

TNF-α 

Pro-inflammatory cytokine, 
osteoclastogenic signalling,  

osteoblast signalling 

(Kapoor et al., 
2011, Lam et al., 
2000, Osta et al., 

2014) 

Interleukin-1β IL-1β Pro-inflammatory cytokine 
(Attur et al., 1998, 
Molina-Holgado et 

al., 2000) 

Interleukin-2 IL-2 Pro-inflammatory cytokine 
(de Rham et al., 

2007) 

Interleukin-4 IL-4 

Anti-inflammatory cytokine 
associated with IL-13 

function 

(Scanzello et al., 
2008, Kapoor et al., 

2011, Onoe et al., 
1996) 

Interleukin-6 IL-6 
Pro-inflammatory cytokine,  

osteoclast signalling 
(Wang et al., 2003, 
Steeve et al., 2004, 
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Yoshitake et al., 
2008, Tat et al., 

2008a) 

Interleukin-8 IL-8 

Pro-inflammatory 
chemokine,  

neutrophil chemotaxis 

(Merz et al., 2003, 
Wojdasiewicz et al., 

2014) 

Interleukin-10 IL-10 
Anti-inflammatory cytokine,  

bone formation 

(Wojdasiewicz et 
al., 2014, Jung et al., 

2013, Liu et al., 
2006, Zhang et al., 

2016) 

Interleukin-12p70 IL-12p70 T cell stimulatory factor 
(Scanzello et al., 

2008, Scanzello and 
Goldring, 2012) 

Interleukin-13 IL-13 Anti-inflammatory cytokine 
(Wojdasiewicz et 
al., 2014, Onoe et 

al., 1996) 

Interferon-γ IFN-γ 

Pro- and anti-inflammatory 
cytokine, neuropathic pain 

pathway stimulant 

(Mathieu et al., 
2008, Zhang, 2007, 
Vikman et al., 2007) 
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Table 2.5-2 – Immunoassay details for analytes selected for analysis. 

Target Assay 
type 

Assay Catalog no. 
Manufact. 

Dynamic range 

IL-1β 

ECL 
U-Plex Pro-

Inflam Combo 
1 Human 

K15049 
Mesoscale 
Discovery 

0.09 – 0.49 pg/mL 

IL-2 0.52 – 1.1 pg/mL 

IL-4 0.44 - 3.4 pg/mL 

IL-6 0.27 – 1.3 pg/mL 

IL-8 0.12 – 0.21 pg/mL 

IL-10 0.13 – 0.26 pg/mL 

IL-12p70 0.44 - 3.4 pg/mL 

IL-13 2.2 – 6.2 pg/mL 

TNF-alpha 0.36 – 0.76 pg/mL 

IFN-gamma 0.70 – 1.5 pg/mL 

ALP 

ECL 
MSD Bone 
Panel Kit I 

Human 

K15146C-2 
Mesoscale 
Discovery 

0.004 – 200 ng/mL 

SOST 0.004 – 100 ng/mL 

OPG 1.9 – 4000 ng/mL 

RANKL ELISA 
total sRANKL 

(human) 
ELISA 

K 1016 
Immun-

Diagnostik 
370-30,000 pg/ml 

CTX-I ELISA 
Human CTX2 

ELISA kit 
E01C0071 
BlueGene 

0.5 – 10ng/mL 

COMP ELISA 
Human COMP 

(Sandwich) 
ELISA kit 

ab213764 
Abcam 

156 -10,000 pg/mL 

Glutamate ELISA 
Human 

Glutamate 
ELISA kit 

KA 1909 
Abnova 

0.06-12 µg/mL 
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2.5.3.1 Assay layout 

The following immunoassay layout applied to all tests: 

All assays were run on a double 96-well plate layout (Figure 2-14) from the same lot, 

with 8 point standard curves (7 standards and 1 blank) unless stated otherwise. Both 

standards and duplicates were run in adjacent duplicates on all assay plates.  

 

Figure 2-14 – 96-well plate layout for immunoassays. Yellow = standard curve wells with serial 

dilutions. Orange = serial dilutions of unknown sample concentrations for dilution testing. Green 

= diluted experimental samples. 

96-well assay plate layouts for all tests including both synovial fluid and serum sample 

testing. Yellow wells represent standard curve duplicates, orange represent dilutions 

(for ELISA tests only) and green wells represent test synovial fluid/serum samples. 

2.5.3.2 Dilution testing and running the assay 

Dilution testing of samples was carried out for each assay prior to analysis of the full set 

of unknown experimental samples, in order to optimise sample dilutions for 

fluorescence or electrochemiluminescence measurements to be within the measurable 

limits of the assay kit. Typically, the highest and lowest standards of known 

concentration provided by the assay manufacturer were representative of the maximum 

detection range of the assay, therefore they were used for dilution testing.  

For all ELISA assays, a strip of 8 wells was removed from each plate. Duplicate wells for 

the highest and lowest standard provided by the manufacturer were used to define the 

ranges of the assay. Excess serum or synovial fluid samples from two separate knee OA 

(KL grade II and KL IV) subjects stored in the ARUK sample biobank were used to 

represent unknown sample concentrations, to conserve experimental samples.  

STD 1 STD 1
Dilution       

0
1 2 3 4 5 6 7 8 9

STD 2 STD 2
Dilution       

0
1 2 3 4 5 6 7 8 9

STD 3 STD 3
Dilution   

1/2

STD 4 STD 4
Dilution   

1/2

STD 5 STD 5
Dilution   

1/5

STD 6 STD 6
Dilution   

1/5

STD 7 STD 7
Dilution 

1/10

BLANK BLANK
Dilution 

1/10
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Test samples were diluted according to the manufacturer’s instructions (often using 

assay buffer or distilled water) in dilutions of 1x, 0.5x, 0.2x and 0.1x the original 

concentration in separate Eppendorf tubes. Highest and lowest standards (Figure 2-15) 

as well as diluted samples were allocated wells on the test strip and the full protocol was 

carried out according to the assay instructions (2.6.3.4.1 – 2.6.3.4.4). Absorbances were 

read using a spectrophotometer (BMG Labtech FLUOstar Optima plate reader, Bucks, 

UK) at 405 nm and recorded using the provided software (FLUOstar V2.00 R3, BMG 

Labtech). Absorbance readings from the test samples were compared to the high and low 

standard to identify optimal dilutions for samples to fit within the standard curve 

(2.6.3.3). Dilutions were considered optimal when the readings for the given dilution fell 

roughly half-way between the standards. 

Following dilution testing, the assays were carried out on the full microplate with all 

synovial fluid and serum experimental samples of unknown concentrations diluted 

according to optimal dilutions for ELISA assays (2.6.3.4) or recommended dilutions for 

MSD assays (2.6.3.5). For each assay, a standard curve (Figure 2-15) was generated from 

the assay standards provided by the manufacturer which typically involved serial 

dilutions of the highest standard provided, however the dilution gradient varied 

depending on the assay. Two blank wells were assigned to assay buffer only, and were 

to provide a zero reading for reference. The standard curve is required to determine 

actual undiluted concentrations of the experimental samples in each plate (2.6.3.4), 

therefore the standards tested within both test plates alongside the samples for 

consistency. It was necessary to run standards within both plates as it was not possible 

to test for intra-plate variability within this study due to the funding limitations of the 

study.   
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2.5.3.3 Calculation of biomarker concentrations 

5-parameters logistic (5PL) regression curve fitting with interpolation was then used to 

determine absolute concentrations of analytes in the FCD, established OA and control 

serum, plasma and synovial fluid samples. The equation for the 5PL regression is:  

𝐹(𝑥) = 𝐷 +
𝐴 − 𝐷

(1 + (
𝑥
𝐶)

𝐵
)

𝐸  

Where A is the minimum asymptote (response value at 0 standard concentration), B is 

Hill’s slope (steepness of the curve), C is the inflection point, D is the maximum 

asymptote (response value for the infinite standard concentration) and E is the 

asymmetry factor. 

ELISA and chemiluminescence assay datasheets provide recommended maximum and 

minimum ranges of detection. Samples that generated signals outside this given range 

were only used if their coefficient of variance (CV) between the duplicate wells was 

below 20%. However, readings that fell outside the standard curve entirely were deemed 

unusable and were removed from the analysis. It is also generally recommended that 

signals should interpolate from the standard curve in the linear region of the curve, as 

most assays are less sensitive at the extremities. For this reason, prior to running ELISA 

assays, a test run was conducted using test synovial fluid and serum samples to optimise 

dilutions for the experiment before running test samples. In some cases, such as in the 

MSD chemiluminescence assays, it was not possible to test for dilutions due to the 

reaction required to read signals.  

Following interpolation, determined concentrations were multiplied by the dilution 

factor used in the experiment to generate the true (native) concentrations of analytes. In 

general, dilution factors were applied to all samples of a particular sample type. Often, 

Figure 2-16 – 5-parameter logistic curve definitions 
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synovial fluid had to be diluted more than serum and plasma due to its higher protein 

content. 

2.5.3.4 Enzyme-linked Immunosorbent Assays 

Four commercial ELISA kits were used to quantify synovial fluid and serum RANKL, CTX-

I, COMP and glutamate levels (Table 2.5-2). For each of these test kits, 96-well plates 

came with detachable wells, therefore prior to the experimental sample testing a dilution 

series of test samples defined the optimum dilutions for samples to fit in the standard 

curves according to the plate layout (Figure 2-14). Dilution test samples were excess 

fluid samples from the ARUK BBC biobank sample pool that were kept in separate 

aliquots before testing dilutions to avoid freeze-thaw cycles. All samples were read in a 

standard laboratory spectrophotometer capable at measuring wavelength at 450nm. 

Duplicate wells that showed CVs over 50% were excluded. All ELISA assays were 

performed according to the manufacturer’s protocols that came with the kit (all available 

on manufacturers websites), apart from dilutions which are stated in the next sections. 

2.5.3.4.1 Soluble Human RANKL 

This assay utilised a two-site sandwich method with two antibodies that bind to human 

soluble RANKL and OPG. Standards, controls and diluted synovial fluid and serum 

samples were added to the wells of the microplates pre-coated with polyclonal anti-

human OPG antibody. Following the first incubation RANKL is bound to free OPG as well 

as the immobilised antibody. Following this, biotinylated monoclonal anti-human 

RANKL antibodies were added to wells and a sandwich of capture antibody-OPG-RANKL-

streptavidin (peroxidase labelled) is formed. Next, a streptavidin horseradish-

peroxidase (HRP) conjugate with tetramethylbenzidine (TMB) as a substrate was added 

that binds to biotin, causing the solution to turn from blue to yellow. The last step 

involved the addition of an acidic stop solution which terminates the chemical reaction, 

prior to reading the plate at 450nm in the spectrophotometer.  

Dilution testing found that dilution of synovial fluid at 1:20 and serum at 1:10 were 

optimal for the standard curve. All measured experimental samples were within the 

standard curve range, except for two FCD synovial fluid samples, which were excluded 

from the analysis. 
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2.5.3.4.2 Glutamate 

This assay utilised an extraction and derivatization step prior to a competitive sandwich 

ELISA. The antigen is bound within the solid phase of the plate. The glutamate 

concentrations in standards, samples and controls and the solid phase bound glutamate 

competed for antibody binding sites. Once the system reached equilibrium, excess 

antigen and antibody-antigen complexes were removed by washing. Then, the antibody 

that was bound to the solid phase was labelled using an anti-rabbit IgG-HRP conjugate 

with a TMB substrate, causing the solution to turn from blue to yellow. The last step 

involved the addition of an acidic stop solution which terminates the chemical reaction, 

prior to reading the plate at 450nm in the spectrophotometer. Dilution testing found that 

1:5 dilution for serum and 1:10 dilution for synovial fluid was necessary to fit samples 

within the standard curve. All measured experimental samples fit within the standard 

curve, except for two FCD subject synovial fluid samples and one FCD serum samples.  

2.5.3.4.3 Human CTX-I  

This assay utilised a competitive sandwich technique using an anti-human-CTX-I 

antibody (source species not mentioned). First the samples were incubated with a CTX-

I HRP conjugate in pre-coated wells. Then wells were incubated with TMB substrate 

causing them to turn from blue to yellow corresponding to CTX-I concentrations. The last 

step involved the addition of an acidic stop solution which terminates the chemical 

reaction, prior to reading the plate at 450nm in the spectrophotometer. Dilution testing 

found that 1:2 dilution for serum and 1:4 dilution for synovial fluid was necessary to fit 

samples within the standard curve. All measured experimental samples fit within the 

standard curve, except for two FCD and two HTO subject synovial fluid samples.  

2.5.3.4.4 Human COMP 

This ELISA was based on a standard sandwich technique. Standards and diluted synovial 

fluid and serum samples were added to the wells pre-coated with monoclonal mouse 

anti-human COMP antibody. Next, a biotinylated polyclonal goat anti-human COMP 

antibody was added, followed by an avidin-biotin-peroxidase complex and removal of 

free conjugates. Finally, TMB was added to start the HRP enzymatic reaction causing a 

chance in colour from blue to yellow after addition of the acidic stop solution. Dilution 

testing found that 1:20 dilution for serum was optimal to fit samples within the standard 

curve, however dilution testing for all synovial fluid was unsuccessful. All serum samples 
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fit within the standard curve apart from five FCD serum samples, which measured below 

the standard curve and were excluded from analysis. However, all synovial fluid samples 

were unquantifiable for unknown reasons and displayed 0 readings. It was thought that 

a component of the assay kit reagents may have interfered with the synovial fluid sample 

in the wells, causing an abnormal reaction. It is notable that this assay was only 

mentioned to be optimised for serum and plasma.      

2.5.3.5 Electrochemiluminescence assays 

Meso Scale Discovery (Meso Scale Diagnostics, USA) is a platform that is developed 

around multiplex ECL assays for the detection of up to 54 proteins simultaneously within 

the same plate with typically higher sensitivity and broader dynamic ranges relative to 

ELISAs and other immunoassay types (V-PLEX White Paper, MSD). Within this thesis, 

two V-plex MSD assays were used for the measurement of inflammatory mediators and 

bone markers (Table 2.5-2); one 10-plex inflammatory combo (IL-1β, IL-2, IL-4, IL-6, IL-

8, IL-10, IL-12p70, IL-13, TNF-α and IFN-γ) and one 3-plex bone panel kit (ALP, SOST and 

OPG). MSD microplates were read using the Sector Imager 6000 MSD plate reader and 

analysed with Discovery Workbench v3 (Meso Scale Discovery, USA). MSD assays use 

high binding carbon electrodes at the bottom of multi-plot plates for capture antibodies, 

combined with electrochemiluminescent SULFO-TAG labels conjugated to detection 

antibodies. MSD plate readers then apply electricity to the plate electrodes leading to 

light emission by ECL labels, that is then quantified by the photometer. Within the MSD 

Workbench software, an automatic standard curve is generated using a 5-point 

parameter logistic standard curve and absolute concentrations following adjustment for 

dilutions is extracted using in-built algorithms. Both ECL assays were performed 

according to the protocols that arrived with the kit (all available on manufacturers 

websites), apart from dilutions which are stated in the next sections. 

The multiplex assays were developed optimised for serum and plasma samples, however 

other research groups in the OA field have evaluated their performance on synovial fluid 

and serum (Struglics et al., 2015, Watt et al., 2016). Struglics et al. who evaluated the Pro-

inflammatory Human 7-plex kit found an optimal serum dilution of 1:4 and synovial fluid 

dilution of 1:20 for detection of proteins within the assay limits. Therefore, these 

dilutions were employed for both the Pro-inflammatory Human 9-plex and Bone Panel 

Kit within this study. This was also necessary since it was not possible to test dilutions 

with the MSD kits, as the single fixed plate of 96 wells can only be exposed once to the 
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plate reader. Furthermore, duplicate wells with coefficients of variance (CV) over 20% 

were removed from the analysis. 

2.5.3.5.1 Pro-inflammatory 10-plex kit (MSD) 

For synovial fluid testing, dilutions of 1:20 were used for reasons mentioned in the 

previous section. Of twenty-two synovial fluid samples, >90% of IL-8, TNF-α and IFN-γ 

levels fit within the readable range of the standard curve of the assay, however a 

substantial proportion of IL-1β (18/22), IL-2 (18/22), IL-4 (21/22), IL-6 (5/22), IL-10 

(7/22), IL-12p70 (11/22) and IL-13 (9/22) measurements either fell below the 

recommended detection limit or the readable limit of the assay. Samples that were below 

the recommended limit but were still quantifiable and showed low CVs (<20%) were still 

included in the analysis, but samples that showed 0 readings were excluded from the 

analysis. Furthermore, analysis of IL-1β, IL-2 and IL-4 were excluded from all analysis 

altogether due to very low quantifiable concentrations.  

For serum testing, dilutions of 1:4 were used for reasons previously mentioned. Of 

twenty-one serum samples, all inflammatory analyte levels were successfully measured 

in all samples, except for several samples for IL-1β (18/21), IL-2 (15/21) and IL-13 

(6/21), which fell below the recommended or readable detection limit of the multiplex 

assay. Due to the low number of measurements IL-1β and IL-2 were excluded.  

It is notable that under the same conditions, both Struglics et al. and Watt et al. found a 

substantial proportion of IL-1β, IL-12p70 and IFN-γ concentrations fell below their 

lower limits of quantification and presented high CVs (>30%), therefore they also 

excluded IL-1β and IL-12p70 from their clinical analysis consistent with this study 

(Struglics et al., 2015, Watt et al., 2016). 

2.5.3.5.2 Bone Panel 3-plex kit (MSD) 

For synovial fluid testing, dilutions of 1:20 were used for reasons previously mentioned. 

Of twenty-two synovial fluid samples analysed, all samples fit within the standard curve, 

however 1 sclerostin and a substantial number of ALP readings (18/22) fell below the 

recommended readable range of the standard curve but were still included in the 

analysis due to low CVs (<20%). For serum testing, dilutions of 1:4 were used. Of twenty-

one serum samples tested, all fit within the readable standard curve, however 3 OPG and 

5 ALP readings fell below the recommended readable range of the assay but were still 

included in the analysis due to low CVs (<20%).   
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2.6 Multivariate analysis 

Aside from waveform analysis, PCA has also proven to be a useful statistical procedure 

for exploring large complex datasets of discrete measures (Jolliffe and Cadima, 2016). In 

discrete PCA, the primary goal of PCA is essentially the same - to reduce dimensionality 

of large data in an interpretable fashion whilst still retaining as much relevant 

information of the original data as possible in the form of ‘principal components’ (PCs). 

To reiterate, PCs are essentially new uncorrelated (orthogonal) variables generated from 

mathematical linear combinations of the original data, that better represent the overall 

variance of the dataset as a whole. The first PC (PC1) captures the largest amount of 

variance with subsequent PCs progressively representing less of the data, thus, it is 

possible to retain the most important information very easily with substantially fewer 

variables.  

In chapter 4 and 5, exploring linear combinations of data using PCA allowed for an 

integrated view of variances between observations (e.g. subject samples) and variables 

(e.g. biomarker concentrations), with the ultimate goal of finding variances that may be 

revealing or explanatory of intra- or inter-group differences. Multiple clusters of 

observations could represent different phenotypes of disease, since subjects within 

these clusters exhibit similarities in the variables they express.  

PCA on discrete parameters was carried out in SIMCA (version 14.1, Umetrics, Sartorius 

Stedim, Sweden), which is a tool that allows for the transformation of variables using 

PCA into intuitive plots of the important information that could be easily interpretable. 

This made it possible to identify subjects that grouped together due to sharing similar 

characteristics in terms of the variables they express (e.g. biomarker concentrations) 

and find out which variables these clusters were associated with by matching spatial 

distributions of the observation scores and variable loadings (Figure 2-17).  

The ‘observations’ and variables in both chapters 4 and 5 were as follows:  

Chapter Observations Variables 

4 FCD and OA subjects Biomarker concentrations 

5 FCD and OA subjects 

Biomarker concentrations, 
discrete biomechanical 
parameters and KOOS 

scores 
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Figure 2-17 - Example of discrete PCA interpretation. The observation score plot (A) 

represents the score of each observation (i.e. subject) against the new variables (principal 

components) summarizing the original variables (e.g. biomarker concentrations). The first 

component (PC1) explains the largest variation of the original data, followed by PC 2, etc. 

Observations that cluster in the scores plot (score closely on the PC axes) share similar 

characteristics in terms of the variables they express. The variable loadings plot (B) 

represents the contributions of each variable to the principal components. High loading 

variables of a given principal component are therefore related to observations that scored 

highly on that principal component in the score space. Ultimately, the spatial distribution 

of variable loadings on the loadings plot can be related to the spatial distribution of the 

observations on the score space, making it possible to associate variables with observation 

groups/clusters. 

A 

B 
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The characterisation and longitudinal 

assessment of lower limb biomechanical function 

in knee focal cartilage defect subjects undergoing 

microfracture surgery 
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3.1 Introduction 

The link between lower limb function and established knee OA has been thoroughly 

investigated in human motion analysis studies, whereby an increasing body of evidence 

has linked altered lower limb biomechanics, notably joint loading patterns, and 

neuromuscular activity with OA severity (Mundermann et al., 2004, Astephen et al., 

2008), disease progression (Andriacchi and Muendermann, 2006, Andriacchi and Favre, 

2014), and interventional outcomes (Morin et al., 2018, Lee et al., 2017). Individuals with 

unicondylar OA are treated with realignment surgeries such as high tibial osteotomy 

(HTO), that aim to relieve the affected condyle of abnormally high loads (Roe et al., 2012). 

At this stage however, deterioration in the knee is substantial and, in many occasions, 

irreversible. It is therefore critical to identify functional deficiencies early in the disease, 

when interventions are effective and preventative. There is currently a scarcity of 

research describing functional deficits of the tibiofemoral FCD knee, which are shown to 

predispose the knee to OA on their natural course as damage progresses following injury 

(Spahn and Hofmann, 2014). The unicompartmental and isolated nature of FCDs in the 

joint and progression of damage suggests a mechanical component is involved in their 

aetiology (Carnes et al., 2012). Identifying functional deficiencies in those with 

progressing FCDs could improve clinical decision making with regards to treatment and 

post-operative rehabilitation.  

It is clear from longitudinal interventional studies of the knee FCD population that 

treatment outcomes vary significantly amongst those treated (Randsborg et al., 2016, 

Quatman et al., 2012). Whilst conventional treatments such as marrow stimulation 

techniques (e.g. microfracture) and stem cell therapies (e.g. ACI) are effective for many 

cases, long-term efficacy is relatively poor for a substantial proportion whom are not 

able to return to sport, require revision surgeries to treat reoccurring pain, or progress 

toward an established OA phenotype (Layton et al., 2015, Randsborg et al., 2016, 

Pascual-Garrido et al., 2017). Cartilage repair techniques are shown to replace the lost 

or defective cartilage with fibrocartilage by stimulating bone marrow stem cell (BM-

MSCs) repair, but their efficacy in restoring knee function is poorly understood. 

Longitudinal assessment of joint function following cartilage repair may therefore reveal 

mechanisms of failure in which previous MRI or patient-reported outcome studies have 

not (Quatman et al., 2012). Furthermore, development of predictor variables for the 

response to intervention or identifying phenotypic groups can help to develop targeted 

therapeutic strategies for distinct clinical treatment groups to further improve efficacy 

(Knoop et al., 2011, Driban et al., 2010).      
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This chapter intends to objectively define the lower limb biomechanical and 

neuromuscular function of individuals affected with either medial or lateral 

compartment tibiofemoral FCDs, to further understanding of the condition from a 

biomechanics standpoint with insight into development and progression of the 

condition. Secondly, to use this information to subsequently assess functional outcomes 

of a conventional intervention (i.e. microfracture surgery) aimed at repairing chondral 

damage in the joint six-months following surgery. This chapter aims to fulfil these 

objectives by using 3-dimensional motion capture technology and electromyography 

(EMG) in combination with multivariate statistical methods, to measure biomechanical 

and neuromuscular differences and longitudinal changes acting at the knee, hip and 

ankle during level gait relatively to healthy control subjects with no history of joint 

injury.   

Chapter Aim: To use 3D gait analysis and electromyography techniques to identify 

lower limb functional differences of tibiofemoral FCD subjects relative to controls and 

assess longitudinal functional outcomes of microfracture surgery  

Objective 1: Use 3D motion capture and EMG methods to identify lower limb 

biomechanical and neuromuscular functional features of knee FCD subjects that 

differ from control subjects 

Hypothesis 1: Patients with FCDs of the tibiofemoral joint experience 

biomechanical and neuromuscular differences acting at the knee, hip and ankle 

compared to non-pathological controls 

Objective 2: Assess longitudinal changes in lower limb functional features of 

FCD pathology six-months following treatment with microfracture surgery 

Hypothesis 2: Longitudinal assessment of lower limb functional features of FCD 

gait will reveal the efficacy of microfracture surgery for restoring knee function and 

identify mechanisms of failure 

3.2 Methods 

Methodology for collection, generation, analysis and interpretation of biomechanical and 

muscle activation waveforms was previously described in section 2.4 and 2.5. 
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3.2.1 Splitting the dataset into two groups based on medial and lateral 

location of the lesions  

Based on previous evidence investigating knee established OA gait, it is expected that 

biomechanical function may differ based on the mediolateral location of chondral 

damage in the knee (Heijink et al., 2012, Andriacchi and Muendermann, 2006, Sharma et 

al., 2001). Therefore, combining medial and lateral knee FCD subjects may lead to 

averaging out of group differences, particularly in frontal plane parameters. This is 

particularly relevant with focal lesions, due to the isolated nature of their pathology. It is 

indicated in arthroscopic surgical notes that within the entire FCD cohort, there lies a 

clear divide in medial and lateral-compartmental lesions and a comprehensive analysis 

of the arthroscopy notes for all FCD subjects indicated that only single compartments 

were affected. Based on these circumstances and evidence, the decision was made to 

divide the FCD group into medial and lateral disease groups which were individually 

compared to the control group for the analysis of this chapter. However, medial and 

lateral FCD subjects were combined in the subsequent chapters due to the advantage of 

increased group numbers with improving statistical power. 

3.3 Results 

3.3.1 Cohort characteristics and clinical data  

Five medial knee FCD subjects (all male; mean (SD) age = 41.2 (16) years, BMI = 28.5 (5) 

kg/m2), six lateral FCD subjects (5 male, 1 female; mean (SD) age = 38.7 (10) years, BMI 

= 28.4 (4) kg/m2) and ten control subjects (9 male, 3 female; mean (SD) age = 33.5 (7) 

years, BMI = 26.1 (4) kg/m2) were recruited with consent and underwent 3D gait 

analysis. There was a lack of significant (p≤0.05) group differences in demographics, 

however trends of lower age and BMI were found in the control group relative to FCD 

groups (Table 3.3-1).  

All FCD subjects had Outerbridge grade II tibiofemoral chondral lesions, nine out of 

eleven presented accompanying meniscal tears or damage in the affected compartment 

only (1 medial and 1 lateral subject per group had intact menisci), and three subjects 

presented ACL laxity (+Glide) associated with ACL-tears or damage (Appendix A.1) 

Furthermore, no static knee malalignment was reported for any subject. From all 

involved subjects, one FCD subject (KM) reported using an analgesic (Tramadol) within 

3 hours prior to motion capture data collection. 
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3.3.2 Patient-reported clinical measures  

Both medial and lateral FCD subject groups reported significantly (p≤0.05 to ≤0.01) 

higher pain levels, presence of symptoms and poorer self-perceived function relative to 

controls (Table 3.3-1). There was also a trend of higher pain and symptom levels and 

reduced function experienced by the medial relative to lateral subjects, however this did 

not reach significance at the p≤0.05 level.  

Following microfracture surgery, medial FCD subjects experienced significantly 

(p≤0.05) lower self-reported pain and a trend towards improved symptoms and self-

perceived function (  
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Table 3.3-2). Lateral FCD subjects initially reported less pain, symptoms and function 

than the medial group prior to surgery, but only marginally improved from pre- to post-

surgery. 

Table 3.3-1 – Cross-sectional cohort demographical features and patient-reported KOOS scores. 

Bold face p-values were considered significant (p≤0.05). Note: lower KOOS scores = worsening 

clinical factors (e.g. pain) 

Parameter Control Medial FCD Lateral FCD Sig. p 
C vs. M 

Sig. p 
C vs. L 

Sig. p 
M vs. L 

n = 10 5 6 - - - 

BMI  26.1 ±4 28.5 ±5 28.4 ±4 n/s n/s n/s 

Age (y) 33.5 ±7 41.2 ±16 38.7 ±10 n/s n/s n/s 

Pain 96.8 ±3 66.1  ±10.7  70.8 ±21.1 .002 .027 n/s 

Symptoms 93.4 ±7.3  59.3 ±23.5  66.7 ±13.9 .032 .034 n/s 

Function 99.6 ±0.7  64.1 ±21.9  75.2 ±2.4 .022 .032 n/s 
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Table 3.3-2 – Longitudinal cohort demographical features and patient-reported KOOS scores. 

Bold face p-values were considered significant (p≤0.05).    

Parameter Medial FCD 
Sig. p Lateral FCD 

Sig. p 
Pre Post Pre Post 

n = 3 3  3 3  

BMI  28.5 ±5  28.4 ±4  

Age (y) 41.2 ±16  38.7 ±10  

Pain 68.5 ±14.3 83.3 ±16.9 .026 82.4 ±19.7 95.4 ±5.8 .465 

Symptoms 73.8 ±7.4 85.7 ±10.7 .109 72.6 ±7.4 84.5 ±14.9 .405 

Function 69.6 ±25 88.7 ±14.4 .096 80.9 ±15.9 91.7 ±10.8 .499 

3.3.3 Spatio-temporal parameters  

No significant (p≤0.05) differences were found for spatio-temporal parameters 

between disease groups and controls (  
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Table 3.3-3), however a trend towards slower walking speed, increased stance and swing 

time and decreased steps/minute were found in medial FCD subjects compared to the 

lateral group and controls. 

Medial FCD subjects walked significantly (p≤0.05) slower after treatment, resulting in 

average increases in stance, swing and double limb support time, as well as reduced 

number of steps per minute (Table 3.3-4). In contrast, lateral FCD subjects showed an 

opposite effect as a result of increased walking speed, though this did not reach 

significance at the p≤0.05 level.   
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Table 3.3-3 – Cross-sectional cohort spatiotemporal parameters. Bold face p-values were 

considered significant (p≤0.05). 

Parameter Control Medial FCD Lateral FCD Sig. p 
C v M 

Sig. p 
C v L 

Sig. p 
M v L 

Speed (m/s) 1.16 ±0.1 1.11 ±0.18 1.18 ±0.11 .413 .637 .326 

Stance time (s) 0.66  ±0.07 0.7 ±0.06 0.67 ±0.05 .259 .912 .277 

Swing time (s) 0.43 ±0.02 0.46 ±0.04 0.429 ±0.01 .167 .796 .148 

Steps/min 111.2 103 110 .052 .727 .087 

Dbl limb support 
(s) 0.22 ±0.04 0.25 ±0.04 0.23 ±0.04 .234 .768 .445 

 

Table 3.3-4 - Longitudinal cohort spatiotemporal parameters. Bold face p-values were 

considered significant (p≤0.05). 

Parameter 
Medial FCD 

Sig. p 
Lateral FCD 

Sig. p 
Pre Post Pre Post 

Speed (m/s) 1.16 ±0.19 1.10 ±0.18 .028 1.18 ±0.14 1.24 ±0.1 .144 

Stance time (s) 0.68 ±0.07 0.70 ±0.06 .086 0.66 ±0.05 0.65 ±0.04 .135 

Swing time (s) 0.44 ±0.02 0.45 ±0.03 .377 0.43 ±0.02 0.43 ±0.01 .654 

Steps/min 106 ±6 104 ±5.3 .107 109.7 ±2.48 112 ±4.13 .168 
Dbl limb 

support (s) 0.23 ±0.04 0.24 ±0.04 .151 0.23 ±0.06 0.23 ±0.04 .704 
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3.3.4 PCA; biomechanical waveform cross-sectional and longitudinal 

comparisons 

From a total of 21 lower limb biomechanical features (GRFs and hip, knee and ankle 

rotations and moments) and 7 muscle activation features tested for significantly 

(p≤0.05) differing group variances (medial FCD vs controls and lateral FCDs vs controls), 

11 features revealed at least one PC representative of group differences (Table 3.3-5) 

and were included in this chapters results. 

