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Thesis Summary 
 

Post-translational histone modifications lead to large coordinated and dynamic 

changes to the chromatin in a spatial and temporally specific manner. These 

highly synchronised epigenetic changes control gene transcription and are critical 

for various cellular functions including cell cycle progression, DNA repair, and 

telomere maintenance. The role of epigenetics in neurodevelopment is wide-

ranging therefore it is highly unsurprising that epigenetic modifiers have been 

implicated in neurodevelopmental disorders (NDDs). I used an in vivo and in vitro 

approach to understand the role of histone modifier Ehmt1 in development and 

disorder. 

In this thesis I describe a distinct behavioural phenotype in a forebrain specific 

Ehmt1 haploinsufficient mouse model, Ehmt1D6cre/+ (Chapters 2 & 3). These 

behavioural findings were then related to the role of Ehmt1 in adult hippocampal 

neurogenesis, in vivo (Chapter 4) and in vitro (Chapter 5).   Finally using 

publically available RNA-seq data, enrichment analyses were used to determine 

the effect of Ehmt1 reduction on key phenotypes associated with memory and 

learning, as well as identifying genes associated with neurodevelopmental 

disorders (Chapter 6).  

In summary, this thesis aims to draw connections between Ehmt1’s function in 

the forebrain, particularly the hippocampus, and the deficits seen in cognition and 

executive functioning in a number of associated neurodevelopmental disorders. 

Using interesting results from data mining, along with findings from behavioural 

and cellular analyses; identification of potential downstream targets for further 

research of disease pathogenesis could be possible. 
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 General Introduction Chapter 1

1.1. Epigenetics  

Epigenetics was originally termed by Conrad Waddington to explain how a 

genotype brings about a phenotype. The term has since then evolved in order to 

integrate the growing knowledge within the field. It now stands that epigenetics 

refers widely to the stable and reversible alterations in genetic expression above 

and beyond changes to the DNA sequence. This broad definition encompasses a 

range of mechanisms involved from gene to protein, in which highly sophisticated 

regulated processes control gene expression at almost every level. These 

epigenetic mechanisms include DNA methylation at cytosine-phosphate-guanine, 

CpG, islands and post-translational modifications of histones (Figure 1.1). The 

reversible nature of such mechanisms allow for incredibly dynamic expression 

patterns, as seen during the development of the CNS ( Mehler 2008). 

1.1.1. DNA Methylation 

DNA methylation occurs at cytosine residues at the promoter rich CPG 

islands, which often span approximately 1000 base pairs of which CG density 

exceeds that seen elsewhere in the genome (Deaton & Bird 2011). The majority of 

protein coding promoters are found within CpG islands, an aspect found to be 

evolutionarily conserved from mouse to human, suggesting an important function 

to these regions. DNA methylation at these sites leads to transcriptional silencing, 

and dynamic processes involving de novo methylation as well as demethylation 

lead to tissue specific methylation patterns and thus tissue specific gene 

expression (Ghosh et al. 2010). Neurons have been found to be able to alter their 

methylation patterns in response to stimuli (Saunderson et al. 2016).Here it was 
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shown that a stressful event, in the form of a forced swim challenge, lead to CpG-

specific demethylation at the gene promoter regions of c-Fos and Egr-1. This 

implicates DNA methylation patterns to normal neuronal functioning and 

behaviour. 

1.1.2. Histone Modification  

 Another group of epigenetic processes are the post-translational 

modifications of histones. Histones in a nucleosome, along with DNA, form  

chromatin (Bannister & Kouzarides 2011; Rudenko & Tsai 2014; Lawrence et al. 

2016). Chromatin is found in two conformations, in either euchromatic or 

heterochromatic forms. Euchromatin refers to an open, relaxed form in which 

regions of the genome are accessible for transcription; heterochromatin confers a 

condensed, compact structure.  Histones form the core of nucleosomes. Each 

nucleosome is made up of two copies of each histone protein: H2A, H2B, H3, and 

H4. Each of these histones has protruding tails to which modifications can be 

added (Lawrence et al. 2016). Changes in these chemical modifications alter the 

3D structure of chromatin, impacting gene expression through adjusting the 

accessibility to regions of the chromosome. The most extensively modified histone 

is the H3 protein (Bannister & Kouzarides 2011), in which specific chemical marks 

on specific residues on its tail can confer altered gene expression patterns.  These 

chemical modifications including acetylation, methylation, and phosphorylation can 

be added to the tails using “writer” enzymes, including HMTs - histone 

methyltransferases, and HATs, histone acetyltransferases. These marks can be 

deciphered by “reader” enzymes regions such as chromodomains, and in turn 

removed by “eraser” enzymes, e.g. histone deacetylases, HDACs (Benevento et 

al. 2015).  
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Figure 1.1 Summary of epigenetics. Chromatin is made up of DNA wrapped around repeating units of 

nucleosomes. These nucleosomes are composed of histones. Chemical tags can be added to histone tails to 
lead to either the repression or activation of nearby genes. DNA sequences can also be directly methylated at 
CpG sites to alter expression of genes. (Image taken from Niederberger et al. 2017)  

1.1.3. Histone Modifier : EHMT1 

Over the years, various enzymes involved in the writing, reading, and 

erasing of these biochemical tags have been associated with, and linked to, 

neurodevelopmental disorders (Millan 2013). This is understandable when taking 

into account the known significance of dynamic spatiotemporal regulation of gene 

expression in the precise development of the brain. Euchromatic Histone 

Methyltransferase-1 (EHMT1), also known as GLP (G9a-like protein), is a protein 

that is important for development and associated with neurodevelopmental 

disorders. EHMT1, along with G9a, is a member of the euchromatic lysine histone 

methyltransferase family (Tachibana et al. 2001; Tachibana et al. 2005; Shinkai & 

Tachibana 2011).  

These proteins are part of a superfamily of lysine-methyltransferases 

characterised by the presence of a SET domain. Within this superfamily EHMT1 

and G9a are a part of the Suv39h1 subfamily of lysine methyltransferases 
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responsible for the mono-, di-, and tri-methylation at lysine residues (Trievel et al. 

