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Abstract

The movement towards open science is a consequence of seemingly pervasive failures to

replicate previous research. This transition comes with great benefits but also significant

challenges that are likely to affect those who carry out the research, usually early career

researchers (ECRs). Here, we describe key benefits, including reputational gains, increased

chances of publication, and a broader increase in the reliability of research. The increased

chances of publication are supported by exploratory analyses indicating null findings are

substantially more likely to be published via open registered reports in comparison to more

conventional methods. These benefits are balanced by challenges that we have encoun-

tered and that involve increased costs in terms of flexibility, time, and issues with the current

incentive structure, all of which seem to affect ECRs acutely. Although there are major

obstacles to the early adoption of open science, overall open science practices should bene-

fit both the ECR and improve the quality of research. We review 3 benefits and 3 challenges

and provide suggestions from the perspective of ECRs for moving towards open science

practices, which we believe scientists and institutions at all levels would do well to consider.

Introduction

Pervasive failures to replicate published work have raised major concerns in the life and social

sciences, which some have gone so far as to call a ‘crisis’ ([1–6], also see [7–9]). The potential

causes are numerous, well documented, and require a substantive change in how science is

conducted [2,4,10–16]. A shift to open science methods (summarised in Table 1) has been sug-

gested as a potential remedy to many of these concerns [2,4,17]. These encompass a range of

practices aimed at making science more reliable, including wider sharing and reanalysis of

code, data, and research materials [2,18]; valuing replications and reanalyses [2,5,6,19,20];

changes in statistical approaches with regards to power [21,22] and how evidence is assessed

[23]; interactive and more transparent ways of presenting data graphically [24,25]; potentially

the use of double-blind peer review [26]; and the use of formats such as preprints [27] and

open access publishing. In our experience of these, the adoption of study preregistration and

registered reports (RRs) is the change that most affects how science is conducted. These
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approaches require hypotheses and analysis pipelines to be declared publicly before data col-

lection [2,14,28,29] (although protocols can be embargoed). This makes the crucial distinction

between confirmatory hypothesis testing and post hoc exploratory analyses transparent. In the

case of RRs, hypotheses and methods are peer reviewed on the basis of scientific validity, statis-

tical power, and interest, and RRs can receive in principal acceptance for publication before

data is collected [29,30]. RRs can thereby increase the chances of publishing null findings, as

we demonstrate in ‘Benefit 1: Greater faith in research’. These preregistration approaches also

circumvent many of the factors that have contributed to the current problems of replication

[2,4,11,19]. Preregistering hypotheses and methods renders so-called hypothesizing after the

results are known (HARKing) [31] impossible and prevents manipulation of researcher

degrees of freedom or p hacking [4]. In addition, because most RR formats involve peer review

prior to data collection, the process can improve experimental design and methods through

recommendations made by reviewers.

There are promising and important reasons to implement and promote open science meth-

ods, as well as career-motivated reasons [27,36,37]. However, there are also major challenges

that are underrepresented and particularly affect those who carry out the research, most com-

monly early career researchers (ECRs). Here, we review 3 areas of challenge posed by open sci-

ence practices, which are balanced against 3 beneficial aspects, with a focus on ECRs working

in quantitative life sciences. Both challenges and benefits are accompanied by suggestions, in

the form of tips, which may help ECRs to surmount these challenges and reap the rewards of

open science. We conclude that overall, open science methods are inevitable to address con-

cerns around replication, are increasingly expected, and ECRs in particular can benefit from

being involved early on.

Three challenges

Challenge 1: Restrictions on flexibility

Statistical hypothesis testing is the predominant approach for addressing research questions in

quantitative research, but a point often underemphasised is that a hypothesis can only be truly

held before the data are looked at, usually before the data are collected. Open science methods,

in particular preregistrations and RRs, respect this distinction and require separating explor-

atory analyses from planned confirmatory hypothesis testing. This distinction lies at the centre

of RRs and preregistrations [29,30], in which timelines are fixed, enforcing a true application

of hypothesis testing but also forcing researchers to stop developing an experiment and start

collecting data. Once data collection has started, new learning about analysis techniques,

subsequent publications, and exploration of patterns in data cannot inform confirmatory

hypotheses or the preregistered experimental design. This restriction can be exasperating

because scientists do not tend to stop thinking about and thus developing their experiments.

