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 3 
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Building-Park Place, CF10 3AT Cardiff, United Kingdom 6 

Abstract 7 

Fault control on the position and distribution of isolated carbonate platforms is 8 

investigated in Northwest Australia using high quality 3D seismic and borehole data from the 9 

Bonaparte Basin. Specifically, we address the relationship between carbonate productivity 10 

and fault growth so as to understand what the primary controls on the growth of isolated 11 

carbonate platforms are. Throw-depth (T-Z) and throw-distance (T-D) profiles for normal 12 

faults suggest they formed fault segments that were linked at different times in the study area. 13 

This caused differential vertical movements: some of the normal faults have propagated to 14 

the surface, while others have upper tips 19 to 530 ms two-way-time below the sea floor, with 15 

the largest values comprising faults underneath isolated carbonate platforms. As a result, four 16 

distinct zones correlate with variable geometries and sizes of carbonate platforms, which are 17 

a function of topographic relief generated by underlying propagating faults. Some relay 18 

ramps form a preferred location for the initiation and development of carbonate platforms, 19 

together with adjacent structural highs. Due to the complex effect of fault propagation to the 20 

palaeosurface, and soft-linkage through relay ramps, three distinct models are proposed. Two 21 

models explain carbonate platform growth and one explains changes in its internal structure: 22 

(1) in the first model, fault throw is larger than carbonate productivity; (2) the second model 23 

considers fault throw to be equal or less than carbonate productivity; and (3) the third model, 24 
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fault throw post-dates the growth of the carbonate platform(s). The analysis of fault 25 

propagation vs. carbonate platform growth shown here is important, as the three models 26 

proposed potentially correlate with variable fracture densities and distributions within the 27 

carbonate platforms. Based on our results, models 2 and 3 above enhance fracture- and fault-28 

dominated porosity and permeability to a greater degree, making them a good target for 29 

hydrocarbon exploration. 30 

 31 

Keywords: Isolated carbonate platforms; continental margins; Northwest Australia; 32 

fault growth; throw distribution; fractured reservoir. 33 

 34 

1 Introduction 35 

Isolated carbonate platforms (ICPs) are of great interest to petroleum exploration due to 36 

their reservoir potential. Some of the best examples of such potential are recorded in the 37 

South China Sea (Neuhaus et al., 2004; Ding et al., 2014; Hutchison, 2014), Kazakhstan 38 

(Collins et al., 2006; Kenter et al., 2008; Collins et al., 2016), the Middle East (Alsharhan, 39 

1987), the Brazilian Coast (Buarque et al., 2017), the Barents Sea (Blendinger et al., 1997; 40 

Elvebakk et al., 2002; Nordaunet-Olsen, 2015; Alves, 2016), amongst others. It is estimated 41 

that reserves of about 50 billion barrels of oil equivalent are accumulated within these 42 

structures around the world (Burgess et al., 2013) including fields such as the Luconia 43 

Province and the Malampaya Field in the South China Sea (Neuhaus et al., 2004; Zampetti et 44 

al., 2004; Rankey et al., 2019), the Karachaganak gas-condensate-oil field and the Tengiz 45 

field in the Pre-Caspian Basin, Kazakhastan (Elliott et al., 1998; Collins et al., 2006; 46 

Borromeo et al., 2010; Katz et al., 2010).  47 
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Isolated carbonate platforms are carbonate deposits that accumulate in situ as 48 

geomorphic features with significant topographic expression relative to adjacent, time-49 

equivalent strata (Burgess et al., 2013). These isolated carbonate platforms tend to have a flat 50 

top as a result of the constrained space for vertical carbonate accommodation limited by the 51 

sea level (Schlager, 2005). These carbonate platforms are also characterised by presenting 52 

steep margins on their edges (Schlager, 2005). As such, isolated carbonate platforms show no 53 

significant attachment to a continental landmass. They can comprise several depositional 54 

environments such as reefs, lagoons, tidal flats and flanking slopes (Stanton Jr, 1967; Burgess 55 

et al., 2013). Structural elements (such as faults), palaeotopography, environment 56 

(penetration of light to the seafloor, temperature, nutrients and salinity) and distinct biologic 57 

assemblages are some of the mechanisms that, when combined, influence the timing, 58 

location, growth and development of isolated carbonate platforms (Schlager, 2005). For 59 

instance, propagation of a fault to the surface can modify the seafloor topography, which in 60 

turn can influence carbonate platform development.  61 

Research has been focused on the controls and genetics of isolated carbonate platforms 62 

in a large, regional basin-scale (Bosence, 2005; Dorobek, 2007). Additionally, the 63 

stratigraphic relationships and depositional contact with structural features have been 64 

generalised (Dorobek, 2007). Detailed structural controls have been previously studied 65 

focusing primarily on structural highs of sedimentary basins (Zampetti et al., 2004; Saqab 66 

and Bourget, 2015a). In contrast to the published literature, this paper focuses on the Karmt 67 

Shoals area to understand how underlying propagating faults can control carbonate growth 68 

and the morphology of ICPs in the Bonaparte Basin (Fig. 1). Saqab and Bourget (2015a) have 69 

already undertaken an analysis of fault controls on ICPs in this area with a focus on the “Big 70 

Bank” platform located to the northeast of the Karmt Shoals, using a different seismic and 71 

well dataset. However, quantitative measurements have not been completed in depth, below 72 
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the ICPs imaged on the present-day sea floor. Understanding the relationship between 73 

carbonate productivity and fault history can provide useful information in regions with 74 

complex extensional faults in synrift settings such as the North West Shelf of Australia; 75 

where footwall areas and structural highs (horsts) interact with the carbonate accumulation, 76 

isolating the clastic supply (Bosence, 2005). Fault growth history can also be used to provide 77 

important insights into the development and timing of ICPs, as well as their relationship with 78 

carbonate productivity rates. 79 

The Bonaparte Basin (Fig. 1) presents Neogene deposits that are mainly composed of 80 

carbonate successions over which isolated carbonate platforms have developed since the 81 

Pleistocene (Saqab and Bourget, 2015a). Isolated carbonate platforms started to develop in 82 

areas recording changes in topography in the early stages of the Quaternary (Mory, 1991; 83 

Saqab and Bourget, 2015a). Some of these platforms were controlled by structural highs 84 

(horsts) in a highly faulted region (Burgess et al., 2013). However, the platforms in the study 85 

area have a much more complex story with different periods of faulting and fault reactivation. 86 

Therefore, a simple description relating their initiation to a unique mechanism cannot 87 

completely address the geological and oceanographic settings in which they were formed. 88 

The observed spatial distribution of ICPs relative to fault position suggests more complex 89 

controls than just the faulting. There is a good number of isolated carbonate platforms that are 90 

not positioned on structural highs and their interior is cross-cut by faults. In detail, this work 91 

intends to address the following questions: 92 

 93 

a) How does the surface fault propagation influence the growth styles and distribution of 94 

ICPs, and what is the relationship between carbonate accumulation and fault throw? 95 

b) How can we facilitate the prospect identification of ICPs and predict the best 96 

structural setting for hydrocarbon accumulation? 97 
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2 Data and methods 98 

The seismic data used in this study includes a 3D seismic volume (Karmt3D AGC 99 

Time) located in the northern part of the Vulcan Sub-Basin, Timor Sea (Fig. 1). The seismic 100 

volume was acquired by Geco-Prackla in 1996 for Woodside Offshore Petroleum, covering 101 

more than 2,000 km2 with a 6 s vertical penetration (Carenzi and Cazzola, 2008). The volume 102 

was provided by Geoscience Australia and comprises 3334 inlines (IL) and 5191 crosslines 103 

(XL) with a 12.35 x 12.50 m line spacing and a vertical sampling interval of 4 ms. The 104 

frequency spectra of the interpreted volume in the first 3,000ms ranges from 10 to 70 Hz, 105 

with an average value of around 20 Hz. 106 

The seismic data is in time domain and of very good quality in the Cenozoic interval, 107 

allowing for a very detailed analysis of structures and ICPs (Figs. 2 and 3). The survey has 108 

been processed by Veritas DGC in 1997 to correct pull-up effects and poor reflector 109 

continuity beneath the ICPs (Ruig, 2000; Carenzi and Cazzola, 2008). These pull-up effects 110 

are related to differences in lithology. In general, the carbonates within the ICPs have a 111 

higher (Vp) velocity than the surrounding strata. Moreover, the ICPs have a steep angle of 112 

slope, which made the data acquisition and processing more complex due to the angle that the 113 

acoustic waves were penetrating the subsurface in those areas (Fig. 4). As a result, the pull-up 114 

effects increase underneath these regions, as well as the stretched rims of the platforms (Figs. 115 

3 and 4). Despite the efforts to correct pull-up effects, residual effects are still present on the 116 

seismic volume (Fig. 4). In variance time slices below the ICPs, as a result of pronounced 117 

velocity pull-up effects, the platform outlines are still observed (Fig. 4). In profile view, these 118 

effects could be mistakenly interpreted as faults with sub-circular horst-like structures, but 119 

normally the strata is continuous across the pull-up zones (Marfurt and Alves, 2015) (Fig. 4).  120 