Table 3.3-5 – Table representing biomechanical or muscle activation features that exhibited 

significantly (p≤0.05) differing group PC variances. 

Parameter type Plane/Muscle Feature 

Biomechanical 
waveform 

Vertical Z Vertical GRF 

Frontal plane 

Knee adduction moment (KAM) 

Knee adduction angle 
(KAA) 

Hip adduction moment  
(HAM) 

Sagittal plane 

Knee flexion-extension moment 
 (KFM / KEM) 

Knee flexion angle  
(KFA) 

Muscle activation 
waveform 

Quadriceps 

Rectus femoris activation 

Vastus medialis activation 

Vastus lateralis activation 

Hamstrings 

Biceps femoris activation 

Semitendinosus activation 

 

In addition to significantly differing features, two additional features (mediolateral and 

anteroposterior GRF) were also included to aid interpretations.  
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3.3.4.1 Vertical GRF 

PCA of the vertical GRF showed similar feature differences for both FCD groups 

compared to controls (Figure 3.3-1). PC1 captured variances for both comparisons 

represented a significant (p≤0.01) decrease in overall GRF magnitude in disease groups 

and lessening of the ‘double-peak’ characteristic indicative of reduced vertical forces. 

Visual assessment of the ensemble-averaged waveforms revealed that mid-stance GRFs 

were similar to control forces, but the first (weight-acceptance) and second (push-off) 

peaks were relatively reduced. 

Following microfracture surgery, there were non-significant (n-s) trends towards 

decreased peak vertical forces and increased midstance forces in the medial FCD group 

representative of worsening function, in contrast to increased vertical forces in the 

lateral group indicating improved function, however these differences were not 

statistically validated at the p≤0.05 level. 
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Figure 3.3-1 - Vertical (+) ground reaction force vector ensemble-averaged waveforms (lines) 

and standard deviations (shaded areas) for  and subjects 

relative to subjects (A) and relative to (B). Extreme plots 

are presented representing the mean (black) and ±1 standard deviation PC reconstructions 

colour coded to represent group differences corresponding to mean PC scores (C).  

Table 3.3-1 – Principal component features of gait waveforms that significantly differed (p≤0.05) 

between groups and longitudinal change in PC variance six-months following surgery.  
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3.3.4.2 Frontal plane features 

Taking both medial and lateral FCD subjects into account, PCA captured no significant 

differences in mediolateral GRF force variances between the disease groups relative to 

controls, which was also evident by visual inspection of the ensemble-averaged 

waveforms (Figure 3.3-2).  

The medial FCD subjects exhibited increased late-stance knee adduction moments 

(KAMs) relative to controls representative of increased medial knee loading, which was 

captured by PC1 as a significantly (p≤0.05) overall increased KAM magnitude across the 

whole of stance-phase (Figure 3.3-3). This was accompanied by a significantly (p≤0.05) 

increased varus (adduction) angles (KAA) from weight acceptance to late-stance 

captured by PC3 (Figure 3.3-4). Whereas at the hip, they presented reduced hip 

adduction moments (HAMs) during early-stance, significantly (p≤0.01) captured by PC2 

as decreased 1st:2nd peak ratio of the waveform (Figure 3.3-5). Following microfracture, 

there was a n-s trend towards increased KAMs and a significantly (p≤0.01) reduced 1st 

peak:2nd peak HAM ratio at the hip, both indicative of worsening function. 

In the exact opposite effect to the medial group, lateral FCD subjects presented a 

significantly (p≤0.05) reduced early-stance KAM representative of increased lateral knee 

loading significantly captured by PC1 variances, accompanied by a significant (p≤0.05) 

trend towards increased valgus (abduction) angles of the knee during the whole of 

stance captured by PC1, and a n-s trend towards a reduction of the 1st:2nd peak ratio of 

the HAM captured by PC3. Following surgery, there was n-s trend towards increased 

early-stance KAMs (representative of increased function), but no clear difference in 

KAAs or HAMs.    
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Figure 3.3-2 – Medio(+)-lateral(-) ground reaction force vector ensemble-averaged waveforms 

(lines) and standard deviations (shaded areas) for  and 

subjects relative to  subjects (A) and relative to   (B). 

Extreme plots are presented representing the mean (black) and ±1 standard deviation PC 

reconstructions coded to represent group differences corresponding to mean PC scores (C).  
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Figure 3.3-3 – Knee adduction (+) moment ensemble-averaged waveforms (lines) and standard 

deviations (shaded areas) for and subjects relative to 

subjects (A) and relative to (B). Extreme plots are 

presented representing the mean (black) and ±1 standard deviation PC reconstructions colour 

coded to represent group differences corresponding to mean PC scores (C).  

Table 3.3-3 – Principal component features of gait waveforms that significantly differed (p≤0.05) 

between groups and longitudinal change in PC variance six-months following surgery.  
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Figure 3.3-4 – Knee adduction (+) angle ensemble-averaged waveforms (lines) and standard 

deviations (shaded areas) for and subjects relative 

to subjects (A) and relative to (B). Extreme plots are presented representing the 

mean (black) and ±1 standard deviation PC reconstructions colour coded 

to represent group differences corresponding to mean PC scores (C).  

Table 3.3-4 – Principal component features of gait waveforms that significantly differed (p≤0.05) 

between groups and longitudinal change in PC variance six-months following surgery.  
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Figure 3.3-5 – Hip adduction (+) moment ensemble-averaged waveforms (lines) and standard 

deviations (shaded areas) for and subjects relative to 

subjects (A) and relative to (B). Extreme plots are 

presented representing the mean (black) and ±1 standard deviation PC reconstructions colour 

coded to represent group differences corresponding to mean PC scores (C).  

Table 3.3-5 – Principal component features of gait waveforms that significantly differed (p≤0.05) 

between groups and longitudinal change in PC variance six-months following surgery. 
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3.3.4.3 Sagittal plane features 

For the medial FCD group, sagittal plane features included a trend (n/s) towards reduced 

anteroposterior GRFs at early-stance and late-stance relative to controls, as captured by 

PC1 (Figure 3.3-6). Assessment of the knee flexion-extension moment (KFM & KEM) 

average waveforms (Figure 3.3-7) revealed a reduced KEM during late-stance, which 

was captured by PC1 as significant (p≤0.05) reduction in both the KFM and KEM 

waveform magnitudes compared to controls. This was accompanied by an increased 

knee flexion angle (KFA) during late-stance (Figure 3.3-8) representative of a reluctancy 

to extend the knee during push-off, which was captured by PC2 as a significantly (p≤0.05) 

reduced range of motion during the whole gait cycle. Following surgery, there was a 

trend (n/s) towards even more reduced anteroposterior forces, decreased 

KFM/increased KEM and no differences in the KFA, indicative of worsening knee 

function. 

On the other hand, the lateral group showed no clear differences in anteroposterior 

forces relative to controls. However, there appeared to be a n-s trend towards decreased 

KFMs and decreased KFAs during early-stance, though these features were not captured 

by PC variances. In contrast to the medial group, lateral subjects did not present any 

biomechanical abnormalities of the KEM during late-stance. After surgery, KFM and KFA 

magnitudes appeared more similar to controls, indicating a change towards increased 

knee function.  
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Figure 3.3-6 – Antero(+)posterior(-) ground reaction force ensemble-averaged waveforms 

(lines) and standard deviations (shaded areas) for and 

subjects relative to subjects (A) and relative to (B). 

Extreme plots are presented representing the mean (black) and ±1 standard deviation PC 

reconstructions coded to represent group differences corresponding to mean PC scores (C).  
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Figure 3.3-7 – Knee flexion(+)-extension(-) moment ensemble-averaged waveforms (lines) and 

standard deviations (shaded areas) for and subjects 

relative to subjects (A) and relative to (B). Extreme 

plots are presented representing the mean (black) and ±1 standard deviation PC reconstructions 

colour coded to represent group differences corresponding to mean PC scores (C).  

Table 3.3-7 – Principal component features of gait waveforms that significantly differed (p≤0.05) 

between groups and longitudinal change in PC variance six-months following surgery. 
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Figure 3.3-8 – Knee flexion (+) angle ensemble-averaged waveforms (lines) and standard 

deviations (shaded areas) for and subjects relative to 

subjects (A) and relative to (B). Extreme plots are 

presented representing the mean (black) and ±1 standard deviation PC reconstructions colour 

coded to represent group differences corresponding to mean PC scores (C).  

Table 3.3-8 – Principal component features of gait waveforms that significantly differed (p≤0.05) 

between groups and longitudinal change in PC variance six-months following surgery. 
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3.3.4.4 Quadriceps activation 

Visual comparison of quadriceps waveforms revealed that medial FCD subjects are over-

activating all three examined muscles during mid- to late-stance (20-50% gait cycle), but 

this was not reflected in lateral FCD subjects who showed no clear deficiencies in 

quadriceps function (Figure 3.3-9, Figure 3.3-10 & Figure 3.3-11). PCA found significant 

(p≤0.05) differences in the medial group quadriceps activation variances reflective of 

this feature, represented by PC 1 differences.  

Following surgery, medial FCD subjects persisted to aberrantly activate all three 

quadricep muscles, evidenced by the lack of- or very subtle longitudinal changes in 

average waveform or PC variances. These subtle changes involved the rectus femoris and 

vastus medialis showing trends towards improved function, contrasting the vastus 

lateralis showing a stronger trend towards pathological function, evidenced by changes 

in mid- to late stance activation. 
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Figure 3.3-9 – Rectus femoris activation ensemble-averaged waveforms (lines) and standard 

deviations (shaded areas) for and subjects relative 

to subjects (A) and relative to (B). Extreme plots are 

presented representing the mean (black) and ±1 standard deviation PC reconstructions colour 

coded to represent group differences corresponding to mean PC scores (C).  

Table 3.3-9 – Principal component features of gait waveforms that significantly differed (p≤0.05) 

between groups and longitudinal change in PC variance six-months following surgery. 
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Figure 3.3-10 – Vastus medialis activation ensemble-averaged waveforms (lines) and standard 

deviations (shaded areas) for and subjects relative to 

subjects (A) and relative to (B). Extreme plots are 

presented representing the mean (black) and ±1 standard deviation PC reconstructions colour 

coded to represent group differences corresponding to mean PC scores (C).  

Table 3.3-10 – Principal component features of gait waveforms that significantly differed 

(p≤0.05) between groups and longitudinal change in PC variance six-months following surgery. 
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Figure 3.3-11 – Vastus lateralis activation ensemble-averaged waveforms (lines) and standard 

deviations (shaded areas) for and subjects relative to 

subjects (A) and relative to (B). Extreme plots are 

presented representing the mean (black) and ±1 standard deviation PC reconstructions colour 

coded to represent group differences corresponding to mean PC scores (C).  

Table 3.3-11 – Principal component features of gait waveforms that significantly differed 

(p≤0.05) between groups and longitudinal change in PC variance six-months following surgery. 
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3.3.4.5 Hamstrings activation 

Assessment of the hamstring ensemble-averaged activation waveforms revealed 

excessive hamstring activation in both FCD groups to some degree from heel-strike to 

late-stance, however this was only significantly reflected PC1 variance differences 

between medial FCD subjects and controls (Figure 3.3-12 & Figure 3.3-13). On the other 

hand, both medial and lateral FCD subjects exhibited reduced pre-heel-strike hamstring 

activation. With closer inspection of the average waveforms, it appears this pre-

activation is delayed until immediately during or after heel-strike in both groups 

compared to controls.  

Longitudinal changes in hamstrings activation waveforms showed a trend towards more 

pathological biceps femoris activation during late-stance in the medial FCD group, 

whereas the lateral group showed a significant (p≤0.05) improvement in biceps femoris 

heel-strike pre-activation patterns, reflective of improved function.    
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Figure 3.3-12 – Biceps femoris activation ensemble-averaged waveforms (lines) and standard 

deviations (shaded areas) for and subjects relative to 

subjects (A) and relative to (B). Extreme plots are 

presented representing the mean (black) and ±1 standard deviation PC reconstructions colour 

coded to represent group differences corresponding to mean PC scores (C).  

Table 3.3-12 – Principal component features of gait waveforms that significantly differed 

(p≤0.05) between groups and longitudinal change in PC variance six-months following surgery. 
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Figure 3.3-13 – Semitendinosus activation ensemble-averaged waveforms (lines) and standard 

deviations (shaded areas) for and subjects relative to 

subjects (A) Extreme plots are presented representing the mean (black) and ±1 

standard deviation PC reconstructions colour coded to represent group differences 

corresponding to mean PC scores (C).  

Table 3.3-13 – Principal component features of gait waveforms that significantly differed 

(p≤0.05) between groups and longitudinal change in PC variance six-months following surgery. 
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3.3.4.6 Summary of functional differences and trends 

The findings revealed characteristic functional and patient-reported differences 

dependent on occurrence or the mediolateral location of tibiofemoral lesions (Figure 

3.3-14). The most distinctive and important trends included: 

• Medial FCD subjects exhibited increased self-reported pain and reduced self-

reported function relative to the lateral FCD group, which appears to be 

consistent with the more prominent objective functional deficits found in the 

medial FCD group, including significantly aberrant hip moments, sagittal plane 

parameters, as well as quadricep and hamstring activation  

 

• Both disease groups showed reduction of the dynamic GRF double-peak 

magnitudes, which is representative of altering of the typical acceleration-

deceleration cycle of the centre of mass during gait. This indicates compensatory 

gait mechanisms (including reduction of gait speed) in order to ultimately reduce 

joint reaction forces 

 

• FCD disease groups exhibited altered frontal plane parameters (moments and 

angles) reflective of overloading the respective diseased knee condyle. E.g. 

Medial FCD subjects exhibit dynamic varus malalignment, resulting in increased 

knee adduction moments that could signify increased medial knee loading 

 

•  Functional deficits in disease groups are associated with gait cycle events 

depending on the mediolateral location of the lesion (i.e. medial FCD subjects 

exhibit functional deficits predominantly during late-stance, and lateral FCD 

subjects during early-stance)  
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3.4 DISCUSSION 

3.4.1 Key findings for Objective 1 

The first objective of this chapter was to use 3D motion capture and EMG methods to 

identify lower limb functional features of knee focal cartilage defect subjects from non-

pathological control subjects. It was hypothesised that FCD patients experience differing 

biomechanical and neuromuscular activity acting in the lower limbs compared to non-

pathological controls. 

Temporal Parameters 

Despite significant patient-reported knee pain, OA symptoms and reduced function in 

the FCD subjects associated with this study relative to controls, a lack of significant 

differences were found in all spatio-temporal parameters, however there was a trend 

towards decreased walking speed, increased stance and double limb support time and 

decreased steps per minute in the medial FCD subjects. This pattern is reflective of worse 

functioning in the medial group, likely related to the worse mean clinical measures (i.e. 

increased pain, symptoms, reduced self-perceived function) experienced by medial FCD 

subjects relative to the lateral group, since acute knee pain has been shown to cause 

subjects to lower speed, likely in an attempt to reduce peak contact forces in the joint 

and ultimately reduce pain (Shrader et al., 2004, Boyer et al., 2012). Walking speed is 

well-recognised to influence dynamic biomechanical parameters such as the ground 

reaction force (GRF), and the magnitudes of the joint moments, leading to difficult 

interpretation of kinetic data in relation to disease (Landry et al., 2007, Andersson et al., 

1981). Furthermore, walking speed has shown in several studies to influence 

neuromuscular mechanisms in both healthy and pathological populations (Neptune et 

al., 2008). The statistical similarity in gait speed between the disease subjects and 

controls allows for a more meaningful interpretation of kinematic and kinetic gait 

differences compared to severe OA studies, however this pattern in medial FCD subjects 

is an important consideration for interpretations. 

Vertical ground reaction force and centre of mass 

Assessment of waveform variances using PCA of the vertical GRF showed similar 

differences for both FCD groups compared to controls. PC1s for both comparisons 

represented a decrease in overall GRF magnitude in disease groups and lessening of the 

‘double-peak’ characteristic. Closer inspection of the loading vectors showed that mid-
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stance GRFs are more similar to controls but the first and second peaks were relatively 

reduced. This may be attributed to reduced movement (acceleration/deceleration), of 

the patients’ vertical CoM during walking, which is related to the body’s downward 

velocity being slowed (upwards body mass acceleration) during the first GRF peak in 

loading response, and the propulsion required during push-off to accelerate the CoM 

upwards during the second peak (Levange and Norkin, 2011). Another feature of both 

PC1s is the decreased overall gradient and amplitude seen in the initial (0 – 15%) load 

response phase seen in FCD subjects. Since this is during the double limb support phase, 

contrary to results seen in temporal parameters it could be inferred that they are shifting 

weight bearing onto the affected limb more slowly or require more support from the 

unaffected limb. 

FCD subjects exhibit frontal plane overload of affected knee compartment due to 

dynamic knee malalignment 

Assessment of KAM waveform PC variances revealed that both medial and lateral FCD 

subjects presented significantly different overall magnitudes of the waveform relative to 

controls (represented by PC1), whereby the medial group found increased frontal plane 

moments in contrast to the lateral subjects. This infers that FCD subjects are overloading 

their respective affected condyle, since the KAM is considered a surrogate measure of 

medial compartmental loading (Andriacchi and Favre, 2014) and is shown to 

significantly represent variances in medial knee contact forces measured by 

instrumented knee implants (Zhao et al., 2007, Kutzner et al., 2013). Further 

investigation of the PC reconstructions and mean waveforms revealed that the largest 

differences between lateral FCD subjects and controls are during the load response (first 

peak) up to mid-stance that lessens during late-stance, whereas the medial group seem 

to be showing an increased magnitude across the whole of stance which is elevated 

towards late-stance. It is reasonable to suggest that overloading of the affected condyle 

may be a critical and likely causal feature of FCD pathogenesis and progression in those 

experiencing increased moments. 

To determine why the disease groups experienced differences in the external KAM, 

dynamic frontal plane knee alignment (KAAs), centre of pressure (CoP) relative to the 

knee position, and the medio-lateral GRF vector were considered, as the magnitude of 

the KAM is a product of the GRF vector times the moment lever arm (i.e. distance 

between GRF vector and centre of knee rotation). Assessment of GRF vectors showed no 

clear group differences, however, medial FCD subjects presented increased dynamic 

varus angles relative to controls, which were reciprocal to the increased valgus angles in 
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the lateral group. This suggests dynamic frontal plane malalignment of the knee is likely 

causative of the increased joint moments in most subjects, consistent with previous 

studies that have demonstrated the correlation between knee alignment and joint 

overloading in medial and lateral OA subjects (Hunt et al., 2006, Felson et al., 2013).  

Knee co-morbidities may be partly responsible for frontal plane functional 

differences 

Qualitative analysis of clinical measures revealed that nine out of the twelve FCD subjects 

presented meniscal tears or loss preceding or concurrently with their FCDs, of which a 

proportion had partial meniscectomies during the microfracture surgery. Of those nine, 

seven of them thought their condition related to a historical injury, which ranged 

between one to eight years prior to data collection. It is possible that these factors are 

contributing to the observed differences in frontal plane moments and knee angles, as 

previous authors have suggested that joint malalignment can develop as a result of 

meniscal extrusion or articular cartilage loss due to an injury that narrows one side of 

the joint (Felson et al., 2000, Sharma et al., 2001). Indeed, previous studies have found 

associations between KAM peak magnitudes and medial meniscus tears or extrusion 

(Vanwanseele et al., 2010, Davies-Tuck et al., 2008a), suggesting a combination of 

meniscal loss and possibly chondral damage from lesions may generate morphological 

changes that misalign the knee, ultimately leading to increased compartmental loads.  

Medial FCD subjects do not adequately extend their knee during late stance to 

reduce peak extension forces and ultimately negate pain 

Assessment of knee flexion (+) and extension (-) moment waveform found that medial 

FCD subjects presented reduced both early- and late-stance moment magnitudes. 

Notably the extension moment during late-stance was drastically dampened, which was 

accompanied with inadequate extension of the knee during late-stance. The reduced 

extension moment is therefore likely consequent of this prolonged knee flexion, since 

the extension moment is calculated as a product of the anteroposterior GRF multiplied 

by the moment lever arm. During push-off in late-stance, the anteroposterior GRF 

typically projects anteriorly to the knee, forcing the joint into extension. However, an 

increasingly flexed knee during this period of stance would bring the knee centre of 

rotation anterior towards the GRF vector, ultimately shortening the moment arm and 

thus avoiding high extension moments. PC variances of the KFA in medial FCD subjects 

also showed an overall reduced range of motion across the whole gait cycle, which 

indicates they may be walking with a ‘stiff’ knee style of gait. It is reasonable to postulate 

that that medial FCD subjects are keeping the knee flexed during late-stance to reduce 
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contact forces at the knee generated during late-stance extension moments, ultimately 

to reduce pain. This explanation is compatible with that medial knee subjects typically 

experience higher medial compartment loading during late-stance, which is found in 

normal knee force patterns during gait but also amplified by the increased KAMs 

generated (Van Rossom et al., 2017, Kutzner et al., 2013). These findings are consistent 

with the reduced knee extension moments exhibited in moderate to severe knee OA 

subjects that appear to be more prominent with progressing severity (Astephen et al., 

2008, Deluzio and Astephen, 2007). It is likely lateral FCD subjects did not exhibit similar 

adaptations during late-stance as the lateral condyle is typically offloaded at this stage of 

the gait cycle, which is also evident by the normal KEMs and KFAs experienced. 

Medial defect subjects also compensate for pain at the knee by altering hip 

biomechanics 

The significantly reduced HAM 1st:2nd peak ratio in the medial FCD group relative to 

controls is reflective of the reduced first peak seen in the ensemble mean waveforms. It 

is likely that the reduced early-stance HAM corresponds to alterations at the knee in 

early-stance found in medial FCD subjects, since the lower limb joints act as kinematic 

chain whereby the hip is likely compensating for the altered alignment at the knee or the 

compensatory gait adaptations for pain as previously suggested (Astephen et al., 2008, 

Mundermann et al., 2004). Studies  investigating hip moments in medial OA subjects 

have also reported a reduction in peak HAMs in medial OA subjects thought to be a 

mechanism to compensate for attempting to reduce KAMs, but their peak magnitude 

reductions were present in both peaks of the waveform (Brandon and Deluzio, 2011, 

Astephen et al., 2008, Mundermann et al., 2005a, Chang et al., 2005). Since only the first 

peak was reduced in the medial FCD group compared to controls, it could be suggested 

that decreased hip moments during late-stance may a feature of later-stage progression. 

The HAM is largely balanced by the hip abductor muscle moment, thus a compensatory 

decrease in the HAM over a long-period may consequently result in hip abductor muscle 

weakness and poor postural control (Chang et al., 2005).  

Lateral defect subjects show subtle signs of compensatory mechanisms during 

early-stance 

Although it was not captured by calculated PC variances, the collective trends of reduced 

knee flexion moments and angles during early-stance suggests that a proportion of 

lateral FCD subjects may be approaching weight-acceptance with a straighter knee, to 

avoid the high flexion moment typically experienced during this period. During weight-

acceptance the anteroposterior GRF projects behind the knee, forcing it into flexion 
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which requires additional opposing from the knee extensors (i.e. the quadriceps) to keep 

the knee stable until mid-stance. By keeping the knee extended at and following heel-

strike, this would ultimately reduce the increased net joint forces generated at the knee 

by this stabilising mechanism and reduce work required from the quadriceps (Duffell et 

al., 2014). This is thought to be one of the mechanisms by which OA subjects develop 

quadriceps weakening in the later-stages of pathology, therefore these findings could be 

an early indication of this process (Hubley-Kozey et al., 2008).        

Medial FCD subjects abnormally co-contract thigh muscles during stance 

The most distinguishing feature of quadriceps activation was the abnormally prolonged 

activity of the vastus medialis, lateralis and rectus femoris during stance, consistent 

across the three muscles in medial FCD subjects, that was not reflected in lateral FCD 

subjects. This reflected an increased activation during early-to-mid-stance (20%) to toe-

off (60%), which is concurrent with when the anteroposterior GRF vector typically 

passes anteriorly from behind the knee. However, since medial FCD subjects did not 

adequately extend the knee in the concurrent period during stance to reduce knee 

extension moments, these findings imply that the anteroposterior GRF remained 

posterior to the knee centre, thus supporting the knee in a fixed flexion. The result of this 

is that increased quadriceps (knee extensor) activity is required to generate an internal 

extensor moment to compensate and retain knee stability. Interestingly, medial FCD 

subjects were also found to aberrantly increase activation of both hamstrings (i.e. biceps 

femoris and semitendinosus) during stance relative to controls, concurrently with 

altered quadriceps activation. This is in line with previous studies that have suggested 

that coupled quadriceps and hamstring co-contraction has a vital effect on the 

maintenance of knee stability during flexion-extension, by supporting the anterior 

cruciate ligament in negating excessive anterior translation and rotation of the tibia 

(Hirokawa et al., 1991, Hubley-Kozey et al., 2008). Ultimately, it is though that subject 

will use this adaptive strategy to make up for the instability caused by destabilisation of 

the joint following knee injury. Supportively of this hypothesis, this difference in 

variance in the medial group is dominated by two subjects (LP and TR) whom are the 

only subjects to present ACL damage and laxity reported in the pivot shift test prior to 

surgery, which is commonly associated with knee instability (Andriacchi and 

Muendermann, 2006, Efe et al., 2012, Hubley-Kozey et al., 2008).   

Aberrant quadriceps contraction prior to weight acceptance in lateral FCD 

subjects  
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A distinct feature of lateral FCD gait was the reduced pre-activation of both hamstring 

muscles examined prior to heel-strike which was followed by excessive activation 

immediately following heel-strike. This distinct feature in the lateral group may relate to 

the prominent biomechanical differences found during weight acceptance of this group. 

It is possible this evidence is reflective of a gait adaptation to lower joint reaction forces 

during the load response of the gait cycle by loading the affected limb at a slower rate 

and negating acute deceleration of the centre of mass. The hamstrings are important for 

deceleration as during heel-strike at initial contact, the anteroposterior GRF vector 

projects anterior to the knee, and therefore an internal flexor moment is required to 

bring the knee into flexion for foot flat (Levange and Norkin, 2011). For this reason, pre-

activation of the hamstrings is required and thus an increased pre-activation lends itself 

to a more acute deceleration. It is possible that lateral FCD subjects are not activating 

hamstrings pre-heel strike to the same degree as controls to keep a more consistent 

velocity through to mid-stance and avoid high joint reaction forces generated with acute 

deceleration at the load response.  
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3.4.2 Key findings for Objective 2 

The second objective of this chapter was to assess longitudinal changes in lower limb 

functional indicators of FCD pathology six-months following treatment with 

microfracture surgery. It was hypothesised that microfracture surgery would not 

improve functional outcomes, since cartilage repair techniques have no intention to 

target knee biomechanics. 

Medial FCD subjects exhibit reduced gait speed following surgery 

Following surgery, medial FCD subjects walked significantly slower with no 

improvements in stance time or double limb support time, in contrast to the lateral group 

who showed a trend towards higher speeds. Reducing gait speed is thought to be an 

adaptive gait strategy to avoid increased loading of the knee and negate pain associated 

with higher speeds (Mundermann et al., 2004), however this is not concomitant with 

changes in patient-reported pain levels or self-perceived function, which were both 

found to improve following surgery. It is possible that this is resultant of longer recovery 

times for medial FCD subjects, since they presented lower function than lateral subjects 

prior to surgery.  

Reciprocal effect of surgery on vertical GRF and CoM 

In the medial FCD group, there was a very prominent decrease in acuteness of the ‘double 

peak’ characteristic of the vertical GRF post-surgery, characterised by an increase in the 

magnitude between 20-80% of stance phase, predominantly during midstance. This 

change in waveform shape has before been associated with reduction in gait speed, 

whereby it is suggested that the body CoM will displace less in the vertical axis in 

response to slower movement (Chen et al., 1997, Landry et al., 2007). As the affected 

limb is loaded at a slower rate, less upward acceleration of the CoM is required at the 

weight acceptance phase to counteract the downward velocity generated post-swing 

phase. This slower rate of change therefore subsequently results in the CoM fluctuating 

less during mid-stance, and the vertical GRF therefore stays consistent. Conversely, 

lateral FCD subjects exhibited increased acuteness of the double peak characteristic, as 

well as an increase in overall magnitude of the GRF. This is representative of the opposite 

effect, whereby a mean increase in gait speed is increasing the upward acceleration 

required to resist downward movement of the CoM. These findings suggest that lateral 

FCD subjects are generally loading the affected limb more similar to controls, likely as a 

result of improved recovery and thus increased gait speeds and confident loading of the 

affected limb. 
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Microfracture surgery is ineffective at correcting frontal plane knee alignment and 

thus pathological compartmental loading for most subjects 

As expected, there were no significant longitudinal group changes found for knee 

adduction moments in either FCD disease group following microfracture surgery, which 

is suggestive that pathological compartmental loading overall has not been altered by 

microfracture surgery. Inspection of the average waveforms of medial FCD subjects 

revealed that second peak KAMs appear to be slightly reduced on average, however this 

is likely resultant of the decreased walking speed which is shown to lower mediolateral 

GRFs, and well as the consequently reduce inertial forces acting on the lower limbs. This 

is also substantiated by the lack of post-operative change in KAAs, which infers that all 

FCD subjects continued to exhibit dynamic knee malalignment following surgery.  

Despite the lack of significant group changes detected by PCA, there appeared to be a 

trend towards increased first peaks of the knee adduction moment in lateral FCD 

subjects post-surgery, suggestive of a shift of loading distribution in early-stance 

towards equal compartmental distributions more closely resembling that of the control 

cohort. This indicates improved function particularly since early-stance appears to be 

affected in laterally-affected subjects, though this early stance functional improvement 

was not found with respect to knee adduction angles, suggesting this may possibly be a 

function of the increased inertial forces acting on lower segments induced by faster 

walking speeds. 

Improved sagittal knee function in lateral, but not medial, FCD subjects 

There was a significant reduction in the overall knee flexion-extension waveform in the 

medial FCD group, which is indicative of a decreased flexion moment and increased 

extension moment, however unexpectedly this was not accompanied by changes in knee 

flexion angles suggesting that medial subjects continued to over-flex their knee during 

late-stance. It is therefore likely that differences seen in the flexion-extension waveform 

are more related to the reduction in anteroposterior GRFs, possibly due to slowed gait 

speed. A lower flexion moment during early stance would imply less demand from knee 

extensor muscles, as thus an overall lessened net moment acting around the knee which 

is desirable for knee stability. These findings suggest that medial FCD patients are still 

compensating for pain by reducing gait speed to perhaps further reduce loading during 

weight acceptance, however the increased knee extension moment does not appear to 

demonstrate a reasonable explanation.     
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In contrast, assessment of lateral FCD subjects showed a trend of overall increased 

magnitude of the knee flexion-extension waveform towards patterns seen in control 

subjects, though this was not significant at the p≤0.05 level. This finding again 

demonstrates an improvement of knee function in the lateral group, which is consistent 

with their improving clinical pain and self-perceived knee function. It is noteworthy 

however that there were no original substantial differences between pre-operative 

lateral FCD subjects and controls with regards to flexion-extension moments, therefore 

this may be representative of a smaller improvement resultant of increased gait speed. 

This is further evidenced by the lack of differences found in knee flexion angles which 

implies moment changes are more-so related to anteroposterior GRFs and inertial forces 

as opposed to changes in kinematics of the knee.  

Medial FCD subjects continue to abnormally co-contract thigh muscles following 

surgery 

No pre-post significant changes were found in medial FCD group quadriceps or 

hamstrings activation waveforms, indicating that aberrant protective muscle activation 

patterns seen in medial FCD subjects were retained six-months after surgery. This is 

certainly interesting when taking into account the significant improvement seen in self-

reported pain, which has been shown to have a direct effect on neuromuscular activation 

in severe OA subjects before and after analgesic intake (Felson et al., 2000). Furthermore, 

following surgery subjects are submitted to 3 months of physiotherapy, which involved 

thigh muscle strengthening and conditioning with increasing levels of weight bearing. It 

is likely that although some pain has diminished, the medial FCD subjects have been 

conditioned to activate their muscles in these altered patterns for some time to protect 

the affected compartment of the knee both prior to and post-surgery. Therefore a ‘carry-

over’ effect may be present whereby subjects continue to abnormally contract the 

quadriceps. It is necessary to conduct a longer study with much later time-points post-

surgery to determine the ultimate effect surgical outcomes have on neuromuscular 

functioning.  