2002).  The SET/pre-SET domains are vital for methyltransferase activity (Herz et 

al. 2013). These proteins are highly conserved through evolution with a large 

number of orthologues having been characterised in other species, including Ehmt 

in Drosophila melanogaster, a single gene that appears to share functional 

similarities with both EHMT1 and G9a (Kramer et al. 2011). Within the Suv39h1 

family of lysine methyltransferases, both EHMT1 and G9a uniquely contain ankyrin 

repeats in their protein structure. Although unique to EHMT1 and G9a within the 

methyltransferase family of proteins, ankyrin repeat domains are also found in a 

wide range of proteins with differing functions including synaptic functioning and 

cell adhesion (Li et al. 1999; Lim et al. 2001) and are important for protein-protein 

interactions (Mosavi et al. 2004). The Ank domains in EHMT1 and G9a 

preferentially bind to H3 tails at mono- and di-methylated K9 (Collins et al. 2008), 

providing evidence of the proteins being able to recognise the marks, and perhaps 

self-regulate (Adam & Isles 2017). 

This non-methyltransferase dependent activity is corroborated further by 

evidence of the SET domain superfamily of enzymes interacting with other 

proteins. EHMT1 and G9a have both been shown to methylate non histone target 

proteins such as WIZ, (Rathert et al. 2008), P53 (Huang et al. 2010), and CDYL 

(Rathert et al. 2008). EHMT1 has also been found to target DNMT1 and 

DNMT3/3a (Chang et al. 2011), although the purpose of these interactions are not 

understood at present. 
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1.1.3.1. Methyltransferase Activity 

EHMT1 mediates the addition of mono- and di- methyl groups to the H3K9 

within the genome, doing so by the previously described SET/pre-SET domains 

(Tachibana et al. 2001; Tachibana et al. 2005). This is generally associated with 

repression of transcription, and is associated with classical epigenetic 

mechanisms of transcriptional silence such as genomic imprinting (Xin et al. 2003; 

Zhang et al. 2016) and globally with regions of heterochromatin (Peters et al. 

2002). EHMT1 is often found within repressive complexes, including forming a 

stoichiometric complex with G9a that is important for in vivo dimethylation at H3K9 

(Tachibana et al. 2005).  EHMT1 is also a member of the NRSF/REST complex 

involved in the repression neuronal genes in progenitors (Roopra et al. 2004; 

Mozzetta et al. 2014). EHMT1 has been shown to also form a complex with other 

methyltransferases including G9a, SETDB1, and Suv39h1 to regulate G9a target 

genes (Fritsch et al. 2010). Despite potential redundancy in the function of EHMT1 

and G9a, Tachibana et al. (2005) found reduction in either protein leads to 

significantly reduced H3K9 dimethylation, with no further reduction being seen in a 

double knockout. This is indicative of a lack of compensation of function by either 

EHMT1 or G9A.  This is further validated by the fact homozygous deletion of 

EHMT1 leads to embryonic lethality in the mouse, suggesting a vital role of the 

protein during development that cannot be compensated for by the G9a alone 

(Tachibana et al. 2005).   

1.1.4.  DNA Methylation 

There is an expanding literature on EHMT1’s role in the reestablishment 

and maintenance of DNA methylation. Reestablishment of DNA methylation upon 
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the formation of the hemi-methylated daughter strands is a necessary step after 

DNA replication. EHMT1 has been linked to this process, and knocking it down 

lead to a decrease in DNA methylation (Dong et al. 2008). Its methylation mark 

H3K9me2 is necessary for the maintenance process (Liu et al. 2013; West et al. 

2014). There is some evidence of interaction between G9a and DNMT1 in 

regulating H3K9 methylation in the HCT116 cancerous colon immortalised cells; 

here knocking out DNMT1 lead to a reduction in H3K9me2 (Estève et al. 2006).  

Low DNA methylation in embryonic stem cells (ESCs) was associated with 

decreased DNA methylation maintenance along with associated UHRF1 as well as 

decreased EHMT1/G9a expressions (von Meyenn et al. 2016). However the exact 

mechanism by which EHMT1 mediates the maintenance of DNA methylation is not 

fully understood. UHRF1 is known to co-localise and directly interact with DNMT1 

aiding in the maintenance of the methylation by binding to hemi-methylated DNA 

via its SET/RING domain. This in turn recruits DNMT1 to re-establish methylation 

(Qin et al. 2015; Harrison et al. 2016).  UHRF1 was also shown to bind to 

H3K9me2/3 through its tandem Tudor domain and recruits DNMT1 to mediate 

DNA methylation maintenance in an H3K9me2/3 dependent manner (Harrison et 

al. 2016).   

Recently Ferry et al. (2017) have increased the current understanding of 

this process; DNA ligase 1 (LIG1), a novel target of EHMT1 is methylated on its 

H3K9 mimic, UHRF1 then binds to the mimic, leading to the recruitment of UHRF1 

to hemi-methylated sites, mediating its activity (Figure 1.2). UHRF1 was also 

found to more readily bind to the LIG1 mimic compared to H3K9me2/3. Current 
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evidence is suggestive of complimentary role of EHMT1 in histone and DNA 

methylation (Adam & Isles 2017).  

 

Figure 1.2 Maintenance of DNA methylation: Glp and G9a methylate the H3K9 mimic on DNA ligase 1 

(LIG1). UHRF1 can recognise and bind both H3K9me2/3 marks on the methylated mimic on LIG1. UHRF1 
binds to methylated LIG1 with a high affinity, mediating its activity to recognise and preferentially bind to hemi-
methylated DNA strands, recruiting DNA methyltransferase 1 (DNMT1) to re-establish methylation and CpG 
islands.(Adam & Isles 2017) 

 

1.2. EHMT1 in Brain Disorders 

In humans, the gene encoding EHMT1, EHMT1, is found on the long arm of 

chromosome 9, specifically at q34.3. A wide range of genetic studies have linked 

loss of one copy (haploinsufficiency), or mutation of one copy, of EHMT1 with a 

number of brain disorders, particularly neurodevelopmental disorders. These data 

add to the growing image of neurodevelopmental disorders being, in part, 

“epigeneopathies”, as EHMT1 and various other important enzymes in histone 

modification have been implicated in the pathogenesis of NDDs (Millan 2013).  
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1.2.1. Intellectual Disability 

Intellectual disability affects approximately 1-3% of the population and is 

characterised by reduced cognitive ability and some adaptive behaviour problems 

(Hamdan et al. 2014). Intellectual disability can be sporadic and isolated, or as an 

identifying phenotype in a complex syndrome and is a key symptom in various 

syndromes including Down syndrome and fragile X syndrome (Millan 2013). 