Well completion data and proprietary geological reports from four different wells 121 

(Mandorah-1, Ludmilla-1, Lameroo-1 and Fannie Bay-1) were used in seismic-well 122 
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correlations (Fig. 5). Seismic well-tie was performed using check-shots and time-depth 123 

(TWT-Z) tables found in the well reports.  Well completion data include stratigraphic and 124 

lithological descriptions based on cuttings and sidewall core samples (Woodall, 1990; 125 

Rexilius et al., 1998a; Willis, 1998; Willis, 1999b; Willis, 1999c; Willis, 1999a; Willis, 126 

2000). Wireline logs (gamma ray, resistivity, density, sonic) were digitised from raster 127 

composite well logs to be used for correlation of stratigraphic surfaces and depositional units 128 

(Figs. 5 and 6). Micropaleontological analyses of benthonic and planktonic foraminifera, as 129 

well as calcareous nannoplankton of three wells (Mandorah-1, Ludmilla-1 and Fannie Bay-130 

1), allowed the correlation of wells and the age control estimation (Rexilius et al., 1998b; 131 

Rexilius et al., 1998a; Rexilius and Powell, 1999b; Rexilius and Powell, 1999a) (Fig. 5). 132 

Modern bathymetric data (taken from Geoscience Australia, Fig. 1) contributed to determine 133 

the depth, size, shape and position of the ICPs at present. 134 

 135 

2.1 Seismic interpretation 136 

Horizon and fault interpretation were performed in both vertical and map sections using 137 

seismic amplitude and coherence data (Fig. 4). Key seismic reflectors were mapped in the 3D 138 

volume following basic stratigraphic principles (Alves et al., 2006; Catuneanu, 2006; Mattos 139 

et al., 2016) so as to identify the primary stratigraphic events from the Base Paleocene (H1) to 140 

the modern sea floor (SF) (Figs. 2 and 7). Well-log (gamma ray, resistivity, bulk density, 141 

neutron porosity and sonic) and biostratigraphic data from four exploratory wells were 142 

integrated into the seismic volume (Fig. 6). The seismic surfaces and units were also 143 

compared with previous interpretations by Willis (1998) (Figs. 5, 6, 7 and Table 1). 144 

Key seismic horizons were mapped every 150 m in NE-SW and NW-SE amplitude 145 

seismic sections using strictly seeded autotracking parameters on Schlumberger Petrel®. 146 
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Isochron maps were calculated based on the interpreted horizons in order to determine the 147 

variation in thickness of the different units (Fig. 8). For the fault interpretation, a variance 148 

attribute was extracted to better define major seismic discontinuities (e.g. fault, channels, 149 

karst features) (Figs. 4 and 9). Variance compares the similarity of traces in all directions on 150 

an interpreted surface (Chopra and Marfurt, 2007), highlighting prominent discontinuities 151 

such as faults and fractures (Brown, 2011; Marfurt and Alves, 2015). Faults were initially 152 

mapped on variance time slices to determine their length and strikes. The strikes of the faults 153 

do not coincide with the inlines (IL) or crosslines (XL) of the seismic survey (Figs. 9 and 10). 154 

These sections cross-cut the fault with an arbitrary angle (β) between the IL or XL and the 155 

strike of the fault. Therefore the interpreted faults in these sections show the apparent dip (α2) 156 

of the fault, which is less than the real dip (α1) (Fig. 10) and can lead to erroneous data when 157 

throw measurements are performed. For this reason, perpendicular sections to the strike of 158 

the fault at each point of interest (Fig. 10a) were created. These sections are key to visualise 159 

the real (maximum) dip (α1) of the fault (Fig. 10b) and facilitate the interpretation, which in 160 

turn provide the maximum throw values that are required to obtain good quality data for the 161 

T-Z and T-D plots. This method is key for the fault throw analysis to avoid inaccurate data 162 

leading to erratic results. Fault linkage structures such as relay ramps are present in the study 163 

area, and their recognition was deemed important to understand the way(s) fault segments are 164 

linked in the study area. Different zones were established based on features observed on a 165 

coherence map in order to facilitate the description of the different fault sets and types of 166 

ICPs (Figs. 9b, 11, 12 and 13). 167 

 168 
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2.2 Fault throw 169 

Fault throw measurements were taken from different fault segments to create detailed 170 

fault throw-depth (T-Z) (Fig. 14) and throw–distance (T-D) profiles (Fig. 15c) and thus 171 

generate a high-resolution throw contour map (Fig. 16). Fault throws are used instead of total 172 

displacements because the faults in the area are steeply dipping and present a small heave; 173 

therefore the most convenient methodology from seismic data is to obtain the vertical 174 

difference (throw) between the seismic reflectors of the hanging-wall and the footwall across 175 

the fault (Cartwright et al., 1998). Twenty (20) interpreted seismic horizons were used as key 176 

markers when collecting throw data. Throw measurements were taken from seismic sections 177 

perpendicular to the strike of faults. We used an along-strike spacing of 150 m between each 178 

measurement and along-dip spacing of 25 ms. This degree of detail led to an accurate 179 

estimation of fault throws and to the completion of high-resolution fault map surfaces. 180 

Throw-distance (T-D) plots were generated taking the maximum throw values of each 181 

fault section along the strike of the fault (Fig. 15c). These T-D plots along with coherence 182 

data and the throw surface map provide the location of different individual fault segments and 183 

their linkage. Specific throw-depth (T-Z) profiles (Fig. 14) are displayed to show the relative 184 

depth of fault initiation. Finally, all fault throw data were plotted to generate high-resolution 185 

contour throw maps in which details of the throw and fault segment interaction are observed 186 

(Fig. 16).  187 

 188 

2.3 ICP fault and area distribution 189 

The area of each ICP was measured from different time slices (Fig. 17) to produce a 190 

histogram displaying frequency versus ICP area (Fig. 18a). We undertook a detailed analysis 191 

to determine if there is a correlation between the size of the ICPs and the number of faults 192 
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crossing the structures as well as the number of faults surrounding the ICPs within a radius of 193 

500m (Fig. 18b, 18c). For this analysis we took different time slices from the base 194 

Pleistocene horizon to -216 ms with a spacing of 64 ms (Fig. 17). For each ICP we counted 195 

the number of crossing faults and surrounding faults (where possible) and plotted the results 196 

in Figure 18a and 18b. These analyses are constrained by the seismic resolution. Only large-197 

scale faults visible on seismic data were taken into account for the analysis.  198 

 199 

3 Geological framework 200 

 201 

3.1 Tectonic setting 202 

The Bonaparte Basin (Fig. 1) shows a complex structural evolution; it was subject to 203 

multiple stress regimes, from predominant extension in the Paleozoic to combined 204 

compression and extension in the Mesozoic and Cenozoic. This work focuses on the Nancar 205 

Area, which is situated north of the Vulcan Sub-basin (Fig. 1). The area records different 206 

stresses that lead to a complex geological setting with rifting and compression events. During 207 

Late Paleozoic and Jurassic times, two major episodes of extension occurred (Willis, 1998). 208 

In contrast, during the Late Triassic, the Bonaparte Basin was under compressional forces 209 

(Longley et al., 2002; Saqab and Bourget, 2015a; Saqab and Bourget, 2015b). 210 

Late Paleozoic rifting created NW-trending structures such as the Flamingo and Sahul 211 

synclines and the Londondery High (Willis, 1998). Conversely, NE-SW Jurassic extension 212 

resulted with the formation of the Malita Graben and Vulcan Sub-Basin (Willis, 1998). Late 213 

Jurassic rifting marks the onset of separation between Greater India from Western Australia, 214 

which was completed by about 132 Ma, resulting in a basin-wide Valanginian unconformity 215 

(Willis, 1998). Subsequent to the Valanginian transgression, clastic input to the basin became 216 

scarce due to flooding of the source areas (Willis, 1998). Following continental break-up, the 217 
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area in which the Bonaparte Basin is included became a passive margin subject to thermal 218 

subsidence with maximum water depths of about 500 m in the basin depocentre (Willis, 219 

1998; Longley et al., 2002; Saqab and Bourget, 2015a). 220 

In the Bonaparte Basin during the Early Cenozoic, important climatic changes occurred 221 

due to the progressive drift of Australasia to the north, placing the basin on a tropical latitude 222 

within 30° of the Equator where carbonate factories could develop in areas with low clastic 223 

input (Baillie et al., 1994; Longley et al., 2002). In the middle Eocene, a relative realignment 224 

of tectonic plates gave place to a massive carbonate progradation to fill the accommodation 225 

space provided by the underlying rift basins (Baillie et al., 1994). Progradational and 226 

aggradational carbonate ramp settings reflect the Eocene transition phase from siliciclastic to 227 

carbonate deposition (Baillie et al., 1994; Willis, 1998; Longley et al., 2002). 228 

Tectonic convergence between the Australasian and SE Asian plates from the Late 229 

Miocene (6 Ma) to Pliocene along the Banda Arc developed a thrust belt on Timor Island, 230 

which reactivated pre-existing extensional faults as left-lateral transtensional structures 231 

