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Abstract  

Plants are sessile and have to cope with environmentally induced damage through modification 

of growth and defense pathways. It is an open question how tissue regeneration is triggered in 

such responses and whether this involves stem cell activation. The stress hormone jasmonate 

(JA) plays well-established roles in wounding and defense responses. JA also affects growth 

which is hitherto interpreted as trade-off between growth and defense. Here, we describe a 

molecular network triggered by wound-induced JA that promotes stem cell activation and 

regeneration. JA regulates organizer cell activity in the root stem cell niche through the RBR-

SCR network and stress response protein ERF115. Moreover, JA-induced ERF109 

transcription stimulates CYCD6;1 expression, functions upstream of ERF115 and promotes 

regeneration. Soil penetration and response to nematode herbivory induce and require this JA 

mediated regeneration response. Therefore, the JA tissue damage response pathway induces 

stem cell activation and regeneration, and activates growth after environmental stress. 
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Introduction 

Plants are sessile and respond to environmental challenges by reallocating resources between 

growth, response to abiotic stress, and defense. This reallocation results from the convergence 

of developmental and environmental signaling networks; the response pathway to stress-

induced hormones jasmonate (JA), salicylic acid, abscisic acid and ethylene influence plant 

growth by interacting with signaling pathways that respond to growth signals like gibberellin, 

brassinolide and auxin in regions of plant growth (Campos et al., 2016; Chen et al., 2004; Hou 

et al., 2010; Nemhauser et al., 2006). The negative growth control by defense signaling is 

thought to ensure a proper resource cost trade-off (Karasov et al., 2017). However, plants can 

also positively regulate growth after physical damage caused by abiotic or biotic insults, to 

regenerate tissues or even complete organs (Sena et al., 2009; Sugimoto et al., 2010; Xu et al., 

2006). Regeneration responses correlate with growth signaling (Efroni et al., 2016; Ikeuchi et 

al., 2017; Ikeuchi et al., 2018; Kareem et al., 2015; Melnyk et al., 2018; Sugimoto et al., 2010; 

Xu et al., 2006). It has however not been clarified how physical stress or damage triggers local 

regeneration responses.  

 

The stress hormone JA, structurally similar to the animal defense regulator prostaglandin 

(Mueller, 1998), is a candidate trigger for regeneration responses. JA plays well-established 

roles in defense responses against necrotrophic pathogens and insect herbivores, and also in 

abiotic stress responses, reproductive development, and metabolism (Pieterse et al., 2012; 

Yang et al., 2012; Yan et al., 2018). JA rapidly accumulates after damage and pathogen 

detection cues (Glauser et al., 2009; Larrieu et al., 2015; Wasternack and Hause, 2013). Several 

studies have implicated JA in in vitro tissue regeneration, e.g. (Asahina et al., 2011; Ikeuchi et 

al., 2017). It is unknown whether JA regulates only biochemical defense and global growth 

regulation or also organ regeneration after in vivo insult. F-box protein CORONATINE 

INSENSITIVE1 (COI1), and the jasmonate ZIM domain (JAZ) repressor proteins act as JA 

co-receptors (Sheard et al., 2010; Yan et al., 2009). Upon JA perception, JAZ proteins are 

targeted by COI1 for degradation, which de-represses transcription factors like MYC2 and 

induces JA-responsive gene expression (Dombrecht et al., 2007; Hickman et al., 2017; Zhang 

et al., 2015a).   

 

Continuous cell production plant meristems is maintained by stem cells, and by analogy to 

animal models stem cell activation may be a significant factor in wounding-triggered 

regeneration. In the model plant Arabidopsis thaliana, root stem cells include mitotically less 
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active organizer cells called the quiescent centre (QC) and the surrounding initials, which 

together form the root stem cell niche (Cruz-Ramirez et al., 2013) (Figure S1A). Stress 

hormones JA, abscisic acid and ethylene can regulate the division rate of organizer cells 

suggesting that stem cell activation may take part in regeneration responses (Chen et al., 2011; 

Zhang et al., 2010; Ortega-Martínez et al., 2007). The RETINOBLASTOMA-RELATED 

(RBR)-SCARECROW (SCR) –SHORT ROOT (SHR) protein network regulates asymmetric 

cell divisions of root stem cells, QC quiescence and the activation of the QC regulatory protein 

WOX5 (Cruz-Ramirez et al., 2012; Cruz-Ramirez et al., 2013; Shimotohno et al., 2018). RBR 

binds and regulates the activity of SHR-SCR in a network together with the growth hormone 

auxin and the CDK interactor CYCLIND6;1 (CYCD6;1) in ground tissue initials (Cruz-

Ramirez et al., 2012). In addition, RBR reinforces mitotic quiescence in the QC. Disruption of 

the RBR-SCR interaction by point mutations in SCR (pSCR::SCRaca-YFP) or QC-specific 

knockdown of RBR (pWOX5::amiGORBR) promotes QC divisions (Cruz-Ramirez et al., 

2013). In addition, the AP2/ERF subfamily X transcription factors ERF109 and ERF115 have 

been reported to maintain QC quiescence in unperturbed conditions (Heyman et al., 2013; 

Heyman et al., 2017; Kong et al., 2018). ERF115 activity is required for wounding-induced 

regeneration responses in roots (Heyman et al., 2016).  

 

Here, we reveal that stress hormone JA reduces QC quiescence through the previously 

established RBR-SCR and ERF115 pathways. JA-induced ERF109 transcription stimulates 

CYCD6;1 expression, functions upstream of ERF115 and promotes regeneration. RBR-SCR 

operates downstream of ERF115 both in stem cell regulation and in tissue regeneration. JA and 

auxin synergistically activate these regeneration regulators. Finally, soil penetration and 

nematode herbivory activate this molecular regeneration network. 
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Results 

 

JA acts through RBR-SCR to regulate quiescence 

We confirmed that JA promotes division of QC cells (Chen et al., 2011) (Figures 1A and 1B, 

S1B and S1C), and that extra QC divisions occur in plants with altered SCR-RBR network: 

pWOX5::amiGORBR, which specifically downregulates RBR in the QC, and pSCR::SCRaca-

YFP, which specifically disrupts RBR-SCR protein interaction (Cruz-Ramirez et al., 2013) 

(Figures 1D and 1G). We observed QC divisions in wild type Col-0 after 50 µM or 100 µM 

MeJA (methyl ester of JA) treatment for 48 hours (Figures 1A-1C and 1J), respectively. 

Conversely, no extra QC divisions were detected in pWOX5::amiGORBR and pSCR::SCRaca-

YFP lines treated with 50 µM or 100 µM MeJA for the same period (Figures 1D-1I and 1K-

1L), suggesting that JA may function through the SCR-RBR network in regulating quiescence 

of QC. To further confirm this, we introgressed the JA receptor loss of function mutant allele 

coi1-2 (Xu et al., 2002) into pWOX5::amiGORBR and pSCR::SCRaca-YFP lines. The QC 

division phenotypes and QC cell numbers of these introgression lines revealed no differences 

to pSCR::SCRaca-YFP and pWOX5::amiGORBR lines, both with and without MeJA treatment, 

respectively (Figures S1D-S1M). These findings position SCR and RBR downstream of COI1 

to control quiescence of QC. After MeJA treatment, QC cell numbers of scr-3 and shr-2 

mutants did not increase significantly compared to controls (Figures S1N-S1T), confirming 

that JA induces QC division through the SCR/SHR pathway. SCR and RBR expression levels 

were not altered significantly after MeJA treatment, judged by marker expression and reverse 

transcription-quantitative polymerase chain reaction (RT-qPCR) assays (Figures S1U-S1AA). 

These data indicate that JA does not regulate SCR and RBR at the gene expression level. 

 

JA directly induces ERF115 transcription 

The AP2/ERF family transcription factor ERF115 was reported to control root QC cell division 

(Heyman et al., 2013). When 35S::ERF115 (hereafter, ERF115-OE), 35S::ERF115-SRDX 

(hereafter, ERF115-SRDX, a dominant negative form of ERF115 fused with the SUPERMAN 

repression domain) and erf115 knockout mutant were treated with MeJA, no extra QC divisions 

occurred in ERF115-OE and ERF115-SRDX compared to mock treatment. erf115 showed 

reduced JA-mediated QC divisions compared to Col-0 (Figures 2A-2E, S2A), indicating that 

JA cannot bypass ERF115 function in regulating QC quiescence. 
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ERF115 promoter activity was induced by MeJA (Figures 2F-2L). Up-regulation of ERF115 

was first detected after 1 hour of MeJA treatment in vascular protoxylem cells (Figures S2B 

and S2C), and induction was additionally observed in QC cells after longer treatment (Figures 

2F-2L). RT-qPCR assays showed JA mediated ERF115 transcript induction, which was 

reduced in the myc2-2 mutant (Boter et al., 2004) and largely diminished in the JA receptor 

mutant coi1-2 (Figure 2M), suggesting that JA induces ERF115 in a COI1- and MYC2-

dependent manner. MYC2 preferably binds to the G-box-related hexamer (5’-CACGTG-3’) in 

promoters of its target genes (Dombrecht et al., 2007), and we identified one such motif in the 

promoter of ERF115 (-1482 bp to -1476 bp) (Figure 2N). Chromatin immunoprecipitation-

quantitative PCR (ChIP-qPCR) assays using MYC2-GFP plants and anti-GFP antibodies 

revealed enrichment of MYC2 in a region approximately 1,500 bp upstream of the ERF115 

promoter, covering the identified G-box motif (Figure 2O). We generated pERF115::GUS 

lines as control and pmERF115::GUS lines in which the G-box was mutated to 5’-AAAAAA-

3’ (Figure 2P). In accordance with a crucial role for the identified G-box, JA induction of 

ERF115 in QC and vascular cells was almost abolished in pmERF115::GUS lines, and only 

sporadic induction was observed in a few vascular cells (Figure 2Q). These findings together 

indicate that ERF115 is induced by JA and is a direct target of MYC2.  