EHMT1 is most notably associated with Kleefstra Syndrome, an intellectual 

disability multi-system syndrome associated with congenital heart defects, 

hypotonia, and dysmorphisms (Kleefstra et al. 2005). Kleefstra syndrome is also 

characterised by developmental delay, and reduced or complete lack of speech. 

Patients also have distinctive facial features including midface hypoplasia, 

synophrys, and hypertelorism (Kleefstra & de Leeuw 1993). Kleefstra syndrome is 

caused by the haploinsufficiency of EHMT1, either through single mutations, or 

9q34.3 microdeletions (Kleefstra et al. 2005; Kleefstra et al. 2006). More recently 

patients suffering from Kleefstra syndrome that appear to not have the deletion or 

mutation of EHMT1 have rather been linked to other genes found to be directly 

interact with EHMT1, such as MBD5, another epigenetic regulator (Kleefstra et al. 

2012). These findings have in turn advanced the current understanding of the 

pathogenesis of Kleefstra syndrome, and provided further evidence of EHMT1’s 

larger impact in epigenetic regulation.  

Outside of Kleefstra syndrome, de novo deletions of EHMT1 have been 

detected in severe intellectual disability copy number variant or CNV studies. 

(Gilissen et al. 2014; Grozeva et al. 2015; Quintela et al. 2017)EHMT1 associated 

chromatin regulators have also been linked to sporadic intellectual disability in 
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chromosomal microarray (Quintela et al. 2017) and exome studies (Hamdan et al. 

2014; Han et al. 2017) of patients with intellectual disability, once again linking 

EHMT1 to a wider epigenetic regulatory network important to cognitive function.  

Recently exome sequencing of approximately 4300 families with members 

suffering from developmental disorders identified EHMT1 as a gene of interest in 

the pathogenesis of developmental disorders generally (McRae et al., 2017). 

EHMT1 was also identified as a pathogenic CNV in patients with intellectual 

disability and early onset epilepsy (Fry et al. 2016). Epilepsy is often associated 

with ID and developmental delay (Fry et al., 2016; Han et al., 2017), and some 

patients with Kleefstra syndrome are known to suffer from epilepsy (Hadzsiev et 

al. 2016). 

1.2.2.  Autistic Spectrum Disorders 

EHMT1 has also been associated with autism spectrum disorders (ASDs). 

ASDs share a common base of phenotypes including dysfunctional social 

behaviour and restricted adaptive and repetitive behaviours (Belmonte et al. 

2004). Patients diagnosed with ASD suffer from persistent social deficits, with 

communication being below expected levels of development. The restricted 

repetitive patterns of behaviour are variable but include stereotypical motoric 

movements or speech, ritualised patterns of thinking, as well as restricted fixated 

interests (American Psychiatric Association DSM-5 Task Force. 2013), While the 

epidemiology of autism differs between sources, incidence rate currently falls at 

approximately 2 cases per 1,000 people.  ASD is four times more prevalent in 

males compared to females; however this may be due to the differences in the 

symptomology between sexes, with boys showing more typical behaviour found in 
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the diagnosable criteria compared to girls (Rynkiewicz & Łucka 2018). 

Interestingly, ASD is highly co-diagnosed in Kleefstra syndrome patients (Iwakoshi 

et al. 2004) and is known to be comorbid with a range of other developmental 

disorders and, significantly, with intellectual disability (La Malfa et al. 2004). CNV 

analysis of ASD probands identified EHMT1 as a de novo mutation (O’Roak et al. 

2011). This evidence is strengthened with  a recent study where BCA (balanced 

chromosomal abnormalities) sequencing of 22 autism patients also identified 

EHMT1 microdeletions as a risk gene in the development of ASD (Talkowski et al. 

2012). Finally, exon sequencing of a group of Japanese autism patients also 

identified two novel rare missense EHMT1 and G9a variants. G9a has been 

shown to be elevated in the blood of these ASD patients suggesting an 

increasingly restrictive chromatin in the pathogenesis of ASD (Balan et al. 2014). 

These studies link EHMT1 to the overlapping phenotypes seen in intellectual 

disability disorders and autism. 

1.2.3. Schizophrenia and Psychosis 

Schizophrenia affects approximately 1% of the population. According to 

DSM-5, diagnosis of schizophrenia occurs after at least two symptoms from  

delusions, hallucinations, disorganised/catatonic behaviour, disorganised speech, 

and negative symptoms such as reduced emotional expression persist for a month 

or longer with a direct impact on normal functioning to the person’s life such as 

work, and interpersonal relationships (American Psychiatric Association DSM-5 

Task Force. 2013). This highly heterogeneous diagnosis is thought to share a 

molecular basis with various other developmental and psychiatric disorders, 

particularly autism spectrum disorders (McCarthy et al. 2014; Canitano & 

Pallagrosi 2017). A population based study showed an overlapping co-diagnosis of 
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schizophrenia and intellectual disability, with over 30% of patients diagnosed with 

intellectual disability being co-diagnosed with a psychiatric illness, of which 

schizophrenia was overrepresented (Morgan et al. 2008).  

In a copy number variation analysis study Kirov et al. (2012) identified two 

de novo EHMT1 CNVs as pathogenic variants in schizophrenia, linking EHMT1 to 

the pathogenesis of the adult onset psychiatric disorder. Interestingly, diagnosis of 

schizophrenia was associated with increased EHMT1 and H3K9me2 in post-

mortem brain samples; increased EHMT1 expression was also linked to worsening 

symptoms (Chase et al. 2013). Increased EHMT1 and H3K9me2 marks, and thus 

a restrictive chromatin state, as seen in ASD, could therefore be considered a 

marker for schizophrenia, as well as a marker for potential prognosis. Another 

histone methyltransferase associated with schizophrenia, SETD1A (Takata et al. 

2016), suggests an overarching role epigenetic regulators may play in the 

pathology of schizophrenia. 