(Etheridge et al., 1991; Willis, 1998; Saqab and Bourget, 2015a). At present, the Timor 232 

Plateau and the Banda Arc converge along the Indonesian Trough at an estimated rate of 77 233 

mm.yr-1, in a NNE direction (Ding et al., 2013; Saqab and Bourget, 2015a). 234 

The main fault families (set 1) in the Bonaparte Basin have an average strike of 072˚NE 235 

and the secondary fault family (set 2) strikes 050˚NE. Saqab et al (2015a) suggested that fault 236 

displacement in the area occurred from Late Miocene to Early Pleistocene using the seismic 237 

dataset referred therein as the Vulcan MegaSurvey. They confirmed that a good number of 238 

faults terminate just below the sea floor. However, some faults did not reach Pleistocene 239 

strata due to a relative quiescence in tectonic activity (Saqab and Bourget, 2015a). 240 

 241 
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3.2 Stratigraphic setting 242 

Carbonate sequences in the Bonaparte Basin are recognised throughout the Cenozoic, 243 

with an onset in the Eocene (Fig. 7). The first stage of carbonate deposition records the 244 

development of a broad ramp and is characterised by a minor terrigenous input in the Early 245 

Eocene and Early Miocene (Mory, 1991; Saqab and Bourget, 2015a). This carbonate ramp 246 

succession is 3000 m thick and mainly composed of calcarenite, calcilutite and marls, with 247 

small volumes of chert in the Grebe and Oliver Formations (Fig. 7). At the base Miocene, a 248 

regional unconformity is recognised through NW Australia (Longley et al., 2002; Saqab and 249 

Bourget, 2015a) (Fig. 2). Following this event, the interaction between the Australian and 250 

Pacific plates in the mid Miocene caused a transgression which resulted in a regional flooding 251 

episode with the development of a broad carbonate shelf in the study area (Baillie et al., 252 

1994; Whittam et al., 1996; Longley et al., 2002; Saqab and Bourget, 2015a). Periodic 253 

lowstands resulted in karstic (subaerial) erosion throughout the Miocene. At the Base of the 254 

Pliocene (Fig. 2), a local unconformity is recognised in the north Bonaparte Basin (Marshall 255 

et al., 1994; Saqab and Bourget, 2015a).  256 

From the Late Pliocene to Early Quaternary, a tropical, wide, shallow-water platform 257 

setting dominated in the Bonaparte Basin. This led to the development of the Malita intra-258 

shelf basin (Bourget et al., 2013). Throughout the Late Quaternary changes in the sea level 259 

occurred (Yokoyama et al., 2001). The shelf margin of the Bonaparte Basin presents a mixed 260 

system with alternating carbonate and siliciclastic sediments (Bourget et al., 2013). Saqab 261 

and Bourget (2015a) suggest that the initiation of the ICPs occurred in the Mid Pleistocene 262 

due to sea level fluctuations, oceanographic changes, and variations in the structural shaping 263 

of the margin. 264 
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3.3 Physiography 265 

Carbonate platforms can develop along basin margins on continental shelves (Kendall 266 

and Schlager, 1981). The ICPs in the Bonaparte Basin are situated on the upper continental 267 

slope along the shelf margin (Veevers, 1971) (Fig. 1). The growth and development of ICPs 268 

could be attributed to different factors including tectonic movement, sediment supply, 269 

tectonic subsidence, relative sea level changes amongst others (Wilson, 1999; Pomar, 2001; 270 

Zampetti et al., 2004; Dorobek, 2007; Sattler et al., 2009; Ding et al., 2014). For instance, 271 

Van Tuyl et al. (2018) have shown ICPs that initiated by pinnacle reefs in the Browse Basin, 272 

further south, with pinnacles providing shallow areas for the preferential growth of ICPs. 273 

Isolated carbonate platforms in the Bonaparte Basin have a circular and ellipsoidal 274 

morphology in plan view. Some of the most recognisable features of the ICPs in the Karmt 275 

Shoals are interior patch reefs, interplatform channels such as the ones within ICP ε and moat 276 

channels (Veevers, 1971; Saqab and Bourget, 2015a) (Fig. 3). Moats surrounding the ICPs 277 

have been interpreted by Veevers (1971) as the result of subsidence caused by the loading of 278 

the same structure over unconsolidated sediment (Fig. 3). 279 

Different platform sizes are observed in the study area, ranging from 500 m to 18, 000 280 

m in length. The isolated platforms are aligned along a NE-SW direction (Fig. 3). This is a 281 

similar direction to the shelf margin (Fig. 1). In bathymetric data the ICPs are observed as 282 

shallow topographic features ranging from 20 to 40 m deep (Fig. 1). 283 

 284 

4 Seismic stratigraphy 285 

Several seismic horizons were identified and mapped within the Karmt 3D survey. In 286 

Figure 2, seven key seismic-stratigraphic horizons are displayed, ranging in age from the 287 

Base Paleocene to the sea floor. These horizons divide Cenozoic strata into six distinct units 288 
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(Figs. 5 and 7). All seismic-stratigraphic surfaces were correlated with wireline data and 289 

biostratigraphic data in order to constrain their ages and thickness (Figs. 5 and 6). 290 

 291 

4.1 Unit 1: Early Eocene-Paleocene 292 

The lower boundary of Unit 1 coincides with horizon H1 and comprises Early Eocene-293 

Paleocene strata (Figs. 2, 6 and 7). Horizon H1 coincides with the Top of the Bathurst Island 294 

Group, Paleocene base (Fig. 7) at a depth of 2,321.5 m in the Ludmilla-1 well (Fig. 6). 295 

Horizon H1 can only be mapped in the south of the 3D survey, as it pinches out towards the 296 

north. It presents medium to low-medium positive seismic reflections. On well log data, H1 297 

shows an abrupt change in density with the highest values reaching 2.6 g.cm-1 (Fig. 6). The 298 

lowermost Unit 1 has an average thickness of 120 ms and is bounded at its top by H2, which 299 

correlates to the Top Paleocene (Fig. 7). This horizon shows a high positive amplitude and 300 

pinches out against H3 towards the north. The lower Unit 1 comprises light olive-grey 301 

calcareous claystones and predominantly medium coarse grained yellow-brown and very 302 

light grey calcarenites of the Johnson Formation (Willis, 1998) (Table 1). Horizon H2 is 303 

recognised on well logs as a dramatic change in density with values reaching 1.95 g.cm1. The 304 

resistivity values are also low in this lower unit, ranging from 0.2 to 4 ohm.m (Fig. 6). 305 

One of the strongest positive reflections in Unit 1 is horizon H3, which marks the top of 306 

the Hibernia Formation (Fig. 7). In the Ludmilla-1 well, this reflection correlates with the top 307 

of the Grebe Sandstone Member, and occurs at a depth of 1908.5 m (Fig. 6). Horizon H3 308 

marks the top of the 110 ms-thick upper Unit 1. The predominant lithology of the Grebe 309 

Sandstone Member comprises a white to light grey fine sandstone (Willis, 1998) (Table 1). 310 

 311 
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4.2 Unit 2: Oligocene-Middle Eocene 312 

Unit 2 has an upper boundary at the top of the base Miocene unconformity (horizon 313 

H4), which coincides with a high to moderate positive amplitude reflection (Figs. 2 and 7). In 314 

the Ludmilla-1 well, this reflection corresponds to the top of the Cartier Formation and 315 

occurs at a depth of 1424.5 m (Figs. 6 and 7). The lower boundary of Unit 2 coincides with 316 

H3, a Mid-Eocene unconformity. Unit 2 is a thick unit (200 ms to 550 ms) and includes the 317 

Prion Formation and the Cartier Formation (Fig. 7). Unit 2 is an interval comprising greenish 318 

grey calcareous claystones interbedded with olive-grey to yellow-grey moderately hard 319 

argillaceous calcilutites with minor yellowish-grey calcarenites (Willis, 1998) (Table 1). This 320 

interval is highly faulted across the interpreted seismic survey. 321 

 322 

4.3 Unit 3: Miocene 323 

The basal surface of Unit 3 corresponds to horizon H4, whereas its top surface 324 

correlates to horizon H5. Horizon H5 marks the base of Pliocene strata according to 325 

biostratigraphic data and coincides with the top of the Oliver Formation at a depth of 776.5 m 326 

in the Ludmilla-1 well (Figs. 6 and 7). On seismic data, horizon H5 is a high to moderate 327 

negative amplitude reflection easily mapped across the study area (Fig. 2). This unit is 328 

relatively thin (200-250 ms) to the south and thickens to the north, where it shows an average 329 

of 500 ms (Fig. 8). Unit 3 presents internal reflections with fairly parallel geometries and low 330 

to moderate amplitude. On wireline data, H5 marks an abrupt change in neutron and sonic 331 

logs from relatively low values in Unit 3 to high values in Unit 4 (Fig. 6). The Oliver 332 

Formation is mainly composed of light olive-grey calcareous claystones interbedded with 333 

greenish argillaceous calcilutites and light grey, dominantly fine to medium grained 334 

arenaceous calcarenites (Willis, 1998) (Table 1). 335 
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 336 