Table 1. Open science practices. Some methods introduced or suggested by the open science community to improve
scientific practices.

Resources Sharing of code, data, research materials, and methods [2,19].

Publishing
formats

Registered reports [28], preregistrations [17], exploratory reports [32], preprints [27], open
access publishing [33], as well as new evaluation and peer review processes [24].

Research
questions

Pursuing replications and reanalyses [2,5,6,9,19].

Methodology Changes in statistical approaches for power [21,22], how evidence is assessed [23] and
communicated [34], as well as documenting data analysis in a way that facilitates reproducing
results [35].

https://doi.org/10.1371/journal.pbio.3000246.t001
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Continuous learning during the course of an investigation is difficult to reconcile with a hard

distinction between confirmatory and exploratory research but may be the price of unbiased

science [4,11]. Open science methods do not preclude the possibility of serendipitous discov-

ery, but confirmation requires subsequent replication, which entails additional work. Explor-

atory analyses can be added after registration; however, they can and should have a lower

evidential status than preregistered tests. Although this particular loss of flexibility only

directly and unavoidably affects the preregistered aspects of open science, the distinction

between exploratory and confirmatory enquiry is a more general principle advocated in open

science [32]. Closed orthodox science simply allows for the incorporation of new ideas more

flexibly, if questionably.

Informing and formulating research questions based on data exploration is recommended.

Being open to and guided by the data rather than mere opinions also has many merits. How-

ever, robust statistical inference requires that the time for it is restricted to the piloting (or

learning) phase. Historically, ECRs have often been provided with existing data sets and

learned data analyses through data exploration. Exploratory analyses and learning are desirable

but are only acceptable if explicitly separated from planned confirmatory analyses [28,29]. The

common practice of maintaining ambiguity between the two can convey an advantage to the

traditional researcher because failure to acknowledge the difference exploits the assumption

that presented analyses are planned. Distinguishing explicitly between planned and explor-

atory analyses can thus only disadvantage the open researcher, because denoting a subset of

analyses as exploratory reduces their evidential status. We believe, however, that this apparent

disadvantage is the scientifically correct approach and is increasingly viewed as a positive and

necessary distinction [2,4,28]. The restriction on flexibility imposed by explicit differentiation

between exploratory and confirmatory science represents a major systemic shift in how science

is understood, planned, and conducted—the impact of which is often underestimated.

The more restrictive structures of open science can result in mistakes having greater ramifi-

cations than within a more closed approach. Transparent documentation and data come with

higher error visibility, and the flexibility to avoid acknowledging mistakes is lost. However, for

science, unacknowledged or covered-up mistakes are certainly problematic. We therefore sup-

port the view that mistakes should be handled openly, constructively, and, perhaps most

importantly, in a positive nondetrimental way [38,39]. Mistakes can and will happen, but by

encouraging researchers to be open about them and not reprimanding others for them, open

science can counter incentives to hide mistakes.

Besides higher visibility, mistakes can also have greater ramifications owing to the loss of

flexibility in responding to them and the fixed timelines, particularly under preregistered con-

ditions. When developing full a priori analyses, pipelines anticipating all potential outcomes

and contingencies should be attempted. It is rarely possible to anticipate all contingencies, and

the anticipation itself can lead to problems. For example, we have spent considerable time

developing complex exhaustive analyses, which may never be used because registered prelimi-

nary assumption checks failed. Had a more flexible approach been adopted, the unnecessary

time investment would likely have never been made. Amendments to preregistrations and RRs

are perfectly acceptable, as are iterative studies, but such changes and additions will also take

time. Beyond preregistration, the greater scrutiny that comes with open science, particularly

open data and code, means that there are fewer options to exploit researcher degrees of free-

dom. These examples illustrate how open science researchers can pursue higher standards

than closed science but can encounter difficulties and restrictions because of doing so.

