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Abstract 

The use of new fuels and operating strategies for gas turbine technologies plays a relevant 

component for carbon emissions reduction and the use of sustainable energy sources. Among 

non-carbon fuels, hydrogen-based fuels have been proposed as one of the main strategies for 

decarbonisation of the power sector. Ammonia is a good representative of these fuels as it is 

carbon-free and the second largest chemical commodity, having been produced worldwide for 

more than a century from various energy resources, i.e. fossil fuels, biomass or other renewable 

sources. However, the use of ammonia as a fuel in industrial gas turbines brings some practical 

challenges directly linked to the final efficiency of these systems, especially when the latter are 

compared to current Dry Low Nitrogen Oxides technologies. Thus, this work covers a series 

of analytical, numerical and experimental studies performed to determine the efficiency of 

using ammonia/hydrogen blends in combination with humidified methodologies to deliver 

competitive systems for the use of ammonia-hydrogen power generation. The study was 

conducted using CHEMKIN-PRO reaction networks employing novel reaction chemical 

kinetics, in combination with bespoke analytical codes to determine efficiencies of systems 

previously calibrated experimentally. Finally, experimental trials using steam injection were 

carried out to determine potential of these blends. The novel results demonstrate that the use 

of humidified ammonia-hydrogen injection provides similar efficiencies to both Dry Low 

Nitrogen Oxides and humidified methane-based technologies ~30%, with flames that are stable 

and low polluting under swirling conditions, thus opening the opportunity for further 

progression on the topic. 

Keywords: ammonia power, hydrogen blends, humidified gas turbine, alternative fuels. 

Nomenclature 𝑏 Fuel mass flowrate relative to the air mass 

flowrate at the combustion chamber inlet 

[-]  

T temperature [K] 

cp specific heat at constant pressure 

[kJ/kgK]   

To the inlet compressor temperature [K] ℎ𝐶𝐶1 is enthalpy of steam at the combustion 

chamber inlet [kJ/kg] 

T2 the outlet compressor temperature [K] ℎ𝐶𝐶2 is enthalpy of steam at the combustion 

chamber outlet [kJ/kg] 
𝑇3𝑡 combustion products temperature at the turbine 

inlet [K] 

hfuel specific enthalpy of fuel at combustion 

chamber inlet [kJ/kg] 
𝑇4𝑡 combustion products temperature at the end of 

the expansion [K] 
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𝐿𝑐 specific work of compression [kJ/kg] 𝜂𝐶𝐶 the efficiency of a combustion chamber [-] 𝐿𝐺𝑇  plant specific work [kJ/kg] 𝜂𝐺𝑇𝑃 the efficiency of a plant [-] 

LHV the lower heating value [kJ/kg] 𝜂𝑚 the mechanical efficiency [-] 𝐿𝑇 overall specific work of the expansion of 

the combustion products and cooling air 

mixture [kJ/kg] 

𝜂𝑝𝐶 is the polytropic efficiency of a compressor [-] 

�̇�𝑐𝑝 combustion products mass flow [kg/s] ηpT is the polytropic efficiency of a turbine [-] �̇�𝑓𝑢𝑒𝑙  fuel mass flow at the combustion chamber 

inlet [kg/s] 
𝛱𝐶  the compressor pressure ratio [-] �̇�1 air mass flow at the compressor inlet 

[kg/s] 
𝑀 is the cooling air distribution factor [-] �̇�2 air mass flow at the combustion chamber 

inlet [kg/s] 
𝑞𝑠𝑢𝑝 is the amount of supplied heat [kJ/kg] 𝑀 is the cooling air distribution factor [-]  is the ratio of the vapor mass flow and fuel mass 

flow at the combustion chamber inlet [-] 

p pressure [Pa] 𝑧 air mass flow for sealing relative to air mass 

flow at the compressor inlet [-] 

R the universal gas constant [J/molK] 𝛿 average relative error [%] 𝑟𝑎𝑖𝑟  cooling air mass flow specified to 

compressor inlet mass flow [-] 

  

 

1. Introduction 

A hydrogen economy has been in the sight of government, industry and research communities 

for  decades. However, techno-economic barriers have always accompanied the transition to a 

hydrogen economy from an economy based on fossil fuels. Storage and distribution of 

hydrogen are clear examples of the challenges that the concept phases, with expensive, hard to 

handle infrastructures that would be required to properly store and distribute the chemical in 

an efficient way, excluding the expenses that will be needed to ensure its safe use. Thus, other 

chemicals have been proposed to support the transition to a hydrogen economy, chemicals that 

contain great quantities of hydrogen and can serve as energy vectors of a wide variety of 

renewable and conventional energy sources. One of these chemicals, ammonia, has been 

presented in the last few years as a promising medium for energy storage and distribution of 

hydrogen at cost-effective, easier to handle conditions [1], with studies that document its 

thermochemical storage potential [2]. Recently, ammonia has been recognised as a major 

player in the combustion field due to its unique properties [3]. Therefore, ammonia has been 

analysed for its implementation in a great variety of power generation devices. For example, 

studies have been conducted to displace diesel with wind-powered produced ammonia. Results 

have demonstrated competitive patterns to enable fuel exchange [4]. Therefore, the path to 

replace fossils with “green” ammonia as a sustainable fuel in internal combustion engines keeps 

progressing [5]. Another possible use of ammonia for power generation is for fuelling fuel-

cells [6]. Ammonia can be used directly or indirectly (i.e. cracking the molecule and producing 

hydrogen) to produce combined power and heat. However, large power outputs are still 

impossible using these systems. Thus, another technology needs to evolve to enable large 

power densities in combination with the long storage periods that ammonia is capable of 

providing.  