4.4 Unit 4: Pliocene 337 

Unit 4 is bounded by the base Pliocene (H5) and base Pleistocene (H6) horizons (Figs. 2 338 

and 7). The base Pleistocene (H6) is marked by a high-amplitude, positive reflection at a 339 

depth of approximately 561.5 m in the Ludmilla-1 well (Figs. 6 and 7). Strata in this unit 340 

consist of light olive grey calcareous claystones (Willis, 1998) (Table 1). Unit 4 comprises 341 

the Barracouta Formation and varies in thickness from 100 to 350 ms, thickening towards the 342 

NW (Fig. 8).  343 

 344 

4.5 Unit 5: Pleistocene 345 

On the interpreted seismic sections, the top of Unit 5 coincides with the modern 346 

seafloor at 220 m in the Ludmilla-1 well (Fig. 6). This Pleistocene unit varies in thickness 347 

from 200 to 450 ms in areas with no ICPs (Fig. 8). Close to ICPs, where thicker intervals are 348 

present, the unit varies in thickness from 450 to 650 ms (Figs. 2 and 8). The base of the unit 349 

is horizon H6, which also coincides to the base of most ICPs. The interior of Unit 5 is 350 

composed of high-amplitude reflections (Fig. 7). Seismic reflections below the ICPs are not 351 

continuous, suggesting a change in facies. The seismic response within these areas is 352 

characterised by mounded morphologies and internally chaotic to stratified reflections from 353 

the margins to the ICPs internal structure, as expected for carbonate platform facies (Burgess 354 

et al., 2013). Unit 5 comprises the Alaria Formation, which consist of yellowish-grey coarse-355 

grained calcarenites interbedded with silty calcilutites (Willis, 1998) (Table 1). 356 

The internal reflections of the biggest ICP ε present clinoforms suggesting the 357 

coalescence of smaller individual ICPs into a larger feature (Figs. 9 and 19). 358 

 359 
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5 ICP geometries and fault distribution 360 

Within the study area, there are 51 Quaternary ICPs with different sizes, ranging in area 361 

from 0.1 km2 to 200 km2 (Figs. 9, 17 and 18a). The histogram in Fig. 18a shows a 362 

multimodal distribution of platform areas with three different peaks. This is an indicator that 363 

there are three groups of ICPs with different areas. The first peak shows a group of ICPs with 364 

an area of around 0.2 km2, the second peak shows the major frequency with ICP areas of 2 365 

km2; and a third peak shows a distribution of ICPs with an area of 20 km2. The higher 366 

frequency of ICPs is located within the scale range of 2 km2. The smaller ICPs are 367 

concentrated in the frequency peak of a range of sizes with the order of 0.2 to 0.3 km2. The 368 

biggest ICP (ε) has an area of about 189 km2. 369 

The relationship between the ICP area and the faults as indicated by the scatter plots 370 

(Fig. 18b, 18c) suggests that there is no spatial correlation with regards to the ICP size and 371 

the number of faults that cross these structures or surround them. However, the ICPs in the 372 

Bonaparte Basin have a sub-circular and ellipsoidal morphology in map view, with a NE 373 

long-axis direction that is similar to the orientation of underlying faults (Figs. 3 and 9). 374 

It is observed from the seafloor map (Fig. 3) and seismic sections (Figs. 11, 12 and 13) 375 

of the Karmt shoals that the current ICPs could have been the result of the coalescent 376 

evolution of smaller platforms. For instance, the large platform ε is observed as an elongated 377 

feature with two main branches (Fig. 9); this suggests coalescence of smaller platforms. In 378 

section view (Fig. 12) the platform interior is characterised by clinoforms, which also 379 

indicates the merging and aggradation of ICPs. Similar examples previously described 380 

include the isolated platforms of the East Natuna Basin (Bachtel et al., 2004) and offshore 381 

Madura, Indonesia (Posamentier et al., 2010). 382 
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A detailed structural interpretation of the base Pleistocene (H6) using an extracted 383 

coherence attribute resulted in the sub-division of the study area into four distinct zones (Fig. 384 

9). These zones were defined based on the size, clustering, position and geometry of the 385 

ICPs, as well as the type, density, and orientation of interpreted faults.  386 

 387 

5.1 Zone 1 388 

Zone 1 occurs to the northwest of the study area (Fig. 9). This zone is mainly 389 

characterised by the absence of ICPs. Zone 1 presents a high density of Plio-Pleistocene 390 

normal faults striking NE. The faults have synthetic and antithetic structures that are closely 391 

spaced (100-300 m) (Fig. 12). These faults do not propagate to the surface. 392 

 393 

5.2 Zone 2 394 

Zone 2 covers an area aligned NE-SW, just to the south of zone 1 and comprises the 395 

large platform ε together with 14 smaller isolated platforms (Fig. 9). Plio-Pleistocene normal 396 

faults strike NE-SW with an average of 072° (Figs. 11, 12 and 13). The large isolated 397 

platform ε includes large fault zones with a net normal offset, such as F6 and F7, that cross 398 

cut the platform as a later event (Figs. 9 and 19b, 19c). In contrast, to the NE the interior of 399 

the ICP ζ is intact, and bounded by a fault system that includes F5 (Fig. 9). 400 

 401 

5.3 Zone 3 402 

Zone 3 is located to the south of Zone 2, and comprises a large number of ICPs (28). 403 

Fault transect F1 is contained in this area (Figs. 9 and 13). There are two fault families in this 404 

area; the principal family striking 072°NE (fault transects F1, F3 and F4) and a secondary 405 
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family striking around 050°NE (fault transect F3). The interaction between faults creates 406 

large relay ramp structures, such as the one containing ICP η, which is bounded by faults F1, 407 

F2 and F3 (Fig. 9). 408 

 409 

5.4 Zone 4 410 

Zone 4 occurs to the southeast of the study area (Fig. 9) and it is mainly characterised 411 

by its relative scarcity of ICPs. There are only eight small ICPs, including ICP θ with an 412 

average area of 1.5 km2. This zone presents a major fault zone around fault F8 (Fig. 12). 413 

 414 

6 Fault throw analysis 415 

In order to better understand the propagation history of the interpreted faults, maximum 416 

throw measurements were taken from Fault F1 (Figs. 14 and 15). This fault was selected for 417 

our analysis because it crosses four different ICPs (α, β, γ, δ). 418 

Fault throw measurements were completed in detail, every 150 m along the strike of the 419 

faults, and every 25 ms along their dip. With these measurements, we generated detailed 420 

throw-depth (T-Z) plots as well as a maximum throw-distance (T-D) plot (Figs. 14 and 15c). 421 

The large amount of data was compiled to generate a high-resolution map of throw 422 

displacement (Fig. 16). 423 

T-Z profiles are useful to provide the style, timing of fault initiation and the detailed 424 

kinematic history of normal faults (Hongxing and Anderson, 2007). Overall, the intention is 425 

to analyse the slope of different curve segments and their deflections within the throw profile. 426 

Our analyses were based on the conceptual models developed by Hongxing and Anderson 427 

(2007). A vertical line segment with a constant throw indicates a simple postdepositional 428 
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fault, cutting the entire prekinematic stratigraphic section; it suggests that it was formed after 429 

all the sedimentary layers were deposited. Another way to determine the presence of a 430 

postdepositional fault is by a constant growth index of 1.0 for all layers because there is no 431 

change in the thickness of the strata. 432 

On the other hand, a T-Z profile with a positive slope and throw values decreasing at 433 

depth towards the older units, indicates a postdepositional keystone-stretching fault, where 434 

the fault propagates downwards, having the uppermost and youngest units with the largest 435 

throw values. The growth index of postdepositional stretching faults is also identified by a 436 

constant value of 1.0 or less, due to the thinning of the layers by stretching. The timing of 437 

fault formation post-dates the deposition of the unit recording the largest fault throw 438 

(Hongxing and Anderson, 2007). 439 

In the scenario that the T-Z profile presents a negative slope, with throw values 440 

increasing towards the older units, the presence of a syndepositional normal growth fault is 441 

recognised. The sedimentary sections expand in the hanging wall, leading to a change in the 442 

growth index with values greater than 1.0 (Hongxing and Anderson, 2007).  443 

The combination between throw profiles and growth index are useful to provide 444 

information of the time in which a fault first nucleates (Hongxing and Anderson, 2007). A 445 

change from postdepositional keystone-stretching fault to a growth syndepositional fault is 446 

given by the deflection of a positive slope curve to a negative curve. The growth index profile 447 

in this case, shows a change in values from 1.0 or less to values greater than 1.0. The 448 

maximum throw value in the profile along with the change of the growth index corresponds 449 

to the initiation of the fault growth (Hongxing and Anderson, 2007). 450 

Several seismic sections were analysed with T-Z profiles in order to determine the 451 

growth history of the fault transect F1 (Fig. 14). Across the study area, the results suggest that 452 
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there are two fault displacement stages throughout the Cenozoic. The stages are identified as 453 