 

Reactive oxygen species (ROS) and brassinosteroids (BR) also regulate QC quiescence and 

expression of ERF115 (Heyman et al., 2013; Kong et al., 2018; Vilarrasa-Blasi et al., 2014). 

We explored whether these signals converge with JA. coi1-2 was responsive to BR-mediated 

QC division and ERF115 induction (Figures S2D and S2E), suggesting parallel input of BR 

and JA in QC quiescence and ERF115 induction. coi1-2 was also responsive to ROS-mediated 

QC division (Figure S2F), but ROS-mediated ERF115 induction was reduced in coi1-2 

compared to WT (Figure S2G), indicating that ROS and JA partially converge in regulating 

ERF115 expression. 

 

SCR-RBR connects ERF115 activation to regulating QC quiescence 

As SCR-RBR and ERF115 act downstream of JA to regulate QC quiescence, we examined 

potential genetic interactions between SCR-RBR and ERF115. We combined 

pWOX5::amiGORBR and pSCR::SCRaca-YFP lines with both ERF115-OE and ERF115-

SRDX lines. In contrast to ERF115-SRDX lines, which seldom displayed QC divisions at 6 

days after germination (DAG), both pSCR::SCRaca-YFP ERF115-SRDX and 

pWOX5::amiGORBR ERF115-SRDX lines revealed a decrease in QC quiescence, approaching 
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the QC phenotypes of pSCR::SCRaca-YFP and pWOX5::amiGORBR, respectively (Figures 

3A-3K and S3A-S3E). Quantification of QC cell numbers confirmed that both pSCR::SCRaca-

YFP ERF115-SRDX (median QC cell number=4.5) and pWOX5::amiGORBR ERF115-SRDX 

(median QC cell number=5) similarly decreased QC quiescence compared with 

pSCR::SCRaca-YFP (median QC cell number=4) and pWOX5::amiGORBR (median QC cell 

number=6), while ERF115-SRDX increased QC quiescence (median QC cell number=2.5) 

compared with pWOX5::amiGORBR and pSCR::SCRaca-YFP (Figure 3K). The observed 

epistasis of SCR-RBR network mutant phenotypes over ERF115 phenotypes in regulation of 

quiescence positions SCR-RBR downstream of ERF115 activity. 

 

RBR can interact with proteins containing the LxCxE (Leu-x-Cys-x-Glu) motif (Cruz-Ramirez 

et al., 2012; reviewed in Dick, 2007). We identified a related motif (LxFxE), which was 

reported to bind to Rb (Retinoblastoma) in animals (Kehn et al., 2005), in the AP2 domain of 

ERF115 (Figure S3F). RBR and ERF115 interacted in yeast two hybrid, in planta split-YFP 

and co-immunoprecipitation assays (Figures S3G-S3I). We mutated the LxFxE motif into 

AxAxA (Ala-x-Ala-x-Ala, ERF115m), and still observed interactions between RBR and 

ERF115m (Figures S3G and S3H), indicating that the LxFxE motif is not essential for 

interaction and RBR may also bind to other ERF115 residues. The physical interaction between 

ERF115 and RBR suggests that JA-induced ERF115 may directly regulate RBR activity. 

ERF115-SRDX retains the capacity to bind to RBR (Figure S3H and S3I), suggesting a 

mechanism whereby ERF115 inhibits RBR activity (that inhibits SCR activity). ERF115-OE 

in this scenario inhibits RBR repression of SCR which activates QC division; RBR-SCR-

recruited ERF115-SRDX represses transcription of SCR targets through its SRDX motif, 

which inhibits QC division (Figure 3L). The effect of RBR and ERF115 on QC cell number is 

larger than the SCR effect indicating that these two factors also act independently of SCR in 

regulating QC quiescence (Figure 3L).  

 

JA signaling promotes stem cell niche regeneration 

W asked whether the JA-mediated stimulation of QC division might be part of a wounding 

response and/or a regeneration response after damage. To monitor QC divisions after local 

wounding we performed laser ablation experiments (Xu et al., 2006) to ablate columella stem 

cells (CSCs), which are the distal neighbours of QC cells. Indeed, we observed replenishment 

of these cells by QC cells over time (Figures 4A-4F). When roots were pre-treated with MeJA 

for 24 hours (to pre-induce ERF115) before ablation, QC cells replenished the ablated CSCs 
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faster compared to mock treatment (Figures 4A-4G, S4A-S4B). JA pre-treatment consistently 

increased the number of new columella cell layers between QC and ablated cells compared to 

mock treatment. Also incubation on 250 nM MeJA led to increased columella cell layers 

between QC and ablated cells compared with mock treatment (Figures S4C-S4E). These 

findings suggest that JA stimulates stem cell replacement after ablation. 

 

Ablation of the QC leads to a local regeneration response that replenishes the entire stem cell 

niche (Xu et al., 2006). To investigate whether impaired JA signaling impedes root stem cell 

niche regeneration, we performed QC laser ablation in coi1-1 null allele (Xie et al., 1998), 

coi1-2 and WT col-0 roots. A delay of stele re-programming to form a new QC (marked by 

WOX5-GFP) was observed in coi1-1 pWOX5::GFP compared to WT during the time course 

after ablation (Figures 4H-4K and S4F-S4G). Quantification of new columella layers between 

new QC and ablated cells, both upon partial and whole QC ablation, confirmed the observed 

delayed regeneration responses upon ablation in coi1-1 and coi1-2 mutants compared to WT 

(Figures 4L and 4M). These data indicate that JA responses enhance stem cell niche 

replacement. 

 

JA quickly accumulates after mechanical wounding (Glauser et al., 2009). To measure JA 

response after ablation, we used the ‘inverse’ JA biosensor JAS9-VENUS (35S::JAS9-

VENUS/35S::H2B-RFP) (Larrieu et al., 2015). Expression of JAS9-VENUS in WT was 

consistently reduced after QC ablation compared with mock, while expression of JAS9-VENUS 

in coi1-2 was comparable between mock and after ablation (Figures 4N, S4H and S4I). As 

JAS9-VENUS expression is anti-correlated with JA level, our results indicate that the in vivo 

JA level increases rapidly after laser ablation and that the observed stem cell regeneration may 

be part of a wounding response.  

 

As ERF115 acts downstream of JA (Figure 2), and is induced by cell death and required for 

root regeneration (Heyman et al., 2016), we examined the role of ERF115 in stem cell 

regeneration. QC ablation triggered induction of ERF115 in WT, but significantly less in coi1-

2 compared with WT (Figures S4J-S4L). In time courses after QC ablation, ERF115-OE 

pWOX5::GFP exhibited a faster replenishment of ablated cells compared to pWOX5::GFP, 

while erf115 pWOX5::GFP and ERF115-SRDX pWOX5::GFP showed a slower replenishment 

compared to WT (Figures 4O-4U, S4M-S4P), indicating that ERF115 is a positive regulator 

for stem cell regeneration.  
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We examined whether SCR-RBR is also involved in stem cell regeneration. After QC ablation, 

new columella layers between QC and ablated cells after ablation arose at similar rate as control 

in pSCR::SCRaca-YFP pWOX5::GFP/scr-4 lines (Figures S4Q-S4S). While the control 

revealed complete re-programming of SCR and WOX5 expression domains, neither SCR nor 

WOX5 was expressed in the newly regenerated “QC” cells in pSCR::SCRaca-YFP 

pWOX5::GFP/scr-4 lines after ablation (Figures S4Q-S4R), indicating a defect in QC fate 

reprogramming when the RBR interaction motif of SCR is disrupted.  

 

New columella layers between QC and ablated cells during the time course after ablation 

showed that both ERF115-SRDX pWOX5::amiGORBR and ERF115-SRDX pSCR::SCRaca-

YFP significantly rescued the regeneration defect of ERF115-SRDX (Figures S4T-S4Y), 

consistent with our earlier data indicating that RBR-SCR acts downstream of ERF115 in the 

control of QC cell division. However, the regeneration speed was still slower when compared 

to pWOX5::amiGORBR and pSCR::SCRaca-YFP lines (Figures S4T and S4Y). Therefore, 

during stem cell niche regeneration, the ERF115-SRDX effects are significantly but not 

completely mediated by the QC expressed SCR-RBR complex, indicating that ERF115 does 

not exclusively act on SCR regulated genes in this process (Figure 4V).  

 

ERF109 responds quickly to JA and wounding, and is required for tissue regeneration 

ERF115 is required for root tissue regeneration after resection (Heyman et al., 2016), which 

provokes a more dramatic regeneration response than local laser ablations (Sena et al., 2009). 

In addition, knockdown of RBR (35S::amiGORBR) showed enhanced tissue regeneration after 

resection compared with controls (Figures 5A-5C). These clues led us to further investigate the 

role of JA in tissue regeneration. The expression of JAS9-VENUS was lowered one minute 

after resection compared to uncut control, and further reduced to 25 percent of control 30 

minutes after resection, while degradation of JAS9-VENUS was largely abolished in coi1-2 

mutant after root tip resection (Figures S5A-S5C), indicating that the in vivo JA response 

increases rapidly after resection. Consistently, induction of ERF115 was largely reduced in 

coi1-2 compared with Col-0, and also in pmERF115::GUS compared with pERF115::GUS 

after resection (Figures S5D-S5G), indicating that JA-mediated ERF115 transcription is 

reduced and/or delayed when JA signaling is compromised.  
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As JA was induced after wounding within seconds, and ERF115 was activated within hours, 

we explored potential early regulators downstream of JA. ERF109 is an ERF115 homologue, 

and pERF109::GUS can respond to JA within minutes (Cai et al., 2014; Wang et al., 2008). 

pERF109::GFP lines revealed that ERF109 promoter activity was highly induced by MeJA 

also in the root stem cell niche and meristem (Figure 5D). RT-qPCR confirmed that ERF109 

mRNA was up-regulated after MeJA treatment (Figure S5H) and MYC2, MYC3 and MYC4 

redundantly regulated ERF109 induction (Figure 5E). ChIP-qPCR assays further indicated that 

MYC2 directly binds to the promoter of ERF109 (Figure 5F). 