3.4.3 General discussion 

This chapter provides first evidence of altered lower limb biomechanics and 

neuromuscular functioning in individuals with symptomatic tibiofemoral FCDs. The 

findings are reflective of increased pathological compartmental knee loading likely due 

to dynamic knee malalignment, as well as possible gait adaptative strategies for pain 
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avoidance in both disease groups relative to controls. Furthermore, preliminary 

evidence has shown that subjects suffering from chondral damage in the lateral 

compartment may be better functioning than those of medial damage following 

microfracture treatment. These findings are importantly suggestive of the requirement 

of additional treatment strategies for some individuals undergoing cartilage repair, since 

microfracture alone does not appear to be adequate to improve function. Moreover, the 

distinct differences between medial and laterally-affected individuals both prior to and 

following surgery suggests a requirement for targeted treatment groups that may benefit 

from tailored intervention (Knoop et al., 2011, Driban et al., 2010). 

To date, only one research paper has explored joint loading patterns specific to knee FCD 

patients that characterised biomechanical differences between patellofemoral and 

tibiofemoral full thickness articular defect subjects. Using 3D gait analysis combined 

with inverse dynamic modelling, Thoma and colleagues reported the presence of 

tibiofemoral FCDs, but not patellofemoral FCDs, affected joint loading patterns. 

Explicitly, tibiofemoral FCD subjects showed lower overall tibiofemoral joint reaction 

forces in the early-stance of gait and increased midstance forces (Thoma et al., 2017). 

However, when controlling for gait speed, they found no difference between groups, 

suggesting that tibiofemoral FCD subjects walked slower to reduce total peak joint 

tibiofemoral forces. This is consistent with results from this study suggesting medial FCD 

subjects may be walking slower both at baseline and significantly slower 6 months post-

microfracture surgery to reduce medial joint loading. However, their study does not 

account for medio-lateral locations of the lesions within their analysis, which could 

potentially lead to averaging out of differences in frontal plane joint dynamics, an 

important factor considering results from this chapter. Furthermore, they did not use 

controls and based their interpretations on differences between patellofemoral and 

tibiofemoral groups, which may lead to presumptuous interpretation of ‘normal’ 

functioning. 

One of the most substantial findings within this chapter is that frontal plane knee 

adduction moments vary between disease groups in an opposing effect and both groups 

relatively to controls. These differences are indicative of pathological compartmental 

overload that ultimately alters the mechanical environment of joint tissues and 

independently explains the progression of tibiofemoral lesions for those subjects 

(Andriacchi and Favre, 2014). However, this is by no means conclusive evidence of the 

initial causes of FCDs in these subjects, as many reported previous joint injuries which 

likely initiated pathogenesis (Roos, 2005, Felson, 2013). The initial response of tissue to 
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joint impact involves a pro-inflammatory cytokine response (Bigoni et al., 2013, 

Lieberthal et al., 2015, Haller et al., 2015), changes in the structure and composition of 

bone and cartilage (Gilbert et al., 2018), upregulated bone cell remodelling activities (Liu 

et al., 2009) and increased catabolic chondrocyte signalling (Bader et al., 2011). 

However, most of these biological responses to injury tend to be perpetuated over the 

course of post-traumatic degenerative pathologies such as OA, particularly inflammation 

(Watt et al., 2016, Struglics et al., 2015), bone structural changes such as attrition or 

sclerosis (Neogi, 2012, Burr and Gallant, 2012), as well as cartilage degradation (Biswal 

et al., 2002). Therefore, the question is whether these biological processes are driven by 

the consequence of pathomechanics.   

As discussed previously, a plethora of previous independent studies have demonstrated 

the magnitude of the external KAM correlates with directly measured medial-to-lateral 

knee compartmental forces in instrumented knee implant studies (Kutzner et al., 2013, 

Kutzner et al., 2010, Zhao et al., 2007, Walter et al., 2010, Schipplein and Andriacchi, 

1991). Reflecting on the results in this study, it seems rational that patients are 

overloading the respective diseased condyle of the knee due to the location of the focal 

damage. Indeed, many studies have linked the external KAM and dynamic knee 

malalignment with medial osteoarthritic damage progression (Andrews et al., 1996, 

Miyazaki et al., 2002, Teichtahl et al., 2003, Foroughi et al., 2009, Baliunas et al., 2002, 

Walter et al., 2010) and lateral OA progression (Felson et al., 2013).  

Interestingly, most previous studies investigating OA gait found that their subjects had 

radiographically varus aligned (‘bow-legged’) knees which could significantly explain 

variances in the KAM. In contrast, within this study, no static valgus or varus 

malalignment was reported for any FCD subject by clinical examination according to the 

surgical notes. However, it was clear that dynamic frontal plane knee angles were 

concomitant with increased KAMs, demonstrating that static knee alignment 

measurements may not be sensitive to predict dynamic alignment in this early stage of 

disease. It is noteworthy that suspected OA patients, but not early stage patients, are 

diagnosed using static long-leg X-rays to assess morphological factors, whereby hip-

knee-ankle (HKA) angles are determined with up to ±1.25° accuracy, allowing more 

informed decisions and planning for joint realignment surgeries such as high tibial 

osteotomy (Coventry et al., 1993, McDaniel et al., 2010). Though, it is possible that 

malalignment at the knee only presents itself during dynamic activities, whereby forces 

acting at the knee during gait are amplified because of inertial and gravitational forces 

acting on the body centre of mass. Average peak compressive loads of up to three times 
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bodyweight are seen during level gait (Mow, 1991), therefore increased bending forces 

will be experienced at the knee resulting in further malalignment of the joint than is 

found in static assessments.  

With further analysis into the clinical background of this cohort, it was evident that nine 

out of the eleven FCD subjects presented meniscal tears or loss concomitant with the site 

of the lesions, of which a proportion had partial meniscectomies during the 

microfracture surgery. Of those nine, seven of them thought their condition related to a 

historical injury, which ranged between one to eight years prior to the date of data 

collection. These structural changes in the joint are important to consider as possible 

drivers of FCD pathogenesis, since they are required for normal stability of the joint. 

Felson et al. (2000) have suggested that joint malalignment can develop as a result of 

meniscal extrusion or articular cartilage loss due to an injury that narrows one side of 

the joint. A previous study found a strong association between meniscal damage, 

malposition and cartilage loss in a cohort of 257 symptomatic OA patients (Hunter et al., 

2006). Additionally, other studies have revealed a link between the external KAM peak 

amplitude and medial meniscus tears or extrusion (Vanwanseele et al., 2010, Davies-

Tuck et al., 2008a). Based on this previous work, it is probable that the majority of FCD 

patients in this study developed these lesions due to morphologic change in the joint 

following an earlier injury that resulted in loss of articular cartilage or menisci, which 

may be altering dynamic frontal plane alignment of the knee.  

 

During articulation and loading of the knee, compressive, tensile and shear forces are 

produced. The menisci exist to promote wider distribution of these forces transmitted 

through the articular surfaces, by deforming radially. The radial reaction force (Frad) 

generated from the tensile hoop stress (Fcir) on the curved superior surface of the menisci 

balances femoral horizontal forces (Athanasiou and Sanchez-Adams, 2009). It is possible 

that loss of meniscal tissue is impairing the load distributing mechanism of the knee, 

leading to focal regions of stress on the articular cartilage. Both meniscal and ligament 

ruptures are recognised as potent risk factors for post-traumatic OA (PTOA) 

development, a well-documented ‘accelerated OA’ phenotype. This is thought to be due 

to the increased joint instability and laxity that accompanies these pathologies, which 

leads to increased loading of mal-adapted, previously non-weight bearing regions of 

cartilage in the joint and therefore catalyses joint degeneration (Felson et al., 2000, 

Buckwalter and Lane, 1997, Sharma et al., 2001, Logan et al., 2004). Indeed, multiple 

studies have shown that 19-43% of acute ACL rupture patients are diagnosed with 

accompanying FCDs (Tandogan et al., 2004, Flanigan et al., 2010, Maffulli et al., 2003). In 
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one of these studies it was also shown that 80% of those with chondral defects also had 

meniscal lesions (Tandogan et al., 2004). Furthermore, 2.7 times increased odds were 

found for having a grade III/IV chondral lesion at 2-5 years post ACL-rupture and 12.6 

times at post-5 years rupture (Tandogan et al., 2004). Considering these figures, it is valid 

to attribute at least part of FCD development with the co-pathologies evident in this 

cohort. 

 

The medial FCD group examined within this study presented several late-stance (push-

off) deficits in hip, knee and ankle function similar to that seen in established OA, notably 

increased KAMs, as well as neuromuscular adaptations representative of abnormal 

muscle co-contractions similar to that found in ACL-injury/knee instability subjects 

(Roos, 2005, Andriacchi and Favre, 2014). Moreover, biomechanical differences found in 

the sagittal plane (i.e. inadequate knee extension and lower knee extension moments) 

are indicative of gait adaptations for pain avoidance, which also occurred in late-stance. 

In contrast, the lateral group only appeared to present differences in early-stance 

(weight acceptance), predominantly involving frontal plane biomechanics indicative of 

lateral compartmental loading, reduced knee flexion moments and angles, as well as 

muscular activation differences prior to weight acceptance that may be representative 

of pain anticipation. Collectively, these indicators support the hypothesis that lesion-

related pathogenesis, progression, instability and pain may be dependent on 

mediolateral location of the lesion. Furthermore, the event period of the gait cycle in 

which functional deficits are presented also related to mediolateral location of joint 

damage. This finding can likely be explained by the significant asymmetry in the 

kinematics of the two knee compartments due to the differing anatomy. The medial 

compartment exhibits increased anteroposterior glide during gait as the convex tibial-

to-concave femoral contact area is much greater than the convex-to-convex contact area 

of the lateral compartment during weight-bearing activity (Koo and Andriacchi, 2008). 

With an alteration in gait due to injury, loss of meniscus or ligament laxity, the increased 

loaded surface area that has potential to change could increase the sensitivity of the 

medial compartment to smaller kinematic changes (Quatman et al., 2012).   

 

Our collaborative colleagues have importantly demonstrated using musculoskeletal 

models taking into account ligament geometry, muscle forces and elastic response of 

articular surfaces, that areas of pressure and force distributions during weight 

acceptance of the healthy knee are roughly relatively equal amongst the two 

compartments (Figure 3.4-1 – Average knee cartilage thickness (mm) distribution 
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of fifteen healthy subjects quantified by T1rho MRI imaging and segmentation 

techniques (A) and peak contact pressures during weight-acceptance (first peak) 

and push-off (second peak) during normal gait (B) – Adapted from  (Van Rossom et 

al., 2017)), whereas during push-off, forces are higher in the medial compartment 

relative to the lateral side (Van Rossom et al., 2017). It is understood that during the final 

20° of knee extension in late-stance, the anterior tibial glide on the medial condyle 

persists as its dimensions are longer than that of the lateral condyle. This prolonged 

medial anterior glide generates an external rotation of the tibia, known as the ‘screw-

home’ mechanism, and is responsible for shifting load onto the medial condyle during 

push-off (Figure 3.4-1 – Average knee cartilage thickness (mm) distribution of 

fifteen healthy subjects quantified by T1rho MRI imaging and segmentation 

techniques (A) and peak contact pressures during weight-acceptance (first peak) 

and push-off (second peak) during normal gait (B) – Adapted from  (Van Rossom et 

al., 2017)).  
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Figure 3.4-1 – Average knee cartilage thickness (mm) distribution of fifteen healthy subjects 

quantified by T1rho MRI imaging and segmentation techniques (A) and peak contact pressures 

during weight-acceptance (first peak) and push-off (second peak) during normal gait (B) – 

Adapted from  (Van Rossom et al., 2017) 
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This mechanism may be explanatory of the disparity between biomechanical alterations 

for the medial versus the lateral FCD group relative to controls during specific events of 

the gait cycle. In the lateral group, valgus dynamic knee malalignment may lead to 

redistribution of the typically equal mediolateral knee loading during early-stance 

toward the lateral compartment, leading to excessive forces applied to lateral knee joint 

tissues, which evens out during late-stance. Whereas for the medial group, dynamic 

varus malalignment will favour increased loading of the medial condyle during both 

early-stance and late-stance. This increased burden in medial FCD subjects could be 

mechanistically related to why the medial FCD group were generally worse functioning 

and why medial knee pathology is more commonly reported (Favre and Jolles, 2016). 

However, the altered kinematics may have an abnormal loading effect on the cartilage 

conditioned in the joint to suit the mechanical environment during pre-FCD weight-

bearing activity (Figure 3.4-1 – Average knee cartilage thickness (mm) distribution 

of fifteen healthy subjects quantified by T1rho MRI imaging and segmentation 

techniques (A) and peak contact pressures during weight-acceptance (first peak) 

and push-off (second peak) during normal gait (B) – Adapted from  (Van Rossom et 

al., 2017)). Ultimately, enhanced maladaptive loading of the already pre-disposed and 

damaged cartilage in the joint may be an important driving factor of FCD progression 

towards an OA state.  

Modifying muscular control strategies depends on coordination and strength, which 

importantly contribute to postural control, joint loading and stability. Medial FCD 

subjects were found to substantially increase activation of their quadriceps and 

hamstrings during early- to late-stance, suggesting they may be attempting to 

excessively support the knee during foot contact in compensation of the experienced 

instability, which is consistent with neuromuscular functional deficiencies of knee 

medial, but not lateral, OA subjects (Schmitt and Rudolph, 2008, Fallah-Yakhdani et al., 

2012, Childs et al., 2004, Lewek et al., 2005). Cadaveric studies have shown that coupled 

co-contraction of quadriceps and hamstrings has a vital effect on the maintenance of 

knee stability during flexion-extension, by supporting the anterior cruciate ligament in 

negating excessive anterior translation and rotation of the tibia (Hubley-Kozey et al., 

2008, Hirokawa et al., 1991). Lewek and colleagues noted that attempts to stabilise the 

knee with greater co-contraction presumably contributes to higher joint compression 

due to the higher internal moments generated on the knee, and thus consequently may 

exacerbate tissue destruction (Lewek et al., 2005). This may have important implications 

for long-term surgical outcomes of marrow stimulation in medial FCD subjects, since 

they continued to co-contrast thigh muscles following surgery despite undergoing 
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physiotherapy rehabilitation programmes. However, the importance of co-contraction 

for retaining knee stability in knee OA patients has been challenged by other authors in 

the field, who claim protecting the knee from excessive shear stress caused by instability 

is more important than reducing compressive loads for protecting the knee from tissue 

degeneration (Schmitt and Rudolph, 2008). Regardless of these arguments, increased co-

contraction could be a risk factor for FCD progression, and further work should be 

carried out to determine the effect excessive co-contractions would have on lesion 

progression.  

Conventional cartilage repair treatments for FCDs (e.g. microfracture and autologous 

chondrocyte implantation) may improve local tissue biomechanics by replacing the lost 

or damaged focal regions of cartilage with a plug of neo-fibrocartilage (Seo et al., 2011), 

however evidence for the impact of these techniques on restoration of whole joint 

biomechanics is limited. Findings from this chapter revealed that microfracture surgery 

led to worsening knee function in medial FCD subjects after six-months of recovery, 

surprisingly regardless of the improved reported pain, symptoms and self-perceived 

function. This was in contrast to lateral FCD subjects who appeared to exhibit some 

degree of improved function, evident by the faster walking speed which resulted in first 

peak knee adduction moments and flexion-extension moments more similar to that of 

controls. However, it should be considered that the lateral FCD group showed better 

functioning as well as patient-reported pain, symptoms and function at baseline relative 

to medial FCD subjects, which are likely to be at least partially explanatory factors of this 

disparity. Whilst cartilage repair alone may be appropriate for the lateral defect subjects, 

medial subjects may benefit from a combination of repair surgery and interventions 

aimed at re-aligning the dynamic mechanical axis of the knee, such as gait retraining 

(Zhao et al., 2007, Fregly, 2012) or lateral-wedge shoe implants (Radzimski et al., 2012, 

Morin et al., 2018) to attempt to reduce peak joint loads that may be driving progression.  

Despite some improvements in the lateral FCD group, both disease group subjects 

demonstrated no change in dynamic frontal plane alignment angles, which is 

hypothesised to be the primary cause of FCD pathogenesis within this chapter and well-

recognised to be a risk factor for OA development (Felson et al., 2013). If this 

biomechanical alteration continues into recovery, it is likely that newly formed fibro-

cartilage will still be subjected to increased loads, which may result in reoccurring 

cartilage degeneration. This is particularly the case in cartilage repair subjects, since 

fibro-cartilage is shown to be mechanically-inferior relative to the surrounding hyaline 

cartilage (Falah et al., 2010, Seo et al., 2011), therefore subjecting it to altered stress 
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patterns. Large clinical interventional studies may benefit from monitoring dynamic 

knee malalignment and the knee adduction moment for prediction of long-term 

outcomes of cartilage repair. 
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The characterisation and longitudinal 

assessment of synovial fluid and serum 

biomarkers of joint pathology in focal cartilage 

defect subjects undergoing microfracture surgery 
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4.1 Introduction 

The previous chapter identified biomechanical mechanisms of pathogenesis associated 

with increased knee compartmental loading that may be partially explanatory of FCD 

presence. Since there is previous evidence to suggest altered mechanical loading would 

have consequences to joint biological homeostasis, there is likely to be biological 

mechanisms involved in FCD pathology and progression that have to date not been 

evidenced. Therefore, the first objective of this chapter was to investigating a range of 

candidate biomarkers relating to mechanical loading of bone (Glutamate, Sclerostin), 

turnover of bone (ALP, CTX-I, RANKL, OPG) and cartilage (CTX-II, COMP), as well as 

inflammatory signalling molecules (IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, 

TNF-α and IFN-γ) in synovial fluid from FCD patients relative to unicompartmental knee 

OA (uOA) patients, and in serum from FCD patients relative to non-pathological control 

subjects.  

Synovial fluid analysis aimed to investigate mechanisms of FCD pathophysiology in the 

joint and determine biomarkers of FCD progression towards established ‘moderate’ OA 

that may be reflected in serum. This is particularly important since FCDs are shown to 

typically progress to clinical unicompartmental OA in their natural course (Davies-Tuck 

et al., 2008b). Whereas serum analysis was used to reveal biomarkers that may be 

representative of FCD pathology systemically that could be used for diagnostic, 

prognostic, and outcome measures in interventional studies. 

The rheumatology field is becoming increasingly aware of OA heterogeneity, with 

mounting evidence of the need for personalised treatments for distinct phenotypic 

groups (Karsdal et al., 2014). Therefore, multivariate analysis (PCA) was utilized to 

investigate inter- and intra-disease group variances by combining linear combinations 

of biomarkers into principal components, combined with cluster analysis to identify 

possible phenotypes of disease.    

The final aim of this chapter was to utilize serum biomarkers for the longitudinal 

characterisation of the biological response microfracture surgery, to establish typical 

responses of good and bad outcome that could reveal biochemical clinical predictors. 

This was achieved by investigating longitudinal changes in serum biomarker levels from 

time of microfracture surgery (baseline) to six-months post-surgery, which were 

interpreted individually and related to subject-reported clinical outcomes (such as OA-

related pain, symptoms and function). Ultimately, the findings from this chapter could be 

used to identify progressing pathophysiological mechanisms of FCDs and associated 
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disease states as well as evaluate outcomes of existing and developing interventions for 

the treatment of FCDs, to aid clinical decision making.    

Chapter Aim: Investigate biomarkers of OA-related pathology in symptomatic FCD 

patient synovial fluid and serum to further the understanding of pathophysiological 

mechanisms of disease, and develop diagnostic and prognostic biomarkers for assessing 

longitudinal outcomes of microfracture surgery 

Objective 1: To measure candidate molecules of bone and cartilage turnover, 

mechanical loading of bone and inflammation in synovial fluid (FCD compared to 

uOA) and serum (FCD compared to healthy controls) to identify mechanisms and 

biomarkers of FCD pathogenesis. 

Hypothesis: Molecules representing turnover, mechanical loading and 

inflammation differ in tibiofemoral FCD subjects compared with uOA and healthy 

subjects 

Objective 2: Use multivariate analysis and clustering tools to identify possible 

inter- or intra-disease group variances or phenotypes from linear combinations 

of synovial fluid biomarkers 

Hypothesis: Multivariate combinations of synovial fluid biomarkers will reveal 

clusters that are representative of disease phenotypes 

Objective 3: To assess longitudinal changes in biomarkers of turnover, 

mechanical loading and inflammation to establish a pattern of typical repair and 

poor outcomes of microfracture surgery 

Hypothesis: Changes in biomarker concentrations representing turnover, 

mechanical loading and inflammation will reveal typical repair / poor outcomes 6 

months following microfracture surgery 
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4.2 Methodology 

The methods for collection, processing and quantification of biomarker concentrations 

for analysis was previously described in section 2.6.   

4.2.1 Correlation analysis 

Spearman’s Rho was used to measure the strength of bivariate associations. It was 

chosen to opt for a non-parametric test due to the small sample sizes which could lead 

to major influences of outlying samples in a parametric test such as the Pearson’s 

correlation. In several tables within this chapter, correlation heatmaps were used to 

visually represent the strength of the coefficient (ρ) whereby denser colour gradients 

represented stronger associations. Furthermore, the density of orange represented 

strength of positive correlation, and the density of blue represented the strength of an 

inverse correlation. 

4.2.2 Normality Testing 

The Shapiro Wilk’s test was used for testing of the normality of distribution of group 

biomarker concentrations (IBM SPSS, USA) to satisfy the assumptions of the parametric 

ANCOVA. Variables that were skewed were first rank-transformed prior to group testing. 

4.2.3 Group comparisons 

Group comparisons of synovial fluid or serum biomarker concentrations were tested for 

differences using ANCOVAs, with age and BMI as covariates (IBM SPSS, USA). p-values 

were adjusting for age and BMI.  

4.2.4 Wilcoxon signed-rank test 

Longitudinal changes of serum concentrations were tested for by using Wilcoxon signed-

rank test (IBM SPSS, USA). A non-parametric paired test was used in all circumstances 

due to the low sample size (n=5) which may lead to unrepresentative distributions of 

data. 
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4.3 Results 

4.3.1 Sample collection and cohort characteristics 

Synovial fluid samples were collected from eleven knee FCD subjects (10 male, 1 female; 

mean(SD) age = 47 (13) years, BMI = 29.2 (4) kg/m2) undergoing microfracture surgery 

and eleven unicompartmental knee OA (uOA) subjects (8 male, 3 female; mean(SD) age 

= 51.6 (5.5) years, BMI = 27.9 (3.6) kg/m2) undergoing high tibial osteotomy surgery 

(Appendix A.1). uOA subjects were on average older relative to FCD subjects, but both 

groups presented similar BMIs. All FCD subjects had Outerbridge grade II tibiofemoral 

chondral lesions, nine of which had accompanying meniscal tears/damage in the affected 

compartment and one subject had an ACL year with a positive (+Glide) pivot shift 

(Appendix A.1). All uOA subjects had radiographic varus knee alignment (1.9° – 15.4°) 

and KL grade 2-4 OA.  

Serum was collected and processed from thirteen knee FCD subjects (11 male, 2 female; 

mean (SD) age = 44.1 (17) years, BMI = 28.9 (5) kg/m2) and eight healthy control subjects 

(6 male, 2 female; mean (SD) age = 31.8 (9), BMI = 25.45 (2) kg/m2). There were no 

significant differences found in age and BMI between groups, however FCD subjects were 

on average older than controls. The same additional co-pathologies applied to the FCD 

group as previously mentioned. There were eight FCD subjects with linked synovial fluid 

and serum data assessed in this chapter.    

4.3.2 Correlations of inter-fluid biomarker levels 

To determine if biomarker concentrations in the joint were reflected systemically, 

Spearman’s Rho (1-tailed) correlations were tested for biomarkers common to synovial 

fluid and serum in eight subjects (Table 4.3-00). Surprisingly, only synovial fluid levels 

of IL-13, sclerostin and CTX-I were significantly reflected in serum levels (p≤0.05). 

Additionally, glutamate and IL-10 showed moderate positive (R>0.40) relationships that 

were not statistically validated at the p≤0.05 level. In contrast, pro-inflammatory 

chemokine IL-8 showed a significant inverse inter-fluid relationship (p≤0.001).       

4.3.3 Correlations of biomarker levels with demographics 

Age significantly (p≤0.05 to ≤0.001) associated with decreased glutamate and sclerostin 

levels in synovial fluid, decreased RANKL and RANKL:OPG ratio in serum, and increased 
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serum IL-6 (Table 4.3-0). Whereas BMI significantly (p≤0.05) correlated with higher 

synovial fluid CTX-I and serum ALP levels.   
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4.3.3.1 Group comparisons of biomarker levels in synovial fluid 

and serum (Objective 1) 

Analysis of covariance (ANCOVA) was used for testing group differences of biomarker 

levels whilst adjusting for age and BMI (Figure 4.3-1 to 4.3-7) to reveal discriminatory 

metabolites of FCD subjects relative to controls (in serum) and uOA subjects (in synovial 

fluid). Testing of synovial fluid biomarkers revealed that levels of three of the fifteen 

biomarker features were elevated (p≤0.05) in uOA synovial fluid relative to FCD subjects, 

including pro-inflammatory mediators IL-6 and IL-8, as well as bone resorption inhibitor 

OPG. In contrast, anti-inflammatory cytokines IL-10 and IL-13 were significantly 

(p≤0.05) decreased in uOA synovial fluids. With serum testing, FCD subjects presented 

higher (p≤0.05) levels of serum glutamate and CTX-I, as well as decreased (p≤0.05) anti-

inflammatory activity (IL-10) and proinflammatory cytokine TNF-α relative to healthy 

controls. 

4.3.3.2 Longitudinal changes in serum biomarker levels (Objective 

3) 

Paired comparisons of means testing (Wilcoxon signed-rank tests, 2-tailed) and visual 

assessment of individual changes were assessed to determine longitudinal changes in 

biomarkers that may be reflective of the response to microfracture surgery (Figure 4.3-

1 to 4.3-7).  

For inflammatory molecules, significant changes (p≤0.05) were found in IL-8 (1.5-fold) 

and IL-13 (1.35-fold), both significantly elevated following surgery. There were also 

considerable mean increases in TNF-α (1.13-fold) and IL-10 (1.08-fold) that did not 

reach significance at the p≤0.05 level. In contrast, levels of IL-6, IL-10 and IFN-γ appeared 

to vary in direction across the group. Notably, one subject (RP) appeared to show more 

prominent biomarker changes, some in the opposite effect relative to the group. The 

clearest being decreases in IFN-γ and IL-10, as well as a sharp increase in IL-8.  

For bone signalling biomarkers, only glutamate levels significantly (p≤0.05) decreased 

(0.71-fold) across the group, however sclerostin (0.76-fold), RANKL (0.7-fold) and the 

RANKL/OPG (0.67-fold) ratio also revealed considerable mean decreases across the 

group. For biomarkers of tissue turnover, there was significantly (p≤0.05) declined CTX-

I levels (0.76-fold) and contrasting significant (p≤0.01) increases in COMP levels (1.2-

fold), however changes in ALP levels varied in direction across the group.  
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4.3.3.3 Correlations of intra-fluid biomarker levels 

Correlations amongst synovial fluid and serum biomarker levels within fluid types were 

analysed to identify pathobiological mechanisms relating to cartilage degradation, bone 

remodelling, mechanical loading of bone and inflammation that complement 

interpretations of group comparisons (Figure 4.3-8). The most notable patterns include: 

• The positive trends/significant associations (p≤0.05) of pro-inflammatory 

mediators in synovial fluid, whereby IL-6 correlated with TNF-α and IL-8 levels, 

as well as IL-8 with TNF-α. However, only the association between IL-8 and TNF-

α was retained in serum. 

 

• The positive associations of osteoblast-dependent osteoclastogenic pathway 

activation (i.e. RANKL and the RANKL:OPG ratio) with pro-inflammatory 

mediators (i.e. IL-6 and IL-8), contrasting with the negative relationship of 

osteoclastogenic pathway activation with anti-inflammatory IL-10 levels. 

 

• The significant (p≤0.05) negative correlations of sclerostin with anti-

inflammatory cytokines (i.e. IL-10, IL-12p70 and IL-13) in synovial fluid 

 

• The inverse relationships (p≤0.05) found between cartilage 

turnover/degradation (COMP) and bone turnover (CTX-I and ALP) in serum, as 

well as the positive relationship of COMP with sclerostin. 
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4.3.4 Correlations of biomarker levels with patient-reported measures 

Subject-reported pain at baseline significantly (p≤0.05) associated with synovial fluid 

IFN-γ and IL-13 levels, but inversely associated with serum IFN-γ and IL-10 at baseline 

as well as longitudinal changes following microfracture surgery (Figure 4.3-8). OA-

related symptoms at baseline were also significantly related to synovial fluid IL-13, as 
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well as serum CTX-I levels. Finally, self-perceived knee function at baseline was only 

associated with IL-13 levels in synovial fluid.  

4.3.5 Results for objective 2 (PCA) 

Principal component analysis (PCA) was applied to identify inter- or intra-disease group 

variances or phenotypes from linear combinations of synovial fluid biomarkers (Figure 

4.3-9). Two components were generated explaining 50.2% of the variance collectively 

(PC1; 28.2%, PC2; 22%). Visual assessment of the score space identified 3 major clusters 

within the data.  

Cluster 1: Increased bone turnover (CTX-I and ALP), increased osteogenic signalling 

(reduced sclerostin), decreased osteoclastogenic signalling (RANKL/OPG) and increased 

anti-inflammatory (IL-10) activity compared to average weightings.  

Cluster 2: Increased osteoclastogenic signalling (RANKL/OPG), decreased turnover 

(CTX-I and ALP) compared to average weightings 

Cluster 3: Decreased osteogenic signalling (increased sclerostin), decreased bone 

resorption (CTX-I), increased glutaminergic signalling and decreased anti-inflammatory 

signalling 

The PC1 variable weightings revealed a signature of mechanical loading (glutamate, 

sclerostin and OPG) and pro-inflammatory (IL-6 and IL-8) biomarkers associated with 

positive PC1 scores, and anti-inflammatory (IL-12p70, IL-13 and IL-13) and IFN-γ (pro-

and anti-inflammatory) associated with negative PC1 scores. In contrast, PC2 weightings 

showed a pattern consistent with bone turnover (ALP and CTX-I) in favour of bone 

formation/osteo-protection (ALP and IL-10 for more extreme scores) associated with 

positive PC2 scores, and canonical bone resorption (RANKL and RANKL/OPG) associated 

with negative scores. 
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4.3.6 Additional results for Objective 3 (longitudinal analysis) 

4.3.6.1 Subject-reported clinical measures 

Six months after microfracture surgery, OA-related pain, symptoms and function 

improved for four of the five FCD subjects tested. However, in contrast, one subject (RP) 

exhibited worsening of all factors (Figure 4.3-710).  
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4.3.6.2 Correlations of longitudinal changes of biomarker levels 

Correlation analysis of longitudinal changes in serum biomarkers (Figure 4.3-1) revealed 

three notable patterns which include: 

• Longitudinal changes of pro-inflammatory mediator TNF-α which positively 

(p≤0.05) correlated with decreases in glutamate and CTX-I levels. Changes in 

CTX-I also associated (p≤0.05) with glutamate levels, showing concomitant 

decreases of all three biomarkers following surgery.   

 

• Changes in IL-12p70 positively (p≤0.05) associated with IL-6 levels and 

negatively with sclerostin. 

 

• COMP changes showed strong positive trends with OPG and IL-6, as well as a 

negative association with changes in sclerostin contradictory to previous 

findings.   
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4.4 Discussion 

4.4.1 Overview 

Major findings for objective 1, 2 and 3 will first be discussed, followed by the relation of 

this study’s findings to literature for each category of marker (bone and cartilage 

turnover, bone mechanical signalling markers and inflammatory markers) in the general 

discussion. 

4.4.2 Major findings for Objective 1 

The first objective of this chapter was to measure candidate molecules of bone and 

cartilage turnover, mechanical loading of bone and inflammation in synovial fluid (FCD 

compared to uOA) and serum (FCD compared to healthy controls) to identify suitable 

biomarkers and mechanisms of FCD pathogenesis. 