There is now growing evidence that Kleefstra syndrome patients have 

developed a regressive phenotype, leading to adult onset psychosis (Verhoeven et 

al. 2011; Vermeulen et al. 2017). Therefore either maintained reduction of 

EHMT1’s function, or an early developmental trigger due to EHMT1 

haploinsufficiency leads to psychosis in adulthood. Evidence presented here 

shows that both an increase and decrease in EHMT1 and H3K9me2 appears to 

lead to similar phenotypes in psychosis, pointing towards EHMT1’s importance in 

maintaining the homeostasis of the epigenome, and changes in either direction 

would lead to impairment (Adam & Isles 2017). Whether these bidirectional 

changes of EHMT1/H3K9me2 on developmental disorders are however a 
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secondary effect of a primary dysfunction is unknown; future studies assessing the 

causality of EHMT1 on NDD pathology is necessary. 

1.2.4.  Evidence of H3K9me2 in Neurodegeneration 

H3K9me2, a marker of heterochromatin, initiated by G9a and EHMT1, has 

been associated with neurodegeneration in human and animal models. H3K9 

methylation is found to increase with age, and is linked to cognitive decline.  For 

instance, H3K9 methylation was found to be increased in 3xTg-AD mouse model 

of Alzheimer’s (Walker et al. 2013). Conversely in post-mortem brains of 

Alzheimer disease patients H3K9me2 was shown to be reduced, this was 

complimented by reduced H3K9me2 in Tau neurodegenerative Drosophila and 

mouse models, where there is evidence of global loss of heterochromatin (Frost et 

al. 2014). 

 α-Synuclein, a protein associated with Parkinson’s disease and other 

neurodegenerative disorders, was found to increase the levels of H3K9me2, and 

overexpression of the protein would lead to an increasingly restrictive chromatin in 

Parkinson’s disease (Sugeno et al. 2016). H3K9me2 has also been associated 

with Huntington’s, where the marker is shown to be in the striatum of HD patients 

(Ryu et al. 2006). The growing evidence of H3K9me2 in the pathogenesis of 

neurodegenerative disorders is of notable interest due to the previously mentioned 

regressive phenotype in Kleefstra syndrome patients, with patients showing 

increased severity in behavioural and motor deficiencies, developing apathy, and 

also showing signs of subcortical abnormalities (Verhoeven et al. 2011) 

suggesting a neurodegenerative course in Kleefstra syndrome prognosis. 

Currently, the amount of evidence on the degenerative nature of Kleefstra 
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syndrome is minimal however, whether classical molecular markers of 

degeneration appear in ageing Kleefstra patients is yet to be determined. 

1.3. Ehmt1 in learning and memory  

A notable feature shared amongst these disorders is the disruption in cognitive 

and executive functioning. Ehmt1 is highly involved in the process of learning and 

memory. H3K9me2 post translational mark is dynamically regulated in 

hippocampus, entorhinal cortex, and amygdala of the rat during contextual fear 

learning, with differing patterns methylation when comparing different brain 

regions, entorhinal cortex and CA1 hippocampus, as well as temporally dynamic 

changes after training (Gupta et al. 2010; Gupta-Agarwal et al. 2012a; Gupta-

Agarwal et al. 2014). However it is important to note that while contextual fear 

learning is learning task, due to it being subject to negative/aversive stimuli, 

whether it accurately represents other forms of learning is arguable. The mice may 

be sensitized differently to negative versus positive stimuli. Positive and negative 

memories and associated behaviour also have divergent circuitry involved 

(Namburi et al. 2015). 

At the synapse, blocking Ehmt1/G9a function during early LTP leads to 

increases in BDNF expression and reinforcement of LTP. Reduction of Ehmt1 also 

leads to reduced mature spine density and miniature excitatory postsynaptic 

currents in pyramidal cells. Evidence shows that Ehmt1 is important for the 

Grin2b-Grin2a switch, required for learning and memory (Yashiro & Philpot 2008; 

Gupta-Agarwal et al. 2014) and is possibly involved in the repression of Grin2b 

during development (Gray et al. 2011). These convergent data point towards an 
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important role of Ehmt1 both during early embryonic development and continually 

postnatally, for normal cognitive abilities. 

1.4. Mouse models of Neurodevelopmental 

Disorders 
In this thesis, a mouse model of Ehmt1 haploinsufficiency is utilised. Mouse 

models have long been used as a tool for understanding the pathology of 

neurodevelopmental disorders. Some of these mouse models have identified 

relevant behavioural and molecular phenotypes with high translational value 

(Kazdoba et al. 2016). However there is growing evidence that studies classifying 

neurodevelopmental and psychiatric disorders in rodent models are difficult to 

translate to the human disorder and often overlapping across a number of other 

diagnoses (van der Staay et al. 2009; Jucker 2010; Silverman et al. 2010; Crawley 

2012; Salgado & Sandner 2013; Kazdoba et al. 2016). For example, impairments 

in social behaviour, a key symptom of a number of NDDs, are presented differently 

in rodents compared to humans and hold different biological interpretations. Thus 

careful and rigorous interpretation of mouse model phenotypes is important to 

inform human disorder. Another important aspect is most neurodevelopmental 

disorders are not monogenic in their pathology, whereas most mouse models 

define singular gene dysfunctions. Therefore the over-interpretation of the singular 

candidate genes to human disorder in animal models has led to translational 

failure in pre-clinical and clinical studies. External validation of rodent models is an 

important process in evaluating their translational value; multiple rodent lines 

tested by multiple labs is an often used method for validation. Here, a novel Ehmt1 

haploinsufficiency model using the same floxed Ehmt1 mice used in other labs that 

have generated Ehmt1 haploinsufficient mice. Comparison of findings here to 
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previous literature will aid in the characterisation of the mouse model and the 

gene’s role in neurodevelopmental disorders. 

 

1.5. Thesis Rationale 

Ehmt1 is a key regulator in neurodevelopment and thus associated widely in 

neurodevelopmental disorders (Kirov et al. 2012; O’Roak et al. 2012; Balan et al. 