In the international context economies such as Japan, Fig. 1 [7], have incurred in complex 

studies and demonstration projects to set the foundations for the creation of a hydrogen 

economy. Economies such as the USA invest in programs such as REFUEL which will enable 

energy generated from domestic, renewable resources to increase fuel diversity in the 
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transportation and power sectors through cost-effective and efficient methods  [8]. In the UK, 

companies such as Siemens, with support from the UK government, are participating in 

demonstration programs to show the potential of green ammonia and its reconversion to 

electricity using internal combustion engines [9]. Simultaneously, Oxford University has 

analysed ammonia-based energy storage systems integrated with renewable electricity 

generation in  Islandic regions, showing the economic feasibility of producing ammonia for 

combined storage and fertilizing applications with current technologies [10].  Finally, and with 

a global interest in the use of ammonia for power, the International Energy Agency (IEA) has 

recently become a promoter of ammonia for a carbon-free future [11]. The Renewable Energy 

Division [12] has recognised that ammonia can be used to tap into stranded energy produced 

from renewable sources (wind, solar, tidal, etc.), and then be used to redistribute hydrogen 

product of electrolysers connected to these systems. Thus, the interest in the topic increases 

constantly. Nevertheless, there is still a gap in understanding the use of more powerful systems 

to efficiently extract the energy from ammonia, a barrier that has stopped industry   pursuing  

the use of ammonia at large scale.  

 

Fig. 1. Research and Development Subjects of Strategic Innovation Program (SIP), Japan [7]. 

Courtesy of the Japan Science and Technology Agency (JTS) 

Ammonia is a colourless gas with a sharp, penetrating odour, with very particular 

characteristics such as a boiling point of −33.35 °C and freezing point of −77.7 °C. Further 
details of its chemical characteristics can be found elsewhere  [13]. As a fuel, the combustion 

of ammonia is challenging due primarily to its low reactivity, but yields nitrogen gas and water, 

with a stoichiometric Air Fuel Ratio (AFR) of 6.06 by weight, 

4NH3 + 3O2 → 2N2 + 6H2O + heat 

Ammonia is potentially hazardous to inhale. However, ammonia is readily detected by its 

odour, and being lighter than air it rapidly dilutes in a spill. Its ignition temperature is 650˚C. 
The energy content of ammonia is 5.2 kWh/kg (LHV) [14], making it feasible for energy 

distribution.  
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However, a viable energy system based on ammonia faces four primary barriers: 

1. Carbon-free synthesis of ammonia,  

2. Power generation from small to utility-scale size, 

3. Public acceptance through safe regulations and appropriate community engagement, 

4. Economic Viability for integration of technologies and green production of ammonia.  

Out of these barriers, barrier (2) is the concern of this project. As previously depicted, current 

ammonia based systems are run in the range of 0.1-1.0MW power in general, consequence of 

the gap of knowledge behind the use of the chemical. Ammonia can potentially decarbonise 

large-scale power production with low NOx emissions, having water as the main flue gas with 

easy handling of a hydrogen vector.  

Therefore, the current analysis concentrates on the use of gas turbine engines to extract the 

energy from ammonia at large power outputs >5MW. Gas turbine technologies, being systems 

widely employed for large-scale power generation, are the obvious candidates for the 

production of energy at these power levels. Current technologies are based on the use of 

swirling flows that due to enhanced fluid dynamics produce coherent structures that can 

provide stabilisation and anchoring to the flame [15]. Although these technologies have been 

developed for the use of lean combustion conditions to mitigate NOx production via Dry Low 

NOx (DLN) technologies, employment of swirling flows in ammonia-fuelled systems has been 

an advantage to stabilise and anchor a fuel that presents low reactivity [16].  

Initial ammonia gas turbine tests took place during the 1960’s, a period in which the fuel was 

assessed for power and propulsion applications. Solar and Berkeley investigated through a 250 

HP T-350 turbine the potential of the chemical for power generation [17]. Combustion tests 

were achieved with adequate combustion performance, although it was recognised that burning 

ammonia was much more complex and difficult than hydrogen due to the lower flame speed 

of ammonia [18]. Almost simultaneously, propulsion programs developed by NASA were 

evaluated using ammonia [19]. A Viking engine (XLR-10) used a mixture of ammonia and 

liquid oxygen which showed stable combustion patterns combined with easy handling fuelling 

[20]. Nevertheless, the program was discontinued due to lack of interest.  

Currently, various groups around the globe are fundamentally assessing this technology by 

employing pure ammonia for laminar ammonia/air premixed flames [21]. Pure ammonia has 

been also analysed for turbulent ammonia/air premixed swirling flames [22]. Other groups are 

working with methane-ammonia blends developing mechanisms for simulation studies [23]. 

Ammonia/methane combustion has showed potential as a turbine fuel with moderate flame 

stability and high emissions, requiring lower swirl and different injection strategies [24]. Tian’s 
mechanism proved, at the time, to be the most appropriate for further studies of 

ammonia/methane combustion [24]. However, this chemical path still includes a carbon source, 

i.e. methane, because other doping agents have been in the scope of researchers.  

One of the promising solutions is to burn ammonia with hydrogen. Research has showed that 

efficient combustion can be achieved with relative high powers using hydrogen as doping agent 

[26]. Studies on premixed combustion of ammonia-hydrogen showed that some blends can 

produce flame velocities close to methane. However, other studies demonstrate that under lean 

conditions, hydrogen diffusivity is detrimental and under lean conditions tends to lead to 

boundary layer flashback [27]. Chemical kinetic mechanism studies have showed that the 

Mathieu mechanism yields one of the best agreements within experimental data ranges of 
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different ammonia/hydrogen concentrations, equivalence ratios, and pressures [28], although 

there are many studies going on that seek to improve these findings. Most of these studies have 

identified that the sweet spot of operation for low NOx production is located in the rich 

combustion region between 1.05-1.31 equivalence ratios [3]. Thus, further work under these 

conditions is required.  