 

ERF109 was also quickly induced after laser ablation (Figures S5I) and root-tip resection 

(Figures 5G, 5H, S5J). This induction depends on COI1, as weaker induction was observed 

near the cut site 3 hours after resection in the coi1-1 pERF109::GUS background, compared to 

WT (Figure 5H). We also performed low cuts (resection site around QC) and high cuts 

(resection site at the elongation zone) of pERF109::GUS root meristems. The ERF109 

promoter was highly active in the meristem after low cuts, but less after high cuts (Figures 

S5K), indicating that induction of ERF109 after resection may correlate with the regeneration 

capacity of remaining tissue after resection. 

 

ERF115 mRNA was increased in the ERF109 over-expression line (ERF109-OE) (Cai et al., 

2014) and decreased in the erf109 mutant (Figure 5I). On the other hand, ERF109 was not 

altered significantly in either ERF115-OE, ERF115-SRDX or erf115 mutant backgrounds 

(Figure 5J). In addition, JA-mediated ERF115 induction decreased in 35S::ERF109-SRDX 

compared with WT (Figures S5L and S5M). These results indicate that ERF109 acts upstream 

to regulate ERF115 transcript levels. Root-tip resection experiments in pERF109::GUS 

ERF115-SRDX and pERF109::GUS ERF115-OE lines revealed the induction of ERF109 was 

not altered in these backgrounds compared with control (Figures S5N-S5P), consistent with 

ERF109 acting upstream of the ERF115 transcriptional response to wounding. 

 

Resection experiments in pWOX5::GFP and pWOX5::GFP erf109 lines revealed that the 

erf109 mutant exhibited similar stem cell niche regeneration compared with WT (Figure S5Q), 

but an impaired capacity of tissue regeneration at categories II and III, compared to WT 

(Figures 5K-5M), while meristem length of unperturbed roots was comparable with WT 

(Figure S5R). These findings indicated that ERF109 is required for tissue regeneration. coi1-1 

and erf115 mutants also showed a reduced frequency of regeneration after root tip resection 
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(Figures 5N, S5T) and similar meristem length, compared with WT (Figures S5S and S5U). 

ERF115-SRDX showed a more severe regeneration defect compared with WT (Figures S5T 

and S5U), suggesting functional redundancy (Heyman et al., 2016). Collectively, our data 

reveal a JA pathway where a wounding signal is transduced through ERF109 and ERF115 and 

possible redundant factors, to regulate large scale tissue regeneration (Figure 5O). 

 

Synergy between JA and auxin signaling in regulating regeneration 

How can tissue wide induction of ERF109 by a JA triggered wounding response trigger 

protoxylem specific induction of ERF115? Auxin signaling promotes regeneration and is active 

in the xylem axis (Efroni et al., 2016; Xu et al., 2006), so it could restrict the induction of 

ERF115 by ERF109. Indeed, we observed ERF115 induction by auxin in protoxylem cells, and 

IAA together with MeJA enhanced ERF115 promoter activity in vasculature (Figures 6A-6D). 

RT-qPCR assays confirmed induction of ERF115 transcription with MeJA and IAA, 

respectively. Combined MeJA+IAA treatment resulted in a more-than-additive induction 

(Figure 6E). On the other hand, IAA did not activate root tip expression of pERF109::GUS, 

and did not significantly increase its activation by MeJA (Figures S6A and S6B). These data 

suggest a synergy between auxin and JA signaling in the activation of ERF115 in protoxylem 

cells. 

 

We explored other potentially tissue-specific regulators of regeneration under control of both 

auxin and JA. CYCD6;1, activated by SHR-SCR and auxin, is a stem cell associated regulator 

of RBR activity (Cruz-Ramirez et al., 2012; Sozzani et al., 2010). SCR-RBR, together with 

CYCD6;1, defines the position of asymmetric cell division in root stem cells (Cruz-Ramirez et 

al., 2012) (Figure 6M). When the pCYCD6;1::GUS-GFP line was treated with MeJA, 

CYCD6;1 was induced along the endodermal cell layer, while it remained restricted to 

cortex/endodermal initials (CEI) without MeJA treatment (Figures 6F, S6C). CYCD6;1 was 

also induced 3 hours after resection, and was induced ectopically after root-tip resection after 

6 hours (Figures S6D-S6E). Induction culminated around 24 hours after resection and receded 

to the newly re-programmed CEI 48 hours after resection (Figures S6E). We conclude that 

CYCD6;1 is not only induced by auxin, but also by JA and wounding. 

 

We next investigated upstream JA-mediated regulators of CYCD6;1. Dual-luciferase assays in 

Nicotiana benthamiana leaves showed that ERF109 increased the activity of pCYCD6;1::LUC 

8 fold compared with the basal level of pCYCD6;1::LUC alone, whereas ERF115 barely 
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increased the activity of pCYCD6;1::LUC (Figure 6G). ChIP-qPCR assays revealed that 

ERF109 bound to the promoter of CYCD6;1 (Figure S6F). JA-mediated CYCD6;1 induction 

was largely abolished in 35S::ERF109-SRDX compared with WT (Figures S6G and S6H). 

Together, these data indicate that ERF109 can directly induce promoter activity of CYCD6;1. 

 

When we performed QC ablation and root tip resection experiments in cycd6;1 and Col-0, the 

cycd6;1 mutant exhibited similar stem cell niche regeneration capacity compared with WT, but 

a statistically significant impaired capacity of regeneration compared to WT when cut at and/or 

above zone II (Figures 6H-6L, S6I), while its meristem length was comparable with WT 

(Figure S6J). Collectively, our data indicate that CYCD6 is required for tissue regeneration 

(Figure 6M) and that combined input of JA and auxin signaling in regeneration is relevant in 

vascular and ground tissue cell types. 

 

JA mediated wounding response and tissue regeneration accommodates soil penetration 

and parasitic pressure  

As plant roots are at risk of physical damage during soil penetration, we explored the 

importance of a potential JA-mediated wounding response in soil penetration. When we 

transferred JA sensor JAS9-VENUS from 1/2 GM plates to a sand/soil mixture to grow for 4 

days, the inverse JA signaling sensor JAS9-VENUS was reduced in WT but not in the coi1-2 

mutant under sand/soil conditions (Figures 7A, S7A, S7B), suggesting higher JA levels in 

plants grown in sand/soil conditions compared with growth on plate. To exclude that JAS9-

VENUS is sensitive to touch response upon extraction from sand/soil, we also transferred 

seedlings from 1/2 GM plate to sand/soil, and immediately visualized JAS9-VENUS 

fluorescence levels were comparable (Figure S7C). We also observed induction of ERF109, 

ERF115 and CYCD6;1 promoter activity in sand/soil grown seedlings compared to seedlings 

kept on plate (Figure 7B), indicating that components of a JA-mediated response required for 

tissue regeneration are activated in roots during soil penetration. Consistently, in sand/soil, 

primary root growth of cycd6;1, erf109 and erf115, ERF115-SRDX and coi1-2 mutants was 

compromised compared to that of WT Col-0, whereas on plates primary root growth was 

comparable to Col-0 (Figure 7C). In summary, a JA-mediated regeneration response pathway 

is important for roots to penetrate soil. 

 

JA plays an important role in defense response against insect herbivores, but whether this 

involves tissue repair and regeneration has not been clarified. To explore a role of JA-mediated 
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wounding response and regeneration in nematode infection, we examined the spatiotemporal 

expression of key markers after root-knot nematode Meloidogyne incognita (M. incognita) 

infections. This ‘stealth’ nematode enters root tips and establishes a stable feeding site nearby 

(Jones et al., 2013). In a time course analysis of the expression of JAS9-VENUS during M. 

incognita infection, a significant decrease occurred at very early stage of M. incognita infection 

(Figures 7D, S7D-S7G). During feeding site initiation and gall formation, the fluorescence 

ratio of VENUS/RFP recovered but was still lower compared to that of non-infected control, 

indicating that root JA signaling level increases at early penetration stage and then reduces to 

intermediate levels (Figures 7D, S7D-S7G). 

 

During M. incognita infection, we observed induction of both ERF109 and ERF115 promoters, 

and ectopic induction of CYCD6;1 near sites of M. incognita infection, indicated by GUS 

staining (Figures 7E-7G, S7H-S7J). Time course experiments revealed that, during M. 

incognita infection, ERF109 was induced during nematode penetration. ERF115 and CYCD6;1 

were strongly induced in vascular and/or endodermal cells at all stages from penetration and 

feeding site initiation until gall formation (Figures S7H-S7J). These data, together with the 

expression pattern of JAS-VENUS, indicate that M. incognita infection activates a JA-

mediated regeneration pathway in roots.  

 

We compared primary root growth between Col-0 and ERF115-SRDX in the first few days 

after M. incognita invasion and feeding site initiation. Root growth in Col-0 in nematode-

infected roots was reduced 52.4% compared with non-infected roots, whereas 78.3% reduction 

occurred in ERF115-SRDX (Figure 7H), suggesting impaired recovery of root growth after 

infection in ERF115-SRDX. To address whether defects in regeneration might affect 

susceptibility to nematode infections we counted numbers of egg masses at 7 weeks post 

inoculation. We found fewer egg masses in ERF115-SRDX and coi1-2 compared with Col-0, 

and fewer egg masses per root tip in ERF115-SRDX and erf109 compared with Col-0 (Figures 

7I and S7K). These data suggest that JA-induced regeneration pathway promotes root growth 

after nematode invasion, and also promotes reproductive success of M. incognita. 