Synovial fluid biomarkers are poorly reproduced in serum 

Notably, out of the 14 biomarkers measured, only CTX-I, sclerostin and IL-13 

significantly (p≤0.05) positively correlated across fluid types, indicating that several 

mechanisms of activity in the joint are poorly reflected systemically. Most non-significant 

biomarkers were either moderately (RANKL/OPG, glutamate and IL-10) or weakly 

(RANKL, OPG, ALP, IL-12p70) correlated, however in contrast pro-inflammatory 

cytokines (TNF-α, IL-6, IL-8) and IFN-γ had no positive association. This is likely due to 

the short half-lives of most cytokines and chemokines, which are required to act only on 

cells in close proximity to their release (Zhou et al., 2010). Furthermore, RANKL and OPG 

only have purpose in bone signalling, thus may exhibit similar properties for this reason. 

The lack of commonality for many candidates is a considerable factor when identifying 

appropriate biomarkers of discriminatory potential between FCD subjects and controls 

and must be taken into account to reduced false interpretation.    

Loading and inflammation pathways in osteoblast-mediated osteoclastogenic 

activity 

Synovial fluid OPG levels were significantly elevated in uOA group to FCD subjects, 

however this was concurrent with a trend of increased RANKL expression, leading to an 

overall higher RANKL:OPG ratio in uOA subjects. However, the overall group differences 

were not significant at the p≤0.05 level due to the considerable number of overlapping 
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values. The RANK:OPG ratio is a surrogate indicator of net osteoclast activation through 

the canonical osteoblast-mediated pathway, indicating that a larger proportion of uOA 

subjects may be exhibiting higher subchondral bone activated osteoclast numbers and 

increased bone resorption activity (Tat et al., 2008b). The increased RANKL:OPG ratio is 

likely resultant of the increased osteoblastic RANKL expression induced by higher levels 

of pro-inflammatory activity (Kim et al., 2017, Lam et al., 2000), which is evidenced by 

the significant positive association of IL-6 (and moderate trends of IL-8) with soluble 

RANKL found in the correlation analysis. On the other hand, OPG is regulated by 

mechanical loading of subchondral bone (Kim et al., 2006a, Kusumi et al., 2005), 

evidenced by the significantly elevated levels in uOA subjects who exhibit higher knee 

loading relative to FCD subjects (evidenced in chapter 4). Together, the findings suggest 

that mechanical loading and inflammation of subchondral bone have contradictory 

effects on canonical NF-κB-induced osteoclastogenesis, however subjects with increased 

knee loads accompanied by up-regulated pro-inflammatory activity in the joint may be 

exposed to higher RANKL/OPG ratios, and thus, increased recruitment of mature 

osteoclasts in subchondral bone.  

Increased bone resorption is indicative of FCD presence, but not of disease state 

The trend of increased RANKL:OPG signalling in the uOA group was not reflected in 

osteoclastic bone resorption activity represented by CTX-I levels (Garnero et al., 2003), 

which showed no clear trends in disease group analysis, but larger individual differences 

in the FCD group.  Furthermore, CTX-I showed no clear trend with canonical 

osteoclastogenic signalling markers (RANKL, OPG and RANKL/OPG) in synovial fluid, 

and only weak trends in serum. In contrast, the moderate relationships between CTX-I 

and inflammatory mediators TNF-α and IL-10 in synovial fluid imply a larger influence 

of bone resorption activity through non-canonical pathways (Knowles and Athanasou, 

2009, Sabokbar et al., 2016). Notably, synovial fluid CTX-I significantly (≤0.05) 

correlated with BMI, which is evident of a positive involvement of mechanical signalling 

pathways on osteoclast activity, despite the lack of associations to glutamate or 

sclerostin levels. Although bone resorption activity did not favour a disease group, there 

was a trend of declining bone formation marker ALP in uOA synovial fluids relative to 

FCD, which may signify a net shift towards a bone resorption-formation imbalance of 

resorption consistent with disease advancement. In contrast of the disease group 

analysis, there was increased bone resorption activity in FCD subjects relative to controls 

evidenced the significantly (p≤0.05) increased serum CTX-I levels, which justifies serum 

CTX-I as a suitable biomarker of FCD presence. However, in similar respects to the 
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disease group analysis, there were no clear favoured mechanisms of this increase when 

considering associations to other serum biomarkers.  

Involvement of glutamatergic signalling in FCD pathogenesis 

Group comparisons found significantly (p≤0.05) higher levels of glutamate in FCD serum 

relative to controls, implying an involvement of glutamatergic signalling in FCD 

pathogenesis. Glutamatergic signalling has been largely implicated in OA as it is 

functional in bone, cartilage, meniscus and synovium tissues (Wen et al., 2015) and is 

involved in mechanically regulated bone remodelling (Brakspear and Mason, 2012). 

Higher FCD serum levels may be resultant of aberrant exocytotic release and transporter 

activity that regulate extracellular glutamate in response to altered loading of 

subchondral bone in the FCD joint. The positive correlation of synovial fluid glutamate 

and ALP may be indicative of osteoblast ionotropic glutamate receptor (iGluR) activation 

responsible for increased Runx2 activity, a positive regulator of osteogenic gene 

expression (Hinoi et al., 2002, Ho et al., 2005). Activation of iGluRs on the surface of 

progenitor/mature osteoclasts up-regulates NF-κB-induced osteoclastogenesis (Merle 

et al., 2003) and activity (Mentaverri et al., 2003), though these mechanisms were not 

evident in correlations of synovial fluid glutamate and CTX-I levels or the RANKL:OPG 

ratio. Furthermore, experimental models of inflammatory arthritis have also revealed 

glutamatergic modulation of inflammatory and nociceptive pathways (Bonnet et al., 

2015, Flood et al., 2007), however this was not evident in correlations with pro-

inflammatory cytokines or KOOS scores. These incongruities may be related to the 

distinctive regulation of extracellular glutamate levels in the joint by exocytotic release 

mechanisms and elimination by glutamate transporters (Wen et al., 2015).  

Elevated pro-/anti-inflammatory imbalance concurrent with disease progression 

A substantial finding is the clear pattern of pro-inflammatory cytokine (IL-6, IL-8, TNF-

α) activity in uOA joints compared to FCD joints, with significant increases in IL-6 and IL-

8 levels, coupled with the decline in anti-inflammatory mediator IL-10 and IL-13 activity. 

Collectively, these findings represent an increasingly pathogenic inflammatory 

regulation of the anabolic/catabolic imbalance in subjects representing increased 

disease severity and joint loading (uOA relative to FCD). This is a likely a critical 

mechanism for disease progression, since pro-inflammatory cytokines including TNF-α, 

IL-1β, IL-6 and IL-8 are of the most consistent and notable soluble biomarkers mediators 

associated with alterations in bone and cartilage degeneration in animal models of OA 
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(Legrand et al., 2017, Pelletier et al., 2001) and human OA studies (Findlay and Kuliwaba, 

2016). This is linked their self-propagation, promotion of tissue turnover 

(osteoclastogenic/osteoblast-inhibiting) pathways, upregulation of proteolytic matrix 

degrading enzymes (MMPs, ADAMTS), and production of destructive and nociception-

inducing molecules such as prostaglandins E2 (PGE2) and nitric oxide (Fernandes et al., 

2002, Lotz et al., 2013). Correlation analysis corroborated the self-stimulatory 

mechanism in which occurs, evidenced by the significant relationships of IL-8 with IL-6 

and TNF-α, as well as IL-6 with TNF-α. However, only the association between IL-8 and 

TNF-α was retained in serum which is reflective of the low associations between joint 

inflammation and systemic levels. 

Conversely, anti-inflammatory mediators such as IL-10 and IL-13 on the other hand play 

an antagonistic role to disease progression, through the potent inhibition of pro-

inflammatory cytokine expression and osteo-/chondro-protective down-regulation of 

tissue turnover pathways (e.g. inhibition of canonical osteoclastogenesis pathway), and 

suppression of PGE2 production through the suppression of cyclooxygenase-2 (COX-2) 

expression (Wojdasiewicz et al., 2014, Onoe et al., 1996, Scanzello, 2017). Additionally, 

IL-10 levels were significantly lower in FCD relative to control serum and found a 

moderate inter-fluid correlation, therefore may be a promising serum biomarker 

representing inflammatory dysregulation with its declining levels with tibiofemoral FCD 

progression towards an established OA state. 

Nociceptive pathways in FCD pathogenesis 

Notably, synovial fluid IL-13 and IFN-γ inversely correlated with KOOS pain, symptoms 

and function scores, implying they may be responsible for worsening clinical factors. 

Conversely, serum IFN-γ and IL-10 which positively associated with KOOS scores may be 

protective of the burden. The paradoxical opposing findings for anti-inflammatory 

cytokines IL-10 and IL-13, as well as for IFN-γ in serum compared to synovial fluid, 

indicates that they may act on differing pathways in the joint relative to systemically. 

This may be related to selective activation of peripheral or central sensitization 

pathways, however to date, these paradoxical effects are undocumented. As previously 

discussed, declining serum IL-10 levels are consistent with FCD presence (and 

progression in synovial fluid), therefore may also be useful as an indicator of increased 

pain induction pathway activation alongside patient-reported outcome measures, which 

are prone to response shift (lack of an internal perceptual reference of pain).     
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4.4.3 Major findings for Objective 2 

The second objective of this chapter was to use multivariate analysis tools to identify 

inter- and intra-group variances that are indicative of disease subgroups, or ‘phenotypes’ 

of disease. PCA revealed three main clusters and three individuals that are 

representative of varying disease processes, which will be discussed with regards to 

their individual distinctive features.    

Cluster 1: Bone formation phenotype 

Subjects associated with cluster 1 of the PCA, which locate closest to the PC1 and PC2 

origins, presented increased bone turnover relative to average, evident by the coupled 

increases in synovial fluid ALP (formation) and CTX-I (resorption). Sclerostin is a Wnt/β-

catenin pathway inhibitor (Li et al., 2005), therefore relatively reduced levels would be 

consistent with an up-regulation of transcription factor Runx2 activity in osteoblasts, 

and consequent expression of osteogenic genes including those of ALP, osteocalcin and 

collagen type-I (Krishnan et al., 2006).  On the other hand, anti-inflammatory cytokine 

IL-10 is osteo- and chondro-protective, due to its inhibition of NF-κB activity in 

osteoclasts, down-regulation of pro-inflammatory cytokine expression (Moore et al., 

2001), and stimulation of Runx2 activity (Jung et al., 2013). Finally, the reduced 

RANKL:OPG ratio which appears to be due to down-regulated RANKL expression is 

reflective of decreased osteoblast-mediated osteoclastogenic activity. Collectively, these 

findings are indicative of osteoblast activation towards an osteogenic state, therefore 

implying this group is biased towards the formation of subchondral bone. It is reasonable 

to postulate that higher turnover of bone favouring osteogenesis could represent 

subjects with subchondral bone thickening and stiffening, a common radiographic 

feature thought to be related to the progression of focal cartilage damage (Muratovic et 

al., 2016, Radin and Rose, 1986) and later-stages of OA development (Burr and Gallant, 

2012, Karsdal et al., 2014).       

Cluster 2: Bone resorption phenotype 

The second cluster identified present high canonical osteoclastogenic pathway 

activation, evidenced by the substantially elevated RANKL levels and consequently 

elevated RANKL:OPG ratio, coupled with lower relative bone formation represented by 

depleted ALP relative to CTX-I levels. Both mechanisms mentioned are related to 

osteoblast activity, whereby the pattern points toward a switch from bone formation to 

bone resorptive behaviour via increased RANKL expression. In addition, the relatively 

moderate levels of sclerostin activity and reduced IL-10 activity relative to cluster 1, 
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suggest a down-regulation of Runx2 activity (via differential pathways) and 

consequently reduced bone matrix formation (Jung et al., 2013, Krishnan et al., 2006).     

Cluster 3: Cartilage degradation phenotype 

The final cluster of subjects presented high sclerostin expression coupled with reduced 

anti-inflammatory (IL-10, IL-12p70 and IL-13) activity and IFN-γ. This pattern appears 

to be consistent with an inflammatory and/or catabolic phenotype although this is not 

substantiated by markers of bone remodelling (ALP, RANKL/OPG ratio). This pattern 

therefore may be more-so related to the activity of affected cartilage, as sclerostin is 

found to be overexpressed by articular chondrocytes in focal areas of damaged cartilage 

in ovine and murine models of post-traumatic OA (Chan et al., 2011, Lewiecki, 2014). 

Indeed, investigation of serum biomarker correlations revealed a significant positive 

association of sclerostin on COMP levels, as well as a moderate inverse correlation of IL-

10 with COMP. Assuming these mechanisms in serum are reflective of joint activity, these 

findings indicate that cluster 3 may have increased focal articular cartilage degradation, 

which in turn may result from increased mechanical loading on the joint surface. The 

observed increased glutamate concentrations previously reported to be associated with 

inflammatory and osteoarthritis (Flood et al., 2007, Bonnet et al., 2015) and implicated 

with increased joint loading is consistent with this cluster (Brakspear and Mason, 2012). 

Further studies investigating a larger range of cartilage signalling and degradation 

biomarkers in a larger cohort should be conducted to validate this hypothesis.    

Collective interpretation of PCA clusters 

PCA variances revealed three main clusters that appear to be predominantly distinctive 

by variations in Wnt/β-catenin pathway activation by the key regulator sclerostin, anti-

inflammatory activity as well as RANKL expression. In bone, the secretion of sclerostin 

by resting osteocytes disrupts the Wnt/β-catenin by binding to low density lipoprotein 

receptor-related protein-5/6 (LRP5/6), and downstream inhibition of osteoblast 

proliferation, differentiation and matrix deposition (e.g. ALP) genes orchestrated by the 

transcription factor Runx2 (Sebastian and Loots, 2017, Raggatt and Partridge, 2010). 

However, the loss of sclerostin expression by osteocytes occurs through activation of 

mechanotransduction pathways, in other words when subchondral bone osteocytes are 

loaded in compression. In cartilage, sclerostin is expressed by chondrocytes exposed to 

pro-inflammatory cytokines in regions of focal damage, and inhibition of Wnt/β-catenin 

in chondrocytes leads to down-regulation of catabolic pathway (MMP and ADAMTS) 

expression, inhibition of anabolic pathway (aggrecan, collagen type-II and TIMPs) 

expression, increased hypertrophic differentiation and increased apoptotic signalling 
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(Chan et al., 2011, Zhu et al., 2008). Furthermore, the production of osteo- and chondro-

protective anti-inflammatory cytokine IL-10 depends on Wnt/β-catenin activation in 

osteocytes, macrophages and synovial tissues (Li et al., 2008, Suryawanshi et al., 2016). 

This link is substantiated by the significant (p≤0.05 to p≤0.01) negative correlations of 

sclerostin with IL-10, IL-12p70 and IL-13 identified in synovial fluid, which is a clear 

illustration of this pathway. 

Considering these mechanisms, the PCA variances may relate to that of three phenotypes 

of which present either: 

• A bone formation (anabolic osteoblast), anti-inflammatory phenotype caused by 

increased loading of subchondral bone and high β-catenin activation, who may 

develop subchondral plate thickening and stiffening due to increased bone 

deposition and osteo-protective mechanisms 

• A catabolic osteoblast phenotype that down-regulate bone matrix formation (low 

β-catenin activation) and upregulate osteoclastogenic signalling (high RANKL 

expression) resulting in net subchondral bone loss, possibly in the form of BMLs   

• A low catabolic/anabolic/apoptotic chondrocyte phenotype that may present 

increased focal articular cartilage damage and breakdown 
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4.4.4 Major findings for objective 3 

The final objective of the chapter was to assess longitudinal changes in serum 

biomarkers to determine possible mechanisms of repair/progression that relate to 

positive or poor clinical outcomes 6 months post-microfracture surgery. 

Reduced bone resorption activity following microfracture surgery 

The significantly reduced serum CTX-I levels post-surgery is indicative of reduced bone 

resorption, a mutual feature across all subjects and may represent a switch toward 

subchondral bone formation as a possible repair mechanism following bone marrow 

stimulation. Interestingly, subject MT who showed the smallest decrease in CTX-I levels 

was the eldest (76 years) relative to the others (between 20-46 years), which could 

therefore be reflective of the inhibitory effect of age on osteogenic repair capabilities 

(Gibon et al., 2016). Decreases in CTX-I levels significantly correlated with decreases in 

glutamate and TNF-α levels, implying they may be important regulators of bone 

resorption. The relation of CTX-I to TNF-α levels is also reflective of the positive 

correlation found in the cross-sectional analysis, substantiating involvement of pro-

inflammatory activity with bone resorption. It is also noteworthy that glutamate levels 

were also significantly reduced following surgery across the group, further supporting 

its association with an arthritic degenerative state.  

In contrast, changes in bone resorption activity did not appear to be regulated by 

canonical osteoclast signalling, evident by the negative correlation between CTX-I levels 

and the RANKL/OPG ratio. Therefore, in the context of biomarkers examined, these 

findings propose a mechanism by which reduced focal loading of subchondral bone halts 

glutamate release by Ca2+-mediated exocytosis mechanisms and production of TNF-α by 

mechano-sensitive cells, negating non-canonical osteoclast-activation pathway 

activation that occurs through the activation of ionotropic glutamate (Merle et al., 2003, 

Mentaverri et al., 2003) and TNF receptors (Osta et al., 2014) on the surface of progenitor 

and mature osteoclasts. Findings from chapter 2 demonstrated that compartmental knee 

loading was not significantly altered post-surgery, therefore it is possible that marrow 

stimulation from the surgery would have resulted in a new fibrous layer of cartilage 

formed over the defect site that could promote focal load distribution and protect 

underlying subchondral bone.  

Increased cartilage matrix deposition or degradation following microfracture 

surgery 
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A contrasting result reflected across all subjects was the significantly increased levels of 

COMP in serum following surgery, which signifies increased chondrocytic matrix 

deposition (Recklies et al., 1998) or cartilage matrix destruction (Attur et al., 2013). Six-

months post-surgery may be an early time-point for delineating the effects of repair from 

that of poor biological outcomes, since cartilage compositional changes assessed by MRI 

are still taking place up to two years following marrow-stimulation techniques 

(Theologis et al., 2012, Lansdown et al., 2018). Increases in COMP correlated strongly 

with decreases in sclerostin levels, suggesting that upregulation of Wnt/β-catenin 

signalling in chondrocytes may be involved in this process. However further study 

involving later-time points may be required to understand the long-term effect 

microfracture has on maintaining cartilage health. 

Dysregulation of inflammatory signalling following microfracture surgery may 

correlate with poor patient-reported outcomes 

Following microfracture surgery, IL-10 and IL-13 were considerably elevated for 4/5 

subjects, but one subject (RP) showed the opposite for IL-10 levels (but was not included 

in IL-13 testing). A similar pattern was observed for IFN-γ changes, whereby RP 

presented a sharp decline in concentrations relative to the group. These clear patterns 

are associated with the bad clinical outcomes (worsening pain, symptoms and function) 

presented by RP relative to the improvements seen in other subjects. It is therefore 

reasonable to hypothesise that anti-inflammatory dysregulation is responsible for these 

poor outcomes. Indeed, it was revealed both in the cross-sectional analysis as well as the 

present that both serum IL-10 and IFN-γ significantly (p≤0.05) correlated with baseline 

KOOS clinical scores as well as longitudinal changes in scores, which is substantial 

evidence for this effect. IL-10 is protective of neuropathic pain induced by peripheral and 

central nerve injury in mice (Shao et al., 2015). However in contrast IFN-γ appears to 

stimulate in nociceptive pathways by potentiating NMDA receptors (Sonekatsu et al., 

2016). The incongruencies with IFN-γ findings in relation to literature may be related to 

the inconsistent concentrations of synovial fluid and serum levels, which is substantiated 

by the opposing relationship of synovial fluid IFN-γ with pain in the cross-sectional 

analysis.      

The next sections discuss the clinical significant and relation of key findings from this 

study to the field within each category of biomarker (tissue turnover, mechanical and 

inflammatory). 
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4.4.5 Biomarkers of bone and cartilage turnover   

4.4.5.1 Osteoclastogenic pathways in FCD pathogenesis 

The increased levels of CTX-I in FCD serum relative to controls is indicative of a net 

increase of bone resorption activity, however a notable observation was that the 

RANKL/OPG ratio did not exhibit a relationship with CTX-I levels in synovial fluid or 

serum. As previously suggested, this is evident of non-canonical osteoclastogenic 

pathway activity that shares regulation of pathogenic bone remodelling signalling in 

disease states such as FCD and uOA. Further understanding of the influence of canonical 

and non-canonical pathways in FCD pathogenesis is critical to developing anti-resorptive 

therapies such as those used in trials for preserving bone in rheumatoid arthritis 

(Gamez-Nava et al., 2013).  

A key finding within this study was that RANKL expression appears to be predominantly 

dependent on pro-inflammatory regulators, whereas OPG may be influenced by 

subchondral bone loading due to its discriminatory ability of FCD and uOA synovial fluid. 

The canonical bone remodelling pathway is dependent on the activation of receptor 

activator of NF-κB (RANK) found on the surface of pre and mature osteoclasts, which 

when activated by RANKL located on activated osteoblasts, osteocytes and some immune 

cell types, stimulates osteoclast differentiation and bone resorption through 

intracellular stimulation of the NF-κB pathway (Tat et al., 2008b, Wijenayaka et al., 

2011). However, OPG secreted by osteoblasts can inhibit the activity of RANK by binding 

and deactivating RANKL, thus the relative quantities of RANKL and OPG can provide an 

index of bone resorption pathway activation (Tat et al., 2009). The dependence of 

osteoclast activity on the RANK/RANKL system is evident with investigations into 

RANKL-knockout mice, which suffer from unopposed bone growth due to the lack of 

osteoclast maturation and activity (Odgren et al., 2003). In normal functioning, the level 

of RANKL and OPG expression is dependent on a wide variety of signalling promotors 

and inhibitors, with multiple levels of ligand and receptor activity.  

In earlier years it was recognised that key regulators such as parathyroid hormone 

(Horwood et al., 1998) and pro-inflammatory cytokines including TNF-α, IL-1β and IL-6 

locally produced are involved in canonical bone regulation (Hofbauer et al., 1999). 

Consistent with the positive correlation found of synovial fluid IL-6 and RANKL within 

this study, it has been established that IL-6 receptor activation on the osteoblast surface 

stimulates the janus kinase (JAK) and signal transducer and activators of transcription 
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(STAT) pathway, leading to an upregulation of RANKL expression (Osta et al., 2014). 

There has also been previous evidence of negative regulation of the RANKL/OPG system 

by anti-inflammatory cytokines. One study investigating IL-10-deficient bone-marrow 

macrophages observed enhanced osteoclastogenesis and bone resorption relative to 

controls (Liu et al., 2006). In this model, subsequent introduction of IL-10 reversed this 

effect evident by down-regulated RANKL mRNA expression coupled with enhanced OPG 

expression. This mechanism may explain the negative correlation between RANKL and 

IL-10 found within the correlation analysis.  

Sclerostin is primarily known for inhibition of osteogenic gene expression through 

disruption of the Wnt/β-catenin pathway. However, there is evidence to suggest another 

role in supporting osteocyte-driven osteoclastogenesis (Wijenayaka et al., 2011). 

Recombinant human sclerostin was found to dose-dependently down-regulate the 

expression of OPG mRNA and up-regulate RANKL expression in human primary pre-

osteocyte culture and in mouse osteocyte-like MLO-Y4 cells. Furthermore, co-culture of 

MLO-Y4 cells on a ‘bone-like’ substrate with peripheral blood mononuclear cells in the 

presence of sclerostin resulted in a 7-fold increase in bone resorption activity, which was 

eliminated by introduction of OPG (Wijenayaka et al., 2011). This is relevant when 

considering the PCA results within this study that revealed variances representative of 

sclerostin and RANKL expression, as it further substantiates sclerostin as a key regulator 

and discriminatory factor of the identified phenotypes. In a review of the RANKL/OPG 

system, Tat and colleagues have proposed based on previous literature that OA 

subchondral bone osteoblasts can be divided into two subpopulations defined as ‘low-

OA’ or ‘high-OA’ types (Tat et al., 2009). It was suggested that the ‘low-OA’ phenotype 

presenting high RANKL/OPG ratios and low endogenous PGE2 production promote 

subchondral bone loss, whereas the ‘high-OA’ phenotype that present low RANKL/OPG 

ratios and high PGE2 promote subchondral bone thickening and sclerosis that is often 

attributed to later-stage OA (Tat et al., 2009). This theory could accommodate sclerostin 

as a possible mechanistic ‘switch’ involved in the transition of osteoblast states.   

In vitro studies have shown a number of cytokines and growth factors capable of 

substituting the effect of RANK to increase osteoclastogenesis of progenitors. These 

include TNF-α (Mabilleau et al., 2012), IL-6 and IL-8 (Knowles and Athanasou, 2009), 

which activate NF-κB intracellular signalling through their own surface receptors. This 

is could explain the relationship between TNF-α and CTX-I levels found within this study, 

which was not reflected in TNF-α and RANKL associations, inferring that TNF-α activity 

is independently promoting bone matrix breakdown. The stronger relationship implies 
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TNF-α may have a stronger influence on bone resorption in this disease process. This 

hypothesis is consistent with the correlation between longitudinal changes in TNF-α and 

CTX-I and implies that the regulation of TNF-α activity may a key mechanism is the 

switch toward subchondral bone repair.  

Glutamatergic signalling may be in part influencing the incongruities between 

RANKL/OPG ratio values and bone resorption. Reviews of reported transcript and 

protein expression of bone cell glutamatergic signalling components found that 

osteoclasts express iGluRs activated by NMDA, AMPA and kainate, mGluRs and EAATs, 

implying osteoclasts respond to, as well as regulate extracellular glutamate levels 

(Brakspear and Mason, 2012, Wen et al., 2015). Early in vitro cultures of osteoclasts 

exposed to the NMDA glutamate receptor antagonist MK-801 revealed downregulation 

of osteoclast differentiation and resorption activity, evident by the reduced resorption 

pits in dentine (Peet et al., 1999). A later study substantiated these findings in two 

individual in vitro models, one using the murine myelomonocytic RAW 264.2 cell line 

and the other mouse bone marrow cells, by demonstrating that two antagonists of NMDA 

receptor (NMDAR), MK-801 and AP-5, dose-dependently inhibited osteoclastogenesis, 

suggesting that osteoclast progenitors require NMDAR activation for differentiation 

(Merle et al., 2003). These findings are supportive of the correlation between 

longitudinal changes in serum glutamate and CTX-I levels, equivalent to that found with 

TNF-α, implying both mechanical and inflammatory components influence of 

pathological bone resorption.        

4.4.5.2 CTX-I as a biomarker of bone resorption 

CTX-I is an indicator of the osteoclastic metabolism of collagen type-I, the predominant 

collagen in bone and meniscal tissues, it is often utilized as a selective marker for bone 

turnover for the characterisation of human bone pathologies such as osteopenia, 

osteoporosis and arthritis (Cremers et al., 2008). Consistent with the findings from this 

study, CTX-I is elevated in animal models of OA development and progression. In a 

murine post-traumatic OA (PTOA) model simulated by tibial compression overload and 

ACL rupture, significantly increased serum levels of CTX-I were observed for up to 56 

days post-injury relative to unloaded controls (Khorasani et al., 2015). Although 

correlations were not explored, the same cohort of mice experienced significant 

trabecular bone loss explanatory of the increased CTX-I levels, as well as subchondral 

bone thickening, determined by quantitative structural µCT. Another study investigating 

changes in a canine partial-medial meniscectomy model which developed tibial 
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osteochondral lesions similarly showed CTX-I increases which corresponded to 

worsening histological scoring of subchondral bone and cartilage OA-related changes 

(Connor et al., 2009). In human OA studies, it has been shown that CTX-I levels appear to 

be a risk factor for disease progression and increases in serum precede increases 

biomarkers of cartilage metabolism, reflecting the earlier pathological changes in bone 

in the disease (Garnero et al., 2005, Attur et al., 2013). However, interestingly the 

increased bone resorption only appears to be relevant in the presence of progressing OA 

states, since individuals with ‘non-progressing OA’ characterised by a lack of change in 

K/L grade do not exhibit abnormal CTX-I levels (Bettica et al., 2002). 

Changes in bone have also been recognised in previous studies investigating joint FCDs. 

One investigation demonstrated that urinary CTX-I levels were in the ‘upper range of 

normal’ for patients with tibiofemoral FCDs accompanying ACL insufficiency. 

Furthermore, CTX-I correlated with reduced tibiofemoral subchondral bone area and 

cartilage volume determined by MRI methods (Streich et al., 2011), reiterating the 

sensitivity of CTX-I for detecting relevant bone changes. It is thought that loss of bone 

and dysregulated remodelling often accompanies FCDs in the form of bone marrow 

lesions (BMLs), focal areas of bone attrition/sclerosis underlying FCDs, which may be a 

crucial contributor to the aetiology of FCDs due to their association with rapid articular 

cartilage loss (Xu et al., 2012). BMLs detected and scored by MRI methods have proven 

to be strong predictors of defect progression, defined by worsening of chondral lesion 

MRI scores (Dore et al., 2010). Since bone is a highly mechano-responsive tissue, the 

presence of BMLs in relation to FCD pathogenesis is likely related to abnormal joint 

loading. In fact, remodelling is influenced by both mechanical and inflammatory 

pathways in which it is apparent are both involved in FCD pathogenesis (Burr and 

Gallant, 2012, Cremers et al., 2008). 

The findings from this study corroborate with others regarding the utility of CTX-I as a 

marker of altered bone resorption activity, therefore may be useful in longitudinal 

studies where FCDs have been diagnosed. However, it is noteworthy that CTX-I as an 

individual marker lacks selectivity. Due to the substantial number of regulatory and 

homeostatic processes involved with bone resorption, non-joint specific bone resorption 

could potentially affect the diagnostic and prognostic utility. Increased acidity of blood 

due to diet, osteoporosis as a result of menopause as well as levels of physical activity 

are just some examples of factors that may affect individual differences (Burr and 

Gallant, 2012, Cremers et al., 2008). The latter example was demonstrated in a study 

aiming to distinguish between altered CTX-I levels with the effect of increased exercise 
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compared to development of OA in horses, who found similar increases in both groups, 

stressing the importance of considering such factors in interpretations (Frisbie et al., 

2008). Notably from this study, synovial fluid CTX-I significantly associated with BMI, 

suggesting altered body mass alone may reduce the sensitivity of CTX-I in cross-sectional 

studies. Perhaps CTX-I may not be a reliable individual marker of pathology,  but may be 

better selective in a combinatory panel with other discriminatory markers or in 

longitudinal studies whereby many mentioned factors remain consistent.  

4.4.5.3 COMP as a biomarker of cartilage remodelling 

Several independent studies have demonstrated the potential utility of COMP as a 

diagnostic and prognostic serum biomarker of cartilage structural degradation in knee 

OA, due to its sensitivity to joint space narrowing and its known abundance in cartilage 

tissue where its function involves providing stability to the matrix (Attur et al., 2013, 

Kraus et al., 2017, Sowers et al., 2009, Halasz et al., 2007). In the cross-sectional analysis, 

it was evident that serum COMP levels did not vary between FCD subjects and controls. 

Since FCDs are characterised by progressive focal articular cartilage loss, this finding was 

unexpected and suggests serum COMP may not be selective of cartilage degradation at 

this stage of pathology. Consistent with these findings, Streich and colleagues (2012) 

investigating serum COMP concentrations in individuals with ACL-rupture with 

accompanying FCDs reported levels within the ‘normal’ clinical ranges, with only weak 

correlations to medial femoral cartilage area detected by MRI (Streich et al., 2011). 

However, they found a more reliable link between FCD presence and CTX-II levels, as 

well as a moderate relationship between CTX-II and cartilage volume and subchondral 

bone area, suggesting CTX-II may be a stronger indicator of cartilage loss in the earlier 

stages of pathology.   

A likely explanation for the lack of differing COMP levels may be related to its sensitivity 

to joint activity. Andersson and colleagues (2006) showed that serum COMP levels are 

significantly elevated after 60 minutes of strenuous exercise, which proceed to 

significantly return to resting levels 60 minutes following rest (Andersson et al., 2006b). 