Tips. Pilot data are essential when developing complex a priori analyses pipelines and

pilot data can be explored without constraint. Make and expect a distinction between planned

and exploratory analyses. Preregistered and RR experiments are likely to have a higher
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evidential value than closed science experiments in the future and so researchers should be

encouraged to use these formats. Be open about mistakes and do not reprimand others for

their mistakes, rather applaud honesty.

Challenge 2: The time cost

There are theoretical reasons why open science methods could save time. For example, a priori

analysis plans constrain the number of analyses, or reviewers may be less suspicious of demon-

strably a priori hypothesis. However, in our experience, these potential benefits rarely come to

fruition in the current system. The additional requirements of open and reproducible sciences

often consume more time: Archiving, documenting, and quality controlling of code and data

takes time. Considerably more time consuming is the adoption of preregistrations or RRs,

because full analysis pipelines, piloting, manuscripts, and peer review (for RRs) must occur

prior to data collection, which is only then followed by the more traditional, but still necessary,

stages involved in publication such as developing (exploratory) analyses, writing the final man-

uscript, peer reviewing, etc. For comparison, it is usually easier and quicker (although ques-

tionable) to develop complex analyses on existing final data sets rather than on separate

subsets of pilot data or simulated data, as required under preregistration. In our experience,

these additional requirements can easily double the duration of a project. Data collection also

takes longer in open experiments, which often have higher power requirements, particularly

when conducted as RRs [2,21]. The ECR who adopts open science methods will likely com-

plete fewer projects within a fixed period in comparison to peers who work with traditional

methods. Therefore, very careful consideration needs to be given to the overall research strat-

egy as early as possible in projects, because resources are limited for ECRs within graduate pro-

grams and post-doctoral positions. Although there are discussions around reducing training

periods for ECRs [40,41], the additional time requirements of open science, and in particular

of preregistration and RRs, might be seen as countermanding factors that require longer peri-

ods of continuous employment to allow ECRs to adopt open science practices. Less emphasis

on moving between institutions than is currently the norm may also help alleviate these con-

cerns by allowing for longer projects. The increased time cost, in our experience, presents the

greatest challenge in conducting open science and acutely afflicts ECRs and thus may require

rethinking how ECR training and research is organised by senior colleagues.

Tips. Preregistered, well powered experiments are preferential to those that are not. How-

ever, it should be expected and planned for that these will take substantially longer than would

otherwise be the case. Where possible, researchers at all levels should take this time cost into

account, whether in planning research or questions of employment and reward.

Challenge 3: Incentive structure isn’t in place yet

Open science is changing how science is conducted, but it is still developing and will take time

to consolidate in the mainstream [42,43]. Systems that reward open science practices are cur-

rently rare, and researchers are primarily assessed according to traditional standards. For

instance, assessment structures such as the national Research Excellence Framework (REF) in

the United Kingdom or the Universities Excellence Initiative in Germany, as well as research

evaluations within universities, are yet to fully endorse and reward the full range of open sci-

ence practices. Some reviewers and editors at journals and funders remain to be convinced of

the necessity or suitability of open methods. Although many may view open science efforts

neutrally or positively, they rarely weigh proportionally the sacrifices made in terms of flexibil-

ity and productivity. For example, reviewers tend to apply the same critical lens irrespective of

when tested hypotheses were declared.
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High-profile journals tend to reward a good story with positive results, but loss of flexibility

limits the extent to which articles can be finessed, and it reduces the likelihood of positive

results (see ‘Benefit 2’). The requirement for novelty can also countermand the motivation to

perform replications, which, as recent findings indicate, are necessary [4,5,11,44]. Some jour-

nals are taking a lead in combatting questionable research practices and have signed guidelines

promoting open methods [45,46]. However, levels of adoption are highly variable. Although

many prestigious journals, institutions, and senior researchers declare their support for open

methods, as yet, few have published using them.

Within open science, standards are still developing. At present, there is a lack of conces-

sions over single-blind, double-blind, and open peer review [26]. Levels of preregistration vary

dramatically [47], with some registrations only outlining hypotheses without analysis plans.