Paleogene faulting, with a maximum throw recorded of 255 ms TWT, and Neogene-454 

Quaternary faulting with a maximum throw of 200 ms TWT (ca. 287 m and 225 m 455 

respectively, assuming an average velocity of 2250 m.s-1) (Fig. 14). 456 

Fault throw values in Unit 1 decrease towards its base (Fig. 14). This segment of the 457 

throw profile has a positive slope and the growth index presents values less than 1.0, 458 

indicating that Unit 1 was deposited before faulting commenced (Fig. 14). Unit 1 is 459 

considered as a prekinematic layer. The maximum throw values are observed around the Mid 460 

Eocene horizon (H3). Above this throw maxima, within Unit 2, throw values start to decrease 461 

towards younger strata (Fig. 14b, 14d, 14f and 14h). The throw profile in this segment has a 462 

negative slope and growth index values are greater than 1.0 (Fig. 14). The change in 463 

deflection from positive slope to negative slope, in addition to the change of growth index 464 

values from less than 1.0 to greater than 1.0, suggest a change from postdepositional faulting 465 

to syndepositional faulting. These two faulting stages are considered to be the Paleogene 466 

faulting (Fig. 14). 467 

Fault throw and growth index values are observed to remain relatively constant around 468 

the base Miocene horizon (H4) within the uppermost part of Unit 2 and the lowermost part of 469 

Unit 3 (Fig. 14b, 14d and 14h). This can be interpreted as a period of fault inactivity in the 470 

area. A change is observed upwards with a positive slope throw profile with values 471 

progressively increasing towards the uppermost part of Unit 3, around the base Pliocene 472 

horizon (H5) (Fig. 14b, 14f). The growth index profile records values less than 1.0. This 473 

segment of the throw profile records prekinematic strata. This stage is considered to reflect 474 

postdepositional faulting due to the cessation of activity of the Paleogene faulting.  475 

A second throw maximum is recognised in mid Late Miocene to Early Pliocene strata 476 

around the horizon H5 (Fig. 14). This throw maximum indicates the start of the second 477 
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faulting period described here as the Neogene-Quaternary faulting. Above this maximum, it 478 

is observed that the throw values start to decrease towards Quaternary strata, recognised from 479 

the throw profiles as a negative slope line (Fig. 14b, 14d, 14f, 14h). In this segment of the 480 

profile, growth index values are greater than 1.0, suggesting thicker strata in the hanging-481 

wall, characteristic of a syndepositional normal growth fault. In some areas (Fig. 14a, 14g), 482 

the growth fault propagates to the sea floor. However, below the ICPs, fault throw decreases 483 

and stops before reaching the sea floor (Fig. 14c, 14e). The presence of growth faults and the 484 

thickening of the hanging-wall strata in Units 4 and 5 (Fig. 14a, 14c, 14e, 14g) confirm the 485 

occurrence of a syndepositional fault. This suggests that at the time of initiation of the ICPs 486 

(Quaternary), the faults were still propagating to the surface. The fact that the fault does not 487 

completely cross-cut the platform indicates that carbonate productivity was higher than 488 

vertical fault propagation rates. 489 

The T-D plot in Figure 15 shows the maximum fault throw values along the strike of 490 

fault transect F1 for the Neogene-Quaternary. It shows different maximum peaks along the 491 

fault transect, which is indicative of the presence of different individual fault segments within 492 

fault transect F1 (Fig. 15b, 15c). These fault segments are indicated by red solid lines in 493 

Figure 15c along the fault throw maxima (yellow line). A dashed line was drawn as the 494 

interpretive extension of each fault segment. It is interpreted that lateral and vertical 495 

propagation of these individual fault segments throughout the time led to soft linkage 496 

between their fault tips, creating relay ramps. In these relay ramps there is a transfer of 497 

displacement from the footwall to the hanging-wall. The relay ramps are situated in areas 498 

with relative minimum displacement between one segment and another. These relay ramps 499 

are shown in Figure 15c as pink rectangle areas. These linked fault segments created a large 500 

fault transfer zone along fault F1 (Larsen, 1988; Fossen and Rotevatn, 2016). This type of 501 

fault interaction exists at different scales of observation (Fig. 9). In the study area, there are 502 
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relatively small relay ramps (2 km wide) created by individual fault segments, such as the one 503 

located around the ICP α (Fig. 15). Moreover, there are larger relay ramp structures (>10 km 504 

wide) created by the interaction between large fault transects such as the relay ramp between 505 

fault transects F1 and F2 (Figs. 9 and 19). 506 

Relay ramps can only be observed on seismic if the ramp is large enough to be clearly 507 

imaged in such seismic resolution (e.g. the relay ramp containing the ICP α, shown as a light 508 

purple polygon with a red outline in Figure 9b). Relay ramps that are less than 1 km wide, 509 

due to their small size, are not easily recognised on the seismic at first sight. For this reason, 510 

it is necessary to use the T-D plot to accurately identify relay ramps, such as those in ICP γ, 511 

which are only clearly recognised from the T-D plot due to the short throw values between 512 

the fault segments (Fig. 15c). For the relay ramps that can be clearly identified in a seismic 513 

section, they present rotation of strata between the two linked faults (e.g. F1a and F1b), 514 

where the strike and dip of the beds are slightly different to the general orientation (Fig. 15d, 515 

15e). Relay ramps can be identified from the T-D plot in Figure 15c as the intersection 516 

between two different fault segments (pink areas), usually occurring in areas with low throw 517 

values. Relay ramp structures are not only seen in fault transect F1, but in some other parts of 518 

the study area (Fig. 9). There are some small relay ramps that are placed close to the large 519 

fault structures, such as the ones shown in Figure 9b displayed as light purple polygons with 520 

a red outline. There are also some other larger ramps shown as light pink polygons on the 521 

map (Fig. 9b), such as the one containing ICP η. 522 

Fault throw measurements of about 200 T-Z plots taken along the fault transect F1 were 523 

used to generate a high-resolution fault throw map (Fig. 16). Unlike in the T-D plot (Fig. 15c) 524 

the geometry of the individual fault segments can be determined as well as the depth of the 525 

fault’s nucleation. The fault throw surface map shows the elliptical-like geometry of the fault 526 

segments (white ellipses in Fig. 16). The maximum throw is localised inside the fault 527 
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segment (warm colours) suggesting fault initiation (Cartwright et al., 1998; Hongxing and 528 

Anderson, 2007). The throw values decrease towards the fault tips (cold colours) (Muraoka 529 

and Kamata, 1983). One example is seen at about 22 500 m along strike, where there is an 530 

area of high throw around horizon H3. The fault throw values decrease laterally and vertically 531 

from about 240 ms (orange colour) in the core of the fault segment to lower values of about 532 

130 ms (yellow and green colours) towards the fault tips.  533 

Similar to the T-D plot, relay ramps can be interpreted in the areas where the two fault 534 

tip segments interact and present relatively low throw values. These relay ramp areas are 535 

plotted as pink zones on the fault throw map, such as the relay ramp between the fault 536 

segments 1a (F1a) and 1b (F1b) (Fig. 16). 537 

The presence of two faulting events is clearly recognised in the T-Z plots (Fig. 14) and the 538 

fault throw map (Fig. 16). The Paleogene fault segments are observed below horizon H4 539 

between -2000 and -1500 ms TWT (Fig. 16). The Neogene-Quaternary faulting event is 540 

observed with fault segments mostly above H4.  541 

 542 

7 Fault propagation styles 543 

In the study area, Paleogene and Neogene faults are NE striking (Fig. 9). They have a 544 

net normal component. The fault network presents individual fault segments linked to each 545 

other (Fig. 9). The linkage and overlap between several fault segments results in the creation 546 

of large fault transects, which is known as geometric coherence. The displacement of each 547 

fault segment accumulates and creates a large fault (Walsh and Watterson, 1991; Conneally 548 

et al., 2014). The formation of the fault transects F1 to F8 present geometric coherence (Fig. 549 

9).  550 
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Around fault transect F1, within the overlap zones between different fault segments, 551 

small relay ramps are observed primarily from T-D plots and the throw surface map as well 552 

as large relay ramps easily identified in the variance map (Figs. 9, 15 and 16). In Figure 15, 553 

where ICP α is located, there is an intact relay ramp with a maximum width of about 2 000 554 

m. 555 

The interaction of several fault segments can create a large fault, e.g. fault transect F1. 556 

These long faults, if interpreted on a regional scale as one large fault, can interact with other 557 

large fault transects. The interaction of the faults function in a similar way to individual fault 558 

segments. As a result, they can generate extensive areas of a relay ramp such as the 8 km 559 

wide relay ramp between F1, F2 and F3 containing the ICP η (Fig. 9). The relay block 560 

normally presents considerable bed rotation and breached deposits even if it is not visible in 561 

seismic resolution (Fossen and Rotevatn, 2016). We suspect that this uneven paleo-surface 562 

could be a good foundation for the initiation of ICPs based on the fact that all the ICPs that 563 

are cut by fault F1 directly correlate to the position of an underlying relay ramp. However, 564 

direct spatial relationship between most relay ramps and the position of ICPs has not been 565 

identified. 566 

 567 

8 Discussion 568 

 569 

8.1 Relationship between carbonate deposition and fault growth 570 

In the Bonaparte Basin, there is a high concentration of ICPs across the shelf margin 571 