  

CYCD6;1 was similary expressed in WT and ERF115-SRDX backgrounds without infection 

(Figure S7L), but after nematode infection induction of CYCD6;1 in ERF115-SRDX 

background was delayed compared with WT (Figure 7J). Gall formation progressed slower in 

ERF115-SRDX, compared with WT at the same stage after infection (Figures 7J and 7K). EdU 
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(5-ethynyl-2’-deoxyuridine) incorporation assays revealed active DNA synthesis at the feeding 

sites of infected Col-0 roots, whereas less activity was detected at feeding sites of infected 

ERF115-SRDX roots (Figures 7L and 7M). For comparison, EdU incorporation in uninfected 

root meristems of Col-0 and ERF115-SRDX lines was comparable (Figures 7L and 7M). 

Together, these results confirm that M. incognita benefits from ERF109-ERF115 pathway 

activity. 
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Discussion 

 

Plant development under normal growth conditions requires signaling pathways and 

transcription factor networks that steer the activity of meristems and their constituent stem cell 

niches. In addition, impressive accounts of plant developmental plasticity and regeneration 

from meristematic tissue have been described but the dramatic changes in gene expression in 

these studies have hitherto not been connected to the meristematic growth regulatory network 

(Efroni et al., 2016; Sena et al., 2009). We identify a core regeneration network that implicates 

a stress hormone jasmonate (JA)-mediated response in wounding induced regeneration of 

Arabidopsis roots (Figure 7N). JA-induced ERF109 is globally activated, stimulates CYCD6;1 

expression, functions upstream of ERF115 and promotes regeneration. ERF115 and CYCD6;1 

are activated in stele and ground tissue respectively, and influence RBR and SCR activity by 

different mechanisms. Noteworthy, also auxin activates key regeneration regulators of this 

pathway. Soil penetration by roots and nematode herbivory of root systems, examples of 

abiotic and biotic stress conditions, induce this regeneration pathway to support growth.  

 

Wounding has been considered as an early trigger of plant regeneration (Chen et al., 2016). JA 

accumulates within seconds to minutes after wounding (Figure S5) (Glauser et al., 2009; 

Larrieu et al., 2015), making it one of the candidates for the earliest wound signal. We reveal 

a synergy between auxin and JA in activating the ERF115 transcription factor involved in 

regeneration. This synergy may be relevant to simultaneously detect the two processes that 

occur upon wounding in tissue context: cell damage leading to JA accumulation, and tissue 

integrity loss leading to local auxin accumulation by impeded polar auxin transport (Figure 

7N). 

 

Some early signaling events triggering specific cellular responses and defense gene activation 

after wounding bear similarities between plants and animals (Mueller, 1998; Navarro et al., 

2008). The cyclopentanoic fatty acid derivatives including the plant defense hormone JA is 

structurally similar to the animal defense regulators of the prostaglandin family (Creelman and 

Mullet, 1997; Yan et al., 2018). Both JA and prostaglandin are synthesized quickly in response 

to localized and/or systemic stress and inflammatory responses in plant or animal cells, 

respectively (Mueller, 1998). Interestingly, recent studies in animals reveal that prostaglandin 

PGE2 supports stem cell proliferation and survival, and inhibition of the prostaglandin-

degrading enzyme potentiates tissue regeneration (Goessling et al., 2009; North et al., 2007; 
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Zhang et al., 2015b). Future studies should resolve whether JA and prostaglandin signaling 

derive from a common stress response pathway that predated plant and animal divergence. 

 

Our studies reveal a critical role of JA in growth recovery during soil penetration and after M. 

incognita infections in Arabidopsis roots. JA signaling is activated both during soil penetration 

and early stages of nematode infection, and the JA dependent regeneration network is important 

for plants to adapt to parasitic pressure. Our ability to monitor a regeneration response after 

wounding and biotic insult using reporters that connect JA to developmental regulators paves 

the way to dissect biochemical defenses, trade-offs between defense and global plant growth, 

and body repair mechanisms. This should allow us to eventually comprehend how plants 

successfully cope with their environment. 
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Figure legends 

 

Figure 1. JA acts through RBR-SCR to regulate QC quiescence. 

(A-I) Modified pseudo-Schiff propidium iodide (mPS-PI) staining in stem cell niche of WT 

Col-0 (A-C), pWOX5::amiGORBR (Reducing RBR specifically in QC (quiescent center)) (D-

F), and pSCR::SCRaca-YFP (RBR-interaction defective allele) (G-I). Scale bar, 25 μm. 

(J-L) QC cell number of indicated genotypes without or with (hereafter +/-) MeJA treatment. 

n denotes total number of scored samples. Box plots display median (line), interquartile range 

(box), whiskers (extending 1.5 times the interquartile range), sample mean (cross) and 

outliers (dot). Lowercase letters indicate statistically different groups (Student’s t- test, P < 

0.01).  

See also Figure S1. 

Figure 2 JA induces ERF115 transcription 
(A-D) mPS-PI staining in ERF115-OE and ERF115-SRDX stem cell niches +/- MeJA 

treatment. Scale bar, 25 μm. 

(E) QC cell number quantification of indicated genotypes +/- MeJA treatment. Data represent 

mean  SD (standard deviation) of 2 independent experiments with >10 replicates per 

treatment in each genotype. 

(F-K) MeJA induction of ERF115 in QC and vascular cells. Arrows mark QC cells with GFP 

signal or GUS stain only after MeJA treatment. Scale bars, 50 μm. 

(L) Quantification of pERF115:GUS-GFP positive QC cells +/- MeJA treatment. Data 

represent mean  SD of 3 independent experiments. 

(M) RT-qPCR reveals that MeJA induction of ERF115 depends on COI1 and partially on 

MYC2. ERF115 transcript level in Col-0 without JA treatment was arbitrarily set to 1. Data 

represent mean  SEM (standard error) of 3 independent experiments. Different lowercase 

letters indicate statistically different groups (Tukey’s test, P < 0.05). 

(N and O) (N) Diagram of DNA fragments (No.1-8) in ERF115 promoter used for ChIP-

qPCR. (O) ChIP-qPCR of MYC2 on the promoter of ERF115. Peak fragment (No. 3) 

contains a typical MYC2-binding G-box (CACGTG) motif. ChIP signal was quantified as 

percentage of total input DNA by qPCR, and normalized to Col-0 fragment 1(set as 1). Data 

represent mean  SEM of 3 independent experiments. IR, intergenic region. (Student’s t- test, 

*P < 0.05, **P < 0.01) 

(P) Diagram of ERF115 and mERF115 promoter structures. 
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(Q) Representative images of GUS staining of pERF115::GUS and pmERF115::GUS +/- 

MeJA treatment for 6 hours. Nine independent pERF115::GUS and nine pmERF115::GUS 

lines were analysed separately with consistent results. Scale bars, 100 μm.  

See also Figure S2. 

 

 

Figure 3 Genetic interaction between RBR-SCR and ERF115 

(A-J) Representative confocal images of indicated genotypes at 6 DAG. Scale bar, 50 µm. 

(K) Box plots of QC cell number in the indicated lines, n denotes total number of scored 

samples. Box plots display median (line), interquartile range (box), whiskers (extending 1.5 

times the interquartile range), sample mean (cross) and outliers (dot). Lowercase letters 

indicate statistically different groups (Student’s t- test, P < 0.05, **P < 0.01).  

(L) Schematic diagram of JA-mediated molecular network which activates the root stem cell 

niche. Arrows represent activation; bar-headed lines represent repression; lines represent 

interactions between RBR and ERF115, and RBR and SCR, respectively. 

See also Figure S3. 

 

 

Figure 4 JA signaling promotes stem cell niche regeneration 

(A-F) Time course after columella stem cell (CSC) laser ablation of pWOX5::GFP +/- MeJA 

treatment. Same root: A-C; Same root: D-F. Blue arrows mark ablated CSCs.  

(G) Quantification of new columella cell layers between QC (marked by pWOX5::GFP) and 

ablated CSCs during the time course. Data represent mean  SEM of 3 independent 

experiments with at least 5 technical replicates per treatment. 

(H-K) QC laser ablation in pWOX5::GFP and coi1-1 pWOX5::GFP genotypes. 

(L and M) Quantification of new columella cell layers between QC and ablated cells after 

partial (L) or whole (M) QC ablation in indicated genotypes. Data represent mean  SEM of 

3 independent experiments with at least 6 technical replicates per genotype. 

(N) Quantification of JAS9-VENUS JA biosensor fluorescence with or without QC ablation in 

WT and coi1-2. Fluorescence intensity without ablation or immediately after ablation (<30s) 

was set to 1 in WT and coi1-2, respectively. Error bars represent SE, n>9. TAA, time after 

ablation. 

(O-T) QC laser ablation in ERF115-OE pWOX5::GFP, pWOX5::GFP, and ERF115-SRDX 
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pWOX5::GFP genotypes performed at 3 DAG.  

(U) Quantification of new columella cell layers between QC and ablated cells after QC 

ablation in indicated genotypes. Data represent mean  SEM of 3 independent experiments 

with at least 6 technical replicates per genotype. 

(V) Schematic diagram of JA-mediated molecular network which activates QC and regulates 

stem cell niche regeneration. SCN, stem cell niche. 

For (H-K and O-T), White arrows mark stem cell niche regeneration, blue arrows mark 

ablated QC cells. White brackets indicate columella layers between new QC and ablated 

cells. 

Scale bars, 50 µm. See also Figure S4. 

 

 

Figure 5 ERF109 responds quickly to JA and wounding, and is required for tissue 

regeneration 

(A and B) Root tip regeneration of 35S::amiGORBR pRBR::RBR-YFP and 35S::amiGORBR 

after resection. Images display same category III resected root with regenerated tip in 

35S::amiGORBR (B) and same resected root with differentiated root tip in 35S::amiGORBR 

pRBR::RBR-YFP (A).  