Although this approach may guard against HARKing and be tactically advantageous for indi-

viduals, it does little to prevent p hacking and may eventually diminish the perceived value of

preregistrations. There is also a practical concern around statistical power. High standards are

admirable (e.g., Nature Human Behaviour requires all frequentist hypothesis tests in RRs be

powered to at least 95%), but within limited ECR research contracts, they run up against

feasibility constraints, partially for resource-intensive (e.g., neuroimaging, clinical studies) or

complex multilevel experiments that are likely to contain low to medium effect sizes. Such con-

straints might skew areas of investigation and raise new barriers specifically for ECRs trying to

work openly. However, developments in the assessment of evidence might alleviate some of

these concerns in the future [22,23,48].

The challenges described above mean that ECRs practicing open science are likely to have

fewer published papers by the time they are applying for their next career stage. Compounding

this issue is the dilution of authorship caused by the move towards more collaborative work

practices (although, see [49]). ECR career progression critically depends on the number of first

and last author publications in high-profile journals [1,4,18]. These factors make it more diffi-

cult for ECRs to compete for jobs or funding with colleagues taking a more orthodox approach

[27]. Furthermore, although senior colleagues may find their previous work devalued by failed

replications, they are likely to have already secured the benefits from quicker and less robust

research practices [43]. They may then expect and teach comparable levels of productivity,

which has the potential to be a source of tension [50].

The trade-off between quality and quantity appears to be tipped in favour of quantity in the

current incentive structure. As long as open science efforts are not formally recognised, it

seems ECRs who pursue open science are put at a disadvantage compared with ECRs who

have not invested in open science [42,51]. However, reproducible science is increasingly recog-

nized and supported, as we will discuss in the next section. Overall, ECRs are likely to be the

ones who put in the effort to implement open science practices and may thus be most affected

by the described obstacles. We believe academics at all levels and institutions should take into

account these difficulties because the move towards open and reproducible science may be

unavoidable and can ultimately benefit the whole community and beyond.

To summarise, ECRs currently face a situation in which demands on them are increasing.

However, the structures that might aid a move towards more open and robust practices are

not widely implemented or valued yet. We hope that one consequence of the well-publicised

failures to replicate previous work and the consequent open science movement will be a shift

in emphasis from an expectation of quantity to one of quality. This would include greater rec-

ognition, understanding, and reward for open science efforts, including replication attempts,

broader adoption of preregistration and RRs, expectation of explicit distinctions between con-

firmatory and exploratory analyses, and longer, continuous ECR positions from which lower

numbers of completed studies are expected.
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Tips. Early adoption of open methods and high standards requires careful planning at an

early stage of investigations but doing so should place ECRs ahead of the curve as practices

evolve. Be strategic with which open science practices suit your research. Persevere, focus on

quality rather than quantity, and, when evaluating others’ work, give credit for efforts made

towards the common good.

Three benefits

Benefit 1: Greater faith in research

“Science is an ongoing race between our inventing ways to fool ourselves, and our inventing

ways to avoid fooling ourselves.” [52]. A scientist might observe a difference between conditions

in their data, think they thought something similar previously, apply a difference test (e.g., a

t test), and report a headline significant result. However, researchers rarely have perfect access to

previous intentions and may have even forgotten thinking the opposite effect was plausible. Pre-

registration prevents this form of, often unconscious, error by providing an explicit timeline and

record, as well as guarding against other forms of questionable research practices [19,29,30].

ECRs are at a particularly high risk of committing such errors due to lack of experience [53].

Preregistration also forces researchers to gain a more complete understanding of analyses

(including stopping plans and smallest effect sizes of interest) and to attempt to anticipate all

potential outcomes of an experiment [23]. Therefore, open science methods such as RRs can

improve the quality and reliability of scientific work. As such procedures become more widely

known, the gain in quality should reflect positively on ECRs who adopt them early.