(Fig. 1). The area is highly faulted as observed with coherence attribute maps (Fig. 9). Fault 572 

throw data suggests correlation with the position of linked fault segments and associated 573 

relay ramps (Figs. 15 and 16). Despite the lack of spatial relationship, some of the ICPs such 574 
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as α, β, γ, δ, ε, ζ, η and θ correlate with the locus of an underlying relay ramp as 575 

demonstrated in the T-D plot (Fig. 15c) and the fault throw map (Fig. 16). For this reason, the 576 

concept of fault throw analysis is introduced as an additional aspect to take into consideration 577 

when identifying ICPs where there is an extensional setting (Burgess et al., 2013; Rusciadelli 578 

and Shiner, 2018) and to generate different models of ICPs when the faults interact with their 579 

growth or their subsequent development.  580 

The initiation of the ICPs in the Timor Sea has been attributed to antecedent 581 

topography that was able to trigger the preferential settlement of reef building organisms, and 582 

thus controlled the distribution of isolated carbonate platforms in the Vulcan Sub-Basin 583 

(Saqab and Bourget, 2015a). This antecedent topography is tectonic-related due to the 584 

extensional faulting in the area. It is well documented in the literature that ICPs can start on a 585 

structural high with a horst-like structure, such as the ICPs in the Maldives Archipelago 586 

(Paumard et al., 2017). Saqab and Bourget (2015a) have documented the development of the 587 

“Big Bank” in an adjacent area to the Karmt Shoals. This ICP was interpreted by the latter 588 

authors as to be controlled by a structural high. However, as recognised from our 3D seismic 589 

dataset, there are some scenarios in which ICPs do not grow on structural highs (Fig. 9). In 590 

this work we try to extend the understanding of fault controls on ICPs where they are not 591 

exactly on structural highs, but are crosscut by faults. 592 

As recognised from the T-D profile (Fig. 15c) and the fault throw map (Fig. 16), the 593 

ICPs in fault transect F1 (α, β, γ and δ) are underlain by different relay ramps formed by the 594 

interaction of the fault tips between two fault segments. These relay ramps produce local bed 595 

rotation (Giba et al., 2012) that creates a change in topography. The gradual transition from 596 

intact rock to a breached relay ramp develops fractures in the area, even before the two 597 

interacting faults are completely breached (Fossen and Rotevatn, 2016). Fossen and Rotevatn 598 

(2016) have shown a field example from the Canyonlands National Park, USA, in which the 599 
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ramp is highly fractured. Therefore it is probable to have a high concentration of fractures in 600 

the sub-seismic scale even if the ramp appears to be continuous and unbreached in the 601 

seismic data, as it is not fully imaged on the seismic due to its resolution. This uneven 602 

topography may then favour the concentration of opportunist biota and result in the initiation 603 

of ICPs (Fig. 20). However, this correlation between relay ramps and the development of 604 

ICPs is not a direct relationship. Nevertheless it is a way to explain the control of some ICPs. 605 

Transfer zones including relay ramps (soft-linkage) are known to be important features in 606 

controlling basin stratigraphy due to the marked change in relief in both hanging wall and 607 

footwall associated to the transfer zones (Leeder and Gawthorpe, 1987; Gawthorpe and 608 

Hurst, 1993). The Abu Shaar el Qibli carbonate platform in the Gulf of Suez is an example of 609 

an ICP positioned on a transfer zone (Gawthorpe and Hurst, 1993; Cross et al., 2008). 610 

Based on our analysis, we observed three scenarios in which faults interact to trigger 611 

the initiation and development of ICPs: (1) interaction of single fault segments and the 612 

creation of relay ramps (Figs. 19 and 20a, 20b); (2) large scale relay ramps created by large 613 

fault transects (Figs. 19 and 20c); and (3) structural highs (Fig. 19). Furthermore, the ICPs 614 

can start on different places of the relay ramp: (1) close to the fault tips (α, Figs. 15 and 20a) 615 

or (2) inside the relay ramp (η, Figs. 15 and 20b). 616 

Three distinct models explaining carbonate platform growth are proposed here based on 617 

the comparison between productivity- and fault throw- rates. (1) one in which fault throw is 618 

larger than carbonate productivity (Figs. 19f, 19g and 21); (2) a second model considering 619 

fault throw to be equal or less than carbonate productivity (Figs. 19d, 19e and 21); and (3) a 620 

third model in which fault throw post-dates the growth of the carbonate platform(s) (Figs. 621 

19b, 19c and 21). 622 

In our study area, the three types of models are present. The type 1 can be seen in zone 623 

2 with platforms presenting intact internal structure since no faults cross-cut the structures 624 
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(Fig. 19f, 19g). These ICPs developed in the structural high bounded by faults F1 and F4. 625 

There is a cluster of isolated platforms within this block including ICP δ. Type 2 ICPs can 626 

also be found within the zone 2. An example of a type 2 platform developed inside of a ramp 627 

is shown in Figure 19d, where the faults F1 and F2 created a large ramp with a wide 628 

rotational surface suitable for the development of the ICP η. A type 2 platform developed 629 

between the fault tips of two different individual fault segments is shown in Figure 19e. This 630 

type of platform is characterised as faulted in its interior, as observed in the seismic line. The 631 

type 3 ICPs are characterised by the post growth faulting. The faults propagate after the 632 

growth and deposition of the ICPs, such as in the ICP ε faulted by several faults, including 633 

faults F6 and F7 (Figs. 19b, 19c and 21). This ICP ε is observed as type 2 to the northeast 634 

(Fig. 19c) in which the syn-depositional fault propagates to the surface. In the same area of 635 

the ICP ε it is also recognised a shallow fault that was developed after the ICP growth, 636 

implying a type 3 ICP.  637 

 638 

8.2 Implications for petroleum systems on continental margins 639 

ICPs are well-known as good targets for reservoirs containing significant accumulation 640 

of hydrocarbons. It is estimated that around 50 billion barrels of oil equivalent reserves are 641 

accumulated within isolated carbonate platforms around the world (Greenlee et al., 1993). 642 

Several super-giant fields are found in ICPs such as the Tengiz and Kashaghan fields in the 643 

Precaspian Basin (Kuznetsov, 1997). Another benefit of the ICPs is that several petroleum 644 

system elements can be easily identified in seismic. Because of their geometry, the trap and 645 

seal properties are favourable with a four-way dip closure; normally well sealed by fine-646 

grained marine strata or evaporites (Burgess et al., 2013). Sideways, adjacent or underlying 647 

strata can form good source rocks with a clear migration pathway and migration focus into 648 
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the ICP trap (Burgess et al., 2013). However, not all the ICP structures have the same 649 

potential and volume capacity to store hydrocarbons. For this reason, it is critical to not just 650 

identify the ICP structures, but to perform a broader evaluation before deciding where is the 651 

best structure to drill and increase the probability to get an exploration success. 652 

It is known in the literature that relay ramps represent potential pathways for vertical 653 

migration fluids (Fossen and Rotevatn, 2016). Relay ramps can enhance vertical porosity and 654 

permeability due to a range of fluid-rock interactive process. The breaching within the relay 655 

structure, can develop a fracture system that enhances porosity and permeability (Fossen and 656 

Rotevatn, 2016). Furthermore, during the relay development and breaching, the faults can 657 

create compartmentalised blocks that can generate different isolated reservoirs. One example 658 

is the Gullfaks Field in the northern Sea (Fossen and Hesthammer, 1998; Fossen and 659 

Rotevatn, 2016). These structures can serve as vertical pathways for fluid migration and 660 

hydrocarbon accumulation (Fossen and Rotevatn, 2016). Therefore we can predict that ICPs 661 

located over relay ramps are good reservoir targets since they make an attractive scenario for 662 

hydrocarbon migration and trapping. The hydrocarbon can migrate through the relay ramp 663 

and then store within the platform.  664 

The ICP strata is recognised to present an early cementation, leading to a rigid structure 665 

(Burgess et al., 2013). The early cementation of the platform can lead to a significant 666 

development of small-scale faults and fractures with the syn-tectonic deposition of the 667 

platform (Cross et al., 2008). Therefore we can infer that the ICPs with syn-tectonic growth 668 

such as the ones corresponding to the type 2 model proposed herein may have a constant 669 

fracturing on the platform interior due to the syn-depositional growth of the platform during 670 

the upwards fault propagation growth. Similarly, the type 3 model ICPs may develop fracture 671 

networks in their interior as the fault propagates to the platform interior. This induced 672 
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fracturing could develop a secondary porosity within the platform structure that signifies an 673 

enhanced reservoir capacity (Cross et al., 2008). 674 

Based on our analysis of ICPs in the Karmt Shoals we propose that in exploration of 675 

new prospects, once the isolated carbonate platforms are identified from seismic data, one 676 

way to discriminate which ICP possesses the best scenario to be a hydrocarbon reservoir is by 677 

identifying the ICPs that are positioned on a relay ramp. In accordance with the models 678 

proposed, the ICP with a higher confidence of success would be found in type 2 and 3 models 679 