Concurrently, humidified gas turbine cycles with the injection of steam into gas turbine 

combustion chambers are conceptualised to increase specific power output and efficiency 

[29]. Steam injection into gas turbine cycles has been done over decades, with studies focused 

on improving this technique [30]. Currently, humidified gas turbine cycles have been assessed 

for Combined Heat and Power (CHP) and Combined Cooling, Heat and Power (CCHP) 

applications [31]. The main aspects of using humidification techniques are to properly 

stabilise both the combustion regime (i.e. ignition, flame stability, etc.) and the impacts on 

other components of the cycle (i.e. compressor) [32]. However, once the technique is properly 

implemented, this is an effective way to improve a gas turbine’s efficiency [33]. Steam 

injection can also be applied for optimization of CCHP systems that work under off-design 

conditions [34]. With increased electrical power outputs due to greater overall gas turbine 

plant efficiency, implementation of humidification in gas turbine cycles has a significant 

effect on the overall performance and emissions abatement compared to simple gas turbine 

cycles [35-36]. Moreover, one advantage of using steam injection is that  more waste heat 

could be recovered from exhaust gases, waste heat that can be used to produce the required 

steam [37]. Furthermore, steam injection is 1.69 times more efficient in nitrogen oxide 

emmision reduction than inlet air humidity increase. This is a consequence of flame 

temperature reduction, thus a decrease of thermal NOx [38]. When hydrogen-based blends 

are employed, steam dilution inhibiting effects on the formation of the nitrogen oxides are 

more pronounced than many other techniques [39]. Further studies have investigated CO2 

recirculation with steam injection. Results have demonstrated improvements to the turbine 

efficiency on a specific fuel consumption basis by up to 5.5% [40]. Other authors have rated 

the increase of specific work of the expansion in the gas turbine at 2.95% for every 2% of 

steam to air ratio increase [41]. Therefore, presenting humidified injection is a well-known 

method to increase power that can be applied to highly hydrogenated fuel blends. However, 

no study exists on the effects and efficiency changes of ammonia fuelled systems.  

 

However, there is no existing research to demonstrate the use of humidified conditions in the 

implementation of ammonia-based fuelled cycles. As previously shown, humidification can 

potentially increase efficiencies and power outputs. Implementation of steam injection in the 

ammonia combustion could deliver better overall economics from the use of ammonia. 

Combustion analyses of the implementation of humidified ammonia/hydrogen blends in gas 

turbine cycles are extremely scarce. As presented in this paper, the use of humidified 

conditions for ammonia/hydrogen flames shows potential for stable flames, low emissions 

and efficient humidified cycles.  

Therefore, before exploring all the different alternatives for the use of ammonia blends for 

large power generation, barrier (4) also needs to be assessed in order to determine regimes that 

have the potential of providing competitive options for power generation that can not only 

reduce emissions and enable hydrogen utilisation for stable combustion, but also that are 

competitive to current fossil-based technologies which usually show efficiencies above 30%.  



6 

 

Therefore, this work explores the use of rich combustion of ammonia-hydrogen blends 

combined with humidified injection, thus employing previous research that shows good 

combustion regimes under rich conditions combined with higher power outputs with 

humidification techniques.  A series of analytical, numerical and experimental trials have been 

conducted to demonstrate the feasibility of using these blends for low emission, stable 

combustion in combination with efficiency studies that show high efficiency profiles, thus 

tackling barriers (2) and (4) as above.  The novel results inform on the type of blends that can 

be used to raise efficiency whilst minimizing emissions with ammonia-based blends, opening 

opportunities for further studies on stability, operability and techno-economic feasibility 

analyses of the concept. Moreover, this paper also denotes some of the technical challenges 

that might appear in the use of these blends, challenges related to the corrosive atmospheres 

created by diluted ammonia or nitrogen oxide emissions. These are points also addressed in 

this script. To the knowledge of the authors, there is no literature on this particular subject, with 

findings that can be applied for further progression on the use of ammonia-based gas turbines.   

 2. Materials and Methods 

A numerical model based on chemical kinetics was evaluated to deliver results that would be 

employed in a calibrated analytical model of a Brayton Cycle. The latter was evaluated using 

air-methane lean conditions and compared to a humidified rich ammonia-hydrogen blend. 

Finally, results were complemented with experimental trials that demonstrated the feasibility 

of using humidified rich ammonia-hydrogen blends. Results denoted several technical aspects 

that require further studies to progress on the subject.  

2.1. Chemical-kinetic numerical model 

A 1D simulation was conducted using Chemical Reactor Network (CRN) modelling to 

determine the species and conditions of the chemical products during the combustion phase of 

the gas turbine cycle to include them in the cycle analyses. The used CRN was formed by two 

clusters, Fig. 2. The first cluster represents the swirling flame with a central recirculation zone 

(CRZ) whose recirculation was set at 20%. Recirculation strength was approximated from 

previous experimental campaigns using similar burners [42]. The second cluster uses a single 

Plug Flow Reactor for post-flame (secondary zone) processes along a 0.10 m duct. Simulations 

were conducted using CHEMKIN-PRO. An inlet temperature of 567K and 9.67 bar pressure, 

inlet conditions of a reference gas turbine employed for this study, were adopted for all 

performed calculations. For the study, a 70%NH3-30%H2 (vol%) blend was used at 1.20 

equivalence ratio, as this condition showed the best emissions performance in previous 

campaigns [23]. The model was calibrated to previous experiments [27] in order to determine 

heat losses that mainly accounted to the primary combustion zone. Results were compared to 

a Dry Low NOx (DLN) condition at 0.65 equivalence ratio using methane as fuel, condition 

that is widely used in industrial units to reduce NOx, unburned hydrocarbons (UHC) and CO 

emissions.  
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Fig. 2. Chemical Reactor Network for the numerical simulation of the combustion chamber  

To study ammonia/hydrogen combustion in gas turbines, a detailed chemical-kinetics 

mechanism which can comprehensively validate the combustion properties under high pressure 

conditions was required. Mathieu’s mechanism was built for shock-tube experiments of 

ammonia ignition delay time measurements under pressure conditions of up to 30 atm [43]. 

Therefore, the chemical kinetic model proposed in the present work was mostly based on recent 

work performed by Mathieu under high-pressure conditions. To improve mechanism 

performance on NOx emissions and burning velocity prediction, several reactions were 

modified. The modifications of rate constants were performed based on contribution rate 

calculations and sensitivity analyses. To develop a kinetic mechanism which can 

comprehensively validate different combustion properties of NH3/H2 fuel blends, NOx 

emission, laminar burning velocity and ignition delay times were all taken into consideration 

in this study. Further details of the model are given in [44]. It must be emphasized that although 

the model shows good correlations, it has been demonstrated that it still presents inaccuracies 

with experimental trials. Therefore, further studies are underway by several groups to improve 

ammonia-based chemical kinetic models [47]. This is a concept that is under continuous 

development and requires further attention.  