(C) Quantification of the frequency of regeneration and meristem length in indicated 

genotypes 72 hours after resection. Root tip resection categories based on cut site distance 

from tip: I, cut site at QC; II, half of the meristem cut; III, 3/4 of the meristem cut; IV, whole 

meristem cut. Error bars represent SD from two independent experiments with at least 30 

technical replicates per genotype. Meristem length was measured at 3 DAG. Error bars 

represent SD (n=12). Same lowercase letters indicate absence of statistical difference 

(Student’s t- test, *P < 0.05). 

(D) Representative confocal images of pERF109::GFP genotype +/- 50 µM MeJA treatment 

for 2 hours.  

(E) RT-qPCR reveals that MeJA induces ERF109. ERF109 transcript level in Col-0 without 

JA treatment was arbitrarily set to 1. Data represent mean  SEM of 3 independent 

experiments. Lowercase letters indicate statistically different groups (Tukey’s test, P < 0.05). 

(F) ChIP-qPCR of MYC2 on the promoter of ERF109. The ChIP signal was quantified as the 

percentage of total input DNA by qPCR, and normalized to the signal of MYC2-GFP IR 

fragment (set as 1). Data represent mean  SEM of 3 independent experiments. IR, intergenic 
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region. (Student’s t- test, *P < 0.05). 

(G) GUS staining of pERF109::GUS 30 min after root-tip resection. 

(H) GUS staining of pERF109::GUS and coi1-1 pERF109::GUS genotypes at 3 hours after 

resection.  

(I and J) RT-qPCR of ERF115 and ERF109 in indicated genotypes. ERF115 and ERF109 

transcript level in Col-0 respectively, was set to 1. Data represent mean  SEM of 3 

independent experiments. Different lowercase letters indicate statistically different groups 

(Tukey’s test, P < 0.01). 

(K and L) Root tip regeneration of pWOX5::GFP and pWOX5::GFP erf109 genotypes after 

resection. Images display regenerated root tip in WT (K) and differentiated root tip in erf109 

(L) at category III. 

(M) Quantification of the frequency of regeneration in pWOX5::GFP and pWOX5::GFP 

erf109, 72 hours after resection. Data represent mean  SD of 3 independent experiments 

with at least 30 technical replicates per genotype. Student’s t- test, *P < 0.05, **P < 0.01. 

(N) Quantification of the frequency of regeneration in pWOX5::GFP and pWOX5::GFP 

coi1-1. Data represent mean  SD of 3 independent experiments. Student’s t- test, *P < 0.05. 

(O) Schematic diagram of JA-mediated molecular network which activates QC, regulates 

stem cell niche and tissue regeneration. 

Scale bars, 50 µm. See also Figure S5. 

 

 

Figure 6 Synergy between JA and auxin signaling in regulating regeneration. 

(A-D) GUS staining of pERF115:GUS-GFP with mock or indicated treatments for 4 hours, 

respectively. 

(E) RT-qPCR analysis of ERF115 transcripts with mock or indicated treatments for 4 hours, 

respectively. Data represent mean  SEM of 3 independent experiments. Lowercase letters 

distinguish statistically different groups (Tukey’s test, P < 0.05). 

(F) Expression of pCYCD6;1::GUS-GFP +/- MeJA treatment. 6 DAG seedlings were treated 

+/- 50 µM MeJA for 3h before imaging. n>10. 

(G) Dual-luciferase assays. Expression of pCYCD6;1::LUC reporter only was set to 1. fLUC, 

Firefly luciferase; rLUC, Renilla luciferase. Transfection efficiency was normalized with a 

constitutively expressed rLUC. Data represent mean  SD of 3 independent experiments. 

Student’s t- test, ***P < 0.001. 
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(H) Frequency of regeneration in Col-0 and cycd6;1. Data represent mean  SD of 3 

independent experiments with at least 30 technical replicates per genotype. Student’s t- test, 

*P < 0.05. 

(I-L) Root tip regeneration of Col-0 and cycd6;1 after resection. Pictures shown are single 

root regeneration (Same root: I and J; Same root: K and L. Cut site: category III, regenerated 

root tip in Col-0 (J) and differentiated root tip in cycd6;1 (L)).  

(M) Schematic diagram of JA and auxin-mediated molecular network which activates QC, 

regulates stem cell niche and tissue regeneration. 

Scale bars, 50 µm. 

 

 

Figure 7 JA mediated wounding response and tissue regeneration is important to 

accommodate soil penetration and parasitic pressure  

(A) Expression of JAS9-VENUS and JAS9-VENUS coi1-2 in roots grown on plate or in sand. 

Scale bar, 100 µm. 

(B) Expression of the indicated genotypes on plate or in sand. Scale bars, 1 cm for plates, and 

100 µm for confocal images. n>12. 

(C) Primary root length of the indicated genotypes growing on plate or in sand. Data 

represent mean  SEM of 3 independent experiments with at least 16 technical replicates per 

genotype. Student’s t- test, *P < 0.05, ***P < 0.001. 

(D) Fluorescence ratio of JAS9-VENUS/H2B-RFP at different stages of nematode 

(Meloidogyne incognita) infections. Bars represent SE. n denotes the total number of samples 

scored. Lowercase letters indicate statistically different groups. Student’s t- test, P < 0.01. 

(E-G) GUS staining of pERF109::GUS (E), pERF115::GUS-GFP (F) and pCYCD6;1::GUS-

GFP (G) +/- nematode infections. DPI, days post infection. 

(H) Recovery of primary root growth +/- nematode infection in Col-0 and ERF115-SRDX. 

Root lengths represent primary root growth from 2 dpi to 6 dpi for mock, or root growth from 

galls (2 dpi) to root tips (6 dpi) for infected roots. n denotes the total number of samples 

scored from two independent experiments. Box plots display median (line), interquartile 

range (box), whiskers (extending 1.5 times the interquartile range), sample mean (cross) and 

outliers (dot). Student’s t- test, *** P < 0.001. 
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(I) Average area of galls per plant in the indicated genotypes at 7 weeks post infection. Data 

represent mean  SEM of 3 independent experiments with 6 replicates per genotype. 

Lowercase letters indicate statistically different groups. Student’s t- test, P < 0.05. 

(J and K) GUS staining of pCYCD6;1::GUS-GFP and pCYCD6;1::GUS-GFP ERF115-

SRDX at 2 or 3 dpi. 

(L and M) EdU incorporation assays in uninfected and infected roots of Col-0 and ERF115-

SRDX. EdU incorporations show active DNA synthesis (S-phase) at feeding sites of infected 

Col-0 roots, whereas few EdU positive nuclei at feeding sites of infected ERF115-SRDX 

roots. Dashed white lines: nematodes.  

(N) Schematic diagram of JA and auxin-mediated molecular network which activates the root 

stem cell niche and promote stem cell niche and tissue regeneration after damage. Arrows 

represent activations; bar-headed arrows represent repressions; lines represent interactions 

between RBR and ERF115, RBR and SCR, and SCR and SHR, respectively. 

(E-M) Scale bars, 50 µm. See also Figure S7. 

 

 

 

 

 

Supplemental figure 1 JA induces QC division through the SHR-SCR-RBR network. 

Related to Figure 1. 

(A) Median longitudinal view of Arabidopsis root stem cell niche organization. Red, QC; 

Green, initials surrounding QC. Red line outlines the root stem cell niche.  

(B-C) EdU incorporation assays showing that JA promotes QC division. 3 DAG Col-0 

seedlings were grown on 1/2 GM +/- MeJA treatment for 44 hours, and then cultured with 

EdU for 2 hours before EdU incorporation in the root stem cell niche was examined. Arrows 

highlight EdU stain in nuclei of QC after MeJA treatment, but not in nuclei of QC from 

seedlings grown on 1/2 GM. Scale bar, 25 µm. 

(D-M) Genetic interaction between COI1 and SCR-RBR. Indicated genotypes were grown on 

1/2 GM +/- MeJA 50 µM for 48 hours. Data shown are mean  SD, n>10. Same lowercase 

letters indicate no statistically different between groups (Student’s t- test, P < 0.05). Scale 

bars, 50 µm. 
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(N-T) Representative confocal images of indicated lines +/- MeJA 50 µM treatment for 48 

hours. MeJA promotes QC division in Col-0 but not in scr-3 and shr-2 mutants. Data shown 

are mean  SD, n>15. Different lowercase letters indicate significant differences between 

groups (Student’s t- test, P < 0.01). Scale bars, 50 µm.  

(U-Z) Confocal images of pSCR::GFP (U and V), pSCR::SCR-YFP (W and X) and  

pRBR::RBR-YFP (Y and Z) +/- 50 µM MeJA for 24 hours. Scale bars, (W and X) 25 µm, (U 

and V) and (Y and Z) 50 µm. 

(AA) RT-qPCR analysis of SCR and RBR transcripts +/- MeJA treatment for 24 hours. Data 

represent mean  SEM of 3 independent experiments. 

 

 

Supplemental figure 2 JA, BR and ROS-mediated transcriptional regulation of ERF115. 

Related to Figure 2. 

(A) QC cell number in Col-0 and erf115 +/- MeJA 50 µM treatment for 48 hours.  

(B) Representative images of GUS staining of pERF115::GUS-GFP  +/- MeJA treatment for 

1 hour or 3 hours. After MeJA treatment for 1 hour, weak GUS stain can be found at vascular 

cells (arrow). Scale bar, 50 µm. 

(C) Hand section of root tips of pERF115::GUS-GFP +/- MeJA treatment reveals 

protoxylem fluorescence. Samples were fixed in 4% paraformaldehyde and stained with 

SCRI Renaissance 2200. Scale bar, 20 µm. 

(D) QC cell number in Col-0 and coi1-2 +/- 24-epiBL (brassinolide) 500 nM or 24-

epiBL+MeJA 50 µM treatment for 48 hours. 

(E) Representative confocal images of indicated lines +/- 1 µM 24-epiBL treatment for 20 

hours. Scale bar, 50 µm. 

(F) QC cell number in Col-0 and coi1-2 +/- H2O2 200 µM or H2O2 200 µM+MeJA 20 µM 

treatments for 48 hours. 