RRs not only guard against questionable practices but can also increase the chances of pub-

lication because they offer a path to publication irrespective of null findings. In well-designed

and adequately powered experiments, null findings are often informative [23]. Furthermore, if

the current incentive structure has skewed the literature toward positive findings, a higher

prevalence of null findings is likely to be a better reflection of scientific enquiry. If this were

the case, then we would expect more null findings in RRs and preregistrations than in the rest

of the literature. To test this, we surveyed a list of 127 published biomedical and psychological

science RRs compiled (September 2018) by the Center for Open Science (see S1 Text and

https://osf.io/d9m6e/), of which 113 RRs were included in final analyses. For each RR, we

counted the number of clearly stated, a priori, discrete hypotheses per preregistered experi-

ment. We assessed the percentage of hypotheses that were not supported and compared it with

percentages previously reported within the wider literature. Of the hypotheses we surveyed,

60.5% (see Fig 1) were not supported by the experimental data (see S1 Data and https://osf.io/

wy2ek/), which is in stark contrast to the estimated 5% to 20% of null findings in the tradi-

tional literature [46,47]. The principle binomial test was applied with an uninformed prior

(beta prior scaling parameters a and b set to 1), using the open software package JASP (version

0.8.5.1) [54]. Data suggested that even compared to a liberal estimate of 30% published null

results, a substantially larger proportion of hypotheses was not supported among RRs (60.5%

versus test value 30%, 95% confidence interval [54.7%–66.1%], p< 0.001; Bayes Factor =

2.0 × 1024). Moreover, the percentage of unsupported hypotheses was similar, if not slightly

higher for replication attempts (66.0% [57.9%–73.5%]) compared with novel research (54.5%

[46.0%–62.9%]) amongst the surveyed RRs. Because these comparisons are between estimates

that we have surveyed and published estimates, we highlight their exploratory nature. How-

ever, these analyses suggest that RRs increase the chances for publishing null findings.

Adoption of RRs might therefore reduce the chances of ECRs’ work going unpublished. Fur-

thermore, the difference between the incidences of null findings in RRs and that of the wider

literature can be interpreted as an estimate of the file drawer problem [14]. Because RRs
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guarantee the publication of work irrespective of their statistical significance, the ECR pub-

lishes irrespective of the study’s outcome.

A core aim of the open science movement is to make science more reliable. All the struc-

tures of open science are there to make this so. Sharing of protocols and data leads to replica-

tion, reproduction of analyses, and greater scrutiny. This increased scrutiny can also be a great

motivator to ensure good quality data and analyses. Sharing data and analyses is increasingly

common and expected [55], and soon we anticipate findings may only be deemed fully credi-

ble if they are accompanied by accessible data and transparent analysis pathways [56]. Instead

of relying on trust, open science allows verification through checking and transparent time-

lines. There is also an educational aspect to this: when code and data are available, one can

reproduce results presented in papers, which also facilitates understanding. More fundamen-

tally, replication of findings is core to open science and paramount in increasing reliability,

which can benefit scientists at all levels.

Tips. Make your work as accessible as possible and preregister experiments when suitable.

If your research group lacks experience in open science practices, consider initiating the dis-

cussion. Do not be afraid of null results, but design and power experiments such that null

results can be informative and register them to raise the chances of publication. When prepar-

ing preregistrations or RRs, we recommend consulting the material provided by the Center for

Open Science [57]. Be aware of the additional time and power demands preregistered and RR

experiments can require.

Benefit 2: New helpful systems

The structures developed around open and reproducible science are there to help researchers

and promote collaboration [58]. These structures include a range of software tools, publishing

Fig 1. Percentages of null findings among RRs and traditional (non-RR) literature [46,47], with their respective
95% confidence intervals. In total, we extracted n = 153 hypotheses from RRs that were declared as replication
attempts and n = 143 hypotheses that were declared as original research. The bounds of the confidence intervals shown
for traditional literature were based on estimates (5% and 20%, respectively) of null findings that have been previously
reported for traditional literature [46,47]. Data is available on the Open Science Framework (https://osf.io/wy2ek/) and
in S1 Data. RR, registered report.

https://doi.org/10.1371/journal.pbio.3000246.g001
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mechanisms, incentives, and international organisations. These can help ECRs in document-

ing their work, improving workflows, supporting collaborations, and ultimately progressing

their training.