2.2. Thermodynamic simulation model 

An analytical, thermodynamic model was employed considering the processes of non-adiabatic 

expansion and cooling in the turbine as a whole. The basic assumption of the method is the 

continual distribution of the cooling air along the gas turbine, with the computation of the 

expansion process of the combustion gases and cooling air separately. This method was 

selected as the ‘reference method’ [45]. Verification of the thermodynamic model was based 

on the comparison of model predictions against the manufacturer’s data for the reference gas 
turbine [46]. For the thermodynamic model, it was necessary to make some adjustments for 

correspondence to the actual gas turbine plant [46].  

First adjustment was based on the introduction of steam injection, as done in the reference gas 

turbine plant. This step was not considered in the basic reference method. This adjustment to 

the thermodynamic model is marked as the simulation model S1. The second adjustment, 

model S2, was developed to enhance S1 model by considering the variation of the polytropic 

efficiency due to operational regime changes. The reference method only considers full load 

operation regimes with a constant value of the gas turbine polytropic efficiency. For 

verification purposes, it was necessary to analyse both design and off-design operation regimes. 

Finally, the third adjustment, model S3, considered the fuel enthalpy influence on the flow 

behaviour, heat transfer and energy transformation. The fuel enthalpy was not considered in 
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the basic reference model, therefore it was integrated into the simulation model for high 

accuracy purposes. 

For the designed operation mode, the specific compression work relative to the compressor 

inlet air mass flowrate is treated as adiabatic and polytrophic, and is calculated as a function of 

compressor pressure ratio, air temperature at the compressor inlet and specific heat by the 

following equation [45], 𝐿𝐶 = 𝑐𝑝𝑎𝑖𝑟|02 ∙ 𝑇0 ∙ (Π𝐶(1 𝜂𝑝𝐶⁄  )∙(𝑅𝑎𝑖𝑟 𝑐𝑝𝑎𝑖𝑟|02⁄  ) − 1)                         (1) 

 

In the case of polytropic compression, the impact of the compressor construction is included 

through the polytropic compression efficiency, ηpC. Unlike the isentropic efficiency, the 

compression polytropic efficiency is not a function of pressure ratio, therefore it is suitable for 

off–design operation analyses, which consider compression at variable pressure ratios.  

The total temperature of the air at the compressor outlet T2t is calculated as a function of air 

temperature at the compressor inlet T0, compressor pressure ratio, and thermodynamic 

irreversibilities during compression and working fluid characteristics by the equation [45], 𝑇2𝑡 = 𝑇0 ∙ Π𝐶 (1 𝜂𝑝𝐶⁄  )∙(𝑅𝑎𝑖𝑟 𝑐𝑝𝑎𝑖𝑟|02⁄  )
                          (2) 

 

Fuel mass flowrate relative to the air mass flowrate at the combustion chamber inlet b is 

determined from the combustion chamber energy balance equation in the following form [32], 

𝑏 = �̇�𝑓𝑢𝑒𝑙�̇�2 = 𝑐𝑝𝑐𝑝|03∙(𝑇3𝑡−𝑇0)−𝑐𝑝𝑎𝑖𝑟|02∙(𝑇2𝑡−𝑇0)𝜂𝐶𝐶∙𝐿𝐻𝑉−𝑐𝑝𝑐𝑝|03∙(𝑇3𝑡−𝑇0)                                    (3) 

The supplied heat specified by the air mass flowrate at the compressor inlet is a function of the 

low heating value of the fuel and coefficient b,  𝑞𝑠𝑢𝑝 = 𝑏 ∙ �̇�2�̇�1 ∙ 𝐿𝐻𝑉                                                      (4) 

Air for combustion and cooling air are simultaneously compressed in the compressor. It is 

assumed that the cooling air distribution along the gas turbine is continuous. In case of the non–
adiabatic expansion it is necessary to determine the cooling air distribution in the gas turbine. 

The overall specific work of the expansion of the combustion products and cooling air mixture 

is expressed by the following equation: 

𝐿𝑇 = 𝑐𝑝𝑐𝑝−𝑎𝑖𝑟|34 ∙ (1−𝑧−𝑟𝑎𝑖𝑟)∙(1+𝑏)∙𝑇3𝑡+𝑟𝑎𝑖𝑟∙𝑀∙𝑇2𝑡(1−𝑧−𝑟𝑎𝑖𝑟)∙(1+𝑏)+𝑟𝑎𝑖𝑟 ∙ (1 − Π𝑇−𝜂𝑝𝑇∙𝑅𝑐𝑝−𝑎𝑖𝑟 𝑐𝑝𝑐𝑝−𝑎𝑖𝑟|34⁄ )              (5) 

 

The temperature at the end of the expansion is, 

𝑇4𝑡 = 𝑇0 + (1−𝑧−𝑟𝑎𝑖𝑟)∙(1+𝑏)∙𝑐𝑝𝑐𝑝|03∙(𝑇3𝑡−𝑇0)−𝑟𝑎𝑖𝑟∙𝑐𝑝𝑎|02∙(𝑇2𝑡−𝑇0)−[(1−𝑧−𝑟𝑎𝑖𝑟)∙(1+𝑏)+𝑟𝑎𝑖𝑟]∙𝐿𝑇[(1−𝑧−𝑟𝑎𝑖𝑟)∙(1+𝑏)+𝑟𝑎𝑖𝑟]∙𝑐𝑝𝑐𝑝−𝑎𝑖𝑟|04          (6) 
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Finally, the efficiency of the entire gas turbine plant is defined as, 

 𝜂𝐺𝑇𝑃 = (𝐿𝑇−𝐿𝐶)∙𝜂𝑚𝑞𝑠𝑢𝑝      (7) 

Where 𝜂𝐺𝑇𝑃 is efficiency of the entire gas turbine plant [-], 𝜂𝑚 is mechanical efficiency [-]. 