(G) Representative images of GUS staining of indicated lines +/- 1 mM H2O2 treatment for 

16 hours. Scale bar, 50 µm. 

Data are mean  SD. n denotes total number of samples scored. Different lowercase letters 

indicate significant differences between groups (Tukey’s test, P < 0.05). 

 

Supplemental figure 3 RBR interacts with ERF115. Related to Figure 3, 
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(A-E) Representative confocal images of the indicated genotypes at 5 DAG. Scale bar, 50 

µm. 

(F) Schematic diagram of the ERF115 protein. AP2, AP2 DNA-binding domain; LxFxE, 

Leu-x-Phe-x-Glu motif; pink boxes, low complexity regions. Software, SMART. 

(G) Yeast two hybrid assays showing that RBR interacts with ERF115. Yeast transformants 

were dropped onto SD/-Trp/-Leu (-LW), SD/-His/-Trp/-Leu (-HLW) and SD/-Ala/-His/-Trp/-

Leu (-AHLW) media to assess protein–protein interactions. ERF115m, ERF115 protein with 

mutated LxFxE motif (AxAxA). SCR-SHR and RBR-SCR interactions were used as positive 

controls. Negative controls: empty BD+ERF115-AD; RBR-BD+empty AD. AD, GAL4 

activation domain; BD, binding domain. 

(H) Bimolecular fluorescence complementation assays showing that RBR interacts with 

ERF115 in planta. Indicated different combinations were co-infiltrated into N. benthamiana 

leaves. Positive controls: SCR-nYFP+SHR-cYFP; RBR-nYFP+SCR-cYFP. Negative 

controls: RBR-nYFP+RBR-cYFP; ERF115-nYFP+ERF115-cYFP; RBR-nYFP+empty 

cYFP; ERF115-nYFP+cYFP-ERF115; ERF115-nYFP+cYFP-ERF115-SRDX. ERF115m, 

ERF115 protein with mutated LxFxE motif; nYFP, N-terminal fragment of VENUS YFP; 

cYFP, C-terminal fragment of VENUS YFP. Scale bar, 50 µm. 

(I) Co-IP assays of RBR with ERF115 (SRDX). 35S::RBR-myc and 35S::GFP-ERF115 

(SRDX) were infiltrated into N. benthamiana leaves. Protein samples immunoprecipitated 

with anti-myc antibody and immunoblotted with anti-GFP antibody. *, mouse antibody heavy 

chain. 

 

 

Supplemental figure 4 JA signaling promotes stem cell niche regeneration. Related to 

Figure 4. 

(A-B’’’) Time course of columella stem cell (CSC) laser ablation of pWOX5::GFP +/- MeJA 

pre-treatment. Images display the same root for A and B, repectively. Two-day-old seedlings 

were transferred to plates +/- 50 μM MeJA for 24 hours before laser ablation was performed. 

Blue arrows mark ablated CSCs.  

(C-D’) Time course of columella stem cell (CSC) laser ablation of pWOX5::GFP +/- MeJA 

treatment. Three-day-old seedlings were CSC ablated and then transferred to plates +/- 250 

nM MeJA. Blue arrows mark ablated CSCs.  
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(E) Quantification of columella cell layers between QC (marked by pWOX5::GFP) and 

ablated CSCs during the time course. Data represent mean  SEM of 3 independent 

experiments with at least 5 technical replicates per treatment. 

(F-G’’’) Time course of QC laser ablation of pWOX5::GFP and coi1-1 pWOX5::GFP 

genotypes.  

(H-I’’’) Time course of QC laser ablation of JAS9-VENUS JA biosensor in WT and coi1-2. 

White dashed circles indicate photobleached region by laser ablation (including ablated QC). 

Insets in H’ and I’ show ablated QC cells with PI-staining nuclei. 

(J-K’’) Time course of QC laser ablation of pERF115::GUS-GFP in WT and coi1-2. 

(L) Quantification of fluorescence of pERF115::GUS-GFP in WT and coi1-2 after QC 

ablation. Data represent mean  SEM of 2 independent experiments with at least 6 technical 

replicates per genotype. Student’s t- test, * P < 0.05. 

(M-P’’’) Time course of QC laser ablation of ERF115-OE pWOX5::GFP, pWOX5::GFP, 

ERF115-SRDX pWOX5::GFP and erf115 pWOX5::GFP genotypes.  

(Q-R’) QC laser ablation of pSCR::SCRwt-YFP pWOX5-GFP/scr-4 and pSCR::SCRaca-YFP 

pWOX5-GFP/scr-4 genotypes. In pSCR::SCRaca-YFP pWOX5-GFP/scr-4, no SCR or WOX5 

was expressed in the newly regenerated “QC”.  

(S) Quantification of new columella cell layers between QC and ablated cells after QC 

ablation in the indicated genotypes. Data represent mean  SEM of 3 independent 

experiments. 

(T) Quantification of new columella cell layers between QC and ablated cells after QC 

ablation in the indicated genotypes. Data represent mean  SEM of 3 independent 

experiments. 

(U-V’’’) Time course of QC laser ablation of pWOX5::amiGORBR and ERF115-SRDX 

pWOX5::GUS-GFP pWOX5::amigoRBR genotypes.  

(W-X’’’) Time course of QC laser ablation of pSCR::SCRaca-YFP pCYCD6;1::GFP/scr-4 

and ERF115-SRDX pSCR::SCRaca-YFP pCYCD6;1::GFP/scr-4 genotypes.  

(Y) Quantification of new columella cell layers between QC and ablated cells after QC 

ablation in the indicated genotypes. Data represent mean  SEM of 3 independent 

experiments. 

Scale bars, 50 μm. For (C-X), laser ablation was performed at 3 DAG. White arrows mark 

stem cell niche regeneration, blue arrows mark ablated QC cells.  
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Supplemental figure 5 ERF109 acts upstream of ERF115 in response to wounding. 

Related to Figure 5. 

(A and B) Time-course confocal images of JAS9-VENUS and JAS9-VENUS coi1-2 at 

indicated time points after root tip resection.  

(C) Fluorescence ratio of JAS9-VENUS /H2B-RFP at different time points after root tip 

resection. Error bars represent SE, n>8. 

(D and E) Time course of root tip resection of pERF115::GUS-GFP in WT and coi1-2. 

(F) Quantification of fluorescence of pERF115::GUS-GFP in WT and coi1-2 after root tip 

resection. Data represent mean  SEM of 3 independent experiments with at least 8 technical 

replicates per genotype. Student’s t- test, * P < 0.05, ** P < 0.01. 

(G) Representative images of GUS staining of pERF115::GUS and pmERF115::GUS 6 hours 

after root tip resection. Nine independent pERF115::GUS and nine independent 

pmERF115::GUS lines were analysed separately with consistent results. 

(H) RT-qPCR of ERF109 +/- 50 µM MeJA treatment for 1 hour. Two-millimetre root tips of 

three-day-old of Col-0 seedlings were harvested for RNA extraction and qRT-PCR analysis. 

ERF109 transcript level in Col-0 without JA treatment was arbitrarily set to 1. Data represent 

mean  SEM of 3 independent experiments. Lowercase letters indicate statistically different 

groups (Student’s t- test, P < 0.01). 

 (I and I’) GUS staining and confocal image of pERF109::GUS 60 min after ablation. Images 

display the same root for I and I’. 

(J) GUS staining of pERF109::GUS after root-tip resection at the indicated time points. 

(K) GUS staining of pERF109::GUS with low and high cut at 90 min after resection.  

(L and M) Confocal images of pERF115::GUS-GFP and ERF109-SRDX pERF115::GUS-

GFP +/- 50 µM MeJA treatment for 4 hours. ERF109-SRDX, 35S::ERF109-SRDX. n>10. 

(N-P) GUS staining of the indicated genotypes at 90 min after resection. n>7. 

(Q) Quantification of new columella cell layers between QC and ablated cells after QC 

ablation in indicated genotypes. Data represent mean  SEM of 2 independent experiments. 

(R) Meristem length of pWOX5::GFP and pWOX5::GFP erf109 at 3 DAG. Meristem length 

was measured from root tip until the first elongated cortical cell. Error bars represent SD 

(n=15). Same lowercase letters indicate no statistical difference (Student’s t- test, P < 0.05).  

(S) Meristem length of pWOX5::GFP and pWOX5::GFP coi1-1 at 3 DAG. Error bars 

represent SD (n=12). Same lowercase letters indicate no statistical difference (Student’s t- 
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test, P < 0.05).  

(T) Quantification of the frequency of regeneration in Col-0, erf115 and ERF115-SRDX. Data 

represent mean  SEM of 3 independent experiments with at least 20 technical replicates per 

genotype. 

(U) Meristem length of Col-0, erf115 and ERF115-SRDX at 3 DAG. Error bars represent SD 

(n=12). Lowercase letters indicate statistically different groups (Student’s t- test, P < 0.05).  

Scale bars, 50 µm. 

 

 

Supplemental figure 6 Synergy between JA and auxin signaling in regulating 

regeneration. Related to Figure 6. 

(A) GUS staining of pERF109::GUS with mock treatment, IAA 1 µM, MeJA 50 µM, or IAA 

1 µM + MeJA 50 µM for 4 hours, respectively.  

(B) RT-qPCR analysis of ERF109 transcript with mock treatment, IAA, MeJA, or 

IAA+MeJA with indicated concentrations for 4 hours, respectively. Data represent mean  

SEM of 3 independent experiments. Lowercase letters indicate statistically different groups 

(Tukey’s test, P < 0.05). 

(C) Quantification of CYCD6;1-GFP fluorescence +/- MeJA treatment. Data represent mean 

 SEM. Lowercase letters indicate statistically different groups (Student’s t- test, P < 0.01). 

(D and E) Time course of the expression of pCYCD6;1::GUS-GFP after root tip resection. 

Images display same root for D, and same root for E. White arrow marks ectopic expression 

of CYCD6;1 in vascular cells. Scale bar, 50 μm. 