2014). These disorders are widely regarded to share a molecular pathogenesis 

and have high percentages of comorbidity (Matson & Shoemaker 2009; Canitano 

& Pallagrosi 2017). Ehmt1’s highly dynamic and spatiotemporal function could 

therefore help expand current knowledge on the pathways vulnerable to 

dysfunction in neurodevelopmental disorders. EHMT1 is known to have a wide 

pleiotropic effect on development from early autistic phenotypes to a more 

regressive phenotype and development of psychosis in the adult, as seen in 

Kleefstra patients (Kleefstra et al. 2006; Verhoeven et al. 2011). The disruption of 

normal EHMT1 function from a very early embryonic time point may very likely 

lead to a more degenerative phenotype, with various neurodegenerative disorders 

showing a pathogenesis linked to continued imbalance in H3K9me2 markers (Ryu 

et al. 2006; Sugeno et al. 2016; Sharma et al. 2017). 

  Determining the role of epigenetics as a whole on the pathogenesis of 

neurodevelopmental disorders, with Ehmt1 as an example, will lead to a better 

understanding of their pathogenesis that will likely help inform the involvement of 

other non-epigenetic genes to lead away from narrow pathogenic tracks such as 

‘synaptopathies’ to a more elaborate framework of developmental genes and 

environment. The understanding of this interplay is of high importance for novel 
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and improved treatments of neurodevelopmental disorders, by either the direct 

targeting of epigenetic regulators or through targeting any upstream and/or 

downstream mechanisms identified. 

In order to understand Ehmt1 in cognition and executive functioning, a 

forebrain specific mouse model is utilised. In Chapter 2, the Ehmt1 forebrain 

haploinsufficiency model is described and compared to other mouse models of 

Ehmt1 haploinsufficiency. Basic assessment of the gross anatomical measures is 

described before assessing key motoric, anxiety and spontaneous behaviours.  

In Chapter 3, the mouse model was assessed for cognitive impairment. 

Here the haploinsufficient mouse model and their WT counterparts underwent two 

memory tasks, an object and a location based memory task, in order to gain a 

better understanding of the role of Ehmt1 in the development and maintenance of 

different memory types. 

In Chapter 4, adult neurogenesis and its influence on behaviour and 

memory is described. The mouse model is assessed for both short term 

proliferation and long term neurogenesis in vivo to evaluate Ehmt1 role in 

hippocampal function. 

The in vivo findings were expanded in vitro in Chapter 5; hippocampal 

primary cell cultures from the Ehmt1 forebrain haploinsufficient mice were cultured 

and assessed for in vitro proliferation rates, cell type ratios, and cell apoptosis 

ratios. These experiments further expand on the role of Ehmt1 on cell survival and 

cell type specificity in the hippocampus, and in turn open potential areas of further 

research to understand their connection to the cognitive and executive functions 

impaired in neurodevelopmental disorders. 
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In Chapter 6, the large number of publically available data on Ehmt1 

reduction was mined to assess whether the knocking down of the protein lead to 

changes in genes specifically attributed to disorders. Here, Benevento et al. (2016) 

data on Ehmt1 deficient cells both incubated with TTX, initiating synaptic 

upscaling, and  at baseline were mined for enrichment in phenotypes and for 

genes associated with intellectual disability, autism, and schizophrenia. This 

allows for the identification of potential translational genes and pathways of 

interest. 

  

1.5.1. Aims 

 Assess the behavioural phenotype of the Ehmt1D6cre/+ mouse model 

 Evaluate in vivo adult neurogenesis in Ehmt1D6cre/+ hippocampus 

 Assess the in vitro phenotype of hippocampal cells from the Ehmt1D6cre/+ 

mouse model 

 Mine publically available data for functional relevant biological points of 

interest for future research.  
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 Basic Tissue Analysis and Chapter 2

Characterisation of Spontaneous Behaviours in 

Ehmt1
D6cre/+

  

2.1.  Introduction 

The Ehmt1 gene is highly conserved throughout evolution, with the mouse and 

human orthologs sharing  97% homology in their sequence (Shinkai & Tachibana 

2011). Alongside its related protein G9a/Ehmt2, Ehmt1 catalyses the mono- and 

di- methylation of lysine 9 on histone 3 of the nucleosome (H3K9me/2). H3K9me2 

is a widely recognised marker for epigenetic repression, and is involved in 

transcriptional silencing (Tachibana et al. 2005). Ehmt1 is expressed throughout 

life, with peak expression occurring during embryonic development with a 

decrease through early postnatal development.  The human EHMT1, as previously 

mentioned, has been linked to a variety of neurodevelopmental disorders including 

schizophrenia and autism which have known overlapping behavioural profiles in 

humans (Cooper et al. 2011; Kirov et al. 2012; O’Roak et al. 2012).  

Indeed, deletions or mutations in one copy of EHMT1, leading to 

haploinsufficiency of the protein, is most recognisably linked to the intellectual 

disability syndrome, Kleefstra syndrome (KS, Kleefstra et al. 2005) Autistic-like 

features are prevalent in patients with Kleefstra syndrome (Kleefstra et al. 2005). 

With Ehmt1 being identified as a risk gene across these various diagnostic 

categories which share commonalities in adaptive behaviour and cognitive 

function, there is growing interest in understanding the role of Ehmt1 in executive 

functions, with the use of animal models (Schaefer et al. 2009; Kramer et al. 2011; 
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Balemans et al. 2013). These studies have included manipulating Ehmt1 in 

Drosophila and mice. 

Haploinsufficiency of EHMT in Drosophila has led to changes in social 

behaviour in the flies, as well as changes in the locomotor behaviour as larvae 

(Kramer et al. 2011). Although it should be noted that Drosophila, which have a 

single orthologous EHMT gene, compared to the two seen in mice and humans, 

appears to have the combined function of both Ehmt1 and Ehmt2 (Kramer et al., 

2011). Moreover this gene has a continued high expression into adulthood, unlike 

Ehmt1 in rodents and humans (Balemans et al., 2012).   

Various mouse models have been utilised to determine the behavioural impact 

of Ehmt1 deficiency on behaviour and cognition. Mouse models have been 

assessed in using specialised behavioural paradigms to elucidate the roles of 

genes of interest on the phenotype of psychiatric disorders (Davis & Isles 2014). 