 

In the reference gas turbine plant, steam is introduced into the combustion chamber. As 

previously stated, the basic mathematical model [45] does not consider steam injection, and so 

it is necessary to expand the thermodynamic model and include the impact of steam on the 

combustion process. Therefore, the first adjustment of the base thermodynamic model is the 

introduction of steam impacts through the ratio of steam and fuel mass flow rates at the 

combustion chamber inlet.  

As mentioned, the enhanced version of the thermodynamic model considers the variation of 

the turbine polytropic efficiency due to operational regime changes. Variation of the polytropic 

efficiency due to operational regime changes is not analysed sufficiently to date. Drawing upon 

preliminary analyses and comparisons with reference data [46], it was concluded that the 

assumption of a constant polytropic efficiency regardless operating regime change needed to 

be replaced. Mass flowrates changes of combustion products through the gas turbine result in 

‘off–design’ operation, and hence variation of the turbine polytropic efficiency. Therefore, the 
second adjustment of the base model was the introduction of the variable polytropic gas turbine 

efficiency. Polytropic efficiency variation as a function of mass flowrate of combustion 

products was determined using the following equation: 𝜂𝑝𝑇 = 𝑘1 ∙ �̇�𝑐𝑝2 +  𝑘2 ∙ �̇�𝑐𝑝  −  𝑘3                                                 (8) 

This polytropic efficiency equation is defined as a function of the combustion products mass 

flowrate, consistent with the gas turbine plant reference data [46]. Equation (8) shows 

acceptable accuracy for the reference gas turbine using the following coefficient values  𝑘1 =−1.0372, 𝑘2 = 32.179 and 𝑘3 = − 248.68. It is recognized that application of this polytropic 

efficiency equation to different gas turbine types should be further analysed. However, for this 

study and for comparison with the reference gas turbine, the results provided good agreement, 

as presented in the following sub-section. 
 

In order to better understand the influence of fuel enthalpy, this parameter was introduced into 

the thermodynamic model for simulation of the flow behaviour, heat transfer and energy 

transformation, i.e. third adjustment. After implementing the adjustments in the 

thermodynamic model, coefficient 𝑏 is calculated using the following equation, 𝑏 = �̇�𝑓𝑢𝑒𝑙�̇�2 = 𝑐𝑝𝑐𝑝|03∙(𝑇3𝑡−𝑇0)− 𝑐𝑝𝑎𝑖𝑟|02∙(𝑇2𝑡−𝑇0)𝜂𝐶𝐶∙(𝐿𝐻𝑉+ℎ𝑓𝑢𝑒𝑙) − 𝑐𝑝𝑐𝑝|03∙(𝑇3𝑡−𝑇0)∙(1+𝛼)−𝛼∙(ℎ𝐶𝐶2−ℎ𝐶𝐶1)                      (9) 

The heat supplied, specified by air mass flowrate at the compressor inlet, is a function of the 

lower heating value of the fuel and coefficient b with introduction of fuel enthalpy and 

adjustment for steam injection,  𝑞𝑠𝑢𝑝 = 1𝜂𝐶𝐶 . [(1 − 𝑧 − 𝑟𝑎𝑖𝑟). (1 + 𝑏 ∙ (1 + 𝛼)). 𝑐𝑝𝑐𝑝|03 . (𝑇3𝑡 − 𝑇0) − (1 − 𝑧 − 𝑟𝑎𝑖𝑟). 𝑐𝑝𝑎𝑖𝑟|02 ∙(𝑇2𝑡 − 𝑇0) − 𝛼 ∙ 𝑏 ∙ (1 − 𝑧 − 𝑟𝑎𝑖𝑟) ∙ (ℎ𝐶𝐶2 − ℎ𝐶𝐶1)] − 𝑏 ∙ (1 − 𝑟𝑎𝑖𝑟) ∙ ℎ𝑓𝑢𝑒𝑙                        (10) 
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The overall specific work of the expansion of the combustion products and cooling air mixture, 

after adjustments, is expressed by the following equation, 𝐿𝑇 = 𝑐𝑝𝑐𝑝−𝑎𝑖𝑟|34 ∙ (1−𝑧−𝑟𝑎𝑖𝑟)∙(1+𝑏∙(1+𝛼))∙𝑇3𝑡+𝑟𝑎𝑖𝑟∙𝑀∙𝑇2𝑡(1−𝑧−𝑟𝑎𝑖𝑟)∙(1+𝑏∙(1+𝛼))+𝑟𝑎𝑖𝑟 ∙ (1 − Π𝑇−𝜂𝑝𝑇∙𝑅𝑐𝑝−𝑎𝑖𝑟 (3−4) 𝑐𝑝𝑐𝑝−𝑎𝑖𝑟|34⁄ )       

(11) 

After implementation of the model adjustments, the temperature at the end of the expansion 

process is calculated by, 

𝑇4𝑡 = 𝑇0 + (1−𝑧−𝑟𝑎𝑖𝑟)∙(1+𝑏∙(1+𝛼))∙𝑐𝑝𝑐𝑝|03∙(𝑇3𝑡−𝑇0)−𝑟𝑎𝑖𝑟∙𝑐𝑝𝑎𝑖𝑟|02∙(𝑇2𝑡−𝑇0)−[(1−𝑧−𝑟𝑎𝑖𝑟)∙(1+𝑏∙(1+𝛼))+𝑟𝑎𝑖𝑟]∙𝐿𝑇[(1−𝑧−𝑟𝑎𝑖𝑟)∙(1+𝑏∙(1+𝛼))+𝑟𝑎𝑖𝑟]∙𝑐𝑝𝑐𝑝−𝑎𝑖𝑟|04         

(12) 

2.3. Experimental studies 

Experiments were performed at the Gas Turbine Research Centre (GTRC). The GTRC is a 

facility which consists of two major combustion rigs each designed for detailed investigation 

of combustion and emissions characteristics at representative gas turbine conditions. For the 

present project a High Pressure Optical Chamber (HPOC) was fitted with a generic premixed 

swirl burner, Fig. 3. 