(F) ChIP-qPCR of ERF109 on the promoter of CYCD6;1. The ChIP signal was quantified as 

the percentage of total input DNA by qPCR, and normalized to the signal of Col-0 IR 

fragment (set as 1). The fragment of ASA1 promoter (Cai et al., 2014) was used as a positive 

control. Data represent mean  SEM of 3 independent experiments. IR, intergenic region. 

(Student’s t- test, *P < 0.05, **P < 0.01). 

(G and H) Confocal images of pCYCD6;1::GUS-GFP and ERF109-SRDX pCYCD6;1::GUS-

GFP +/- 500 nM MeJA treatment for 16 hours. n>15. 

(I) Quantification of new columella cell layers between QC and ablated cells after QC 

ablation in Col-0 and cycd6;1. Data represent mean  SEM of 2 independent experiments. 

(J) Meristem length of Col-0 and cycd6;1 at 3 DAG. Error bars represent SD (n=8). Same 

lowercase letters indicate no statistically different groups (Student’s t- test, P < 0.05). 
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Supplemental figure 7 JA mediated wounding response and tissue regeneration is 

important to accommodate soil penetration and parasitic pressures. Related to Figure 7. 

(A) Camera images of plants growing on the 1/2 GM plate and sand plate. Scale bar, 1 cm. 

(B) Fluorescence ratio of JAS9-VENUS/H2B-RFP in WT and coi1-2 background growing on 

1/2 GM plate or sand, respectively. Bars represent SE, n=6 (1/2 GM); n=12 (sand). Student’s 

t- test, ***P < 0.001. 

(C) Expression of JAS9-VENUS on 1/2 GM plate or on sand plate for 5 min, n=8. Scale bar, 

100 µm. 

(D-G) Confocal images of JAS9-VENUS +/- nematode (M. incognita) infection at different 

stages. Dashed white lines depicted nematodes. Scale bar, 100 µm. 

(H-J) GUS staining of pERF109::GUS (H), pERF115::GUS-GFP (I) and pCYCD6;1::GUS-

GFP (J) +/- nematode infection at different stages.. Scale bars, 50 µm. 

(K) Average number of galls per root tip in the indicated lines at 7-week post infection. Data 

represent mean  SEM of 3 independent experiments with 6 replicates per genotype. 

Lowercase letters indicate statistically different groups. Tukey’s test, P < 0.01. 

(L) Expression of pCYCD6;1::GUS-GFP in WT and ERF115-SRDX background at 5 DAG. 

Scale bar, 50 µm 
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CONTACT FOR REAGENT AND RESOURCE SHARING 

 
Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Ben Scheres (ben.scheres@wur.nl). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

 
Plants 

Arabidopsis thaliana ecotype Col-0 was used as wild type control. Seeds were surface-

sterilized for 15 min in 20% commercial bleach, washed five times with sterile water, and 

plated on 1/2 MS medium with 1% sucrose and 0.8% agar. Plants were stratified at 4°C for 2 

days in the dark and then transferred to a phytotron at 22°C with a 16 h light/8 h dark 

photoperiod (light intensity: 120 µmol photons m-2s-1) in oriented Petri dishes. The myc2 

mutant was selected by its reduced root growth inhibition (compared to WT) on MeJA plates, 

and was confirmed with PCR genotyping. coi1-1 and coi1-2 mutants were selected by their 

reduced root growth inhibition and reduced anthocyanin accumulation (compared to WT) on 

MeJA plates. For genotypes observed in F1, phenotypes were compared to control F1s (parent 

X Col-0). 

 

Nematodes 

The Meloidogyne incognita strain Morelos (from INRA, Sophia Antipolis, France) was used 

for infection. Eggs of M. incognita were obtained as reported (Warmerdam et al., 2018). In 

brief, eggs were collected on a 25 µm sieve and incubated in sterile tap water containing 1.5 

mg ml-1 gentamycin and 0.05 mg ml-1 nystatin in the dark at room temperature. Hatched 

juveniles were collected after 4 days and surface sterilized (0.16mM HgCl2, 0.49mM NaN3, 

0.002% (v/v) Triton X-100) for 10 min. After surface sterilization, juveniles were rinsed three 

times with sterile tap water and transferred to 0.7% Gelrite solution (Duchefa Biochemie, 

Haarlem, the Netherland). 

 

METHOD DETAILS 

 
Plasmid Construction and Plant Transformation 

pERF115::GUS and pmERF115::GUS were constructed by fusing a 2400 bp ERF115 

promoter fragment (original or mutated) in front of β-glucuronidase (GUS) in the pGWB3 

vector (Nakagawa et al., 2007). pERF109::GFP was constructed by fusing a 2935 bp ERF109 

promoter fragment in front of GFP in the pGWB4 vector (Nakagawa et al., 2007). Constructs 

were transformed into Agrobacterium tumefaciens strain C58(pMP90) and transformed in 

plants by floral dip. Transformants were selected based on resistance. Homozygous T3 or T4 

transgenic plants were used for analysis. 

 

Histology and Microscopy 

Histochemical staining for β-glucuronidase (GUS) activity in transgenic plants was performed 

as described previously (Chen et al., 2011). In brief, whole seedlings were immersed in GUS 

staining solution (1 mM X-glucuronide in 100 mM sodium phosphate, pH 7.2, 0.5 mM 

ferricyanide, 0.5 mM ferrocyanide, and 0.1% Triton X-100) and incubated at 37°C in the dark. 

Differential interference contrast (DIC) images were captured using a Zeiss photomicroscope 

III. Modified pseudo-Schiff propidium iodide (mPS-PI) staining: Samples were fixed (10% 

acetic acid, 50% methanol) and kept at 4℃ for overnight, rinsed briefly with water, and 

incubated in 1% periodic acid (an oxidizing agent) for 40 minutes-1 hour. After that, samples 

were washed with water and incubated in Schiff reagent with propidium iodide (100 mM 

mailto:ben.scheres@wur.nl
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sodium metabisulphite; 0.15 N HCl; 100 ug/mL PI) for 2 hours before imaging. SCRI 

Renaissance 2200 staining: Samples were fixed in SR2200 Staining Solution (0.1% (v/v) 

SR2200, 1% (v/v) DMSO, 0.05% (w/v) Triton-X100, 5% (w/v) glycerol, 4% (w/v) para-

formaldehyde in PBS buffer (pH 8.0)) and kept at 4℃ for overnight before imaging. For 

confocal laser scanning microscopy, the root tips were stained in 10 μg/mL propidium iodide 

and observed using a Zeiss LSM 710 system. 3 DAG seedlings were transferred to 1/2 GM 

(germination medium) +/- MeJA 48 hours before QC division quantification. PI was visualized 

using wavelengths of 600–640 nm. Wavelengths used to visualize GFP and YFP were 500–

540 and 525–565 nm, respectively. Images were taken with ZEN 2012 software (Zeiss) and 

processed with Adobe Photoshop. 

 

RT-qPCR Analysis 

Total RNA from whole seedlings or root tips were extracted using the Spectrum Plant total 

RNA Kit (Sigma). For MeJA treatment, seedlings were transferred to plates +/- MeJA for 

indicated time courses before harvest. cDNA was synthesized from 5 μg total RNA using 

odT18VN primer (Biolegio) and RevertAid M-MuLV reverse transcriptase (Fermentas). qPCR 

reactions were quantified on a Bio-Rad CFX connect Real-time System with iQ SYBR Green 

Supermix (Bio-Rad). Expression levels of tested genes were normalized against ACT2. Primers 

are listed in Table S1. 

 

Laser Ablation and Resection 

Laser ablations were performed on a Leica TCS SP8 confocal microscope (software: Leica 

Application Suite Advanced Fluorescence). 2-to 3- DAG seedlings were used, and ablation 

procedures were performed as previously described (Xu et al., 2006). For MeJA treatment, 

seedlings were transferred to plates +/- MeJA for the indicated time course. At least three 

independent experiments were performed. For quantification of JAS9-VENUS JA biosensor 

fluorescence with or without QC ablation, at least 5 nuclei in lateral root cap/epidermis near 

ablated QC were traced and quantified during the time course in each root tip. Mocks are 

seedlings mounted on slides with PI without laser ablation. Root tip resection experiments were 

performed as previously described (Sena et al., 2009). All root-tip excisions were performed 

at 3 DAG. At least three independent experiments were performed. 

 

Nematode Infection Assays 

Nematode infection assays on Arabidopsis plants were performed as previously described 

(Warmerdam et al., 2018). In brief, for egg mass number count, Arabidopsis seeds of different 

genotypes were vapor sterilized and planted in 6-well cell culture plates (Greiner bio-one) 

containing MS medium (MS with vitamins 4.7 g/L (Duchefa biochemie), 58.5 mM sucrose and 

5 g/L Gelrite. After at least 3 days of stratification in the dark at 4oC, plants were grown at 24 

degrees under 16-h-light/8-h-dark. Each two-week-old seedling was inoculated with ~180 

surface sterilized J2s of Meloidogyne incognita (Strain Morelos) and plants were incubated at 

24 degrees in the dark. The number of egg masses per plant was counted seven weeks after 

inoculation by visually inspecting the roots with a stereomicroscope (ZEISS Stemi SV6). For 

the root recovery measurements, vapor sterilized Arabidopsis seeds were planted in two rows 

on square plates (120x120x15mm, Greiner bio-one) containing MS medium (MS with vitamins 

4.7 g/L (Duchefa biochemie), 58.5 mM sucrose and 7 g/L Gelrite. After stratification, seedlings 

were vertically grown at 24 degrees under 16-h-light/8-h-dark for 4 days until inoculation with 

~25 surface sterilized J2s of Meloidogyne incognita (Strain Morelos) or mock inoculation. The 

positions of the root tips of the primary roots at the time of inoculation were marked on the 

plates as a reference point for further growth. Growth of the primary root relative to this marker 

position was measured from 2 dpi to 6 dpi for nematode- and uninfected roots. Nematode-
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infected roots were identified by the formation of a gall at the marker position. WinRHIZO 

Software and EPSON STD4800 were used to scan each genotype. For counting root tips, 

seedlings were grown vertically on square plates using the same media and growth conditions 

as for the above-described nematode infection assays.  The counting of root tips was performed 

4 days after plants were incubated at 24 degrees in the dark. For marker gene expression after 

nematode infection, seedlings were grown vertically on square plates containing nematode 

infection medium. Four-day-old seedlings were inoculated without (control) or with surface 

sterilized J2s of M. incognita and were incubated at 24 degrees in the dark. One to three days 

after nematode inoculation, seedlings were analyzed under confocal microscopy (Zeiss LSM 

710), or were used for GUS/EdU staining. The statistical significance of the pairwise 

differences between plant genotypes was assessed with a one-way ANOVA. 