Open science software such as web-based, version-controlled repositories like GitHub

archivist and Bitbucket [59] can help with storing and sharing code. In combination with

scripting formats like R markdown [60] and jupyter Python Notebooks [35], ECRs can build

up well documented and robust code libraries that may be reused for future projects and for

teaching purposes. Ultimately, the most thankful recipient may be yourself in a few years’

time. New open tools can aid robust and reproducible data analysis in a user-friendly way. For

instance, the open-source Brain Imaging Data Structure (BIDS) application was designed to

standardise analysis pipelines in neuroimaging [61]. Well commented, standardised, and doc-

umented code and data are critical for making science open and improves programs, as do the

additional checks when they are shared.

Open science tools can further assist ECRs in scrutinising existing work. For instance, the

open software p-curve analysis was developed in response to the skew in the literature in

favour of positive results and facilitates estimating publication bias within research areas ([62];

although, see [63]). Another useful checking tool is statcheck, an R toolbox that scans docu-

ments for inconsistencies in reported statistical values [64]. Overall, these examples can guide

the ECR towards becoming a more rigorous researcher and may also help them to exert some

healthy self-scepticism via additional checks [51].

The open science movement also provides opportunities to access free high-quality, often stan-

dardised data. For instance, in genetics the repository Addgene [65], in neuroanatomy the Allen

Brain Atlas [66], in brain imaging the Human Connectome Project [67], and in biomedicine the

UK Biobank [68] present rich data sources that may be in particular useful for ECRs, who often

have limited funds. Furthermore, distributed laboratory networks such as the Psychological Sci-

ence Accelerator [58], which supports crowdsourced research projects, and the open consortium

Enhancing Neuroimaging Genetics ThroughMeta Analysis (ENIGMA) [69] allow ECRs to par-

take in international collaborations. However, although these new open forms of collaboration are

often beneficial and productive, the coordination of time lines between researchers involved and

expectations of contributions can be challenging and require clear and open communication.

ECRs who work with existing data sets can also benefit from new publishing formats such

as secondary RRs and exploratory reports [32]. These allow preregistration of hypotheses and

analysis plans for data that have already been acquired. Although still under development,

exploratory reports are intended for situations in which researchers don’t have strong a priori

predictions and in which authors agree to fully share data and code [32]. Similar to RRs, they

are outcome independent in terms of statistical significance, and publication is based on trans-

parency and an intriguing research question. As such, this format may present an entry to pre-

registration for ECRs that can help build expertise in open science methods.

There is a spectrum of open science practices and tools at researchers’ disposal. These range

frommaking data publicly available right through to fully open RRs. Generally, researchers should

be encouraged to adopt as much as possible, but one should not let the perfect be the enemy of

the good. Some research questions are exploratory, may be data driven, or are iterative, which

may be less well suited to preregistration. Preregistration also presents problems for complex

experiments, because it can be difficult to anticipate all potential outcomes. There are also often

constraints on when and if data can be made available, such as anonymization. Dilemmas also

arise when elegant experimental designs are capable of probing both confirmatory and explor-

atory questions, in which it is recommended that only confirmatory aspects are preregistered.

Tips. Make use of new tools that facilitate sharing and documenting your work efficiently

and publicly. Think about whether your research question can be addressed with existing,
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open data sets. Free training options in open science methods are growing [30]; try to make

use of them. Making data and materials, such as code, available is a relatively low-cost entry

into open science. ECRs should be encouraged to adopt as many open practices as possible but

select the methods that fit their research question with feasibility in mind.

Benefit 3: Investment in your future

Putting more of your work and data in the public domain is central to open science and

increases ECRs’ opportunities for acknowledgment, exchange, collaboration, and advance-

ment [43,70]. It also renders preclinical and translational research more robust and efficient

[71] and can accelerate the development of life-saving drugs, for instance, in response to public

health emergencies [70,72]. Reuse of open data can lead to publications [43], which may not

have happened under closed science [73]. ECRs can receive citations for data alone when

stored at public repositories such as the Open Science Framework [74,75], and articles with

published open data receive more citations than articles that don’t share data [76]. Preprints

and preregistrations are also citable and appear to increase citation rates [27]. As such, ECRs

who make use of these open science methods can accumulate additional citations early on and

thereby evidence the impact of their work [77].