 
Fig. 3. Generic Swirl burner for detailed investigation of combustion and emission 

characteristics using representative gas turbine systems  

The campaign was performed with a 70%NH3-30%H2 (%vol) blend at 1.2 equivalence ratio, 

condition that has previously demonstrated relatively low NOx emissions and good stability 

[47]. Further tests were conducted at various steam flowrates, ranging from 0.0 to 1.0 g/s (0 to 

72% Steam/Fuel ratio, mass). Test points were evaluated at a power output of 39.3kW under 

atmospheric pressure. High inlet temperatures of 400K and 500K, representative of industrial 

gas turbines, were employed. No bypass was used to avoid dilution of emissions.  

An integrated Signal Instruments equipment comprising several analysers was used. The 

system is comprised of a heated vacuum chemiluminescense analyser (Signal 4000VM) to 

quantify NOx concentrations, calibrated to 37.1 ppm NO and 1.9 ppm NO2. Unfortunately, due 

to connection failures in the gas lines, NH3 emissions were impossible to obtain. However, 

discussion on this emission is based on posterior works performed with this configuration. 

These can be found elsewhere [49]. Measured errors have been account to ~5%.  
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Finally, pools of chemicals were formed at the exit of the HPOC, consequence of condensation 

of the product gases. Samples of these chemicals were analysed to determine pH via a Seven 

Excellence pH multimeter with a ±0.3 variance during the measurements.  

3. Results   

First sets of data are results using the chemical-kinetic numerical model for analysis of 

humidified ammonia-hydrogen blends combustion. The following sub-section refers to the 

thermodynamic model and its numerical predictions on a gas turbine cycle running on 

humidified ammonia/hydrogen blends previously resolved using the chemical-kinetic model. 

In addition to chemical-kinetic and thermodynamic model results, experimental results of 

humidified ammonia-hydrogen blends combustion are presented. 

 

3.1. Chemical – kinetics numerical model 

It was observed in the numerical results that the use of DLN technologies generates colder 

flames, Fig. 4, accompanied by vast amounts of hydrogen, which along the secondary zone is 

consumed due to the remaining hot oxygen, bringing down the hydrogen molecule in one order 

of magnitude at the discharge point, Fig. 5. Similarly, low NO are produced, characteristic 

pattern of burning methane under lean premixed conditions. 

 

Fig. 4. Lean methane (0.65) flames are colder than rich ammonia-hydrogen flames due to 

excess air, thus mitigating more efficiently thermal NOx.  

On the other hand, Figs. 6 to 8 show the effect caused by the use of steam injection in various 

ammonia/hydrogen scenarios. Figure 6, with null steam injection, shows the complete 

combustion of NH3 by the discharge point, with NO emissions close to 0.001 molar fraction. 

Interestingly, hydrogen concentration is relatively high compared to other cases. It must be 

emphasized that complete consumption of NH3 might be related to inaccuracies of the reaction 

model, a problem that researchers are currently trying to solve [48] and which  is out of the 

scope of this work.   
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Fig. 5. Simulation using DLN (0.65 equivalence ratio-methane), pressurised, high 

temperature inlet conditions. Flame temperature ~2015K 

 

 
Fig. 6. Simulation using ammonia-hydrogen at 1.2 equivalence ratio, pressurised, high 

temperature inlet conditions. Flame temperatures ~2300K 

 

 
Fig. 7. Simulation using ammonia-hydrogen at 0.40 Steam/Fuel ratio (mass), 1.2 equivalence 

ratio, pressurised, high temperature inlet conditions. Flame temperature ~2185K 
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Fig. 8. Simulation using ammonia-hydrogen at 0.72 Steam/Fuel ratio (mass), 1.2 equivalence 

ratio, pressurised, high temperature inlet conditions. Flame temperature ~2105K 

As steam is injected, Fig. 7 and 8, NH3 is less consumed at the flame front, leaving traces of 

the chemical that are partially consumed in the secondary zone. Accompanying this effect is 

the reduced amount of hydrogen that is obtained for post-combustion. However, NO are 

considerably reduced compared to the case without water injection.  

      

Fig. 9. Left) Reaction path and, right) Absolute Rate of Production of NH3, respectively. 

Ammonia-hydrogen with 0.40 Steam/Fuel ratio injection 

                  

Fig. 10. Left) Absolute Rate of Production of H2O and, right) Normalized Sensitivity of NO, 

respectively. Ammonia-hydrogen with 0.40 Steam/Fuel ratio injection 

In order to understand the chemical reaction behind this effect, the case with ammonia-

hydrogen at a steam/fuel ratio of 0.40 was analysed, Figs. 9 and 10. As can be observed from 

the reaction path, Fig. 9 (left), ammonia is essentially converted into water and NH2, which due 

to the production of OH radicals will eventually lead to NO through the reaction path NH 

→HNO. However, there will be also an excess of O and H radicals in the combustion process 

as a consequence of the split of water molecules, all which have negative impact in the 

production of NO. Moreover, extra production of OH from water will also lead to more NH2, 

Figs. 9(right) and 10(left), with its impact on the reduction of nitrogen oxides. If the impact of 

all these radicals, i.e. O, H and NH2, is gathered to assess NO reduction, Fig. 10 (right), the 



14 

 

resultant effect will be greater than the impact from reactions such as NH+OH or N+OH which 

lead to NO formation.  Finally, combustion temperatures will also be affected due to steam 

injection, thus reducing thermal NOx as well as the splitting of NH3 and consequently the 

production of NO via fuel bound production, augmenting the remnants of ammonia while 

mitigating emissions. In order to compare the case without steam addition, please refer to recent 

work performed by the authors [47]. 

3.2. Thermodynamic Model Testing and Verification 

The thermodynamic model was used for analyses of the main parameters of the gas turbine 

plant running at various operating conditions (for the design regime with 100% load and for 

off-design regimes from 90% to 10% load). Analyses of the model sensitivity were done for 

the following parameters: supplied heat, power, heat rate, gas turbine plant efficiency and 

temperature of the combustion products at the gas turbine outlet.  