 

Rhizotrons 

We mixed sterilized river sand (Van Leusden Transport, Wageningen, the Netherlands) 

(diameter 250 µm-1 mm (>98%), 1 mm-10 mm (<2%)), Agra-perlite (Grain 2.0-3.0 mm) and 

clay granules (diameter ~3 mm) (Seramis®) (volume: 8:1:1) and filled square petri dishes 

(greiner bio-one, 120x120x17 mm). Rhizotrons were pre-wetted with sterilized 1/2 MS liquid. 

For marker gene expression observation, young seedlings were grown on 1/2 GM plates for 4-

5 days, and were transferred to new plates or sand plates for another 4 days. For primary root 

length measurement, seedlings were grown on 1/2 GM plates for 4 days, and then were 

transferred to new plates or sand plates for another 3 days before measurement. Thereafter, 

rhizotron sand mixtures were carefully washed with milliQ water and seedlings were placed 

on new 1/2 GM plates before imaging or root length measurement. For marker gene expression, 

images were taken with identical confocal settings. Three independent experiments were 

performed for both primary root measurement and marker gene expression. In each 

independent experiment, at least 16 roots per genotype were measured for primary root length, 

and at least 10 roots were visualized for marker gene expression per genotype. ImageJ and the 

SmartRoot plugin were used for primary root length measurements. 

  

Luciferase Assay 

Promoter activity was measured using a Dual Luciferase Reporter (DLR) system (Promega). 

In brief, pCYCD6;1::LUC and p19 (gene-silencing supressor) constructs were co-tranformed 

with the appropriate transcription factor constructs into three weeks old tobacco leaves. 

35S:Renilla-luciferase (rLUC) was used as an internal control to quantify transformation 

efficiency. Three days after inoculation, proteins were extracted with Dual-Luciferase Reporter 

Assay System kit (Promega, Fitchburg, USA). Luciferase activity measurements were 

performed with Glomax™ 96 microplate luminometer (Promega, Fitchburg, USA). The 

measured levels were normalized using rLUC values and the ratio was calculated relative to 

the ones obtained from leaves transfected with only pCYCD6;1::LUC. 

 

ChIP-qPCR Assay 

ChIP experiments were performed as described (Li et al., 2017). In brief, approximately 1 gram 

of wild-type Col-0 (control) and 35s::MYC2-GFP seedlings at 5 DAG were used for each anti-

GFP ChIP assay. Samples were treated with MeJA 100 µM for 2 hours before harvest. 

Sonicated chromatin was incubated with GFP-Trap agarose beads (Chromotek) for overnight 

at 4 degrees. Precipitated DNA was purified using a ChIP DNA clean & concentrator kit (The 

epigenetics company) for RT-qPCR analysis. Sonicated chromatin of 35S::HA-ERF109 was 

incubated was anti-HA antibody (abcam) and Dynabeads protein G. Three independent ChIP 

experiments were performed. Primers used for ChIP-PCR are listed in Table S1. 
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Y2H, BiFC and Co-IP Assays 

Y2H, BiFC and Co-IP were performed as described (Gehl et al., 2009; Shimotohno et al., 

2018; Zhang et al., 2018). N. benthamiana leaves were used for BiFC and Co-IP experiments. 

In Co-IP experiment, protein A/G plus agarose beads (Santa Cruz Biotechnology) were added 

to protein extracts to reduce nonspecific immunoglobulin binding prior to antibody 

incubation. The LxCxE motif in the ERF115 CDS was mutated with the quikchange II XL 

site-directed mutagenesis kit (Agilent). Primers used are listed in Table S1. 

 
QUANTIFICATION AND STATISTICAL ANALYSIS 

 
Detailed statistical parameters of the experiments can be found in figure legends (type of 

statistical tests used, exact value of n, etc). In figures, asterisks denote statistical significance 

between samples/treatments. Statistical significance was evaluated by Student’s t test analysis. 

For multiple comparisons, an analysis of variance followed by Fisher’s LSD mean separation 

test and Turkey’s HSD test (SPSS) was performed on the data. Samples marked with different 

lowercase letters are statistically different at P < 0.01 or P < 0.05, as indicated in figure legends. 

Data presented are mean values of at least three biological repeats with SD or SE. For sand/soil 

root growth and nematode infection assays, seedlings were photographed and root length was 

measured (Image J). QC cell numbers were analyzed on confocal images (ZEN 2012, Zeiss) 

as previously described (Chen et al., 2011). Images were processed with Adobe Photoshop and 

Adobe Illustrator. 

 
 

Supplementary Table 1 List of primers used in this study 



 

TABLE FOR AUTHOR TO COMPLETE 

Please upload the completed table as a separate document. Please do not add subheadings to the Key 
Resources Table. If you wish to make an entry that does not fall into one of the subheadings below, please contact 
your handling editor. (NOTE: For authors publishing in Current Biology, please note that references within the KRT 
should be in numbered style, rather than Harvard.) 

 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Roche anti-GFP mouse IgG1k antibody Roche Cat#11814460001; 
RRID:AB_390913 

c-Myc (9E10) antibody Santa Cruz Biotechnology Cat# sc-40; 
RRID:AB_627268 

c-Myc (9E10) antibody conjugated to agarose Santa Cruz Biotechnology Cat# sc-40AC; 

Rabbit anti-HA tag polyclonal antibody Abcam Abcam Cat# 
ab9110, 
RRID:AB_307019 

GFP-Trap magnetic agarose beads Chromotek Cat# gtma-10 

Goat anti-mouse IgG-HRP Polyclonal, HRP 
Conjugated antibody 

Santa Cruz Biotechnology Cat# sc-2005, 
RRID:AB_631736 

Chemicals, Peptides, and Recombinant Proteins 

Propidium Iodide (PI) Sigma-Aldrich Cat# P4170 

SCRI Renaissance 2200 (SR2200) Renaissance Chemicals N/A 

Methyl jasmonate 95% (MeJA) Sigma-Aldrich Cat# 392707 

Indole-3-Acetic Acid (IAA) Duchefa Cat# I0901.0100 

Hydrogen peroxide 30% Merck Cat# 1072091000 

Dynabeads protein G for immunoprecipitation ThermoFisher Cat# 10003D 

Protein A/G plus-agarose Santa Cruz Biotechnology Cat# sc-2003 

Critical Commercial Assays 

Click-iT EdU Alexa Fluor 555 HCS Assay ThermoFisher Cat# C10352 

Spectrum Plant total RNA Kit Sigma-Aldrich Cat# STRN250-1KT 

Dual-Luciferase Reporter Assay System Promega Cat# E1910 

Experimental Models: Organisms/Strains 

Arabidopsis: pSCR::SCRaca:YFP scr-4 (Resistance: 
pptR) 

Cruz-Ramirez et al., 2012 N/A 

Arabidopsis: pWOX5::amiGO-RBR (KanR) Cruz-Ramirez et al., 2013 N/A 

Arabidopsis: pWOX5::GFP (pptR) Blilou et al., 2005 N/A 

Arabidopsis: ERF115-OE (KanR) Heyman et al., 2013 N/A 

Arabidopsis: ERF115-SRDX (KanR) Heyman et al., 2013 N/A 

Arabidopsis: ERF115-OE pWOX5::GUS-GFP 
(KanR) 

Heyman et al., 2016 N/A 

Arabidopsis: ERF115-SRDX pWOX5::GUS-GFP 
(KanR) 

Heyman et al., 2016 N/A 

Arabidopsis: pERF115::GUS-GFP (KanR) Heyman et al., 2013 N/A 

Arabidopsis: pERF115::GUS (HygR) This paper N/A 

Arabidopsis: pmERF115::GUS (HygR) This paper N/A 

Arabidopsis: coi1-2 Xu et al., 2002 N/A 

Arabidopsis: coi1-1 Xie et al., 1998 N/A 

Arabidopsis: 35S::MYC2-GFP (HygR) Chen et al., 2012 N/A 

Key Resource Table



 

Arabidopsis: pERF109::GUS (pptR) Cai et al., 2014 N/A 

Arabidopsis: 35S::HA-ERF109 (pptR) Cai et al., 2014 N/A 

Arabidopsis: JAS9-VENUS (HygR) Larrieu et al., 2015 N/A 

Arabidopsis: erf115 SALK SALK_021981 

Arabidopsis: erf109 SALK SALK_150614 

Arabidopsis: pCYCD6;1::GUS-GFP (KanR) Sozzani et al., 2010  

Arabidopsis: cycd6;1 GABI-Kat GK-368E07 

Arabidopsis: cycd2;1 cycd6;1 Sozzani et al., 2010 N/A 

Arabidopsis: myc2-2 Boter et al., 2004 N/A 

Arabidopsis: myc234 Fernández-Calvo et al., 
2011 

N/A 

Oligonucleotides 

Primers used in this study, see Table S1 This paper N/A 

Recombinant DNA 

Plasmid: pERF115::GUS This paper N/A 

Plasmid: pmERF115::GUS This paper N/A 

Plasmid: ERF109-SRDX This paper N/A 

Plasmid: ERF115-SRDX This paper N/A 
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