Whereas another group independently demonstrated that even a moderate walking 

activity of 30 minutes could significantly influence serum COMP up to 9.4% above resting 

levels (Mundermann et al., 2005b). Due to the difficulties in controlling for activity levels 

within the tested cohort in this study, it is likely that differences in recent activity may 

have increased individual variances, ultimately obscuring group differences resultant of 

chondral defect presence. It could be that the elevated COMP levels following activity are 
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either related to the anabolic biosynthetic response of chondrocytes following joint 

activity, or simply the release from cartilage matrix following structural matrix 

deformation (Attur et al., 2013). 

It is noteworthy that COMP levels were significantly increased following microfracture 

surgery concomitant with decreased sclerostin levels, implying that COMP synthesis may 

be important to cartilage repair processes. Indeed, previous authors have demonstrated 

that COMP is involved in fibril formation of collagen type-I and II by catalysing 

fibrillogenesis with unique organisation, as well as a possible involvement in supporting 

mediation of aggrecan interaction (Halasz et al., 2007, Chen et al., 2007). Furthermore, it 

has been recognised that Wnt signalling is actively regulated during repair, whereby it is 

involved in chondrogenic or osteogenic lineage commitment of mesenchymal stem cells 

(MSCs), maintenance of a chondrogenic phenotype and matrix synthesis (Yuan et al., 

2016). This suggests the upregulation of COMP synthesis by chondrocytes may be 

regulated by Wnt following the down-regulation of sclerostin. Considering these 

findings, serum COMP may be a good indicator of cartilage repair activity in the early 

stages following marrow stimulation techniques.  

On the other hand, overstimulation of Wnt signalling in disease states can promote 

chondrogenic hypertrophic differentiation and apoptosis, leading to accelerated 

destruction of cartilage (Yuan et al., 2016, Lewiecki, 2014). Furthermore, from a 

macroscopic perspective, it is well established that bone marrow stimulation techniques 

generate a mechanically inferior and disorganised ‘fibrocartilage’ in place of the lost 

hyaline cartilage, therefore increased COMP levels could be representative of the 

accelerated destruction of neocartilage in response to continued aberrant loading of the 

joint. Considering these contrasting mechanisms, longer term studies investigating the 

persistence of serum COMP are required to understand cartilage repair/degenerative 

mechanisms in the course of recovery to function following surgery.   

4.4.6 Biomarkers of bone mechanical loading 

4.4.6.1 Glutamatergic signalling in knee pathogenesis 

Glutamate is a key signalling molecule in bone within the OA disease process thought to 

have disease modifying characteristics, due to its substantially elevated concentrations 

in the joint following acute injury (Bonnet et al., 2015) and in arthritis (McNearney et al., 

2000). The pathophysiological influence of glutamate has been demonstrated previously 
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within our research group in a murine in vivo model of antigen-induced inflammatory 

arthritis (AIA), whereby induction led to upregulation of glutamate production and 

tissue deterioration, whereas inhibition of glutamate signalling by NBQX, an AMPA/KA 

glutamate receptor (GluR) antagonist during the acute response dramatically reduced 

joint inflammation, nociception and histological cartilage, bone and synovium OA-

related changes (Bonnet et al., 2015). Considering these findings, the increased levels of 

glutamate in FCD relative to control serum within this study importantly suggests that 

FCD pathogenesis may be enhanced by pathological glutamatergic signalling. 

Furthermore, since previous work has demonstrated that glutamate levels may be 

regulated by mechanical loading of bone, this is an important finding in the context of 

FCD and uOA pathogenesis, which as previous discussions suggest are mechanically-

driven. It is reasonable to hypothesise that increased glutamate in FCD serum may be 

attributed to increased loading of the affected knee compartment, as revealed by varying 

KAMs relative to controls found in chapter 2.  

The mechanistic consequences of pathophysiological glutamatergic signalling in the OA 

joint are still yet to be fully established, however some studies have revealed potential 

mechanisms. The involvement of glutamatergic signalling in inflammatory pathways has 

been evidenced by several studies. Flood and colleagues (2007) showed that inhibition 

of N-methyl-D-aspartate (NMDA) glutamate receptors (NMDARs) in fibroblast-like 

synoviocytes of the rheumatoid arthritic joint significantly reduced IL-6 expression and 

regulated MMP-2 release of these cells. Whereas Piepoli and colleagues (2009) studying 

the effects of glutamate in chondrocyte cultures found that while IL-1β in chondrocytes 

enhanced the production of pro-inflammatory cytokines and proteolytic enzymes, 

inhibiting the NMDARs suppressed this response, suggesting a potentially unique role in 

glutamate receptors on chondrocytes in modulating the inflammatory process in OA.  In 

another study, blocking AMPA/KA receptors in a murine AIA model with NBQX reduced 

the expression of IL-6 mRNA in meniscal tissues, and reduces cartilage fibrillation and 

proteoglycan loss induced by inflammatory processes (Bonnet et al., 2015). MRI methods 

have revealed that early compositional changes of cartilage relating to FCD development 

involved the loss of proteoglycan followed by collagen structures (Theologis et al., 2012), 

therefore joint inflammation following injury concurrent with enhanced glutamatergic 

signalling could be a major contributing factor to cartilage loss in FCD development.       

High joint glutamate levels is also implicated in altered bone function. An in vitro study 

demonstrated high levels of extracellular glutamate reduced the proliferation of MC3T3-

E1 osteoblasts towards self-renewal through the upregulation of nuclear factor E2 p45-
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related factor 2, stunting bone formation (Uno et al., 2007). It was suggested that 

substantially elevated concentrations of glutamate may inhibit cysteine/glutamate 

antiporters (GLASTs) on the surface of osteoblasts, suppressing proliferation and down-

regulating Runx2 activation as a consequence of glutathione depletion (Uno et al., 2007, 

Brakspear and Mason, 2012). The proposed mechanisms suggest pathophysiological 

loading of bone may enhance bone resorption by promoting increased 

osteoclastogenesis through continued stimulation of the NF-κB pathway, coupled with 

reduced osteoblastic activity through GLAST deactivation, yielding a net loss of bone. 

This hypothesis is consistent with the correlation found between longitudinal decreases 

in serum glutamate and CTX-I levels following marrow stimulation  

Taken together, it is likely and supports the development of glutamatergic signalling 

inhibitors as others have suggested (Bonnet et al., 2015, Wen et al., 2015), to reduce 

physiological changes in bone that contribute to FCD development following injury or 

progression.  

4.4.6.2 Sclerostin as a switch of pathological phenotype 

Sclerostin importantly functions in the adaptation of bone to mechanical signals from the 

environment, however the role of sclerostin signalling in the pathogenesis of OA is 

complex and less defined, with contradictory reports in the field (Lewiecki, 2014). The 

variances captured by PC clustering analysis within this study revealed that both FCD 

and uOA cohorts presented low and high sclerostin subpopulations which respectively 

corresponded to high or low bone turnover. As previously suggested, this is likely 

resultant of altered subchondral bone and cartilage loading, which appears to regulate 

the expression of sclerostin and therefore may modulate disease pathogenesis (Robling 

et al., 2008, Zhu et al., 2009). 

As a potent Wnt/β-catenin pathway inhibitor, sclerostin has control over important 

osteogenic pathways in bone, including inhibition of downstream expression of 

osteoblast proliferation, differentiation and matrix deposition genes orchestrated by the 

transcription factor Runx2 (Sebastian and Loots, 2017, Raggatt and Partridge, 2010). 

Sclerostin also carries an important role in maintaining cartilage, since the Wnt/β-

catenin pathway in chondrocytes activates catabolic pathways, leading to the expression 

of proteases (MMPs) and aggrecanases (ADAMTS), but paradoxically promotes anabolic 

pathways through up-regulation of aggrecan and collagen type-II synthesis (Chan et al., 

2011, Zhu et al., 2009).  
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Mice lacking the sclerostin gene present high anatomical bone mass that is detectable as 

early as 1 month and peaks around 18 months of age, with increased levels of bone 

formation on trabecular surfaces relative to controls (Lin et al., 2009). In another mouse 

sclerostin-knockout study, it was shown that cartilage is preserved despite the increased 

bone volume, however destabilization of the joint by surgically removing the medial 

meniscus lead to higher cartilage damage than wild-type mice, accompanied by 

increased aggrecanase and type X collagen expression (Bouaziz et al., 2015). 

Furthermore, this effect was reversed by introducing sclerostin, which inhibited the Wnt 

canonical pathway as well as the non-canonical Wnt-phosphorylated JNK pathway in 

cartilage. Consistent with this, adult transgenic mice where the β-catenin pathway was 

stabilized displayed an osteoarthritis-like hypertrophic phenotype of articular 

chondrocytes that differentiated prematurely (Zhu et al., 2009). In contrast, over-

expression of SOST in mice correlates with lower bone mass and high bone fracture rates, 

even with the administration of parathyroid hormone (a potent bone anabolic 

stimulant), highlighting the potentially dominant role of sclerostin in catalysing bone 

loss disease states (Kramer et al., 2010). Whereas inhibition of Wnt/β-catenin signalling 

in transgenic mice associates with increased apoptotic articular chondrocytes, and 

subsequent destruction of articular cartilage (Zhu et al., 2008). Despite these contrasting 

findings, the general consensus among researchers is that increased sclerostin 

expression in damaged cartilage may predominantly be a chondro-protective 

mechanism, since it interrupts catabolic pathway activation (Chan et al., 2011, Lewiecki, 

2014). 

Together, these studies collectively suggest that either high or low pathophysiological 

levels of sclerostin may attribute to OA pathogenesis through dysregulated β-catenin 

signalling, particularly after the induction of disease. Furthermore, sclerostin signalling 

in the OA joint may differ in various tissues, resulting in contrasting pathological effects. 

Chan and colleagues interestingly reported increased sclerostin expressed in regions of 

focal cartilage damage in both sheep and mice models of surgically-induced knee OA, 

whilst reduced sclerostin expression was detected in sclerotic regions of subchondral 

bone (Chan et al., 2011). Considering this literature, it is likely that the multiple 

subgroups revealed in the PCA cluster analysis of high and low sclerostin levels may be 

representative of individuals who exhibit varying levels of cartilage damage and bone 

sclerosis, as previously suggested.  

These findings are important in that the rheumatology field is becoming increasingly 

aware of OA heterogeneity, with mounting evidence of the need for personalised 
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treatments for distinct phenotypic groups (Kraus et al., 2011, Lotz et al., 2013). The 

identification those at more risk of progression due to bone loss in the form of bone 

marrow lesions in the earlier stage following injury that may benefit from anti-

resorptives (Karsdal et al., 2014), from others that are prone to cartilage loss due to the 

altered tissue properties resultant of subchondral bone sclerosis in later stages of 

disease (Tat et al., 2008b), is critical to improving the efficacy and longevity of future 

therapies.  

4.4.7 Biomarkers of inflammation 

4.4.7.1 Pro-inflammatory mediators in knee disease 

Pro-inflammatory mediators have been widely acknowledged for their diagnostic and 

prognostic potential for clinical knee OA (Fernandes et al., 2002, Kapoor et al., 2011, Liu-

Bryan and Terkeltaub, 2015), as well as knee FCDs (Cuellar et al., 2016, Tsuchida et al., 

2012, Streich et al., 2011). These molecules arise from specific inflammatory tissues such 

as the synovium, infiltrating leukocytes, or traumatised bone and cartilage cells, and 

facilitate autocrine and paracrine signalling to stimulate the production of themselves in 

a positive feedback loop (Wojdasiewicz et al., 2014).  This was evident within 

associations of TNF-α, IL-6 and IL-8 within this study. Aside from self-propagation, pro-

inflammatory cytokines stimulate chondrocytes and osteoclasts to upregulate 

production of matrix degrading proteolytic matrix metalloproteinases (MMPs), 

aggrecanases (ADAMTS), prostaglandins and nitric oxide (NO), associated with cartilage 

and bone degradation (Houard et al., 2013). Furthermore, as previously discussed 

cytokines are involved in bone remodelling pathways including the canonical and non-

canonical osteoclastogenesis pathways (Osta et al., 2014).  

The increase in IL-6 in line with advancing disease states found within this study is in 

line with a recent study by Cuellar and colleagues (2016) who investigated inflammatory 

cytokines, chemokines and proteases in joint fluid of 70 arthroscopy patients, and 

demonstrated that IL-6 was the strongest predictor of severe chondral lesions (Cuellar 

et al., 2016). IL-6 production and signalling has been documented in all joint tissues, but 

is primarily regulated by osteoblasts, chondrocytes, macrophages and adipocytes 

(Guerne et al., 1990, Akeson and Malemud, 2017). Although mostly considered a pro-

inflammatory cytokine, IL-6 multidirectional interactions in cartilage and bone 

homeostatic processes, confers conflicting roles in OA pathophysiology. In more recent 
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years, there has been mounting evidence and interest in the substantially elevated levels 

of IL-6 found with the acute tissue response to joint injury (Watt et al., 2016) and more 

specifically isolated ACL tears (Struglics et al., 2015), ACL tears with meniscal injuries 

(Bigoni et al., 2013) and acute tibial plateau fracture (Haller et al., 2015). 

Increased IL-6 concentrations following injury may be associated with its increased 

expression in response to mechanical stimulation. Earlier work subjecting normal and 

OA chondrocytes to high fluid-induced shear stress (>10 dyn/cm2) showed significant 

upregulation of IL-6 by normal chondrocytes, which induced levels released by OA 

chondrocytes (Mohtai et al., 1996). More recently, it was discovered that IL-6 synthesis 

following shear stress is dependent on activation of the P13-L/Akt-dependent NF-kB 

pathway (Wang et al., 2010). Sanchez and colleagues (2009) also demonstrated a 

significant upregulation IL-6 in cultured osteoblasts following physiological 

compression loading. These findings are significant considering FCD and uOA 

phenotypes exhibit increased overloading of the affected condyle as a result of dynamic 

joint malalignment during gait, which is recognised to be a critical risk factor for OA 

development and progression (Felson et al., 2000, Sharma et al., 2001). The increased 

static knee malalignment exhibited in uOA relative to FCD knees (determined by clinical 

x-ray) may partially explain differences found in IL-6 levels.  

IL-8 is largely characterised in inflammatory knee pathology as a leukocyte 

chemoattractant and stimulant of cytokine production by synovial tissues (Feldmann 

and Maini, 2001, Yuan et al., 2001, Scanzello, 2017), but is also directly involved in joint 

tissue pathogenesis. Merz and colleagues (2003) demonstrated that primary articular 

chondrocytes express IL-8 receptors (CXCLR1, CXCLR2), which following activation by 

IL-8 enhance expression of tissue inhibitor of metalloproteinase-3 (TIMP-3), 

hypertrophic markers (type-X collagen, MMP-13 and ALP), and induce matrix 

calcification. Hypertrophic chondrocytes yield dysregulated ‘fibrocartilage’ matrix, a 

feature of cartilage repair surgery that is thought to be a key factor in long-term failure 

rates, due to its mechanical inferiority to hyaline cartilage (Layton et al., 2015, Falah et 

al., 2010). The increased calcification of cartilage in regions associated with high IL-8 

expression would result in focal concentrations of interfibrillar mineral deposition, 

leading to further inconsistencies in matrix mechanical properties, disrupting normal 

dissipation of load through the affected cartilage. Furthermore, the stimulation of MMP-

13 release suggests a role for IL-8 in cartilage matrix degradation, though this 

mechanism is not evident in serum biomarker correlations with COMP within this study.   
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Collectively, the findings suggest that pro-inflammatory mediators both indicate and 

facilitate joint tissue damage with increased levels in the joint being consistent with 

advancing disease state. However, it is notable that preliminary evidence from this study 

suggests at the FCD stage, serum pro-inflammatory cytokine levels are not 

representative of joint activity. This is consistent with several large cohort studies 

including from the Knee Injury Cohort at the Kennedy (KICK) cohort of 150 subjects who 

found poor (r < 0.25) longitudinal correlations for IL-6 over 3-months (Watt et al., 2016), 

and the Knee Anterior Cruciate Ligament, Non-surgical versus Surgical Treatment 

(KANON) cohort who showed very weak-to-no (r < 0.1) commonality for IL-6, IL-8, TNF-

α or IFN-γ in 121 subjects over 5 years (Struglics et al., 2015). Together, these findings 

suggest serum analysis therefore may be inappropriate for longitudinal interventional 

trials with intention of using the least invasive methods of analysis. 

4.4.7.2 Anti-inflammatory mediators in knee disease and repair 

IL-10 and IL-13 are predominantly considered anti-inflammatory mediators due to their 

common role in the suppression and regulation of pro-inflammatory cytokine activity, 

however their direct involvement in osteo- and chondro-protective, as well as 

pathogenic mechanisms have also been documented (Wojdasiewicz et al., 2014, Liu et 

al., 2006, Feldmann and Maini, 2001). This makes IL-10 and IL-13 crucial immuno-

compensatory and tissue conserving players in the course of inflammatory-driven joint 

pathologies such as OA. Previous studies have reported the potential utility of IL-10 as a 

biomarker of OA pathogenesis (Wojdasiewicz et al., 2014), progression (Mabey and 

Honsawek, 2015) and joint sensitization (Imamura et al., 2015). However, this is the first 

report of IL-10 as an indicator of FCD pathogenesis in serum evident by the significant 

decreased levels relative to controls, and further decrease with disease advancement 

toward uOA. Due to the commonality of joint and systemic levels, IL-10 is a promising 

clinically useful representative biomarker of the increasing inflammatory dysregulation 

accompanying FCD progression, or to assess the biological outcomes of longitudinal 

intervention trials.     

The function of IL-10 relies on activation of IL-10R on the surface of bone cells, 

chondrocytes, synoviocytes and infiltrating leukocytes, which promotes the intracellular 

recruitment of JAK/STAT3, required to self-propagate and down-regulate of NF-kB 

activity (Mosser and Zhang, 2008). IL-10R activation has been linked to the disruption of 

the intracellular p38 mitogen-activated protein kinase (p38-MAPK) pathway, thus 

inferring its specific dysregulation of IL-1β and TNF-α expression (Ji and Suter, 2007). In 
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other studies, IL-10 has been shown to downregulate intracellular signalling by TNF-α 

by upregulating TNF decoy receptors, and for IL-1β by enhancing production of IL-1R 

antagonist (Moore et al., 2001). IL-10- and IL-13-dependent inhibition of chemokines 

(IL-8, MIP-1 and GM-CSF) in human monocyte cultures has also been revealed, 

demonstrating their importance in dampening the exponential propagation of pro-

inflammatory signalling by circulating immune cells in the acute phase of inflammation 

(de Waal Malefyt et al., 1991, Malefyt et al., 1993).  

The negative association between RANKL and IL-10 within this study is in line with 

previous studies, showing that IL-10 antagonised IL-1β and IL-6-dependent 

upregulation of RANKL expression in human periodontal ligament cells (Wu et al., 2013), 

and showing a direct concentration-dependent downregulation of RANKL expression 

coupled with an upregulation of OPG expression in ligament fibroblasts (Zhang et al., 

2016). Both studies exemplify the bone anti-resorptive activities of IL-10 in joint tissues. 

Consistent with this, IL-10(-/-) knockout mice showed significant loss of alveolar bone 

relative to wild-type mice during development, indicating the crucial osteo-protective 

properties of IL-10 in development as well as disease (Garcia-Hernandez et al., 2012). IL-

10 also appears to be involved in the regulation of cartilage growth. When studying 

protein expression in foetal, adult, and OA chondrocytes, the highest levels of IL-10 and 

its receptors were detected in foetal, followed by normal adult cells, implying its 

importance in developmental stages and normal chondrocyte functioning (Iannone et al., 

2001). In another study IL-10(-/-) knockout mice exhibited shortening of the tibial 

growth plate proliferative zone during development, which was reversed by 

administration of IL-10 (Jung et al., 2013). Furthermore, within in vitro adult and OA 

chondrocyte cultures, Jansen and colleagues (2008) demonstrated IL-10-dependent 

upregulation of proteoglycan and type II collagen expression, two major components of 

cartilage. Together, these studies are indicative of the important protective function of 

IL-10 in the developing and mature joint, therefore dysregulation is likely a potent 

contributor to pathogenesis.   

A consistent finding in the biological outcomes of microfracture surgery includes the 

elevated IL-10 and IL-13 activity in the majority of subjects, apart from RP who 

correspondingly suffered from poor outcomes. Interestingly, the anti-inflammatory 

effects of MSCs have previously been recognised (Pers et al., 2015). A previous in vitro 

study who showed introduction of mouse BM-MSCs were able to increase the number of 

functional induced CD4+ regulatory T lymphocytes and enhanced IL-10 secretion in 

cultured T regulatory cells that were induced to differentiate into Th1 or Th17 cells (Luz-
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Crawford et al., 2013). This may suggest an important role of marrow stimulation in 

suppressing the catabolic effect increased pro-inflammatory activity has in the 

progressing degenerative joint.     

4.4.7.3 IL-10 as an indicator of patient-reported pain and poor 

outcome 

The severity of OA is only weakly correlated with clinical factors such as acute and 

resting joint pain and symptoms such as joint stiffness and swelling (Dieppe and 

Lohmander, 2005, Felson et al., 2000). For this reason, pain pathogenesis and symptoms 

are in as much need of study as joint damage. 

IL-10 is protective of neuropathic pain induced by peripheral and central nerve injury in 

mice (Shao et al., 2015). As discussed previously, the benefit of IL-10 in the joint involves 

its intracellular downregulation of NF-kB and disruption of IL-1β and TNF-α-related 

intracellular signalling. Knowledge of these mechanisms alone implies the involvement 

of IL-10 in inhibiting sensitization induced by TNF-α and IL-1β through activation of 

hyper-nociceptive pathways, as well as reducing the production of PGE2 and NO. The 

effects of IL-10 on pain inhibition have been validated in animal models, such as one 

murine study employing intraspinal quisqalic acid, which produces excitotoxic nerve 

injury as a result of increased IL-1β, COX-2 and iNOS expression. Following quisqalic acid 

injection, subsequent injection with IL-10 delayed aforementioned pathway expression 

and demonstrated inhibitory effects of IL-1β and iNOS mRNA, as well as delayed onset 

of pain-inducing behaviour such as increased ‘grooming’ (Plunkett et al., 2001). 

Interestingly, a separate study showed that intrathecal injections of IL-10 in rats down-

regulated both mRNA and protein levels of voltage-gated sodium channels (VGSCs) on 

dorsal root ganglion neurons following induced peripheral nerve injury. This suggests 

also an independent and direct role of IL-10 in dampening neuropathic pain generated 

by ectopic discharges of damaged neurons (Shen et al., 2013).  

The evidence of IL-10 sensitization pathway inhibition and correlation with patient 

reported outcomes in this preliminary study adds to the utility of IL-10 as clinical 

measure of disease burden and supports the targeting of inflammatory pathways in the 

treatment of earlier disease states such as FCD pathogenesis for better longitudinal 

outcomes. 
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4.4.8 Chapter summary and conclusion 

Although there has been extensive exploratory work in development of OA biomarkers, 

evidence of reliable markers of early knee pathology phenotypes that could be used in 

the clinic or as outcome measures for interventional trials are lacking (Kraus et al., 2011, 

Lotz et al., 2013). Previous studies have investigated tissue degradation (Streich et al., 

2011, Kraus et al., 2017), turnover and inflammatory (Cuellar et al., 2016) markers in 

individuals with knee chondral and osteochondral lesions, however there are no single 

studies that have compared the same breadth of markers in both synovial fluid and 

blood, with relevance to non-pathological controls and an established OA phenotype. 

Moreover, there is a deficit of studies characterising pathological bone remodelling 

signalling and turnover pathways in human OA, which are likely involved in the presence 

of bone marrow lesions (BMLs) often accompanying FCDs, thought to contribute to their 

development and progression (Dore et al., 2010). 

It was hypothesised that molecules representing bone and cartilage turnover, bone 

mechanical loading and inflammation would be discriminatory of tibiofemoral FCD and 

uOA synovial fluids, allowing a further understanding of biological changes in the knee 

that may reflect disease advancement. The most prominent finding was the increased 

imbalance of pro-inflammatory/anti-inflammatory activity in the joint with advancing 

disease state, which is at least partially responsible of the accelerated bone and cartilage 

loss through the stimulation of protease and aggrecanase production (Berenbaum, 

2013), and influence on tissue turnover pathways (Wojdasiewicz et al., 2014) such as 

osteoclastogenic RANKL-RANK signalling as supported in this study. Furthermore, this 

is the first identified clustering of knee pathology subjects based RANKL/OPG levels and 

sclerostin, a surrogate measure of the tissue response to load, which could point toward 

disease phenotypes relating to joint loading patterns of subchondral bone and cartilage. 

This is a particularly important finding since FCD and uOA pathogenesis reveals altered 

stress patterns on the joint surface caused by biomechanical alterations, as 

demonstrated in FCD subjects within the previous chapter. Consistent with this, the link 

between longitudinal changes in CTX-I and glutamate levels following marrow 

stimulation suggests a potentially important function for mechanically-regulated 

glutamatergic signalling in disease as well as repair of bone.  

Single discriminatory, or combinatory panels of biomarkers of disease states will 

improve diagnosis, prognosis and classification of patients with early to late-stage OA 

phenotypes for targeted treatment (Kraus et al., 2011, Lotz et al., 2013). Assessment of 

molecular differences between FCD and control serum led to the identification of 
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promising novel candidate clinical biomarkers of FCD pathogenesis. Firstly, CTX-I that is 

representative of the net increased bone resorption/turnover activity, glutamate that 

may be indicative of the mechanically-regulated glutamatergic signalling activity in 

response to aberrant loading patterns of subchondral bone, and finally IL-10 that is 

reflective of the inflammatory dysregulation that accompanies pathogenesis and 

progression mechanisms as well as neuropathic pathway activation. Moreover, although 

pro-inflammatory cytokines have been identified as emerging markers in the field for 

disease severity and progression, preliminary evidence from this study suggests at the 

FCD stage, serum pro-inflammatory cytokine levels are not representative of joint 

activity and therefore are inappropriate for longitudinal interventional trials.  

To date, there are no known reports of longitudinal changes of synovial fluid or serum 

biomarkers of tissue turnover, loading or inflammation following treatment of human 

knee FCDs. Characterising the response to repair can improve the objective comparison 

of current or new interventions, since common clinical endpoints such as MRI scoring or 

patient-reported outcomes may provide evidence for point-of-failure, but not reasons 

for failure. The preliminary results from this study have identified that a typical six-

month outcome of marrow stimulation includes down-regulated bone resorption and 

glutamatergic signalling activity, up-regulated chondrocyte matrix deposition (or 

possible deterioration) and a shift toward homeostatic levels of inflammatory regulation. 

These changes are likely related to the anti-inflammatory and reparative effect 

introducing BM-MSCs will have in the joint. Moreover, poor six-month patient-reported 

outcomes (based on only one patient) appears to be related to inadequate relief of 

inflammatory dysregulation. It is likely however that 6-months following surgery for the 

assessment of treatments such as marrow stimulation is too short considering the course 

of repair, and longer-term studies with much larger sample sizes are required to 

determine the leading cause of high failure rates of microfracture surgery. 
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5.1 Chapter introduction 

As introduced in chapter 1, there is currently a deficit of translational research 

correlating indicators of knee biology to those of knee function in humans with 

degenerative knee pathology. This is essential for elucidating mechanisms of 

pathogenesis at various stages and characterising distinct phenotypes (Karsdal et al., 

2014, Lotz et al., 2013). A stronger understanding of these links in individuals would 

improve the development of comprehensive therapeutic strategies to enhance the 

efficacy and longevity of intervention (Kraus et al., 2011). Moreover, patient-based 

research studies can be advantageous in the understanding of human risk factors and 

distinct mechanisms of pathogenesis that cannot be simulated in animal studies, due to 

the differing physiology (Felson et al., 2000, Legrand et al., 2017). Individuals with knee 

FCDs and uOA are valid human in vivo models for studying the link between joint loading 

and biology, since tissue damage in the joint is unicompartmental and focal in nature, 

thus a substantial mechanical perturbation, affecting one side of the joint is implicated. 

In this chapter, FCD and uOA subjects will be further assessed to investigate the 

relationship between indicators of knee loading and biomarkers of tissue turnover, 

biomechanical loading of bone and inflammation, to further progress our knowledge of 

this crucial link.  

The most common type of knee OA is unicompartmental in nature, therefore alterations 

in frontal plane (medial-lateral) knee biomechanical parameters such as the knee 

adduction moment (KAM) are most frequently used to describe OA-related knee function 

in gait analysis studies (Andriacchi and Muendermann, 2006, Duffell et al., 2014). Strong 

correlations between frontal plane moments and knee OA disease severity (Astephen et 

al., 2008), progression (Foroughi et al., 2009), cartilage degeneration (Hunt et al., 2013) 

and inflammation (Pietrosimone et al., 2017) have previously been reported. Although 

conflicting evidence exists, numerous studies have demonstrated the high correlation 

between KAM waveforms and directly measured medial knee compartmental forces 

(Kutzner et al., 2010, Zhao et al., 2007) and medial force ratios (Kutzner et al., 2013) in 

instrumented knee studies, validating it as a crude surrogate measure of medial-to-

lateral compartmental loading in gait studies.  

In chapter 3, it was revealed that the KAM was a discriminatory biomechanical 

parameter of both medial and lateral FCD groups relative to controls, which appears to 

be predominantly resultant of altered dynamic knee varus or valgus angles, respectively. 

This implies that altered frontal plane loading may be a driving factor for the focal 
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compartmental damage observed in the FCD joint, which is consistent with OA studies 

that have demonstrated the association of frontal plane knee moments and static knee 

alignments with unicompartmental knee disease severity detected by MRI (Sharma et 

al., 1998, Andriacchi and Muendermann, 2006, Andriacchi and Favre, 2014). For this 

reason, frontal plane knee parameters including peak KAM values, KAM impulse (KAAI) 

and peak knee adduction angles (KAAs) were utilized as functional variables to explore 

the association between knee loading patterns and joint biology.  

Multivariate analysis of biomarker variances in the previous chapter revealed 

subpopulations of FCD and uOA subjects reflective of high and low bone remodelling 

groups proposed to reflect high/low joint loading groups or possibly etiological 

phenotypes. This chapter aims to use multivariate analysis to consider functional and 

biological variables together, to further examine the influence of biomechanical 

parameters on intra- and inter-disease group variances. Furthermore, the association of 

OA-related symptoms (e.g. joint pain and stiffness) with disease severity and joint 

function has been controversial (Hurwitz et al., 2000, Dieppe and Lohmander, 2005), 

therefore the inclusion of clinical scores in the multivariate model allowed further 

understanding of potential biological and mechanical influencing factors.  

Chapter Aim: To use interdisciplinary and statistical tools to explore bivariate and 

integrated relationships of biomechanical, biological and clinical characteristics of 

individuals with knee tibiofemoral FCDs and uOA. 

Objective 1: To examine the association of pathological knee function during 

walking with synovial fluid biomarker levels of mechanical bone signalling, bone 

turnover and inflammation.  

Hypothesis 1: Frontal plane knee loading will influence biomarker concentrations 

reflecting bone remodelling, mechanically-driven bone signalling and 

inflammation 

Objective 2: Use PCA combined with HCA to assess inter- and intra-group 

variances and identify FCD and uOA subject phenotypes based on similarities of 

biomechanical, biological and clinical characteristics  

Hypothesis: Multivariate analysis will reveal inter- and intra-group variances 

reflecting differing disease states and phenotypes associated with sub-groups 
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5.2 Methods 

5.2.1 Subject selection 

FCD subjects common to chapter 2 and 3, as well as uOA subjects from chapter 3 with 

linked biomechanics and biomarker data were selected for this chapter’s analysis. All 

previous study criteria were applied.  

5.2.2  Data collection 

Clinical data 

Clinical data was collected as previously described (section 2.3).  

Gait analysis 

3D motion analysis was captured for all subjects as previously described (section 2.4). 