 

Validation of the thermodynamic model was performed using the same input parameters 

employed during the test campaign of the reference gas turbine plant [46]. An aeroderivative 

humidified single – shaft gas turbine delivering 3,900 kWe was analysed. Measurements were 

obtained with natural gas (i.e. LHV = 47.497 MJ/kg at 15°C and α = 0.4 kg/kgfuel) [46]. In 

addition to the reference gas turbine plant data, the following values were also quantified: 

compressor pressure drop, combustion chamber pressure drop, polytropic efficiencies of the 

compressor and turbine, the combustion efficiency and mechanical efficiency. Ambient 

temperature and pressure were adopted for all calculations performed. 
 

For testing and verification of the thermodynamic model, three simulations were undertaken, 

S1, S2 and S3 as above. The main parameters of the gas turbine plant that were calculated 

through all three simulations are compared to manufacturer’s gas turbine data (M) [46]. The 

variation of the main parameters is presented as a function of gas turbine plant operating 

regimes, Fig. 11 – 15. 

 

  
Fig 11. Supplied heat [MWth] values as a 

function of the operation load with natural 

gas combustion 

Fig. 12. Generated power [kWe] values as  a 

function of the operation load with natural gas 

combustion 
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Fig. 13. Heat rate [MJ/kWh] values as  a 

function of the operation load with natural 

gas combustion 

Fig. 14. Tout [K] values as a function of the 

operation load with natural gas combustion 

 

 
Fig. 15. Gas turbine plant efficiency [%] values as a function of the operation load with 

natural gas combustion 

 

Comparative analyses show that the basic mathematical method [45] is not good at predicting 

the gas turbine performance under off-design regimes, especially for predicting the gas turbine 

efficiency and heat rate with value of 𝛿 (average relative error) equal to 20.84% and 42.52%, 

respectively. A comparison of the results obtained using S2 and S1 shows significant 

improvement of the model accuracy after adding polytropic efficiency variations with 

operating regime changes. Notwithstanding the achieved improvement, the accuracy level is 

still unacceptable. Finally, by comparing the results obtained from the S3 with those of S2, it 

can be concluded that the introduction of fuel enthalpy in the combustion chamber energy 

balance provides simulation results with significantly less errors compared to the experimental 

values [46]. The level of accuracy of the results of the S3 is acceptable, with very low 𝛿 values 

for all analysed operating regimes, i.e. supplied heat 0.26%, generated power 0.27%, heat rate 

0.22%, gas turbine outlet temperature 1.74% and gas turbine plant efficiency of 0.18%. Thus, 

the curves of these parameters approximately match those of the reference data [46], as shown 
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in Figures 11 - 15. Therefore, the modified thermodynamic model provided the confidence to 

be used for the off-designed conditions of the current study.  
 

3.3. Cycle analyses  

The modified thermodynamic model was then used to compare the efficiency of the humidified 

ammonia/hydrogen cycle with the efficiency of both a DLN cycle operating with methane at 

0.65 equivalence ratio and a humidified methane-fuelled cycle at full load. The first step of the 

cycle analysis was to define the power output at which the analysis needed to be performed. 

Fuel flowrate was restricted due to the calibration limit; therefore 0.367 kg/s of a 70-30% 

(vol%) ammonia-hydrogen blend was used as inlet parameter. The amount of steam injected 

into the combustion chamber was determined based on the reference gas turbine plant at a ratio 

of 0.4 kg/kgfuel. Thus, the introduced amount of steam was 0.147 kg/s for the 

ammonia/hydrogen cycle. To keep rich combustion conditions at 1.2 equivalence ratio, air was 

supplied at 2.260 kg/s. For the DLN cycle, the analysis was performed with a total fuel mass 

flowrate of 0.207 kg/s and an air flowrate of 5.480 kg/s, ensuring dry low NOx conditions at 

0.65 equivalence ratio. These conditions allowed comparison between blends at 10.4MW heat. 

Finally, a 100% load using methane and premixed combustion was simulated, as this case used 

humidified conditions and the calibration of the thermodynamic mathematical model. Supplied 

heat was set at 14.4MW, with 0.288 kg/s fuel, 0.115 kg/s steam and 14.99 kg/s air.  

Results from the cycle based on the DLN methane-fuelled combustor predict efficiencies of 

~19.35%, i.e. with a system designed to run at higher fuel flowrates and power, having air in 

the combustion primary zone accounting ~37% of the total available air flowrate, thus 

producing turbine inlet temperatures of 1275K.  

In parallel, initial analyses demonstrated that the use of dry ammonia-hydrogen delivered 

efficiencies ~9.77%. This was caused by high dilution of the combustion products, as only 15% 

of air was used for the combustion process, while the remaining 85% was employed for the 

secondary, dilution zone. Similarly, the turbine inlet temperature for the humidified 

ammonia/hydrogen cycle produced combustion products of only 880K as a consequence of the 

excessive dilution that occurs at the secondary combustion zone, similar to the dry case, 

phenomenon needed to keep rich combustion conditions. However, specific heats of the 

humidified fuel blend combined with the combustion products of the process are significantly 

higher than those for the reference gas turbine plant at the simulated temperatures. Therefore, 

the simulation of the ammonia/hydrogen cycle with steam injection predicts overall efficiencies 

of ~28.59% for 10.4MW supplied heat. These values are similar to those obtained in the 

simulations of the humidified cycle at full load using methane with efficiencies of ~28.20%.  

The rationale behind these results lies on the calibration of the polytropic efficiency, equation 

(8) and Fig. 16. Overall efficiency values of the gas turbine plant are a function of both the 

compression and expansion works. In the case of off-design regimes, the expansion work 

significantly depends on the polytropic efficiency of the gas turbine. Specifically to this case, 

the thermodynamic model considers variations of the polytropic efficiency as a function of the 

combustion products’ mass flowrate that are delivered to the gas turbine. Therefore, polytropic 
efficiency values are highly sensitive to mass flowrate changes. Thus, the polytropic efficiency 

for humidified ammonia-hydrogen combustion is ~65%, significantly higher than for the case 

using dry ammonia-hydrogen combustion (i.e. ~45%), a consequence of the change in 

combustion products’ mass flowrate, Fig. 16. Consequently, the increase of the polytropic 
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efficiency increases the turbine useful work, raising the overall efficiency of the cycle. 