(Fig. 21). The type 2 and 3 ICPs are developed on a relay ramp, which may facilitate the 680 

hydrocarbon migration towards the ICP interior. Furthermore, the structure interior should be 681 

highly fractured due to the syn- and post- depositional faulting, leading to an enhanced 682 

volume capacity to store hydrocarbons. 683 

Tectonism is well documented in many geological settings from 2D and 3D seismic 684 

data as well as from outcrop analysis to be a mechanism that influence the location, growth 685 

and demise of ICPs around the world. The most common configuration is related to 686 

topographic highs created by the uplift of blocks bounded by faults, named as fault-block 687 

carbonate platforms in Bosence (2005). Late Oligocene-Early Miocene carbonate platforms 688 

from the Maldives Archipelago are described to be controlled by structural highs (Paumard et 689 

al., 2017). Another major example is the Miocene Luconia province, where reefs grow on 690 

prominent fault blocks (Zampetti et al., 2004; Rosleff-Soerensen et al., 2016). 691 

 692 

 693 

 694 
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9 Conclusions 695 

Fault throw measurements taken from 3D seismic data allow the creation of detailed 696 

throw-depth (T-Z) and throw-distance (T-D) profiles as well as a high resolution fault throw 697 

displacement surface. These profiles and maps along with well data are the basis to analyse 698 

the timing of fault initiation and fault growth evolution. 699 

The Cenozoic in the Vulcan Sub-Basin presents two stages of faulting: the 700 

Neogene/Quaternary faulting and the Paleogene faulting, which are observed as throw 701 

maximas from the T-Z plots (Fig. 14) and throw surface map (Fig. 16). A period of fault 702 

inactivity between these faulting stages is recognised from the Late Oligocene to Early 703 

Miocene. 704 

The development of ICPs based on the Karmt3D seismic data, suggest their initiation 705 

from the beginning of Unit 5 onwards. However, Saqab and Bourget (2015a) mention that the 706 

ICP development started during the Mid Pleistocene. Paleo-topographic discontinuities in the 707 

Pleistocene are attributed to the fault displacement and the related deformation of the 708 

seafloor, generating structures such as relay ramps and structural highs. As recognised from 709 

the distribution analysis of ICPs versus faults (Fig. 18), the majority of the ICPs does not 710 

have a direct relation to the faults. However, some of the ICPs (e.g α, β, γ and η) relate to the 711 

position of relay ramps underneath. For these examples, relay structures play a very 712 

important role in the initiation and development of ICPs.  713 

Three different models were presented showing the relationship between ICPs and fault 714 

linkage and distribution: (1) one in which fault throw is larger than carbonate productivity; 715 

(2) a second model considering fault throw to be equal or less than carbonate productivity; 716 

and (3) a third model in which fault throw post-dates the growth of the carbonate platform(s). 717 
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The models proposed herein are useful as analogues for the hydrocarbon prospectivity 718 

evaluation of ICPs in extensional settings in the subsurface. The recognition and comparison 719 

of an ICP using 3D seismic data and the given models can lead to the prediction of the 720 

structure with a greater hydrocarbon migration and volume capacity. The type 2 and 3 ICPs 721 

present the best scenarios for hydrocarbon prospectivity. They present a favourable 722 

hydrocarbon migration pathways (relay ramp) and structural traps (platform facies), which 723 

can be highly fractured, providing an important degree of enhanced (secondary) porosity. We 724 

expect that these models can be applied to similar settings on equatorial margins around the 725 

world to facilitate the identification of new prospect targets.  726 
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 1004 

12 Figure Captions 1005 

Figure 1. Bathymetry map showing the study area (seismic survey Karmt 3D) in the 1006 

Westralian Superbasin (WASB). The study area Karmt 3D is located in the western part of 1007 

the Sahul Flamingo Nancar Area. Bathymetry data taken from Geoscience Australia. Basin 1008 

boundaries modified from Longley et al (2002). 1009 

Figure 2. Two-way time (TWT) arbitrary seismic profile with NE-SW orientation 1010 

through the wells Ludmilla-1 and Nancar-1, ST. The main seismic events in the area are 1011 
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shown: Seafloor (SF), Base Pleistocene (H6), Base Pliocene (H5), Base Miocene (H4), Mid 1012 

Eocene (H3), Top Paleocene (H2), Base Paleocene (H1).  1013 

Figure 3. 3D perspective visualisation of the interpreted seafloor map from the 1014 

Karmt3D seismic volume. The map displays the Karmt Shoals with several isolated 1015 

carbonate platforms. (1) Moat channels surrounding ICPs, (2) interior patch reefs, (3) 1016 

interplatform channels (4) lagoon, (5) platform rim, (6) platform steep slope. 1017 

Figure 4. 3D seismic display showing seismic amplitude corendered with variance 1018 

attribute of IL 5333, XL 3335 and time slice -932 ms. Velocity pull-up effects are observed in 1019 

section view as fault shadows or fault-like structures (green arrow) and false “uplifted” strata 1020 

(red arrow) as a result of vertical changes in velocity. These effects are also seen in time 1021 

slices as sub-circular features creating false outlines of the overlying ICPs (green arrows). 1022 

Real faults (blue arrows) present continuity in both the time slice and the vertical sections, as 1023 

well as the offset in the continuity of the seismic reflectors.  1024 

Figure 5. Well log correlation showing the stratigraphic correlation of the area and the 1025 

corresponding surfaces interpreted on seismic data. The correlation was performed taking 1026 

Ludmilla-1 as the principal well based on gamma-ray (GR) and sonic (DTC) logs as well as 1027 

integrated biostratigraphic (foraminiferal and nannoplankton) data taken from raster 1028 

composite well logs and micropalaeontological reports (Rexilius et al., 1998b; Rexilius et al., 1029 

1998a; Willis, 1998; Rexilius and Powell, 1999b; Rexilius and Powell, 1999a; Willis, 1999c; 1030 

Willis, 1999b; Willis, 1999a). The spatial correlation was carried out by identifying seismic 1031 

markers within the wells using seismic data. For well locations and the correlation line see 1032 

Figure 9. 1033 

Figure 6. Composite log showing GR, RT, NPHI, RHOB and DTC of the Ludmilla-1 1034 

well. Integrated biostratigraphic data from sidewall core and cutting samples is presented 1035 
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with the foraminiferal and nannoplankton zones and their respective ages. Interpreted seismic 1036 

markers correspond to seismic horizons. Data taken from Willis (1998). 1037 

Figure 7. Cenozoic stratigraphic chart of the northwestern Bonaparte Basin including 1038 

seismic stratigraphic units. Modified from Willis (1998) and Saqab and Bourget (2015a). The 1039 

seismic section crosses the Ludmilla-1 well for reference. 1040 

Figure 8. Isochron maps showing the TWT  thickness of the different units. (a) 1041 

Isochron of unit 5 from Seafloor horizon to H6 horizon. (b) Isochron of unit 4 from horizons 1042 

H6 to H5. (c) Isochron of unit 3 from horizon H5 to horizon H4. (d) Isochron of unit 2 from 1043 

horizon H4 to horizon H3. 1044 

Figure 9. Time structure map (a) and coherence map (b) of the base Pleistocene (H6) 1045 

showing the four subdivided zones (separated by green solid lines) of the study area. White 1046 

dashed lines represent the interpretation of eight representative faults (F1-F8) with a general 1047 

trend of NE-SW. ICP outlines are shown as blue dashed lines. Eight ICPs are identified by 1048 

Greek letters (α-θ). The largest relay ramps are mapped, indicated by the light pink polygons. 1049 

Small relay ramps are plotted as purple polygons with a red outline. The red line frame 1050 

represents the area of interest in which detailed throw measurements have been undertaken to 1051 

generate T-Z plots (Fig. 14), T-D plots (Fig. 15) and the high-resolution contour fault throw 1052 

map (Fig. 16). The position of the six wells are displayed for reference. 1053 

Figure 10. Fault interpretation methodology diagrams. Map view (a) showing a fault 1054 

intersection to a time slice. The sections to be taken for fault interpretation and throw 1055 

measurement should be perpendicular to the strike at each particular point since the fault is 1056 

slightly curved. IL and XL are not useful since they cut the fault at an arbitrary angle β. The 1057 

3D view (b) shows a fault with two intersecting sections: one perpendicular to the strike 1058 
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where the real dip (α1) can be taken, and a second section intersecting at an arbitrary angle to 1059 

the strike, which shows the apparent dip of the fault. 1060 

Figure 11. Uninterpreted (a) NW-SE seismic line and corresponding interpreted (b) 1061 

section showing the four different zones in the SW area. Zone 1 presents no faulting. In zone 1062 

2, there is a presence of two different fault systems: one in the Neogene-Quaternary and the 1063 

other one in the Paleogene. An ICP developed above the Neogene-Quaternary faults. Zone 3 1064 

presents highly faulted Neogene-Quaternary strata with faults propagating to the surface; as 1065 

well as Paleogene faulting. Within zone 4, there is only one small fault in the Neogene-1066 

Quaternary. 1067 

Figure 12. Uninterpreted (a) and corresponding interpreted (b) NW-SE seismic line 1068 

showing the three different zones in the centre of the study area. Zone 1 in this section shows 1069 

the presence of normal fault systems throughout the Cenozoic. This zone is characterised by 1070 

the absence of ICPs. Zone 2 shows the presence of the two fault systems: Neogene-1071 