Sample collection and processing 

Synovial fluid was collected as previously described (section 2.6.1).  
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5.2.3 Biomechanical variable generation 

Knee adduction moment (KAMs) and angle (KAAs) waveforms were calculated from 

Visual 3D musculoskeletal models (section 2.4) for each subject and moments 

waveforms were normalised to %bodyweight*height. Next, parameterisation was used 

to break the waveform into relevant discrete representations of dynamic peak and 

cumulative frontal plane knee loading and dynamic knee alignment (Table 5.1). The 

following discrete parameters were used for this analysis: 

  

The following calculations were applied to dynamic waveforms using Visual 3D pipeline 

tools (C-motion, USA) to generate discrete parameters: 

• KAAI – Positive integral (area under curve) of the KAM waveform 

• 1st peak KAM – maximum KAM waveform value between 0-50% stance-phase 

• 2nd peak KAM – maximum KAM waveform value between 50-100% stance-phase 

• 1st peak KAA – knee angle during instance (frame) of 1st peak KAM 

• 2nd peak KAA – knee angle during instance (frame) of 2nd peak KAM 

Parameters were calculated for at least six waveforms for the affected limb per subject 

and then averaged to a single value per subject prior to use in the statistical analysis. 

Outliers defined as values above or below 2.5 standard deviations from the mean value 

were removed from the analysis.  

  

Parameter Abbreviation Representation

Knee Adduction Angular (KAM) Impulse KAAI
Cumulative (medial) knee load over stance-

phase of gait

1st Peak Knee Adduction Moment 1st peak KAM
Peak (medial) knee load during weight 

acceptance

2nd Peak Knee Adduction Moment 2nd peak KAM Peak (medial) knee load during push-off

Knee Adduction Angle during 1st Peak KAM 1st peak KAA
Knee (frontal) alignment angle during peak load 

(weight acceptance)

Knee Adduction Angle during 2nd Peak KAM 2nd peak KAA
Knee (frontal) alignment angle during peak load 

(push-off)

Table 5.2-1 - Discrete biomechanical parameters utilised for regression and multivariate analysis. 
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5.2.4 Biomarker measurements 

Absolute concentrations were calculated for synovial fluid biomarkers as previously 

described (section 2.6.3). A total of eleven biomarkers were used within this chapter 

analysis (Table 5.2-2) based on the availability of linked data. Biomarkers with ≥5 

measurements matched with biomechanical parameter data were included in the 

analysis. 

Table 5.2-2 - Synovial fluid biomarkers utilised for regression and multivariate analysis. 

Biomarker Abbreviation Representation in the joint 

C-terminal telopeptide for 
collagen type I 

CTX-I Bone resorption (osteoclastic) activity 

Alkaline Phosphatase ALP Bone formation (osteoblastic) activity 

Receptor activator of 
nuclear factor κ-Β ligand 

RANKL Canonical osteoclast pathway activation 

Osteoprotegerin OPG Canonical osteoclast pathway inhibitor 

RANKL:OPG ratio RANKL/OPG 
Surrogate measure of net canonical osteoclast 

activation 

Glutamate - 
Glutaminergic signalling agonist,  

Mechanical regulator of bone physiology, 
inflammatory regulator 

Sclerostin - 
Wnt signalling inhibitor, Mechanical regulator 

of bone physiology 

Tumor necrosis factor 
alpha 

TNF-α Acute phase pro-inflammatory cytokine 

Interleukin-6 IL-6 
Acute phase pro-inflammatory cytokine, 

osteoclast signalling 

Interleukin-8 IL-8 
Inflammatory chemokine  
(neutrophil chemotaxis) 

Interleukin-10 IL-10 Anti-inflammatory cytokine, bone formation 

Biomarker absolute concentrations calculated from absorbance values that situated 

outside of the recommended readable zone of the assay standard curve were excluded 

from the analysis, due to the unknown effect on the regression analysis coefficients.  
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5.2.5 Regression analysis (Objective 1) 

Biomechanical parameters and biomarker data were tested for normal distribution 

using the Shapiro-Wilk test (IBM SPSS, USA) to satisfy the normality assumption of 

regression. Non-normal data were log-transformed (Log10[biomarker]) to make highly 

skewed distributions less skewed. Next, there were two regression analyses carried out 

with separate cohort sets: 

1. Medial knee FCD and uOA subjects (as medial compartment affected group)  

2. Medial and lateral FCD subjects together, without uOA subjects  

This was required since the KAM and KAA are surrogate measures of medial knee 

loading. Therefore, a positive influence of any joint loading parameter on biomarker 

levels would be represented by a positive linear correlation for medial knee disease 

subjects, whereas for lateral knee disease subjects an inverse linear correlation is 

expected. Therefore, to involve both medial and lateral FCD subjects in this analysis as a 

second cohort, quadratic regression analysis was applied. This is further explained in the 

examples below.    

In the first analysis involving the medial-affected subjects, original or log-transformed 

biomarker variables were used as dependent variables in multiple linear regression 

models with biomechanical parameters as independent variables, whilst controlling for 

age and BMI. There was no requirement to adjust for sex, since the cohort was all male. 

The regression equation was: 

𝑦 =  𝐴 + 𝐵𝑥 + 𝐴𝑔𝑒 + 𝐵𝑀𝐼 

An example of an expected positive relationship of knee loading with biomarker levels is 

demonstrated below: 
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The second analysis involving all FCD-subjects only, original or log-transformed 

biomarker variances were used as dependent variables in a multiple quadratic 

regression with biomechanical parameters used as independent variables, whilst 

controlling for age and BMI. The regression equation was: 

𝑦 =  𝐴 + 𝐵𝑥 + 𝐶𝑥2 + 𝐴𝑔𝑒 + 𝐵𝑀𝐼 

An example of an expected positive relationship of knee loading with biomarker 

concentration is represented below: 

β-coefficients, R2 values and p values adjusted for partial-correlations of age and BMI 

with biomarker levels were calculated for both linear and quadratic regression analyses 

(IBM SPSS, USA) and reported as individual tests. β-coefficients were also presented as 

a correlation heatmap to qualitatively assess relationships.   

5.2.6 Principal component analysis (Objective 2) 

Next, principal component analysis (PCA) was carried out to assess inter- and intra-

group variances using linear combinations of biomechanical, biological and clinical 

(KOOS scores) variables of all subjects (section 2.7).  

Since PCA interpretation relies on the positive correlations of variables to identify 

clustering of variables that were found to be similar across the observations, it was 

necessary to transform several parameters to allow simplicity of interpretation. The 

following transformations were applied to PCA input variables: 

• All biomechanical variables presentative of joint loading or alignment were 

expressed as the number of standard deviations away from the control mean 
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values (extracted from chapter 2 results) for each variable. This made it so that 

higher positive values always correspond to increased medial (varus) or lateral 

(valgus) knee loading or angles relative to the control group.  

• Clinical KOOS scores were expressed as (1-score value) for each variable to make 

it so that higher KOOS scores correspond to worsening clinical factors (i.e. with 

the new scores, if KOOS pain clustered with IL-6 then it would mean IL-6 was 

associated with pain). 

Ultimately, both transformations together permit simpler interpretation, since 

clustering of any two variables in the PCA variable loadings plot would now be indicative 

of a positive relationship/similarity between those variables. Furthermore, matching 

observation (subject) clusters on the score plot with spatial distribution of variable 

loadings on the loadings plot will allow easy association of clusters with a set of relating 

variables.    

Finally, hierarchical cluster analysis (HCA) was applied to the variable loadings plot 

using the Ward’s method criterion to generate distinct variable clusters, which could be 

used to objectively describe relationships between groups of variables based on 

multivariate variances (SIMCA 14.1, Umetrics, Sweden). A cut-off was applied when 

under 5 clearly identifiable clusters were generated from all 18 variables as this was 

deemed a suitable summarization of variable clusters for interpretation.    
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5.3 Results 

5.3.1 Cohort characteristics 

Seven knee FCD subjects (all male; mean (SD) age = 42.7 (17.3) years, BMI = 28.5 (5.2) 

kg/m2) and seven knee uOA subjects (all male; mean (SD) age = 50.3 (6.2) years, BMI = 

28.7 (3.9) kg/m2 with linked biomechanics and biomarker data were assessed in this 

chapter. There was no group difference in BMI, however there was a non-significant 

trend of increased age in the uOA group (Table 5.3-1). FCD subjects experienced on 

average higher levels of reported pain and reduced self-reported function of the affected 

knee, however this was not significant at the p≤0.05 level.  

All FCD subjects had Outerbridge grade II tibiofemoral chondral lesions (3 medial, 4 

lateral compartment) accompanied by meniscal tears/damage in the affected 

compartment, whereas no static knee malalignment was reported for any subject 

(Appendix A.1). One FCD subject (LP) had an ACL tear with a positive (+Glide) pivot shift. 

All uOA subjects had radiographic varus knee alignment (1.9° – 15.4°), ACL laxity 

(+Glide) and meniscal loss on the affected side. Two uOA subjects had mild OA (KL grade 

2), three subjects had moderate OA (KL 3) and one subject had severe OA (KL 4). 

From all involved subjects, only one subject (KM) from the FCD group reported using an 

analgesic (150mg Tramadol) approximately 1 hour prior to motion capture data 

collection, however no subjects reported analgesic use on the day of synovial fluid 

collection. 

Table 5.3-1 - Group demographics and patient-reported clinical KOOS scores. 

  

 Focal Cartilage Defect Unilateral Osteoarthritis  

 Mean ±St Dev Mean ±St Dev Sig. p (2-tailed) 

N 7  7   

Age (y) 42.7 ±17.3 50.3 ±6.2 .298 

BMI (kg/m2) 28.5 ±5.2 28.7 ±3.9 .930 

Symptoms 70.1 ±17.9 77.4 ±17.0 .472 

Pain 69.1 ±21.6 83.3 ±10.1 .168 

Function 72.9 ±23.4 89.4 ±9.7 .137 
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5.3.2 Variable transformations 

Shapiro-Wilk testing determined that IL-6, IL-8, OPG, RANK, RANKL/OPG and sclerostin 

were significantly not normally distributed (p<0.05). Following logarithmic 

transformation of skewed variables, IL-6, OPG and RANKL/OPG were no longer skewed. 

Normality of IL-8 and RANKL were substantially improved but not resolved. The 

skewness of both variables appears to be related to two outlying subjects of which the 

values remained included in the analysis due to the small sample size.   

5.3.3 Influence of joint function on synovial fluid analyte levels in FCD 

and uOA subjects 

Multiple linear regression models were firstly calculated to explore the effect of knee 

biomechanical function on synovial fluid biomarker levels in medial knee pathology (FCD 

and uOA) subjects, whilst controlling for age and BMI. Then, quadratic regression models 

next explored the effect of knee function on synovial fluid biomarkers in medial and 

lateral knee FCD subjects combined, whilst controlling for age and BMI. The results for 

these analyses are converged in the sections below:   

5.3.3.1 Effect of knee loading on bone turnover  

Across medial knee pathology subjects (Table 5.3-2), variances in OPG levels were 

significantly (p≤0.05 to ≤0.01) predicted by all knee function parameters except for 2nd 

peak KAAs. However, when taking into account the minimal predictability of RANKL 

levels from loading parameters, the RANKL/OPG ratio was overall not influenced by knee 

function. The variance of CTX-I levels was significantly (p≤0.05 to ≤0.01) predicted by 

2nd peak KAMs and 1st and 2nd peak KAAs, however ALP was weakly inversely correlated, 

indicating a shift of bone remodelling towards decreased bone formation (i.e. increased 

net bone resorption) with increasing joint loads. In contrast, assessment of the FCD 

group alone (Table 5.3-5) revealed that increased varus/valgus 1st peak KAAs 

significantly (p≤0.05) explained variance in ALP, whereas 2nd peak KAAs significantly 

(p≤0.05) predicted CTX-I levels. A considerable association was also found for CTX-I and 

1st peak KAAs, however this did not reach significance at the p≤0.05 level. Together this 

is indicative of increased overall bone turnover in FCD subject’s concomitant with the 

degree of dynamic knee malalignment.     
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5.3.3.2 Effect of knee loading on biomarkers of bone mechanical 

loading 

Exploring the effect of knee function on mechanically-regulated bone markers 

unexpectedly found that regardless of controlling for demographics, neither biomarker 

was significantly associated to knee loading or angle parameters (Table 5.3-3). However, 

sclerostin variances were moderately (β = 0.4 – 0.49) predicted by 1st and 2nd peak KAAs, 

though this trend was not strongly reflected for loading parameters.   

5.3.3.3 Effect of knee loading on inflammatory molecules 

Across medial knee pathology subjects (Table 5.3-4), 2nd peak KAMs significantly 

(p≤0.05) explained TNF-α, IL-6 and IL-8 variances, whereas the KAAI significantly 

(p≤0.05 to ≤0.01) predicted IL-6 and IL-8. Furthermore, IL-6 levels were also 

significantly (p≤0.05) predicted by 1st peak KAAs. Considering non-significant 

relationships, there appeared to be an emerging pattern of a positive influence of knee 

loading on pro-inflammatory molecule levels with a contrasting negative effect on anti-

inflammatory cytokine IL-10. Assessment of FCD subjects alone (Table 5.3-5) revealed a 

considerable moderate prediction of IL-6 levels by 1st peak varus or valgus angles, 

however this was also not significant at the p≤0.05 level.   
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5.3.4 Principal component analysis 

Next, principal component analysis (PCA) was carried out to assess inter- and intra-

group variances using linear combinations of biomechanical, biological and clinical 

variables (Figure 5.3-6; A & B). Two subjects (FCD subject JD and uOA subject 700) were 

excluded from PCA due to >50% missing data leading to substantial influences on the 

model. Two components were generated explaining 55.6% of the variance collectively 

(PC1; 33.3%, PC2; 22.3%). Visual analysis of the PCA score space revealed a clear 

separation of the groups based on PC 1 scores for all subjects except FCD subject LP and 

uOA subject 1271 who closely associated with the opposite respective group.  

The most discriminating features of the uOA relative to FCD group (contribution score of 

>0.75) were increased cumulative (KAAI) and peak knee loading (1st and 2nd peak KAM), 

increased peak knee angles (1st and 2nd peak KAA), elevated pro-inflammatory activity 

(TNF-α, IL-6 and IL-8) and canonical bone resorption signalling (RANKL, RANKL/OPG), 

as well as decreased sclerostin. For biomechanical variables, the KAAI was most 

discriminatory of the uOA group from controls, whereas the 2nd peak KAM and 2nd peak 

KAAs were least discriminatory. For biomarkers, TNF-α closely followed by IL-6 were 

the most discriminatory variables, whereas CTX-I showed no discriminatory power. 

HCA identified three primary clusters in the PCA variable loadings (Figure 5.3-6; C & D). 

Group 1 loaded negatively on PC1 and represented bone formation (ALP & IL-10) and 

mechanical loading (glutamate & sclerostin) biomarkers. Group 2 loaded positively on 

PC2 and represented KOOS pain, symptoms and function scores and OPG (CTX-I appears 

to be relatively independent). Finally, group 3 loaded positively on PC1 and included 

knee loading (KAAI, KAMp1 and KAMp2) and angle (KAAp1 and KAAp2) parameters, 

pro-inflammatory markers (IL-6, IL-8 and TNF-α) and bone resorption signalling 

markers (RANKL, RANKL/OPG). 

The score space also identified outlying individuals (possible phenotypes) from each 

group (Figure 5.3-7). From the FCD group, subject LP was notably more closely clustered 

with the uOA group and presented increased cumulative and peak knee loading 

accompanied by increased pro-inflammatory activity (TNF-α), reduced bone formation 

(ALP) and possibly increased subchondral bone loading (reduced sclerostin) relative to 

the FCD group average. Whereas uOA intra-group variances revealed 3 possible 

subpopulations: (1) The largest cluster of three subjects who were featured at the PC 

origin and showed similar characteristics to the FCD group. (2) Subjects 505 and 16, who 

presented relatively high knee loading and varus alignment, increased pro-inflammatory 
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activity, high RANKL/OPG ratios, as well as reduced anti-inflammatory activity. (3) 

Subject 975, who presented relatively high cumulative knee loading, peak varus angles, 

lower glutamate levels, but most prominently worse reported clinical factors relative to 

average. 

 

  

Figure 5.3-6 - Principle component analysis (PCA) of FCD and uOA biomechanical, biological 

and clinical features; PC1 - 33.3% variance explained; PC 2 - 22.3% variance explained.  (A) Score 

space of FCD (green) and uOA (blue) subject PC scores. (B) Disease group discriminatory analysis. 

Coefficients represent variable differences from FCD to uOA group (i.e. variables of positive 

coefficients were relatively higher in uOA group). (C) Hierarchical cluster analysis of PCA variable 

loadings. (D) PCA variable loadings plot – spatial distribution of variables corresponds to the 

subject scores in the score space.   

 

Figure 5.3-7 - Principle component analysis (PCA) of FCD and uOA biomechanical, biological and 

clinical features; PC1 - 33.3% variance explained; PC 2 - 22.3% variance explained. (A) Score space 

of FCD (green) and uOA (blue) subject PC scores. (B) PC 1+2 coefficients that represent the 

difference of subject LP relative to FCD group average (i.e. variables of positive coefficients were 

relatively higher in LP). (C) PC 1+2 coefficients that represent the difference of subjects 16 and 

505 relative to group average. (D) PC 1+2 coefficients that represent the difference between 

subject 975 relative to group average. To note: Biomechanical variables are expressed as the 

number of standard deviations away from the control mean values (extracted from chapter 2 

results) for each variable KOOS scores are expressed as 1-score (higher score = worsening clinical 

factors). 
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5.4 Discussion 

5.4.1 Overview 

Key findings from objective 1 and 2 of the analysis will firstly be discussed individually, 

followed by general discussion with association of the combined findings to current 

literature for each biomarker group (turnover, mechanical loading, inflammation).  

5.4.2 Key findings for objective 1 

The first objective of this chapter was to investigate the effect of knee biomechanical 

parameters of frontal plane knee loading and alignment angles during walking on 

synovial fluid biomarkers of bone turnover, mechanical loading of bone, and 

inflammation.  

This present study provides new evidence detailing the relationship between levels of 

biomarkers in the joint and measures of dynamic knee loads relevant to FCD and OA 

pathogenesis. After log-transformations and controlling for age and BMI, a total of five 

examined biomarkers were significantly influenced by joint function, reflecting changes 

in bone remodelling, notably osteoclastogenic signalling and activity, as well as pro-

inflammatory activity – all previously implicated in knee OA pathogenesis, but not shown 

to be significantly associated with function (Kraus et al., 2017, Chen et al., 2017, Legrand 

et al., 2017). By contrast, assessment of FCD subjects alone revealed a less prominent 

influence of joint loading on analyte patterns in this preliminary study, however early 

findings show an association between dynamic knee alignment and bone turnover (i.e. 

bone resorption and formation), as well as a considerable relation to pro-inflammatory 

IL-6 and IL-8 activity. This is suggestive that there may be an ‘inflamed’ phenotype 

associated with increased bone turnover and a catabolic joint  that may do worse after 

microfracture surgery. 

Utility of functional measures as predictors of tissue response 

All functional loading parameters significantly explained variances of at least one 

biomarker, implying that the pathological tissue response may be sensitive to both 

cumulative and peak knee loading. However, the 2nd peak KAM appeared to be the best 

predictor, significantly explaining variances of all five mechano-sensitive molecules. 

Interestingly, this contrasted with the 1st peak KAM that only significantly predicted the 

variances of OPG. These findings are consistent with the most recent study to correlate 
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KAMs with direct knee forces measured using instrumented knee implants that showed 

the 2nd peak KAM better predicted actual peak medial knee forces relative to the 1st peak, 

though they were both significant predictors (Kutzner et al., 2013). The 2nd peak may 

therefore be a better predictor of tissue loading and furthermore, loading of the knee 

during the 2nd half of stance may be a more important functional deficiency in causing 

this consequential tissue response.  

Peak moments are less sensitive measures at lower speeds, since this is an effective 

method of lowering peak joint loads and consequently pain (Simic et al., 2011), whereas 

the impulse is more sensitive to changes with varying gait speed since it reflects both the 

duration and degree of knee loading (Robbins and Maly, 2009, Landry et al., 2007). 

Therefore, it was unexpected that both types of dynamic loading measure demonstrated 

similar associations despite the high variance in gait speed in the combined cohort 

(range: 0.64 - 1.27 m/s, mean (SD): 1.1 (0.2) m/s). It is noteworthy though that the KAAI 

did not significantly predict TNF-α and CTX-I variations, suggesting peak joint loads 

ultimately have a stronger overall influence. This importantly indicates that there may 

be a benefit to slowing walking speed or altering gait patterns to reduce peak loads that 

appear to have a more potent influence on the catabolic response of joint tissues.     

The disparity between the five significantly predicted variances by 2nd peak KAM and the 

single predicted variance by 2nd peak KAAs suggests peak moments are more sensitive 

than peak angles as representative measures of tissue loading. Interestingly, when 

assessing FCD subjects alone, dynamic knee alignment appears to be a better predictor 

of biomarker levels, since quadratic relationships similar to those of the linear regression 

(CTX-I and IL-6) were only found in relation to peak KAAs. Though, it is a possibility this 

is a limitation of the sample size of this study, since single outliers appeared to strongly 

influence coefficients of the quadratic regressions.  

Altered knee loading promotes inflammatory dysregulation 

This is the first study to demonstrate that the magnitude of knee compartmental peak 

load, cumulative load or degree of knee alignment over the human gait cycle are 

significantly associated with pro-inflammatory activity in unilateral knee pathology. The 

pattern of increased IL-6, IL-8 and TNF-α with a negative effect on IL-10 concomitant 

with increased loading is consistent with a catabolic environment (Kapoor et al., 2011). 

This is in keeping with findings of chapter 3 that revealed increased IL-6 and IL-8 levels 

coupled with decreased IL-10 and IL-13 as the largest discriminating features of the uOA 

group relative to the FCD group, which warrants further investigation into the individual 

contributions of pathological knee loading and disease severity/knee damage to 
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inflammatory dysregulation. Delineating the effect of biomechanical loading and severity 

can be complex, since factors such as joint space narrowing and cartilage loss which 

define joint severity also contribute to knee malalignment, and thus altered knee loading. 

The potential relationship of increased knee malalignment with IL-6 in FCD subjects 

alone is also an important finding, since it was not previously possible to confirm pro-

inflammatory cytokine involvement in FCD relative to control serum, due to the poor 

inter-fluid correlations. These findings are consistent with the hypothesis that 

inflammation contributes to the experienced joint damage in knee OA as consequence of 

pathomechanics (Felson, 2013).  

Subchondral bone loading promotes increased bone remodelling that shifts 

towards bone resorption with disease advancement  

A distinctive feature of FCD group findings was the significant effect knee loading had on 

bone turnover, evidenced by the quadratic relationships to bone formation (ALP) and 

resorption (CTX-I) markers. The up-regulation of ALP reflects the adaptive anabolic 

response of bone to a mechanical stimulus (Burr and Gallant, 2012), however these 

results suggest a possible maladaptive response in regards to pathophysiological levels 

of loading, since ALP levels were up to 2.5 to 3-fold higher in those experiencing the 

highest degrees of malalignment. When involving uOA subjects however, the loading 

effect on bone resorption levels was consistent, but in contrast bone formation was no 

longer associated with higher levels of loading. Together, these findings suggest a 

mechanism by which the effect on bone remodelling shifts towards bone resorption at 

higher levels of knee loading and disease severity, a previously unreported feature of 

disease progression in humans which may be critical to the development of established 

OA. 

Interestingly, the progressive feature of increased resorption activity concomitant with 

loading is not consistent with the loading effect on the canonical osteoclastogenesis 

pathway activation through the RANK/RANKL/OPG system, since the pathway inhibitor 

OPG appears to be significantly up-regulated with response to load. The OPG response 

to load is reflective of the mechano-regulatory processes that occur in adaptation 

mechanisms of bone, indicating a molecular switch towards bone formation by inhibition 

of osteoclast activation (Burr and Gallant, 2012). However, normal functioning of this 

response appears to be disrupted by the altered regulation of RANKL expression, since 

RANKL:OPG ratio values were not ultimately influenced by functional parameters. 

Considering the evident correlations of synovial fluid IL-6 and IL-8 with RANKL levels 

found in chapter 3, it is reasonable to suggest the effect joint loading has on pro-



Chapter 5 

 
231 

 

inflammatory cytokine production may be indirectly counteracting the effect 

compensatory mechano-regulation of OPG levels has on canonical osteoclastogenesis 

pathway activation.  

Mechanically-regulated bone markers may be dysregulated in disease states 

Unexpectedly, there were no clear influences of peak or cumulative knee loads on 

sclerostin or glutamate levels in the joint, which is further evidence for the altered bone 

regulatory pathways in the pathological knee. Previous studies have identified the 

association of pro-inflammatory signalling on expression of sclerostin by osteocytes 

(Baek et al., 2014, Kim et al., 2017). Sclerostin expression and production is typically 

down-regulated by mechanical stimulus of osteocytes (Robling et al., 2008) yet pro-

inflammatory signalling is positively influenced, thus these mechanisms would be 

opposing in the regulation of sclerostin levels in the joint - a paradoxical effect of 

increased loads. Since the modulation of sclerostin is a mechanism in which osteocytes 

co-ordinate local and regional osteogenesis, disruption of normal regulation may be a 

contributing factor for the shift towards bone resorption in enhanced loading conditions. 

As Chan et al. reported, sclerostin is also expressed by chondrocytes in focal regions of 

chondral damage (Chan et al., 2011). This is consistent with the significant inverse trend 

of serum sclerostin with COMP levels revealed in the previous chapter, since COMP is an 

indicator of cartilage structural degradation. Release of sclerostin could be involved in 

an autocrine or paracrine chondro-protective response to stress, since the Wnt signalling 

pathway stimulates production of catabolic enzymes in chondrocytes (Chan et al., 2011).  

The incongruencies of glutamate with biomechanical parameters are inconsistent with 

previous findings that have demonstrated the expression of functional components of 

glutamate including receptor subunits (Szczesniak et al., 2005), transporters (Mason et 

al., 1997) and possibly release mechanisms (Mason, 2004) are mechanically-regulated, 

therefore it is likely other influencing regulators may be involved. Glutamate 

concentrations in the joint are altered by functional components of exocytotic 

(accumulated) release and transporters that remove it from the extracellular space 

found on the surface of most joint tissue cell types (Wen et al., 2015, Brakspear and 

Mason, 2012). The joint space may therefore be subjected to relatively rapid fluctuations 

in glutamate signalling windows in response to mechanical activity causing synovial fluid 

concentrations to be prone to incongruencies with mechanical loading measures. It is 

relevant to consider that subjects waited typically 2 hours with minimal activity prior to 

synovial fluid aspiration. Further investigation controlling for recent activity is required 

to clarify the potential involvement of glutamatergic signalling in the excessively loaded 
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joint, since glutamate was one of few molecules shown to be significantly elevated in FCD 

serum relative to controls in the previous chapter which is suggestive of its involvement. 

5.4.3 Key findings for Objective 2 

The second objective of this chapter was to use PCA to assess inter- and intra-group 

variances and identify patient subtypes based on similarities of clinical, biomechanical 

and biological characteristics 

Combined functional and biomarker variances, but not clinical factors, 

discriminate disease group   

The unsupervised separation of FCD and uOA subject scores in the PCA score space is 

contrasting to that of chapter 3, which suggests that biomechanical variables heavily 

influenced variances of the PCA model compared to biomarkers alone. On assessment of 

the variable loadings plot, it was evident that increased uOA subjects were more 

associated with a pattern of high knee loading and catabolic signalling, whereas FCD 

subjects with better knee function were associated with osteogenic activity and bone 

formation. These data are consistent with the understanding that uOA subjects are 

reported to have static joint varus malalignment, which is explanatory of the consequent 

higher dynamic knee loading and dynamic angles (Sharma et al., 2001). Moreover, many 

biomarker group differences can be explained when considering the effect increased 

joint loading has on biomarker variances as found in the regression analyses. Notably, 

the 1st peak KAM and 2nd peak KAA were less discriminatory of disease group, which 

suggests they may be less associated with knee malalignment. Interestingly, both 

variables also explained lower percentages of biomarker variances than their 

counterparts. Together it is reasonable to suggest 2nd peak KAM, 1st peak KAA and KAAI 

may be overall stronger predictors of the tissue response to joint loading.     

HCA revealed that strikingly, patient-reported pain, symptoms and knee function scores 

were not discriminatory of disease groups, nor were they associated with functional and 

biological features as revealed by the HCA. When assessing PC 1 variances alone, it 

appears clinical KOOS scores (particularly symptoms) favours the uOA group, however 

variance introduced by PC 2 demonstrates the disassociation of clinical OA factors and 

physiological factors, which is supportive of the often reported weak correlation of OA 

severity with clinical scores (Dieppe and Lohmander, 2005).  
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Biomarkers of bone mechanical loading best describe FCD subjects in multivariate 

analysis 

Bone mechanical loading markers, glutamate and sclerostin, were strongly 

representative of the FCD group in multivariate analysis, heavily negatively loading on 

PC1 in contrast to biomechanical variables. These findings with regards to sclerostin are 

expected, as sclerostin expression in bone is typically down-regulated in the osteocytic 

response to load (Robling et al., 2008), therefore subjects of higher subchondral bone 

loading would logically present decreased extracellular concentrations. However, the 

weak positive association of sclerostin with functional parameters may suggest other 

regulators are involved as previously suggested.   

The association of glutamate with the FCD group when considering other variables is 

likely related its osteogenic influences, based on the correlation of synovial fluid 

glutamate with ALP levels found in the previous chapter. It has been suggested that 

glutamatergic signalling is involved in osteogenic pathway stimulation through the 

activation of ionotropic glutamate receptors on the surface of osteoblasts, which lead to 

the up-regulation of Runx2/cbfa1 activity and expression of osteogenic genes including 

that of ALP (Ho et al., 2005, Wen et al., 2015). The stronger relationship of glutamate to 

ALP relative to CTX-I levels in synovial fluid of the FCD joint suggests glutamate 

regulation and signalling is more evident in the anabolic response to load rather than 

resorption activity, however this requires further clarification possibly using co-culture 

studies involving multiple bone cell types (Vazquez 2014).   

Identifying FCD and OA phenotypes 

PCA identified intra-group outliers, namely FCD subject LP and uOA subjects 16 and 505 

of a higher peak knee loading (2nd peak KAM) and pro-inflammatory type relative to their 

respective groups. These features could represent a type that might be at higher risk of 

disease progression due to the increased catabolic environment evidenced by biomarker 

patterns in response to load. Further investigation of clinical factors for LP relative to the 

FCD group revealed that this subject uniquely suffered from ACL injury, which is 

supportive of the hypothesis that ACL-damage as a co-morbidity may be a larger 

influence on FCD progression than the presence of isolated FCDs or FCDs with meniscal 

loss alone, which has been suggested by others (Tandogan et al., 2004).  

Further exploration of the variable features of uOA subjects 16 and 505 highlighted that 

the 2nd peak of the KAM distinguished them from the group far more than other 

biomechanical factors. This could suggest that the catabolic response is a result of high 
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peak contact stresses on the joint surface rather than cumulative medial loading. The 

reduced pain and symptoms reported in these subjects relative to average may be 

partially explanatory of this finding, since subjects with joint pain tend to adopt adaptive 

gait strategies such as reducing gait speed to lower peak contact forces (Boyer et al., 

2012). Indeed, assessment of gait speeds indicated that both subjects walked faster 

(~1.2m/s) compared to the group average (1.05m/s). Moreover, there were no other 

clinical or demographic distinctive factors that could distinguish both subjects from the 

group (Appendix A.1). Together, these findings suggest higher walking speeds as a 

consequence of reduced pain may be an important risk factor for uOA subjects, since it 

appears to induce higher pro-inflammatory activity coupled with osteoclastogenesis 

signalling.    

uOA subject 975 who presented worsening clinical factors relative to average was 

surprisingly of the lowest disease severity grade from the uOA group (KL 2) and 

presented reduced pro-inflammatory activity and canonical osteoclastogenic signalling 

relative to the uOA group. The biomechanical characteristics of this subject of low peak 

loads but higher cumulative loading may be indicatory of compensatory gait mechanisms 

to reduce pain induced by high joint loads, in contrast to subjects 16 and 505. Indeed, 

this is further substantiated by the lower walking speed (0.86 m/s) of this subject 

relative to the group average (1.05m/s). This gait strategy is likely a consequence of the 

increased joint pain exhibited by this subject during gait.  