However, it must be emphasized that the mass flowrates employed for both the humidified and 

dry ammonia-hydrogen cycles are lower than the mass flowrate of the reference plant at 10%, 

leading to unresolved uncertainties consequence of the extrapolation of the polytropic 

efficiency of the gas turbine for these conditions. Therefore, further research is needed on new 

cycles designed to burn humidified ammonia blends that employ smaller compressors to ensure 

less post-combustion dilution – turbines that can only be theorised at the moment.   

 

Fig. 16. Polytropic efficiency equation that will be used in equation (8) -  variation of gas 

turbine polytropic efficiency as a function of gas turbine mass flow rate.   

3.4. Experiments 

Experimental results demonstrated that combustion using a highly humidified 70%NH3-

30%H2 blend were feasible, generating a flame that showed relatively high stability 

(qualitatively measured based on the fluctuation of the base and core of the flame). Once stable 

combustion was achieved, steam injection followed. Injection was performed in steps of 0.2g/s 

in order to verify impacts on the flame while ensuring combustion feasibility, avoiding blowoff. 

It was observed that steam injection affected the flame at values above 0.6g/s, with a flame that 

showed greater fluctuation at the base, a phenomenon directly linked to the increased likelihood 

of blowoff. In order to observe the resistance of the flame to humidity, injection was increased 

and the flame was still visible up to 1.0g/s – i.e. 0.72 steam/fuel ratio (mass) – point at which 

the flame became so unstable that was eventually lost. Interestingly, these type of flames are 

highly resistant to humidified conditions.  

NOx emissions were measured, as presented in Fig. 17. It is clear that emissions decrease with 

the increase of steam to levels as low as <10ppm. The increase of inlet temperature augments 

the production of nitrogen oxides, as expected, due to the increased reactivity of the fuel blend.   
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Fig. 17. NOx emissions at different steam injection ratios (experimental and numerical). NH3 

emissions included (numerical results) for comparison purposes.  

Results obtained from the chemical-kinetic studies, Fig. 6-8, have been also added to Fig. 17. 

It is clear that as the temperature increases, NOx emissions increase. However, the results also 

show that an increase in pressure can decrease NOx emissions. The latest assertion has been 

numerically and experimentally validated elsewhere [44, 49].  

Ammonia emissions from the chemical-kinetic studies were also added to Fig. 17. It is evident 

that the increase of steam in the blend will increase unburned ammonia. Although no NH3 

measurements were possible during this campaign, further works using this combustor were 

posteriorly performed by Pugh et al [49]. Their results show that at higher steam fractions 

unburned ammonia increases in up to two orders of magnitude, thus being in agreement with 

the present calculations. It is believed that lower combustion temperatures contribute to this 

phenomenon [49]. Moreover, Pugh’s results and those obtained through this work suggest a 

point of balance between steam injection, unburned ammonia concentration and inlet 

temperature values. The region at which both NOx and NH3 seem to be more efficiently 

reduced appears to be located between 28 and 40% steam/fuel injection (mass) for high inlet 

temperatures.  

As part of the emissions reduction process, it has been suggested that for NH3 and NOx 

emissions their relatively low values are also linked to their recombination and posterior 

reaction with steam in the post-combustion chamber. Supporting this statement, large pools of 

condensate were recovered from the HPOC rig, which after analyses showed alkaline 

characteristics with ~8.5pH. Thus, it is believed that this alkalinity is caused by the remaining, 

unburned ammonia, which in practice will need to be minimized to increase efficiency of 

combustion and to reduce the pH of the final condensates, a topic that requires further research 

for implementation of these humidified conditions in the combustion of ammonia-hydrogen 

blends.  

4. Conclusions 

A numerical, analytical and experimental analysis was carried out to determine the efficiency 

and potential of using ammonia-hydrogen blends under humidified conditions to achieve 

regimes that can potentially compete with current Brayton cycles fuelled with fossil fuels. After 
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employing a modified thermodynamic model, a new reaction chemical mechanism and 

bespoke experiments, it was found that: 

 The use of steam up to 0.72 Steam/Fuel ratio (mass) is feasible. However, combustion 

performance is low and unstable, leading eventually to blowoff.  

 The use of steam up to 0.40 Steam/Fuel ratio (mass) provides efficiencies similar to 

those obtained using humidified natural gas cycles (~28.59% v ~28.20%). Although 

these values are based on extrapolated calculations, it is clear that there is opportunity 

for efficient energy production using humidified ammonia-hydrogen blends, with the 

requirement of novel cycles that can enable lower post-combustion products dilution.   

 Simultaneously, flames under humidified ammonia-hydrogen conditions present 

relatively good stability, with low fluctuation at the base and core of the flame, thus 

being feasible for further research that includes more complex analyses on flame 

stability and operability. 

 Nitric oxides can be mitigated by using steam injection via reduction of temperatures 

(i.e. lower thermal nitric oxide and reduced reaction of ammonia) and the formation 

of radicals that have a negative sensitivity to the production of the contaminant. 

However, large steam injection has disadvantageous effects, as lower combustion 

efficiencies are expected with higher unburned ammonia, a consequence of the 

reduced temperatures that lead to remnants of unburned fuel in the post-combustion 

zone. Consequently, condensates appear with high pH. Thus, a region of balance 

between 0.28 and 0.40 steam/fuel ratio seems to be the most feasible to control both 

emissions. Further research is needed to assess different steam injection strategies to 

minimise even further these unwanted emissions.  

 All obtained results demonstrate the potential to efficiently use ammonia gas turbines 

for power generation via humidified, hydrogenated blends under rich conditions. 

Results denote a range of humidified conditions that need to be targeted for further 

works, raising the need of more accurate reaction mechanisms for humidified 

conditions at representative industrial conditions (i.e. high pressure and high 

temperature inlet conditions).  
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