Moreover, it has also been highlighted that authors may receive early media coverage based

on preprints [27], which we see confirmed in our experience with a preprint based on an ear-

lier version of this article [78,79]. Openness in science can even promote equality by making

resource-costly data or rarely available observations accessible to a wider range of communi-

ties [74,75]. In theory, data sharing increases the longevity and therefore utility of data,

whereas in closed science, data usability declines drastically over time [80]; although it is worth

noting that this particular advantage is negated by inadequate data documentation [8]. More

generally, with open data, it’s open to anyone: in order to access, to use, and to publish using

open data, one doesn’t need a big grant, and therefore open science can facilitate widened par-

ticipation and diversity for ECRs. In short, open science should improve the quality of work

and get researchers recognised for their efforts. These benefits apply to individual career pro-

gression but also benefit science in general and thus may create a virtuous cycle.

Beyond academia, working reproducibly should put ECRs in a better career position. For

instance, reproducibility has also been raised as a major concern in industrial contexts such as

in software development [81], as well as in industrial biomedical and pharmaceutical research

[82]. Therefore, for ECRs considering a career transition towards industry, adopting open sci-

ence methods and reproducible research practices might allow them to stand out. This advan-

tage may outweigh possible disadvantages (e.g., a shorter publication list) when it comes to

career paths outside of academia [83].

Early adoption of open and reproducible methods is an investment in the future and can

put researchers ahead of the curve. In the wake of numerous failed replications of previous

research, employers and grant funders increasingly see open and reproducible science as part

of necessary requirements and heavily encourage their adoption [51]. Recently funders have

also offered funding specifically for replications and open science research projects. Some have

called for data sharing [84], which is becoming a requirement for a range of biomedical jour-

nals [85]. Open access publishing has seen a rapid increase in uptake, rising by the factor of 4

to 5 between 2006 and 2016 [27], with several journals rewarding open science efforts [46]. Ini-

tiatives by leading scientific bodies demonstrate that the need for an open science culture is

starting to be recognised, increasingly desired, and should become the norm [18,19,27,30,

38,39]. In this spirit, the Montreal Neurological Institute as a leading neuroscience institution

has recently declared itself to be a fully open science centre [86]. Other examples are the
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universities LMUMünchen and Cologne (Germany) as well as Cardiff (UK) that have recently

asked some candidates applying for positions in psychology to provide a track record of open

science methods. Therefore, adoption of open science practices is likely to have career benefits

and to grow, especially as it is a one-way street: once adopted it is very hard to revert to a tradi-

tional approach. For example, once the distinction between confirmatory and exploratory

research is understood and implemented, it is difficult to unknow [4].

Tips. Early adoption of open science practices, which can be evidenced, will likely confer

career advantages in the future. Explore opportunities for open science collaborations in con-

sortia or research networks and connect with others to build a local open science community.

Look out for open science funding opportunities, which are increasingly available. Consider

the level of open science conducted when deciding where to work. Where possible, support

open science initiatives.

Conclusion

Overall, we believe open methods are worthwhile, positive, necessary, and inevitable but can

come at a cost that ECRs would do well to consider. We have summarised 3 main benefits that

the ECR can gain when working with open science methods and, perhaps more importantly,

how open science methods allow us to place greater faith in scientific work. We also emphasize

that there are obstacles, particularly for the ECR. The adoption of open practices requires a

change in attitude and productivity expectations, which need to be considered by academics at

all levels, as well as funders. Yet, taken together, we think that capitalising on the benefits is a

good investment for both the ECR and science and should be encouraged where possible. A

response to pervasive failures to replicate previous research makes the transition to open sci-

ence methods necessary, and despite the challenges, early adoption of open practices will likely

pay off for both the individual and science.
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