With the changing focus of the neuropsychiatric field away from diagnostic 

boundaries and towards a more holistic approach of clinically relevant symptoms, 

looking at common endophenotypes, quantitative and measurable biological 

markers correlated to disease, in the human disorders in complimentary rodent 

paradigms have proved to be a reliable method for deciphering components and 

pathways that may be altered across the different disease pathologies and 

diagnostic restrictions. It should be mentioned that endophenotypes, although 

closer to biology,   are not necessary sufficient to aid the discovery of new genes 

in NDDs and psychiatric disorders. Endophenotype analysis using the Minnesota 

twin study found over 89% of genetic search strategies across 17 endophenotypes 

resulted in nulls results, with 8 endophenotypes analysed providing no associated 
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genes across all search strategies employed (Iacono et al. 2014). 

Endophenotypes are not specific to any one disorder due to the similarities across 

NDDs; a possible solution is to further breakdown disorders into more specific and 

unique attributes for a greater chance of gene discovery. 

While homozygous depletion of Ehmt1 is embryonically lethal in mice the Ehmt1+/- 

mouse model, similar to the genetic pattern seen in Kleefstra syndrome patients, 

has been successfully utilised in KS syndrome modelling (Balemans et al. 2010; 

Balemans et al. 2013). Ehmt1 haploinsufficient mice showed changes in their 

locomotor activity, as well as reduction in their exploratory behaviour. This was 

also coupled with an increase in their anxiety in the open field and various other 

test paradigms, which both test the innate conflict between exploration and risk 

(Balemans et al. 2010). These changes, along with social behavioural changes 

seen in the mice (Balemans et al. 2010), point towards a link in Ehmt1 function 

and the autistic-like features seen in the various neurodevelopmental disorders in 

which the gene has been linked. However there are limitations with this KS mouse 

model, where Ehmt1 is knocked down in the entire organism with confounding 

factors, such as hypotonia, delayed motoric function, cranial abnormalities, and 

increased weight gain (Balemans et al. 2013). In order to bypass these issues, use 

of CamK2a-cre recombination led to targeted reduction of Ehmt1 and 

haploinsufficiency in postnatal forebrain neurons only (Schaefer et al. 2009). Thus, 

there were no differences in Ehmt1 expression prenatally.   This mouse model had 

normal motoric function as seen on a standardised accelerating rotarod test. 

However in contrast to the Ehmt1+/- mouse model, Ehmt1Camk2a-cre mice had 

reduced anxiety compared to their wildtype littermates in the elevated plus maze 

task. These contradicting anxiety phenotypes in the different mouse models could 
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elucidate the pathway specific involvement of Ehmt1 in the development of anxiety 

phenotypes.   

Despite these steps taken to overcome the confounding aspects of a full 

heterozygous knockout, having a postnatal specific knockout does not allow for 

the exploration of Ehmt1 function during development. As mentioned, Ehmt1 is 

highly expressed from E12 and its expression is reduced by E18.5 and postnatally. 

Therefore this model may also restrict examination of its role at the point where its 

expression and thus function is greatly diminished. Thus the development of the 

Ehmt1D6cre/+ mouse model, allowing for early restricted forebrain specific depletion 

of Ehmt1 overcomes these barriers for behavioural analysis. In the Ehmt1D6cre/+ 

mice, exon 23 of Ehmt1 allele is deleted, leading to the nonsense mediated 

deletion of the transcript. This deletion affects SET domain of the gene. However it 

does not affect a number of smaller protein coding transcripts of unknown function 

(Figure 2.1). 
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Figure 2.1 Mouse Ehmt1 transcripts. Graph of Ehmt1 transcripts identified. Grey line bar marks position of 

exon 23 where deletion occurs. Highlighted are 5 short protein coding transcripts not affected by the deletion 
of exon 23.  Adapted from Ensembl.  

In this chapter, the mouse model underwent basic characterisation.  

Behavioural paradigms were used to characterise spontaneous behaviours in the 

Ehmt1D6cre/+ mouse model viewed as representative of the overarching  

behavioural phenotypes mutually disrupted in the developmental disorders 

associated with Ehmt1 disruption. These behaviours include sensorimotor gating, 

and anxiety based phenotypes, as shown in previous rodent studies, are generally 

considered hippocampal and forebrain dependent and therefore compatible with 

Kleefstra syndrome phenotypes whilst being restrictive enough to aid in 

deciphering the biological impact of haploinsufficiency of Ehmt1.  

2.1.1. Behavioural phenotypes of neuro-developmental disorders 

There are a number of behavioural phenotypes that are considered common 

across neurodevelopmental and neuropsychiatric disorders. These behaviours are 

often analysed in animal models associated with the various disorders to 
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determine the different convergent genetic changes that account for commonly 

affected clinical areas across diagnostic categories of disorders.  Here, the focus 

will be on a number of key basic and spontaneous behaviours that will be 

analysed in this chapter. 

2.1.1.1. Anxiety 

Anxiety is a common phenotype observed in neurodevelopmental 

disorders. Anxiety also plays a confounding role in assessing the behavioural 

phenotypes of mouse models, due to the exploratory nature of most behavioural 

tasks. Previous Ehmt1 deficient mouse models showed contradicting anxiety 

behaviours. This is likely due to anxiety encompassing a variety of emotionality, 

and thus several paradigms have been designed in the past years that measure 

anxiety in several different forms (for review: Bućan & Abel 2002; Powell & 

Miyakawa 2006; Bourin et al. 2007). One such paradigm is the elevated plus 

maze.  This paradigm allows a measure of the animal’s natural tendency towards 

exploration against their natural aversion for open spaces and heights (Pellow et 

al., 1985). It has been established that “normal” behaving mice spend more time in 

the closed arms compared to the open arms, reflecting this conflict.  If the rodents 

are recorded to have more entries or spend a longer duration in the open arms 

compared to the closed arms, it is suggestive of a reduced anxiety-like behaviour. 

If the rodents spend less time/ have decreased number of entries to the open arms 

compared to the closed arms during the test, it is suggestive of  increased anxiety. 

This task has been validated across a number of studies, where clinically effective 

anxiolytics lead to significant increases in the time spent and number of entries 

into the open arms (Pellow et al. 1985; Anseloni et al. 1995; Walf & Frye 2007). 