Quaternary and Paleogene. There are faults below the two ICPs in this zone. Zone 3 contains 1072 

the major fault in the area (fault F1), which propagates to the surface; and minor Neogene-1073 

Quaternary normal faults. Zone 4 includes a large fault area with synthetic and antithetic 1074 

faults. 1075 

Figure 13. Uninterpreted (a) and corresponding interpreted (b) NW-SE seismic line 1076 

showing the three different zones in the NE of the study area. Zone 1 does not present 1077 

faulting. In zone 2 there is a presence of antithetic faults in the Neogene-Quaternary strata; 1078 

and there are some synthetic faults in the Cretaceous strata. Zone 3 is highly faulted and the 1079 

ICP is underlain by the major fault system of fault F1. 1080 

Figure 14. Fault throw vertical profiles (T-Z Plot) (black curve) and growth index plots 1081 

(orange curve) with seismic sections perpendicular to the strike of fault transect F1. Profiles 1082 
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were taken at various distances, from the southwest tip of the fault transect F1 to the 1083 

northeast tip (see distances above each plot). For the location of the lines along the fault 1084 

plane, see Figure 15c. Across the area there are two throw maximas (red circles), indicating a 1085 

period of fault initiation. The first period of faulting occurred during the Late Paleocene-1086 

Early Eocene with downward fault propagation (dotted arrow line) into unit 1 and upward 1087 

fault propagation (solid arrow line) into unit 2. There is a period of fault inactivity between 1088 

units 2 and 3 which are represented by an almost constant throw (dashed arrow line). The 1089 

second period of faulting occurred during the Late Miocene-Early Pleistocene with a 1090 

downward fault propagation into the base of unit 3 (dotted arrow line) and an upward 1091 

syndepositional fault propagation into the units 4 and 5 (solid arrow line). The rapid decrease 1092 

in throw values near the sea floor reflects the presence of a growth sequence. It can also be 1093 

observed as values greater than 1.0 from the growth index plot. Horizontal lines indicate the 1094 

interpreted seismic horizons. 1095 

Figure 15. Uninterpreted (a) and interpreted (b) view of an area of interest of the 1096 

extracted coherence attribute over the H6 time structure map. Different fault segments 1097 

displayed with solid red lines encompass the transect of fault F1. ICP outlines are displayed 1098 

in blue. Symbols α, β, γ and δ represent the ICPs crossing the fault F1. The bright yellow 1099 

solid line indicates the position of the cross section. (c) Maximum fault throw profile (T-D 1100 

Plot) of fault F1 in the Neogene-Quaternary faulting episode shows different interpreted fault 1101 

segments with a red line. The blue dashed lines represent the boundaries of the ICPs, and the 1102 

green dashed lines indicate the position of the T-Z plots displayed on Figure 14. Relay ramps 1103 

are interpreted to be located where two different fault segments intersect and the throw values 1104 

are relatively small compared with the maximum throw of both segments. These relay ramp 1105 

zones are displayed as pink areas. Uninterpreted (d) and interpreted (e) NW-SE seismic 1106 

section shows faults F1a and F1b with the relay ramp structure in between.  1107 
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Figure 16. High-resolution fault throw surface map along the strike of fault F1 with 1108 

vertical exaggeration of 3x. Cold colours represent low throw values, whereas warm colours 1109 

indicate high throw values. The hanging-wall levels of the interpreted horizons (H1 to H6) are 1110 

displayed for reference. The position of the ICPs is drawn with red lines. White line ellipses 1111 

represent the interpreted individual fault segments. Pink dashed lines represent the large scale 1112 

fault segments. The areas of low throw values between the individual fault segments are 1113 

interpreted to be the relay ramps, which are plotted as pink zones. It is clear to see the 1114 

presence of two faulting events (Paleogene and Neo-Quaternary) mostly divided by the H4 1115 

horizon. The ICP position is interpreted to be related to the presence of relay ramp zones. 1116 

Figure 17. Coherence attribute seismic slices of the Karmt3D with a spacing of 64 ms 1117 

from the base Pleistocene to -216 ms. ICPs are specified with a light blue outline. 1118 

Figure 18. Histogram and scatter plots showing (a) histogram with a multimodal area 1119 

distribution of ICPs; (b) scatter plot of the ICP area against the number of crossing faults; (c) 1120 

scatter plot of the ICP area versus the number of faults around ICPs within 500 m. 1121 

Figure 19. Seismic lines showing the detailed geometry of the different types of ICPs. 1122 

Horizon H6 variance map shows the location of the sections (a). The large ICP ε appears to be 1123 

as type 3 (b) or a combination between type 2 and 3 (c), suggesting that for large platforms 1124 

the development of ICPs can be a mixture between different types. The ICP η showing the 1125 

development of the platform as type 2 in the inner relay ramp (d). The ICP γ with a type 2 1126 

development with faulted and fractured inner structure (e).  Different ICPs developed on a 1127 

structural high and show an intact internal structure (f and g). 1128 

Figure 20. Schematic diagrams showing relay ramp structures and the position of ICPs. 1129 

(a) ICPs located in the fault tips; (b) development of ICP inside the ramp; (c) relay ramp 1130 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

49 
 

formed by several fault segments on a larger scale where ICPs can develop either in fault tips 1131 

or on the ramp. 1132 

Figure 21. Schematic diagram of isolated carbonate platforms as a function of fault 1133 

throw ratio (T) and carbonate productivity (P). The type 1 ICP develops in structural highs 1134 

and the ICP is intact. The type 2 ICP develops in an area where there is antecedent faulting, 1135 

such as on a relay ramp, and where the carbonate productivity is higher than the throw 1136 

displacement. The type 3 ICP develops initially on a non-faulted zone. Once formed, faults 1137 

can crosscut the ICP, fracturing their internal structure.  1138 

13 Table Captions 1139 

Table 1. Seismic character and lithologies of the seismic units interpreted in the study 1140 

area. Correspondence of the seismic horizons in this work with the horizons in the literature 1141 

(Willis, 1998). 1142 
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Epoch 
Seismic 

Unit 
Horizon 

Comparable 

horizons 

TWT 

Thickness 

(ms) 

Internal Character, Geometry, and 

Terminations 
Lithology 

Pleistocene 5 

--Seafloor-- 

 

-- H6-- 

 

 

 

-- H5-- 

 

 

 

-- H4-- 

 

 

 

-- H3-- 

 

 

 

-- H2-- 

 

 

 

-- H1-- 

--Sea Bed-- 

 

-- BPLE -- 

 

 

 

-- BPLI -- 

 

 

 

-- TM3 -- 

 

 

 

-- TGREB -- 

 

 

 

-- TE2 -- 

 

 

 

-- T -- 

200-650 

Moderate- to high- amplitude reflectors. Chaotic 

under ICBs and parallel to discontinuous in 

other areas. 

 

Yellowish-grey coarse-grained calcarenites interbedded 

with silty calcilutites. 

 

Pliocene 4 110-350 

Moderate- to high-amplitude continuous 

reflections. Fault offsets present in the 

reflectors. 

Light olive grey calcareous claystone. 

 

 

 

Miocene 3 350-550 

Low- to moderate amplitude internal seismic 

reflections, subparallel to wavy. Highly faulted 

reflections. 

Greenish grey to light grey calcareous claystone 

interbedded with greenish grey to very light grey 

argillaceous calcilutites and light grey arenaceous 

calcarenites. 

Oligocene 
2 170-550 

Low- to moderate amplitude seismic reflections, 

subparallel to wavy. Seismic reflections 

intersected by faults. 

Light olive-grey calcareous claystone, olive- to yellow-

grey argillaceous calcilutites, and yellow-grey to light 

grey calcilutites with minor yellowish-grey medium to 

coarse calcarenites. 
Late Eocene 

Early Eocene 

1 

0-120 

Moderate- to high- amplitude internal 

reflections. Unit truncating to the west. 

White to light grey very fine to fine grained sandstones. 

 

 

Paleocene 0-200 

Moderate amplitude sub-continuous reflections. 

Wedge-shaped seismic unit thickening towards 

the south. 

 

Light olive-grey calcareous claystone and yellow-brown 

and very light grey medium to coarse grained 

calcarenites; white to very light calcilutites, 

interbedded with light grey calcareous claystone. 
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Distribution and growth styles of isolated carbonate platforms as a function of fault 1 

propagation 2 

R. Loza Espejel, Tiago .M. Alves, and T. Blenkinsop 3 

3D Seismic Lab, School of Earth and Ocean Sciences, Cardiff University, Main Building-4 

Park Place, CF10 3AT Cardiff, United Kingdom 5 

Highlights: 6 

a) Extensional faults partly control the position and distribution of carbonate platforms 7 

off Northwest Australia. 8 

b) Relay ramps can form preferential structures for the initiation and development of 9 

isolated carbonate platforms. 10 

c) A relationship among platform growth and fault growth is established. 11 

d) Three models explaining carbonate platform growth are proposed to assess reservoir 12 

character. 13 