5.4.4 General discussion 

The aetiology of OA is a complex and multiscale problem, involving mechanical, 

biological and structural pathways. Despite important advances in understanding 

functional and biological characteristics of the OA process individually, there currently 

lacks an integrated view of the disease in humans (Cattano et al., 2017). Further 

elucidating these mechanisms by establishing links between indicators of knee function 

and biology in humans is critical for developing effective treatment strategies, since the 

population of OA patients is heterogeneous and treatments may be more effective if they 

could be individually tailored to the patient (Driban et al., 2010). Individuals with FCDs 

and uOA are useful disease models for understanding the involvement of aberrant joint 

loading in knee pathology, since their pathology is unicompartmental in nature, meaning 

that an underlying mechanical component is involved in disease progression. With the 

understanding that FCD and uOA subjects overload their knees, the hypothesis of this 

chapter was that biomarkers representative of tissue turnover, degradation, 
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inflammation and the mechanical response of bone measured in the affected joint fluids 

would correlate with biomechanical indicators of pathological joint loading. To date, this 

is one of few studies to combine interdisciplinary tools to explore and evidence this link.  

The earliest reported study, far ahead of its time, aimed to relate indicators of knee 

loading with disease severity and cartilage degradation in 23 severe OA subjects, by 

correlating peak knee adduction moments with KL grades, joint space width values and 

the release of HA, a component of cartilage matrix, into serum (Sharma et al., 1998). 

Although they found promising relationships of joint loading with OA severity and joint 

space narrowing (JSN), there were no clear links to HA levels, despite controlling for age 

and sex. However, they concluded the possibility that the magnitude of the adduction 

moment influences structural changes in cartilage, and that matrix breakdown is 

undoubtedly related (Sharma et al., 2001).  

In more recent years, the link between knee pathomechanics and biology has been 

somewhat invigorated. One study examining the relationship between KAAIs and peak 

KAMs with markers of cartilage matrix degeneration, including serum COMP, serum HA, 

urinary CTX-II and type II collagen cleavage neoepitope (uC2C) in 17 medial tibiofemoral 

OA subjects found that cumulative knee loading represented by the KAAI significantly 

predicted variation in urinary CTX-II levels, though adjusting for disease severity and 

walking speed eliminated these relationships (Hunt et al., 2013). It could be argued 

however that disease severity in medial OA is at least in part contributing to the 

fundamental finding, since it has been established in larger studies such as the 

Multicentre Osteoarthritis Study and the Osteoarthritis Initiative that architectural 

tissue changes that accompany disease severity influence knee malalignment and 

ultimately knee loading (Felson et al., 2013). Interestingly, data from the CHECK cohort 

of 1002 subjects found that unlike other cartilage markers examined, urinary CTX-II 

closely associated with serum and urinary biomarkers of bone turnover (CTX-I, sPINP, 

uNTX-I and osteocalcin), raising questions of its origin (van Spil et al., 2013). If indeed 

CTX-II is more representative of changes in bone, the findings from Hunt and colleagues 

would be consistent with those found within this study of higher CTX-I levels in 

association with increased knee loads.   

Another smaller study by Pietrosimone et al. (2017) investigated the influence of KAM 

and ground reaction force (GRF) parameters on serum CTX-II, serum matrix 

metalloproteinase-3 (MMP-3) and serum IL-6 in ACL transection patients at baseline and 

6 months following ACL reconstruction in 18 ACL-tear subjects. Unexpectedly, they 

found that 6-months following surgery, subjects with lesser biomechanical loading of the 
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affected limb at the 6-month follow-up exhibited increased plasma MMP-3 and IL-6, as 

well as elevated serum CTX-II. They hypothesised that this was owed to biological 

changes reflecting consistent offloading of the joint over the 6-months, evidenced by the 

decreased KAM and GRFs of the affected limb relative to the contralateral limb, since it 

is well established that catabolic cartilage and bone changes by stimulated by both 

underloading and overloading (Pietrosimone et al., 2017, Heijink et al., 2012).  

Although these recent studies found some interesting potential relationships between 

pathological gait mechanics and the tissue response to joint load, there are some 

limitations of this work. Notably, only urinary or serum biomarkers have been explored 

which do not accurately reflect the activities of the affected joint for some molecules, as 

demonstrated in the previous chapter whereby several molecules, notably pro-

inflammatory molecules and others poorly correlated across fluid types. Also, mostly 

only cartilage structural degradation markers have been investigated, which are strongly 

influenced by recent activity levels and exercise (Kraus et al., 2017, Lotz et al., 2013). 

Furthermore, cartilage structural markers are only partially representative of the true 

nature of OA as a whole joint disease (Findlay and Kuliwaba, 2016). In particular, there 

is a deficit of research exploring the biological response of subchondral bone to in vivo 

loads of the human knee, which has been consistently encouraged by previous authors 

due to the evident early molecular and structural changes which may precede changes 

in cartilage (Day et al., 2004, Burr, 2004, Chen et al., 2017).  

This study has provided preliminary evidence that in the tibiofemoral FCD joint, 

increased dynamic loading of the affected compartment in the knee stimulates bone 

turnover activity and possibly increased pro-inflammatory cytokine production. 

However, when accounting for established knee OA joints it is evident that higher 

compartmental loads elicit a pro-inflammatory cytokine response and shift of the bone 

remodelling balance towards increased resorption activity, as well as a possible 

disruption of homeostatic osteoclastogenic pathway inhibition mechanisms and down-

regulation of osteogenic bone formation. Moreover, investigation of individual variances 

using multivariate modelling identified an individual FCD subject who presented 

increased joint loads and stronger catabolic biomarker patterns relative to the rest of the 

group that may be attributed to their ACL tear. Assessment of variances in the OA group 

identified that levels of joint pain may influence self-perceived function, causing those of 

lower pain to walk faster, consequently increase peak knee loads and ultimately 

stimulate the shift towards pro-inflammatory and catabolic signalling in the joint.   



Chapter 5 

 
237 

 

5.4.5 Mechanical loading and inflammation in pathology 

As Felson noted, the question with regards to inflammation and OA is not whether it is 

present, but rather whether inflammation contributes to the experienced joint damage 

as consequence of pathomechanics (Felson, 2013). Considerable evidence has been 

shown by several clinical studies of the secondary inflammatory response to injury of 

the knee joint, though the delineation of biomechanical influences from the tissue 

response to damage in human studies has not been possible. The current findings are 

clearly supportive of the mechano-sensitivity of pro-inflammatory signalling in the 

pathological joint. However, this study is not conclusive evidence that loading is directly 

responsible for the pro-inflammatory response, since it was not possible to correct for 

factors such as degree of tissue damage or disease severity due to the lack of MRI data or 

reported clinical severity scores common to both FCD and uOA subjects. Is it 

considerable that larger clinical studies describing the joint response to injury discussed 

in the previous chapter, including that of the KICK cohort (Watt et al., 2016) and KANON 

(Struglics et al., 2015) report an initial peak, followed by down-regulation and continued 

lower level involvement of pro-inflammatory cytokines such as IL-6 and TNF-α at 6 

months to 5 years following initial joint injury. Another clinical study has shown using 

MRI in the examination of 1368 knees that the co-occurrence of synovitis with isolated 

meniscal tears in individuals of non-radiographic OA is very common (Roemer et al., 

2009). It is likely that the change in knee biomechanics and altered surface stress 

patterns that accompanies structural tissue damage and loss of ACL and meniscal 

function following injury may therefore be responsible for altered pro-inflammatory 

cytokine release (Andriacchi and Favre, 2014).  

In vitro studies have generated supportive evidence of the cellular and tissue 

inflammatory response to load through investigation of mechanotransduction pathways. 

A study by Koyama et al. demonstrated that compression of alveolar bone osteoblasts 

cultures revealed a force- (0.5-3.0g/cm2) and time- (1-24h) dependent upregulation of 

mRNA and cytokine expression of IL-1β, IL-6 and TNF-α, which continued to increase for 

up to 24 hours post-loading (Koyama et al., 2008). In another study 3D matrix-embedded 

primary murine calvaria osteoblasts subjected to 1.7MPa compression at 1Hz 

upregulated IL-6 mRNA expression after just 1 hour of loading, followed by up to a 32-

fold increase on IL-6 protein levels (Sanchez et al., 2009). Furthermore, specific 

inhibitors revealed that α-5-β1 integrin, NF-κB, ERK 1/2 as well as intracellular Ca2+ are 

involved in this mechanotransduction pathway. It has been well established that 

integrins and stretch-activated Ca2+ channels have a role to play in force transduction 
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from the ECM into the nucleus (Liedert et al., 2006), as is the involvement of NF-κB in 

pro-inflammatory signalling transduction and enhancement (Wojdasiewicz et al., 2014).  

Chondrocytes in articular cartilage are also thought to play an important role in the 

inflammatory response to pathophysiological loads through aberrant stimulation of 

integrin mechanotransduction pathways (Bader et al., 2011). In vitro studies using 3D 

culture models have shown that activation of α5β1 integrins signalling by excessive 

compressive and shear stress disrupts the actin cytoskeletal network, conversely 

stimulating NF-κB components ERK1/2, JNK1/2 and p38α and in turn, catalysing a range 

of catabolic processes including the synthesis of pro-inflammatory cytokines (primarily 

IL-1β and TNF-α), proteolytic enzymes (MMPs) and ADAMTSs (Stanton et al., 2002, Guo 

et al., 2009, Honda et al., 2000). Additionally, cartilage matrix components including 

fibronectin fragments (FN-f), C-/N-terminal collagen peptides (such as CTX-II), 

fibromodulin, decorin and COMP, which occur in excess in the presence of cleavage 

enzymes further pathologically activate integrins leading to a catabolic feedback loop 

through aberrant NF-κB pathway activation (Chowdhury et al., 2010, Bader et al., 2011). 

This ultimately implies that once an excessive mechanical stimulus activates 

chondrocytes to breakdown the surrounding matrix, the pro-inflammatory response will 

be self-perpetuating, a possible mechanism for cartilage fibrillation and degradation in 

FCD pathogenesis. 

Together, previous and current understandings implicate increased joint loading in pro-

inflammatory-driven tissue deterioration during the course of OA pathogenesis. Further 

understanding of these links is critical for identifying individuals at higher risk of 

progressive tibiofemoral defects that may go on to develop OA. However, continued 

study with larger sample sizes controlling for disease severity are critical to further 

substantiate this link.  

5.4.6 Mechanical loading and bone remodelling in pathology 

As previously detailed, past studies have identified promising associations between 

indicators of altered joint loading patterns and cartilage degradation (Andriacchi and 

Favre, 2014). However, the in vivo response of bone to loading of the human joint 

remains unexplored. This is surprising considering in recent years, molecular and 

compositional changes in subchondral bone have emerged as being of the earliest 

indicators of OA onset, and though to largely contribute to cartilage degeneration 

through modifying its viscoelastic properties (Burr, 2004, Burr and Gallant, 2012). 



Chapter 5 

 
239 

 

Remodelling of subchondral bone is dependent on the mechanical nature of its 

environment (Burr and Gallant, 2012). In the OA knee, pathophysiological signals result 

in structural abnormalities that hypothesised to contribute to disease (Favero et al., 

2015). Alterations in subchondral bone includes overgrowth and thickening, bone 

marrow lesions and attrition, most frequently occurring in the overloaded knee 

compartment (Neogi, 2012). These features are clearly suggestive of a link between 

aberrant joint loading and dysregulated bone remodelling, though the primary pathways 

responsible have to date not been elucidated. 

The association of elevated bone turnover with dynamic knee malalignment in medial 

and lateral FCD subjects is consistent with the hypothesis that high focal knee loads may 

be responsible for the presence of BMLs, since MRI studies show BMLs are very 

prevalent with tibiofemoral FCDs and composed of focal areas of bone attrition and 

sclerosis underlying the defect (Xu et al., 2012). Since BMLs detected and scored by MRI 

methods have proven to be strong predictors of defect progression, defined by 

worsening of chondral lesion MRI scores, they may play an important role in FCD 

pathogenesis (Dore et al., 2010). In a recent study, Zhu and colleagues exploring 

longitudinal relationships between BMLs and inflammation in 192 OA patients found a 

significant association of serum IL-6 levels with BML MRI scores both at baseline and at 

the 12-month follow up assessment (Zhu et al., 2017). The moderate quadratic 

relationship between peak KAAs and synovial fluid IL-6 levels found within this study is 

supportive of this hypothesis, and may explain the increased CTX-I in response to altered 

joint loads concomitant with malalignment in the FCD joint (Felson et al., 2013). The 

increased presence of ALP however was expected as the activity of transcription factor 

Runx2 which orchestrates ALP gene expression (and other osteogenic genes) is 

positively mechanically-regulated through several pathways, including the Wnt/β-

catenin (Robling et al., 2008) pathway, ERK/MAPK-dependent phosphorylation (Li et al., 

2012), as well as the recruitment of SMAD proteins to transcriptionally or directly 

activate Runx2 through synergistic interactions with BMP-2 signalling (Kopf et al., 2012). 

The activation of these pathways is typically involved in the anabolic repair process, 

however combined stimulation of catabolic pathways in response to pathophysiological 

loads are likely resulting in the highly disorganised tissue found in the composition of 

lesion-affected bone.   

Strikingly, when involving uOA subjects experiencing higher joint loads, the relationship 

of pathophysiological loading to ALP is abolished. Previous in vitro work suggests this 

dysregulation may be related to the influence of inflammatory signalling pathways. 
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Firstly, it has been found that osteoblastic IL-6 signalling inhibits the MAPK pathways by 

activated signal transducers and activators of transcription (STAT) (Osta et al., 2014). 

Whereas TNF-α activates SMAD ubiquitination regulatory factor-1 (SMURF1) and 

SMURF2 leading to dysregulated SMAD protein function which ultimately represses BMP 

signalling, also an important regulator of Runx2 activity (Yamazaki et al., 2009).  

Furthermore, IL-10 stimulates Runx2 activity through the activation of STAT-3 and the 

Smad1/5/8 and ERK-1/2 MAP kinase pathways, as well as through upregulation of BMP 

expression, thus reduced IL-10 activity will ultimately repress ALP synthesis (Jung et al., 

2013). The consequence of increased pro-inflammatory cytokine production in the 

overloaded joint may therefore be explanatory of these findings.  

Whilst bone formation appears to be repressed by pathophysiological joint loading, bone 

resorption is enhanced, evident by the significant association of CTX-I levels with 

indicators of both cumulative and peak joint loading even with controlling for age and 

BMI. However, the canonical osteoclast activation pathway does not seem to be involved 

in this trend, since RANKL/OPG values are dissociated from indicators of loading and did 

not correlate with CTX-I levels in the previous chapter either. It is possible that the bone 

resorption imbalance is more-so related to the increasing inflammatory dysregulation 

associated with loads, since IL-6, TNF-α and IL-10 are potent regulators of bone 

remodelling through independent non-canonical pathways (Osta et al., 2014, Yamazaki 

et al., 2009). Furthermore, the lack of association of glutamate and sclerostin levels with 

increasing joint loads is further evidence of the disruption of normal bone remodelling 

processes that occurs in pathophysiological states. These findings suggest further 

investigation of the involvement of non-canonical pathways involved in subchondral 

bone remodelling during the course of OA are critical to developing effective molecular 

targets to reverse bone abnormalities that may contribute to lesion and OA progression.  

Interestingly, the conflicting RANKL/OPG association with mechanical load is reflected 

in previous literature, which is recognised by authors in the field (Robling and Turner, 

2009). A study using oscillatory fluid flow-induced shear stress on a co-culture of murine 

bone marrow stromal (osteoblast-like) cells and RAW 265.7 (osteoclast progenitor) 

monocytes showed that peak shear stresses of 1Pa induced a significant increase in OPG 

and decrease in RANKL gene expression over 2 hours, with a lower number of mature 

osteoclasts quantified at the end of the experiment in contrast to unloaded controls (Kim 

et al., 2006a). This experiment was also replicated by independent authors using just 

MC3T3-E1 pre-osteoblastic cells, who also found a significant decrease in the 

RANKL/OPG ratio expression (Yoo et al., 2014). In contrast, a study investigating 
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compression of murine primary calvaria osteoblasts in a 3D membrane culture at 1.7MPa 

found a decreasing trend of OPG mRNA expression after 4 hours of loading, with no 

change in in RANKL expression (Sanchez et al., 2009). Similarly, it was shown that 

mesenchymal stem cells (MSCs) exposed to varying (10-36 kPa) pressure at 0.25Hz 

frequency during osteodifferentiation promoted osteoclastogenic signalling (increased 

RANKL/OPG mRNA) at all pressures tested relative to controls over 8 hours (Liu et al., 

2009). It is possible that the contrasting results depend on experimental factors such as 

cell line, mechanical stress induction (e.g. shear vs compression) and physio-

/pathophysiological ranges of stress, therefore in vivo models may be more reliable for 

understanding these pathways.    

The findings from this study suggest that OPG may be more heavily involved in the 

response to mechanical load given its strong correlation to loading parameters, whereas 

RANKL expression may be more sensitive to the balance of local pro-inflammatory 

signalling. Indeed, it has been established that under inflammatory conditions, IL-6 

reception via IL-6R activates JAK/STAT-dependent upregulation of RANKL expression in 

osteoblasts, whereas TNF-α inhibits SMAD-dependent downregulation of RANKL 

expression (Osta et al., 2014). On the other hand, Runx-2-dependent OPG expression in 

osteoblasts is upregulated by the p38 mitogen-activated protein kinase (MAPK) 

pathway, SMAD proteins, as well as the canonical Wnt (β-catenin) pathway, all of which 

are perpetually inhibited by sclerostin during the resting state (Galea et al., 2017, Kusumi 

et al., 2005). However, mechanical stimulation of osteocytes downregulates sclerostin 

expression and inhibits its release, therefore increasing mechanical loading of bone will 

ultimately enhance OPG expression and synthesis. In the case of subjects 16 and 505 in 

the multivariate analysis of this study, the excessive joint loads are likely both 

stimulating OPG expression in osteoblasts, as well as the production of pro-inflammatory 

cytokines that influence RANKL expression, however due to their relatively high 

RANKL/OPG levels it is clear that inflammatory signalling is the more potent influencing 

factor.   

Since the compensatory osteoblastic response to increased bone loading represented by 

OPG appears to be maintained even at pathophysiological levels of loading in the FCD 

and uOA knee, pro-inflammatory pathway inhibitors may be useful in restoring normal 

regulation of bone resorption activity by the canonical signalling pathway. Interestingly, 

clinical studies investigating the use of TNF inhibitors in rheumatoid arthritis have 

reported anti-resorptive effects on bone, which supports a possible route for controlling 

early bone loss and BML pathogenesis in the OA process (Kawai et al., 2012).      
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5.4.7 Biomechanical bone markers 

As described in the introductory chapter, bone depends on a physiological loading 

stimulus for adaptive remodelling in which sclerostin and glutamate are importantly 

involved, acting as mechano-tropic agents linking cell mechanotransduction pathways 

and bone cell maturity and activity (Galea et al., 2017, Brakspear and Mason, 2012, 

Mason et al., 1997, Robling et al., 2008). Within this cohort however, neither analyte 

demonstrated clear trends with indicators of biomechanical loading in either analysis, 

even when accounting for age and BMI. Interestingly, the multivariate analysis found that 

both molecules were strongly representative of members from the FCD cohort who 

experienced the lowest cumulative and peak loads relative to whole cohort and clustered 

with bone formation favouring markers ALP and IL-10 in the HCA. The multivariate 

analysis findings for sclerostin are in line with the established typical response to loading 

of subchondral bone, whereby the expression and release of sclerostin by mechanically 

stressed osteocytes in the joint is down-regulated, promoting osteogenic activity to 

repair stressed areas of bone (Galea et al., 2017, Robling et al., 2008). Sclerostin 

negatively weighted on the PC 1 hyperplane opposing weightings of the loading 

parameters, which is suggestive of its negative involvement. However, contradictory to 

this, the weak positive relationship found when predicting sclerostin variances from 

loading parameters was unexpected and implies that other regulators may be involved.  

Pro-inflammatory activity has recently been suggested to influence osteocytic 

expression of sclerostin (Baek et al., 2014, Kim et al., 2017). Baek and colleagues 

demonstrated that treatment of MLO-T4 osteocytes with TNF-α led to significantly 

increased sclerostin expression, and TNF-α-dependent sclerostin expression was 

inhibited by blocking of NF-κB activation with small interfering RNAs (Baek et al., 2014). 

Furthermore, they showed using chromatin immunoprecipitation and a luciferase 

reporter assay that NF-κB binds directly to binding elements on the murine sost 

promoter and consequently up-regulates expression of sclerostin. In a more recent study 

supportive of these findings, TNF-α inhibitor (infliximab) significantly reduced the 

number of sclerostin-positive osteocytes and SOST expression in alveolar osteoblasts 

from mice with periodontitis or type 1 diabetes (Kim et al., 2017). Furthermore, 

intravenous TNF-α antagonist administration increased mandible osteoid area, 

reversing the bone loss associated with periodontitis and diabetes. These findings 

importantly describe another mechanism in which the bone formation response is 

inhibited in the inflamed joint, by which TNF-α ultimately disrupts Wnt signalling in bone 

through the regulation of sclerostin. Besides TNF-α, IL-6 (Wang et al., 2003) and IL-1β 
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(Rigoglou and Papavassiliou, 2013) are also shown to stimulate the NF-κB pathway in 

osteocytes, implicating their involvement in this mechanism. 

As mentioned in the previous chapter, it has been recognised that chondrocytes from 

sheep and mouse joint destabilization PTOA models showed enhanced expression of 

sclerostin in regions of focal cartilage damage, whilst reduced sclerostin expression was 

detected in regions of sclerotic subchondral bone (Chan et al., 2011, Lewiecki, 2014). 

This is consistent with the significant correlation of serum sclerostin with COMP levels 

found in the previous chapter, suggesting that the degree of cartilage degradation in the 

FCD joint may be associated with sclerostin expression by affected chondrocytes. 

Furthermore, sclerostin is biologically active in chondrocytes, inhibiting Wnt/β-catenin 

activation responsible for catabolic MMP and ADAMTS expression, but also decreasing 

expression of collagen type-II and aggrecan. Due to these contrasting effects which have 

been verified more recently (Chang et al., 2018), this response has sparked controversy 

over whether or not it is a chondro-protective mechanism. Extracellular release into the 

joint could be an auto- and paracrine response to the high mechanical stress and/or pro-

inflammatory conditions to protect local regions of cartilage from excess degradation. 

Considering aforementioned findings, synovial fluid sclerostin levels may increase in the 

inflamed bone and damaged cartilage in response to continued mechanical insult, thus 

obscuring the typical inverse relationship expected from bone signalling. Whilst 

heightened sclerostin in synovial fluid produced by cartilage may have a more targeted 

localised effect in the healthy joint, there is evidence to suggest that aberrant loading in 

the arthritic joint promotes cartilage and bone crosstalk, since structural damage causes 

microfractures in bone and cartilage that expose deeper layers of subchondral bone to 

articular activity (Findlay and Kuliwaba, 2016). If this is the case, increased sclerostin 

production by chondrocytes may have important consequences on bone remodelling in 

the FCD and OA joint. The enhanced disruption of Wnt-β-catenin signalling in osteoblasts 

would inhibit differentiation and osteogenic activity (Sebastian and Loots, 2017), whilst 

promoting bone resorption through activation of osteocytic-mediated RANKL-RANK 

activation of osteoclast progenitors (Wijenayaka et al., 2011). This mechanism could 

therefore be a major contributing factor to the formation of BMLs following injury which 

is commonly reported and a risk factor for FCD development (Muratovic et al., 2016). 

The amount of glutamate available for release by osteoblasts may be also partially 

regulated by altered sclerostin activity as others have suggested (Cowan et al., 2012), 

since canonical Wnt pathway activation in osteoblasts has been shown to negatively 

regulate the conversion of intracellular stores of glutamate to glutamine by glutamine 
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synthase (GS)– thought to be a strategic mechanism to control osteogenic glutamate 

activity in bone (Olkku and Mahonen, 2008, Cowan et al., 2012). However, this theory is 

not fitting with the clustering of glutamate with sclerostin in the multivariate analysis, 

nor the moderate positive association of synovial fluid glutamate with sclerostin levels 

found in the previous chapter, in which the reasons are unclear and warrants further 

investigation.  

Glutamate signalling mechanisms appear to be mechanically-regulated at multiple levels, 

since the expression of transporters (EAATs) that remove it from the extracellular space 

as well as receptor (iGluR) subunits are sensitive to loading of bone (Szczesniak et al., 

2005, Ho et al., 2005, Mason et al., 1997). However, knee functional parameters poorly 

predicted glutamate variations, suggesting there are other influential regulators. It is 

considerable though that functional components including vesicular glutamate 

transporters (VGLUTs) necessary for Ca2+-mediated exocytosis are thought to 

accumulate glutamate for release, and are expressed by rat primary osteoblasts (Hinoi 

et al., 2002) and osteoclasts (Morimoto et al., 2006). Furthermore, in cartilage, 

endogenous release of glutamate by chondrocytes and uptake appears to also be 

dependent on vesicle recycling activity, and uptake is enhanced by extracellular sodium 

and calcium in a dose-dependent manner, similar to that of bone cells, glial cells and 

neurons (Piepoli et al., 2009). The joint space is therefore potentially subjected to 

relatively rapid changes in glutamate signalling windows in response to mechanical 

activity patterns regulated by uptake and release mechanisms (Brakspear and Mason, 

2012). Furthermore, glutamatergic transduction and cellular responses are regulated 

locally by transporter activity and ionotropic and metabotropic receptor abundance. It 

is considerable that activity levels were not controlled for within this study, however 

subjects typically had a two-hour period prior to surgery in which activity levels were 

minimal, that may have impacted congruencies between indicators of joint loading and 

glutamate signalling activity. 

The clustering of glutamate with ALP in the multivariate analysis may be reflective of 

results from the previous chapter whereby they positively correlated in synovial fluid. 

The relationship of glutamate with ALP is consistent with the involvement of 

glutamatergic signalling in the regulation of osteoblastic differentiation and activity in 

bone (Wen et al., 2015). A number of studies have shown antagonising AMPA and NMDA 

osteoblast receptors leads to inhibition of Runx2/Cbfa-1 activity and consequently the 

expression of osteogenic genes including ALP, osteocalcin, osteopontin and collagen type 

I in cultured osteoblasts (Hinoi et al., 2003, Ho et al., 2005, Lin et al., 2008). Conversely, 
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activating them with agonists AMPA and NMDA in glutamate-free media leads to the 

upregulation of osteocalcin mRNA and matrix mineralisation (Lin et al., 2008). Thus, 

glutamate signalling plays a physiological role in mediating osteogenesis and bone 

formation. Within this study, ALP variances were significantly predicted by dynamic 

knee malalignment of the FCD joint suggesting a mechano-regulatory response, however 

sclerostin levels did not relate to ALP, therefore it is likely glutamate is at least partially 

mediating this osteoblastic response. Further investigation is required to validate these 

mechanisms in the human joint where controlling for activity levels is possible.  

5.4.8 Phenotyping FCD and OA subjects 

Identified phenotypes may represent different pathophysiologic etiologic subtypes of 

individuals with knee FCDs or OA and may be highly relevant to disease treatment 

(Driban et al., 2010, Kraus et al., 2017). Multiple approaches to phenotype identification 

have been advocated including those selective of drug target groups (Kraus et al., 2011), 

functional groups that could be targeted by physical therapy (Thoma et al., 2017) and 

clinical groups that could influence disease management strategies (Lotz et al., 2013, 

Hunt et al., 2013, Knoop et al., 2011). It was discussed in the previous chapter exploring 

biomarker variances that FCD and uOA subjects clustered based on relative synovial fluid 

levels of sclerostin, RANKL/OPG and anti-inflammatory signalling. Although these 

findings point out potential signalling subtypes, they may not be clinically meaningful 

alone. Since the subjects examined were clinically relevant groups with a clear functional 

component to their pathology, this chapter set out to combine functional, biological and 

clinical features that may identify variances with a more integrated view of the problem. 

Dell’lsola et al. carried out a systematic review on 24 studies that aimed to identify 

distinct phenotypes of knee OA, and through qualitative synthesis of evidence from 79 

reported phenotypes, proposed the existence of six dominant phenotypes: 1) chronic 

pain with prominent central sensitisation mechanisms active; 2) inflammatory, classified 

by elevated cytokine levels; 3) metabolic syndrome, classified by metabolic disturbances 

such as obesity and diabetes; 4) Bone and cartilage metabolism, classified by alterations 

in local turnover activities; 5) mechanical overload, classified by altered knee 

malalignment and unicompartmental disease; and finally 6) minimal joint disease, 

classified as minor clinical symptoms and low progression (Dell'Isola et al., 2016). This 

was a thorough review and surprisingly, a lack of studies featuring multiple variable 

types were present, as each was classified as either of a ‘biomarker’, ‘imaging’, ‘genetic’, 

‘functional’ or ‘epidemiological’ type.  
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Preliminary evidence from this study suggests it is possible that there may be 

overlapping features which could not be identified without investigation of linked 

functional, biological, imaging and clinical data in a ‘systems’ approach. For example, it 

was evident from both regression and multivariate analysis that mechanical overload 

(unicompartmental disease) subtypes experience high levels of pro-inflammatory 

activity dependent on the level of loading, which could be a possible relationship of these 

apparent distinct phenotypes. Furthermore, introducing clinical features in the 

multivariate analysis revealed distinctive individual mechanisms. For example, uOA 

subjects 16 and 505 with increased clinical symptoms to the rest exhibited overloading 

of their knees which was associated with higher levels of inflammation and 

osteoclastogenic signalling coupled with lower bone synthesis. Whereas subject 975 

exhibited improved clinical symptoms, lower peak knee loads by slowing their gait 

speed, associated with reduced inflammatory and osteoclastogenic signalling. These 

patterns are in line with gait analysis studies that show subjects experiencing acute knee 

pain develop adaptive gait strategies such as slowing gait speed to avoid pain by 

lowering peak loading of the affected compartment (Boyer et al., 2012). Interestingly, it 

has been shown that patients who successfully reduce medial loading parameters 

(including KAM and KAAI) using adaptive gait strategies to pain have a slower rate of 

knee OA disease progression (Felson et al., 2013, Sharma et al., 2001).  

Other notable observations resulting from this analysis included FCD subject LP who 

may have experienced enhanced overloading and/or injury-induced inflammation, due 

to an ACL-comorbidity, which consequently led to a biomarker pattern of an increased 

inflammatory and catabolic state relative to the FCD group. This is consistent with the 

observation that FCD subjects with accompanying ACL-tears present faster progressing 

and more severe lesions than those with isolated damage (Davies-Tuck et al., 2008b, 

Tandogan et al., 2004). In contrast to progressive groups, PCA identified uOA subject 

1271 who associated closely with the FCD group and demonstrated evidence of lower 

knee loading and inflammation relative to the uOA group. Peculiarly, this subject is in 

line for a relatively invasive surgery (HTO) to correct varus joint alignment, therefore 

these factors alone may suggest that decision-making based off static joint alignment 

measured by X-ray alone may not always be representative of dynamic knee loading. 

Furthermore, biological characteristics of this subject are representative of an earlier 

disease state, which implies they may not be susceptible to the same rate of progression.  

These findings collectively demonstrate an integrated approach combining multiple 

variable types may reveal patients that suffer from distinct etiological mechanisms that 
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may respond differently to treatment (Driban et al., 2010). Although some interesting 

results were found here, larger-scale studies are required to gain full benefit from such 

analyses. This approach could further identify influences of other factors such as 

response to treatment, disease severity, use of pain medication and activity levels on OA 

disease mechanisms that affect the joint as a system, rather than individual factors. 

Furthermore, to aid exploratory analyses such as this, avenues for future research should 

focus on identifying the link between phenotypes of biomechanical, biological, structural 

and clinical similarities and hard clinical endpoints such as requirement for revision 

surgeries, or total knee replacement (Lotz et al., 2013). This would ultimately improve 

retrospective decision-making dependent on objective assessment to further optimise 

treatments.    

5.4.9 Chapter limitations 

5.4.9.1 No control group 

Collection of biomechanical and serum biomarker data from control subjects occurred 

during various stages of the study and involved different subjects, leading to an 

unmatched biomechanics-biomarker dataset. Previous chapters have identified 

biomechanical and biomarker features that differ in FCD subjects from controls, which 

suggests there may be important functional and biological links to validate for the 

purpose of further elucidating mechanisms of FCD pathogenesis. It is noteworthy that 

many important analytes including pro-inflammatory cytokines, IL-10, RANKL, OPG and 

ALP were poorly reflected in serum likely due to their localised mechanisms of action, 

meaning that control groups reflecting serum biomarkers alone would not contribute to 

the interpretation of relationships between biological and biomechanical variables. 