24 
 

Hyponeophagia, or food neophobia, is generally characterised as another 

measure of anxiety, as well as anhedonia. Hyponeophagia refers to the restricted 

intake of novel foodstuff when in an unfamiliar context (Hall, 1934). This is a 

measure of the conflict between the animals need or choice to feed and aversion 

for novelty/potential poisonous consumption. Hyponeophagia paradigms have 

been shown as a valid measure of anxiety, where methods of manipulation in 

humans to either increase or decrease anxiety have been found to have similar 

effects with hyponeophagia in mice, including administration of anxiolytics 

(Bodnoff et al. 1988; Bodnoff et al. 1989), and hippocampal lesions (Aggleton et al. 

1989). The mice are placed singly in empty cages, the novel environment, and are 

presented with access to a novel highly palatable foodstuff, such as condensed 

milk, as well as water.  The amount consumed for both is measured and the 

animals are returned to their home cage. To motivate drinking, the animals are 

water deprived before the test. Due to their innate food neophobia, normal 

behaving animals consume more water than condensed milk. During successive 

trials, repeated sampling of the condensed milk overcomes the initial 

hyponeophobia and eventually leads to a preference for this more palatable 

foodstuff. Ehmt1Camk2a-cre mice showed a reduced preference and motivation for 

reward consumption when tested with sucrose water, thus suggesting Ehmt1 plays 

a role in the motivation and reward circuitry. The amount consumed and the rate in 

which consumption increases session to session are used as indices of anxiety.  

2.1.1.2. Sensorimotor gating 

A relevant behavioural endophenotype for neurodevelopmental disorders is 

sensorimotor gating. Sensorimotor gating is the ability to filter auditory input in 
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order to control motor response (Powell et al. 2011). This is measurably deficient 

in neuropsychiatric patients, including those with schizophrenia, adults with 

autism, panic disorders, and Fragile X syndrome (Belmonte et al. 2004; Powell & 

Miyakawa 2006; Powell et al. 2011). This can be operationally measured by 

assessing the acoustic startle response (ASR) and prepulse inhibition of ASR 

(PPI). This has been proven to be a robust measure that is translational across 

species, and has been used in various genetic studies of schizophrenia, helping 

understand the impact of genes on behaviour (Powell & Miyakawa, 2006). This 

operational measure of abnormalities in sensorimotor gating has been shown to 

be a relevant measure for a fundamental component in executive processing.  

ASR will be measured as the habituation to a repeated loud acoustic 

stimulus, and the PPI as the reactivity to a loud acoustic stimulus that is preceded 

immediately prior by a weaker pulse, or prepulse. This prepulse allows for the 

attenuation of the reactivity to the loud stimulus, and it is this measure that is 

determines sensorimotor gating (Powell et al., 2012). This measure is viewed as a 

robust measure of important drivers of executive functions, in which disorders with 

attention deficient phenotypes often lack. The ability to attenuate ones reactivity is 

viewed as regulated by multiple brain regions, including striatal, limbic and cortical 

regions, such as the medial prefrontal cortex and hippocampus (Swerdlow et al. 

2001) where Ehmt1 is expected to be deleted. Thus deficits in acoustic startle 

response and prepulse inhibition can inform the neural processes that Ehmt1 may 

be involved.  
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2.1.1.3. Locomotor Activity 

Locomotor activity, a behavioural measure of both the motoric function and 

spontaneous activity level in rodents has been shown to be a reliable measure, 

and can indicate both hyper- or hypo-activity. Hyperactivity, also known as psycho-

motor agitation in clinical literature refers to the increased activity and stereotypic 

movements seen in schizophrenia as well as other neuropsychiatric disorders 

(Powell & Miyakawa 2006). This behavioural endophenotype has been 

recapitulated in various “schizophrenia” mouse models, including NR1 K/O mice 

(Mohn et al. 1999), and dopamine transporter K/O mice (Gainetdinov et al. 1999), 

and thus LMA can be used to measure both baseline hyperactivity and or 

hyperactivity linked to novel environments and habituation to these novel 

environments. Psychomotor agitation can also be recapitulated in humans who 

use psychotomimetic drugs, such as ketamine and amphetamines (Tamminga et 

al. 2003), which have been shown to both mimic psychotic symptoms and cause 

psychosis in itself. This has led to the use of LMA as a pharmacological 

behavioural paradigm; this drug related hyperactivity can be attenuated with the 

use of antipsychotic drugs.  

Previous mouse models showed reduced Ehmt1 to subsequently lead to 

reduced motoric function and activity in the mice (Balemans et al. 2010), this 

reduced activity levels have been seen in the mice alongside various other 

phenotypes including hypotonia, increased weight gain, and delayed motoric 

development (Balemans et al. 2013). These confounding factors should not have 

an impact in this forebrain specific mouse model, and thus testing locomotor 

activity as a measure of general motoric function and activity levels of the 
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Ehmt1D6cre/+ mice, as well their reactivity to a novel environment, can accurately 

determine if Ehmt1 haploinsufficiency has a role in the common psychomotor 

agitation endophenotype found in neurodevelopmental and neuropsychiatric 

disorders.  

2.1.2.  Aims  

 Confirming specificity of Ehmt1D6cre/+ through region genotyping and gross 

brain morphology 

 Characterise the basic spontaneous and anxiety behaviour of the Ehmt1D6cre/+ 

mouse.  
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2.2. Methodology 

2.2.1. Animals  

 Ehmt1fl/fl mice were bred from male mice on a C57BL/6 background from Dr. 

Alexander Tarakhovsky (Rockfeller University, NY). B6CBAF1/Tg (Dach1-cre) 

1Krs/Kctt transgene on a (C57BL/6 x CBA)F1, D6-Cre, mice were transferred from 

Dr. Ondrej Machon (Karolinska Institute). Experimental animals were generated 

through breeding Ehmt1fl/fl mice with D6-cre heterozygous mice. Both mice were 

backcrossed into C57BL/6J backgrounds for over 10 generations. Breeding 

cohorts were intermittently rejuvenated by introduction of new C57BL/6 mice to 

reduce genetic drift. Behavioural cohort litters were balanced for Parent-of-Origin 

effects by mixing between male and female flp and cre carriers.  Litters were 

housed together in groups of 3-5 animals per cage. Mice were not singly housed 

for behaviour to avoid any detrimental effects of singular housing. Male mice 

housed together formed natural hierarchies and thus were free to perform natural 

behaviour; studies have argued for the positive welfare value of group housing 

including reduced anxiety and the natural preference for conspecifics (Baumans & 

Van Loo 2013; Kappel et al. 2017). All animals were housed under standard 12hr 

light – dark cycles, in temperature and humidity controlled environments. All 

experiments were carried out in agreement with the Animals Scientific Procedures 

Act 1986, under license from the United Kingdom Home Office and approved by 

the local animal welfare and ethics review body (Cardiff University).The Ehmt1fl/fl 

mouse line was crossed with a D6-cre mouse line leading to forebrain specific 

deletion mouse model (Ehmt1D6cre/+). Ehmt1fl/+ littermates were used as WT 

controls. 
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 The behavioural cohort: 20 Ehmt1flp/+, 17 Ehmt1D6cre/+ - all male (Table 2.1). 