Therefore, future studies should aim to involve controls with the inclusion of synovial 

fluid biomarker concentrations.          

5.4.9.2 Covariates and confounding factors 

Disease severity 

An objective of this chapter was to determine discriminating patterns relating to disease 

state (i.e. FCD and uOA) defined by clinical status, however a common clinical score 

defining individual disease severity was not testable since FCD subjects are clinically 

scored based on the Outerbridge grading system during arthroscopy (Lasmar et al., 
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2011), whereas uOA are radiographically graded based on the Kellgren-Lawrence 

system (Kellgren and Lawrence, 1957). Since radiographs were not taken for FCD 

subjects due it being an ‘unnecessary’ exposure to X-rays, it was not possible to assess 

joint space narrowing, presence of osteophytes or bone sclerosis, all crucial factors in KL 

grading definitions. Furthermore, the joint surfaces are not exposed during HTO surgery 

(for realigning the uOA joint) to allow for Outerbridge scoring. This affected the ability 

to control for- or investigate the effect of disease severity across the cohort. An assessible 

measure of disease severity is particularly relevant since the level of tissue damage is 

likely a confounding variable of the association of loading with biomarkers; loss of 

cartilage and meniscal tissue correlates with knee malalignment and tissue damage with 

common biomarkers of OA  (Attur et al., 2013, Andriacchi and Favre, 2014). It is 

noteworthy that variations in KL grade correlate with CTX-II levels, but this was not 

found for CTX-I (Karsdal et al., 2010).  

In the last decade, structural MRI scoring and modelling methods have emerged as a 

useful research tools for qualitatively or quantitatively assessing structure and 

biochemical composition of joint tissues to better characterise stages of early to late 

stage OA-related tissue changes (Favero et al., 2015, Frobell, 2011, Matzat et al., 2013, 

Theologis et al., 2012, Van Rossom et al., 2017). Incorporating such parameters into 

multivariate analyses such as this presented may be a better substitute for differing 

clinical stratification scoring systems based on narrow disease stage sensitivities (such 

as Outerbridge), to provide a more objective understanding of the link between 

functional and biological mechanisms and disease related tissue structural or 

compositional changes. This is already being investigated in some groups in more recent 

years in both animal models and humans (Gilbert et al., 2018, Van Rossom et al., 2017). 

Diurnal variation 

The daily variation of molecular concentrations in relevant biological fluids is becoming 

increasingly recognised in the search for valid diagnostic and prognostic OA biomarkers. 

Several studies have described significant daily variation in serum and synovial fluid 

levels of OA-related cartilage and bone activity and metabolism markers in knee OA 

patients (Kong et al., 2006). This can relate to the activity of clock proteins that regulate 

circadian processes (Akagi et al., 2017, Bjarnason et al., 2002), diet patterns (Bjarnason 

et al., 2002) and levels of activity (Andersson et al., 2006a, Cattano et al., 2017). 

Degradative components of bone (e.g. CTX-I) and cartilage (e.g. COMP) as well as the 

activity of matrix degrading enzymes (MMPs) have notably been shown to significantly 

vary (Cattano et al., 2017, Kong et al., 2006, Yang and Meng, 2016). It is noteworthy 
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however that diurnal synovial fluid levels have not been examined. Within this 

preliminary study it was not possible to control for these factors, particularly since 

synovial fluids were extracted at time of surgery that was allocated to a slot between 

7am to 5pm. Particularly for the context of this chapter, activity levels were not 

controlled for which could have had an impact on congruencies between indicators of 

knee loading and mechanically-sensitive molecules such as glutamate and sclerostin, 

which introduced difficulty in delineating the effect of high mechanical loads from 

molecular elimination processes (such as the activity of glutamate transporters). In this 

study subjects typically fasted overnight before surgery and had a 2 hour wait prior to 

anaesthesia in which activity levels were minimal, which may have normalised some of 

these effects. However, since the clearance rate of molecules from the joint space vary 

substantially (Kong et al., 2006), further investigation is necessary to determine the 

effects of this.   

5.5 Conclusions 

This study is one of few attempting to bridge the gap between our understanding of 

biomechanical, biological and clinical characteristics of degenerative knee pathology in 

human subjects. Preliminary evidence has shown that the degree of joint mechanical 

overload is correlated to inflammatory molecules in the synovial fluid and changes in 

bone remodelling mechanisms. It is therefore critical to identify early pathology subjects 

in which can benefit from physical therapy methods such as gait retraining, or surgery 

aimed at correcting functional deficiencies of the knee such as meniscal replacements or 

high tibial osteotomy (HTO). These findings may, at least in part, be explanatory of the 

poor outcomes of cartilage repair methods (such as microfracture surgery) alone in 

some individuals with tibiofemoral FCDs that continue to abnormally load the joint 

following surgery and therefore drive catabolic processes (Layton et al., 2015).  

The rheumatology field is becoming increasingly aware of OA heterogeneity, with 

amounting evidence of the need for personalised treatments for distinct phenotypic 

groups (Karsdal et al., 2014). Within this study, several potential intra-group FCD and 

uOA phenotypes were identified using multivariate tools. Identification of individuals at 

an early stage that can benefit from correction of lower limb mechanical function is 

critical to their long-term joint health. Conversely, patients with normal levels of joint 

function with chronic inflammation may benefit more from anti-inflammatory therapy, 

whilst others with enhanced bone turnover imbalance towards net loss may be more 
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appropriately treated with antiresorptive treatments. Clinical decision making aided by 

research tools such as that presented here will surely optimise treatment for efficacy and 

longevity that current practice is lacking.       

 

  



Chapter 6  

Conclusions and Future Work 

 

6.1 Summary and recommendations for future work 

The overarching aim of this thesis was to advance our understanding of the 

characteristic features and etiologic factors of progressive knee FCDs, as well as the 

shortfalls of current surgical practice, to aid clinical decision making in the choice of 

effective treatments. The chapters presented here set out to achieve four objectives to 

satisfy this aim. For this final chapter, the key findings for each thesis objective will be 

summarised with suggestions for future work. 

Objective 1: To identify biomechanical and neuromuscular pathways of tibiofemoral FCD 

pathogenesis in patients and assess longitudinal functional outcomes of microfracture 

surgery 

In chapter 3, it was hypothesised that individuals with tibiofemoral FCDs would 

experience altered lower limb biomechanical and neuromuscular function, since 

progressive damage in the FCD joint is focal and in weight-bearing regions of the knee. 

Furthermore, that monitoring longitudinal biomechanical and neuromuscular 

alterations could be useful in assessing the efficacy of microfracture surgery for restoring 

lower limb function.   

It was found that both medial and lateral FCD subjects may be overloading the respective 

affected compartment of the knee, evident by the altered dynamic KAMs accompanied 

by knee malalignment. This is an important finding in relation to the pathogenesis and 

progression of tibiofemoral FCDs, since it is reasonable to suggest based on results from 

chapter 6 that overloading of the remaining damaged tissue in the joint will be 

contributing to catabolic signalling and consequently the progression of focal tissue 

damage. Although there was some evidence for improvement in lateral FCD subjects 

evident by trends towards faster walking speeds, more ‘normal’ KAM and KFM 

waveforms and improved hamstrings activation, it appears that microfracture surgery 

was generally ineffective at restoring biomechanical function to medial FCD subjects. An 
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important factor to consider here is that patient-reported outcomes (even for medial 

FCD subjects) were indicative of positive improvements, however, clearly neither FCD 

group showed changes in dynamic knee frontal plane alignment (KAAs), which were 

though to be causative of the increased compartmental loading (KAMs), consistent with 

others findings in OA subjects (Bennell et al., 2011, Felson et al., 2013). This suggests that 

microfracture surgery alone may not be adequate for eliminating the long-term risk of 

FCD progression. Furthermore, other conventional techniques such as ACI and MACI that 

have shown promising success over microfracture surgery may also have little overall 

effect on the knee alignment axis, which is influenced by a combination of factors 

including cartilage and meniscal tissue loss, alterations in bone structure, as well as 

ligament laxity that all introduce joint destabilization (Felson et al., 2000, Hunter et al., 

2006). Knee malalignment has long been thought as a primary risk factor for OA 

pathogenesis, therefore identifying this in earlier stage could help preventative 

strategies.  

Medial and lateral groups also showed distinct gait adaptations, reflective of the location 

of the lesion in relation to loading patterns in the joint during gait. Medial knee FCD 

subjects demonstrated prominent compensatory mechanisms during late-stance 

whereby they inadequately extended the knee, likely to reduce peak knee contact forces 

generated by the extension moment during push-off. This was accompanied by aberrant 

co-contraction of the quadriceps and hamstrings during stance, reflective of attempted 

protection of the knee from instability. Lateral FCD subjects on the other hand showed a 

delayed hamstrings contraction prior to heel-strike, possibly to reduce knee loading 

during weight-acceptance when increased lateral compartmental forces occur. Finally, a 

proportion of both medial and lateral FCD subjects may be shifting their centre of mass 

contralateral to the affected knee compartment to reduce compartmental forces. 

Together, these findings suggest pain caused by tibiofemoral FCDs may be influencing 

the loss of normal dynamic postural control, thought to attribute to abnormal muscle 

adaptations and weakness, another important risk factor for knee OA development 

(Takacs et al., 2013, Duffell et al., 2014). Furthermore, co-contraction of antagonistic 

muscles may be influencing further compression of the joint structures, further 

influencing pathobiological mechanisms as introduced in chapter 5 (Heiden et al., 2009). 

Future work should aim to identify the benefit of neuromuscular conditioning programs 

in the earlier stage of FCD development or following surgery, to ensure restoration of 

long-term healthy joint function and longevity of treatments.                   
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Objective 2: To identify biological pathways and biomarkers of tibiofemoral FCD 

pathogenesis by investigating molecules relating to tissue turnover, mechanobiology of 

bone and inflammation in synovial fluid and serum of tibiofemoral FCD subjects undergoing 

microfracture surgery   

The rationale behind chapter 4 was that biomarkers representing tissue turnover, 

biomechanical loading and inflammation that discriminated FCD fluid from controls and 

OA fluids would be useful in elucidating biological pathogenic pathways in the FCD-

affected knee, as well as for generating biomarkers that could be used for the longitudinal 

assessment of microfracture surgery.    

It was demonstrated that a pattern of increased dysregulation of inflammatory signalling 

was concomitant with increasing disease state (i.e. control > FCD > uOA), however this 

was only validated by consistent decreases of IL-10 levels, since pro-inflammatory 

cytokine activity in the joint was poorly represented in serum. Despite this, the 

consistent contrasting relationship between IL-10 and pro-inflammatory cytokines in all 

aspects of this thesis implies this molecule may be a valid representative biomarker of 

this critical dysregulation in serum. The implications of dysregulated inflammatory 

signalling in the joint is relevant to disease progression. Pro-inflammatory cytokines IL-

6 and IL-8 were shown to be strongly associated with osteoblastic RANKL signalling, a 

potent activator of osteoclastogenesis that will ultimately stimulate bone resorption 

(Boyce et al., 2015, Kim et al., 2017), whereas TNF-α appeared to stimulate bone 

resorption through non-canonical pathways, evident by its independent association with 

CTX-I (Steeve et al., 2004). Furthermore, anti-inflammatory cytokines IL-10 and IL-13 

showed important compensatory pathways through demonstrating strong negative 

associations with RANKL and positive trends with bone formation marker ALP. It could 

be that drugs intended for the treatment of inflammatory disease such as rheumatoid 

arthritis that have shown promise, such as TNF-α blockers (Feldmann and Maini, 2001), 

may be useful at this early stage in subjects exhibiting high inflammatory activity, to 

discourage perpetuating inflammatory dysregulation that may be influencing 

pathogenesis and ultimately irreversible changes in joint tissues. 

Aside from cytokine activity, the role of biomarkers of subchondral bone loading (i.e. 

sclerostin and glutamate) showed involvement with pathology groups that is under-

characterised in current literature. These findings are important in highlighting the 

involvement of bone in degenerative knee pathologies, which has long thought be 

important in the process (Findlay and Kuliwaba, 2016, Chen et al., 2017). The elevated 

levels of glutamate levels in FCD serum relative to controls is suggestive of enhanced 
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glutamatergic signalling, which has previously been demonstrated in our research group 

and others to be an important mediator of inflammatory, bone resorptive, cartilage 

degenerative and nociceptive pathways (Flood et al., 2007, Bonnet et al., 2015, Wen et 

al., 2015). However, it is likely the distinct regulatory mechanisms of extracellular 

glutamate obscured relationships to other pathways in the joint, hindering 

interpretation relative to FCD pathogenesis. Further study is recommended looking into 

this response whilst controlling for recent activity, since components of glutamate 

exocytosis and uptake appear to be mechanically-regulated (Mason et al., 1997, 

Szczesniak et al., 2005).  

A prominent finding in the multivariate analysis was that of the distinction of 

inflammatory and bone remodelling subgroups which appears to be related to sclerostin 

activity in the joint, which supports its role as a key regulator of disease (Lewiecki, 2014). 

Since sclerostin is highly regulated by mechanical loading of bone and produced by 

injured cartilage, it may be a useful biological measure in the stratification of clinical 

cases into treatment groups for targeted therapy of bone or cartilage related pathology. 

Further investigation into relationship between sclerostin activity and bone/cartilage 

compositional and structural changes using technology such as MRI may further clarify 

the utility of sclerostin for such methods. Aside from the molecules examined within this 

thesis, many other important biological pathways were not taken into consideration due 

to time and funding constraints. The most important being signalling mechanisms in 

cartilage such as the TGF-β pathways, critical in cartilage homeostasis and OA 

development (Finnson et al., 2012), mechanically-induced integrin-mediated catabolic 

pathway activation in chondrocytes (Bader et al., 2011), the production of matrix-

degrading enzymes such as MMPs and aggrecanases, as well as many others (Chen et al., 

2017, Jorgensen et al., 2017).     

Finally, it was shown that biological outcomes microfracture reflected a positive repair 

response in most FCD subjects, which was evident six-months post-surgery. Indeed, 

previous authors have recognised the therapeutic effect of introducing MSCs for treating 

OA, since they possess trophic and immunomodulatory properties that could enhance 

repair pathway activation in the affected joint (Pers et al., 2015). This finding 

importantly demonstrates that bone marrow stimulation combined with an appropriate 

method of correcting the dynamic mechanical joint axis for high joint loaders may 

provide positive long-term outcomes without the requirement of drugs or implants. 

Although the results are preliminary, it appears that poor outcomes of microfracture 

surgery may be related to a lack of improved inflammatory dysregulation in the joint 
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following surgery. However, it was not clear whether this outcome was a consequence 

of loading at the knee, since this subject (RP) belonged to the lateral knee FCD group who 

were better functioning both at prior to- and following surgery.   

Objective 3: To characterise the effect of altered knee mechanical loading on joint biology 

in tibiofemoral FCD and OA pathogenesis 

The relationship between mechanics and biology in the pathogenesis of degenerative 

knee pathology is undeniable, however these mechanisms are poorly characterised in 

humans. Chapter 5 set out to further elucidate if the aberrant joint biology that is 

associated with FCD and OA pathogenesis as validated in chapter 4 is a consequence of 

the pathomechanics relating to altered knee loading patterns.  

It was clearly evident that indicators of dynamic knee compartmental loading and 

alignment significantly associated with inflammatory activity and bone remodelling 

activity reflective of increased net bone resorption. Furthermore, it was suggested that 

the healthy positive feedback response of bone loading with the osteoblastic production 

of OPG, an important osteoclast inhibitor and promoter of bone formation, was disrupted 

by the effect pathophysiological loads had on inflammatory mechanisms. Osteoblastic 

RANKL expression is upregulated by pro-inflammatory cytokine signalling, as 

substantiated in chapter 4, thus counteracting the negative effect OPG has on bone 

resorption pathways by blocking the action of RANKL, a paradoxical effect. Although 

these mechanisms are consistent with in vitro and animal model work studying the 

mechano-response to loading, it has not been clarified whether the effect joint loading 

has on this biological condition is at least partially consequent of tissue damage severity 

in the joint, since it was not possible to control for this factor. Further study 

incorporating larger cohorts, with a range of severity scores such as KL grades or MRI 

tissue structural or composition scores is recommended to further elucidate clarify 

whether these striking associations are conclusive evidence of joint mechanics as a key 

driver of FCD and OA pathogenesis.  

Interestingly, it appears that at the FCD stage inflammatory dysregulation and 

enhancement of bone resorption concomitant with increasing compartmental loads is 

less prominent, however there is preliminary results to show that the degree of dynamic 

joint malalignment influencing loading patterns at this early stage could be an important 

risk factor for progression, due to its significant association with increased bone 

remodelling activity and possibly pro-inflammatory (IL-6) cytokine synthesis. 

Collectively, the results from this chapter encourage interventional studies investigating 

if cartilage repair techniques at this early stage are more effective for high knee loaders 
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when accompanied by interventions aimed at offloading the affected knee compartment 

by correcting the mechanical axis of the knee, such as gait retraining (Khalaj et al., 2014), 

lateral wedge insoles  (Radzimski et al., 2012) or high tibial osteotomy surgery (Morin et 

al., 2018). 

6.2 Thesis limitations 

Several limitations have been discussed throughout each individual chapter, however 

there were general limitations that are relevant to consider for this study: 

6.2.1 Study cohorts 

For involvement of control subjects, collection of gait data was at the start of the 

recruitment period, whereas it was only possible to collect serum later in the study due 

to lack of accessibility to a phlebotomist. This led to a mismatch of biomechanics-biology 

linked data for the control cohorts. The lack of a consistent control subject group 

throughout the study restricted the ability to distinguish between relationships of joint 

biomechanics and biology representative of a normal homeostatic environment relative 

to pathological conditions. Exploring this disparity could improve the understanding of 

whether the effect of joint loading patterns on the observed biological response is a 

consequence of pathomechanics alone, or pathomechanics with the initiation of joint 

damage. This could improve our understanding of the etiologic factors of tibiofemoral 

FCDs in those that have not suffered joint injuries. Andriacchi noted that cyclic normal 

joint loading may be important for homeostatic regulation in health, but a critical risk 

factor to disease initiation following a traumatic event (Andriacchi and Muendermann, 

2006). Further investigation of the relationships of mechanics and biology whilst taking 

healthy subjects into account would further substantiate this hypothesis.          

For involvement of OA subjects, synovial fluid samples were used from the ARUK BBC 

bio-bank. This resulted in the requirement for two cohorts examined across the thesis 

(i.e. unilateral OA in chapter 4 and 5 and severe OA in chapter 6), which was due to not 

having access to unilateral OA synovial fluid samples until later in the project, as this was 

under the decision of the ARUK centre for progression of this body of work. Ideally, 

unilateral OA subjects rather than severe OA subjects would have been the consistent 

comparator over chapter 4, 5 and 6, since FCDs have been more commonly reported to 

predispose to unilateral OA on their natural course, rather than total joint OA which may 

occur in much later stages (Davies-Tuck et al., 2008b, Carnes et al., 2012, Spahn and 
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Hofmann, 2014). Furthermore, unilateral OA joint tissue damage similarly to 

tibiofemoral FCD damage is focal in nature, typically isolated to a single compartment of 

the knee. Therefore, it is likely they experience more similar pathophysiological and 

etiological characteristics. Finally, unilateral OA subjects were younger with lower BMIs 

relative to severe OA subjects, which meant they were more demographically matched 

to FCD subjects. Together, it is evident that involvement of unilateral OA subjects rather 

than severe OA would allow for more clinically meaningful comparison when 

representing an advanced disease state, a consideration for future study.     

6.2.2 Sample size and heterogeneity 

A recurring factor within the outcomes of each chapter was the clear heterogeneity in 

the cohorts examined, evident by the intra-group variations detected by multivariate 

analysis methods. It is likely that several factors were likely responsible for these 

variations such as that of demographics and co-morbidities including meniscal and 

ligament pathologies which were clearly influential of mechanical and biological factors. 

Although it was possible to adjust for age and BMI in some statistical aspects of the study, 

the small sample size did not allow for the controlling of variation in co-morbidities, 

disease severity (for findings involving uOA cohorts), use of pain medication, diurnal 

changes in biological markers, or levels of joint activity, which have been suggested at 

some degree to be confounding of the results of this thesis. Further investigations using 

larger sample sizes will permit better interpretation of these factors in relation to FCD 

and OA pathogenic and etiologic mechanisms of disease.  

6.3 Final conclusion 

Collectively, these findings propose a mechanism by which daily cyclic 

pathophysiological loads acting on joint tissues in the affected knee compartment is 

driving lesion progression through the activation of deleterious pathways in the 

surrounding cells. Increased synthesis of pro-inflammatory cytokines in response to 

increased tissue loading generates a catabolic environment by stimulating the 

production of matrix degrading enzymes and causing a cellular switch from matrix 

production to matrix breakdown (Scanzello, 2017). The prolonged catabolic conditions 

and loss of consistent underlying subchondral bone composition leads to eventual 

structural degradation of cartilage, which exposes the remaining cartilage to increased 

forces due to the smaller surface area. Loss of cartilage structure influences further 



Chapter 6 

 
258 

 

malalignment of the joint, leading to higher compartmental loading (Felson et al., 2013). 

Ultimately, this mechanism describes a potential destructive feedback loop.        

This contribution of knowledge has identified new potential disease pathways and a 

plethora of candidate functional and biomolecular markers that could be useful for 

improving current strategies or informing clinical decision making for the treatment for 

tibiofemoral FCDs. Furthermore, the preliminary findings from this study clearly 

demonstrate the shortfalls of microfracture surgery may be related to our ignorance of 

the true complexity of knee degenerative pathology, which should be treated 

accordingly. Future areas of research and clinical studies encompassing mechanical, 

biological and structural pathways are essential for optimising treatments of FCDs for 

reproducible longevity and efficacy, in which current practice is lacking.   
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7.1 Disease cohort demographics and clinical factors 
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7.2 Knee Osteoarthritis Outcome Survey Scores 

 

 

 

 

 

 

 

 

 

 

 

  

Subject Type Patient codes KOOS Pain (t1) KOOS Pain (t2) KOOS Symptoms (t1) KOOS Symptoms (t2) KOOS Function (t1) KOOS Function (t2)

FCD AH 72.2 91.7 71.4 75 79.4 97.1

FCD DL 66.7 78.6 79.4

FCD FA 72.2 60.7 89.7

FCD JBH 61.1 100 64.3 96.4 63.2 100

FCD JD 86.1 97.2 78.6 89.3 94.1 95.6

FCD KM 38.9 42.9 39.7

FCD LP 61.1 53.6 70.6

FCD MT 52.8 63.9 67.9 85.7 41.2 72.1

FCD RP 100 88.9 75 67.9 85.3 79.4

FCD SA 80.6 94.4 82.1 96.4 88.2 97.1

FCD TR 63.9 21.4 41.2

OA 15 86.1 71.4 77.9

OA 16 94.4 85.7 95.6

OA 505 72.2 53.6 88.2

OA 700 72.2 64.3 77.9

OA 742 80.6 96.4 98.5

OA 975

OA 1271 94.4 92.9 98.5

OA 1300

OA 2219

OA 2234

OA 2293
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7.3 ARUK Patient Consent Form (Motion Analysis) 

 
 
 
 
 
 
Assessment of joint function in patients with joint problems 
using three-dimensional motion analysis techniques 
 
Study Number 
Patient Identification Number for this research: 
 
You DO NOT have to sign this document. Please DO NOT sign this document unless you 
fully understand it. If there is ANYTHING which you do not understand please do not 
hesitate to ask for a full explanation. 
 
To confirm agreement with each of the statements below, please initial each box and 
delete where applicable: 
 
 
1. I confirm that I have read and understand the information sheet dated 14 April 2017 
(Version 10.2) for the above study and have had the opportunity to ask questions.  
 
2. I understand that my participation in the study is voluntary and that I am free to 
withdraw at any time, without giving any reason, and without my medical care or legal 
rights being affected but any data collected up to the point of my withdrawal will be kept.   
 
3. I understand that my details will be linked to a unique identifier to allow you to follow 
me through course of the study 
 
4. You may / may not (please delete as appropriate)  contact me in the future to ask if I 
would be interested in participating in a future research project/survey    
 
5. I do / do not (please delete as appropriate) agree for you to share my anonymised data 
with external collaborators in the UK and abroad, including commercial companies 
   
 
6. I agree to you accessing appropriate related medical information (such as radiological 
images) for the purposes of this study. 
 
 
7. I agree for you to video my movements on a video-camera. I understand that if the 
video is used for research presentations that my anonymity will be ensured using digital 
masking. 
 
8.  I agree to my GP being informed of my participation in the study.  
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9.  I agree to take part in the above study.  
 
 
 
Name of Patient: ______________________________________ 
(Please print) 
 
Signature: ______________________   Date: ________________ 
 
 
I confirm that I have fully explained the experimental protocol and purpose of the study 
 
Name of Researcher: ___________________________________ 
 
Signature: _______________________   Date: ________________ 
 
 
Name of person taking consent: __________________________ 
(If different from researcher) 
 
Signature: _______________________  Date: _________________ 
 
GP Details 
 
GP Name: 
 
GP Address: 
 
GP Telephone Number: 
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7.4 ARUK Patient Consent Form (Samples) 

 

 

 

 
 

The collection, storage and analysis of Clinical Waste, Blood & 
Urine Samples 
 
PATIENT CONSENT FORM 
 
 
You DO NOT have to sign this document. Please DO NOT sign this document unless you 
fully understand it. If there is ANYTHING which you do not understand please do not 
hesitate to ask for a full explanation. 
 
To confirm agreement with each of the statements below, please initial each box and 
delete where applicable: 
  
1. I confirm that I have read and understand the information sheet dated 30 November 
2016 (Version 10.1) for the above study and have had the opportunity to ask questions 
 
2. I understand that my participation in the study is voluntary and that I am free to 
withdraw at any time, without giving any reason, and without my medical care or legal 
rights being affected.       
 
3. I understand that my details will be linked to a unique identifier to allow you to follow 
me through course of the study 
 
4. I do / do not (please delete as appropriate) give permission for up to a 40 ml (8 
teaspoons) sample of my blood  
to be collected.     
 
5. I do / do not (please delete as appropriate) give permission for one or more samples 
of my urine to be collected 
 
6. I do / do not (please delete as appropriate) give permission for my clinical waste 
collected during surgery to be collected    
 
 
7. I understand that researchers from other organisations in the UK and abroad, 
including commercial companies, may access my samples, that research may take many 
years and the information gained will not benefit me or my family directly. 
 
 
8. I do / do not (please delete as appropriate) give permission for genetic analysis to be 
carried out using my samples 
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9. I would / would not (please delete as appropriate)  like to be contacted if genetic 
information is found that may have implications for me or my family.  
 
10. I understand I can withdraw my consent for the storage and future use of my samples 
at any point and that any unused samples will be destroyed immediately. I understand 
that any samples used in research prior to the withdrawal of consent may not be 
destroyed until the end of the study.  
 
 
11. You may / may not (please delete as appropriate)  contact me in the future to ask if I 
would be interested in participating in a follow up study.  
 
12. I give permission for my consent to cover the collection of any additional samples 
over the next 2 years for this study and I understand that by signing this form I am not 
obliged to give these additional samples. 
 
13. I agree to my GP being contacted 
 
14. I understand that you may access my Medical notes.  
 
 
15. I agree to take part in the above study. 
 
 
Name of Patient: ______________________________________ 
 
Signature: ___________________________   Date: ___________ 
 
 
I confirm that I have fully explained the experimental protocol and purpose of the study 
 
Name of person taking consent: _________________________ 
(If different from researcher) 

 
Signature: ___________________________   Date: ___________ 
 
GP Details 
 
GP Name: 
 
GP Address: 
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7.5 Healthy Volunteer Consent Form (Motion analysis) 

 
 

 
 
 
Assessment of joint function in healthy volunteers using three 
dimensional motion analysis techniques 
 
Study Number: 
Volunteer Identification Number for this trial: 
 
You DO NOT have to sign this document. Please DO NOT sign this document unless 
you fully understand it. If there is ANYTHING which you do not understand please do 
not hesitate to ask for a full explanation. 
 
To confirm agreement with each of the statements below, please initial the box 
and amend as necessary: 
 
1. I confirm that I have read and understand the information sheet dated 14 April 2017 
(Version 10.2) for the above study and have had the opportunity to ask questions.  
 
 
2. I understand that my participation in the study is voluntary and that I am free to 
withdraw at any time, without giving any reason, and without my legal rights being 
affected but any data collected up to the point of my withdrawal will be kept.   
 
3. I understand that my details will be linked to a unique identifier to allow you to 
follow me through course of the study 
 
 
4. You may / may not (please delete as appropriate) contact me in the future to ask  
if I would be interested in participating in a future research project/survey   
 
5.  I do / do not (please delete as appropriate) agree for you to share anonymised 
data with external  
collaborators in the UK and aboard, including commercial companies.. 
 
6. I agree for you to video my movements on a video-camera. I understand  
that if the video is used for research presentations that my anonymity will be ensured 
using digital masking.   
 
7. I agree to my GP being contacted 
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8. I agree to take part in the above study.  
 
 
Name of Volunteer: ________________________________________ 
 
Signature: ___________________________   Date: ____________ 
 
I confirm that I have fully explained the experimental protocol and purpose of the study 
 
Name of Researcher: _____________________________________ 
 
Signature: ___________________________   Date: _____________ 
 
 
Name of person taking consent: _____________________________ 
(If different from researcher) 
 
Signature: ___________________________   Date: _____________ 
 
GP Details 
 
GP Name: 
 
GP Address: 
 
GP Telephone Number: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Original Centre file, 1 copy for the volunteer, 1 copy for the researcher 
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7.6 Healthy Volunteer Consent Form (Samples) 

 

 
 
 
 
 
The collection, storage and analysis of blood and urine samples 
 
Study Number: 
 

Participant Identification Number for this trial: 
 
You DO NOT have to sign this document. Please DO NOT sign this document unless 
you fully understand it. If there is ANYTHING which you do not understand please do 
not hesitate to ask for a full explanation. 
  
To confirm agreement with each of the statements below, please initial each 
box and delete where applicable: 
 
         
 
1. I confirm that I have read and understand the information sheet dated 30 November 
2016 (Version 10.1) for the above study and have had the opportunity to ask questions 
 
2. I understand that my participation in the study is voluntary and that I am     free to 
withdraw at any time, without giving any reason, and without my legal rights being 
affected.       
 
3. I understand that my details will be linked to a unique identifier to allow you to follow 
me through course of the study 
 
4... I do / do not (please delete as appropriate)  give permission for up to a 40 ml (8 
teaspoons) sample of my blood to be collected.    
 
5.  I do / do not (please delete as appropriate) give permission for one or more 
samples of my urine to be collected. 
 
6.  I understand that researchers from other organisations in the UK and abroad, 
including commercial companies, may access my samples, that research may take 
many years and the information gained will not benefit me or my family directly. 
7. I do / do not (please delete as appropriate) give permission for genetic analysis to 
be carried out using my samples 
      
 
8. I would / would not (please delete as appropriate)  like to be contacted if genetic 
information is found that may have implications for me or my family.  
 
 
9. I do / do not (please delete as appropriate) give permission for my samples to be 
stored and used in future research in the UK and abroad, including use by commercial 
companies  
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10. I understand I can withdraw my consent for the storage and future use  
of my samples at any point and that any unused samples will be destroyed 
immediately. I understand that any samples used in research prior to the  
withdrawal of consent may not be destroyed until the end of the study.  
 
11. You may / may not (please delete as appropriate) contact me in the future to ask 
if I would be interested in participating in a future research project/survey. Yes 
 
12. I give permission for my consent to cover the collection of any additional samples 
over the next 2 years for this study and I understand that by signing this form I am not 
obliged to give these additional samples. 
 
 

13. I do agree to my GP being contacted. 
 

 
14.  I agree to take part in the above study. 
 
 
Name of Particpant: _________________________________________ 
 
Signature: ___________________________   Date: ______________ 
 
 
I confirm that I have fully explained the experimental protocol and purpose of the study 
 
Name of Researcher: _____________________________________ 
 
Signature: ___________________________   Date: ______________ 
 
 
Name of person taking consent: ____________________________ 
(If different from researcher) 
 
Signature: __________________________    Date: _____________ 
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7.7 Knee Osteoarthritis Outcome Survey 
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