Only male mice were used during behavioural tasks due to the potential 

confounding effects of oestrous cycle on female behaviour.  Initial behavioural 

tests were conducted starting at 10 weeks, as the mice were considered mature 

tasks that were repeated were repeated at 10 months old, coinciding with the mice 

entering middle age, approximately coinciding with humans 35-50 years old.  

Tissue cohort: 51 Ehmt1flp/+, 48 Ehmt1D6cre/+. Mice were culled through cervical 

dislocation and brains collected at 8 weeks old, coinciding with the mice reaching 

mature adulthood.    

 

 

 

2.2.2. Genotyping  

Mice were weaned at approximately postnatal day 24, and a 2mm diameter 

ear perforation was taken for identification and genotyping. For cre-specificity 

genotyping, mice were culled at 8 weeks old, and their brains were isolated. The 

brains were then dissected to isolate the cerebellum, prefrontal cortex, and 

hippocampus of each mouse. The tissue samples were then digested overnight in 

100μl of lysis buffer (0.1 M Tris.HCl pH 8.5, 0.005 M EDTA pH8.0, 0.02% SDS, 0.2 

M NaCl, 100 μg/ml Proteinase K) at 55°C. Samples were then vortexed briefly and 

centrifuged for 10 minutes at 13000 rpm in order to pellet cellular debris. The 

Table 2.1 Number of animals and age at start of experiment for each behavioural paradigm 
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supernatant was then transferred into a new Eppendorf tube and an equal volume 

of cold isopropanol was added to precipitate DNA. The tube was inverted to 

ensure thorough precipitation. The tubes were then incubated at 4°C for 20 

minutes, before being vortexed briefly and centrifuged for 10 minutes at 13000 

rpm to pellet DNA. The supernatant was removed and the pellet washed briefly in 

1x volume of cold 70% ethanol. The tubes were vortexed and then recentifuged at 

13000 rpm for 2 minutes, at which point the supernatant was removed and the 

pellet was left to air dry at 50°C for 20 minutes. The DNA pellet was suspended in 

80μl TE buffer (10mM Tris pH8.0, 1mM EDTA pH8.0).   

2.2.3. PCR Amplification 

  For the Ehmt1 FLP/FLP PCR reaction 1ul of sample was used for 19ul of 

the PCR mix (2μl PCR buffer, 0.4μl Primer mix (Ratio of F:R1:R2 50:50:50) 0.4μl 

dNTPs, 0.2ul Hotstar Taq, and 16μl H20).  Floxed allele is seen at 146-bp, and the 

wild type allele band is visualised at 95-bp for heterozygous animals.   

Amplification of target sequences was carried out the following conditions: 

1. 94°C 3 minutes 

2. 94°C 20secs 

3. 60°C 20secs 

4. 72°C 30secs 

~  repeat steps 2-4 for 29 cycles ~ 

5. 72°C 10 minutes 

 

PCR reaction for the deleted band was optimised and ran concurrently with the 

previously described Ehmt1 PCR reaction. Deleted allele band would be visible at 

296-bp. 

For the PCR reaction to genotype D6-Cre 1 μl of samples was used for 28ul of 
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PCR mix ( 3ul PCR buffer, 0.5 μl F primer, 0.5ul R primer, 0.5ul dNTPs, 0.2ul 

Hotstar Taq, 23.3μl H20). Amplification of Cre target sequence was done under 

these conditions: 

1. 95 ˚C 6 minutes 

2. 94 ˚C 45secs 

3. 58 ˚C 45 secs 

4. 72 ˚C 1 minute 

~ repeat steps 2-4 for 35 cycles ~ 

5. 72 ˚C 10 minutes. 

The cre band was visualised at 293 bp.  

  

Table 2.2 PCR Primer sequences for genotyping 

                                                      

2.2.4. Elevated Plus Maze  

To examine the innate conflict between exploration and open space of the 

Ehmt1D6cre/+ and Ehmt1flp/+ mice, the mice were tested on the elevated plus maze. 

The apparatus includes a “plus” shaped maze on an elevated platform and made 

from white Perspex. Two of the four arms on the maze are “closed”, covered in all 

sides with 15cm high walls; two of the four arms are “open” measuring 17.5 by 7.8 

cm, with no protective walls on any side.  The animal is placed within the closed 

portion of the maze and is recorded throughout the duration of the test. Entries into 
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closed and open arms are recorded, as well as time spent within the arms. The 

maze was elevated 300mm off the ground and was evenly illuminated at 15 lux 

(Figure 2.2) 

  The mice were placed on one of the closed arms of the maze facing the 

centre of the maze and were allowed to explore the maze freely for 5 minutes. 

Optimised analysis was ran using the EthoVision Observer XT software, and the 

maze divided into 5 zones; 2 open arms, 2 closed arms, and the centre section of 

the maze. Mice were tracked with three module points by the software, front of the 

body, middle of the body, and end of the body. Entrances and exits were counted 

if the leading and middle module points entered/left any one region. Manual 

analysis of pilot sessions confirmed the accuracy of the tracking software, and all 

traces were examined for tracking-related artefacts prior to analysis. 

Data from both closed arms and open arms were combined to generate total open 

or closed arm data to ascertain: latency to first enter, total time spent, and 

frequency of entries. Behavioural data including grooming, and risk assessing 

behaviour such as stretch-attend (the subject stretching forwards into an open arm 

while remaining in the closed arena) and head-dips (the subject positioning head 

downward over the edge of the open arm) were manually collected. These were 

not counted as entrances by the software as only the leading module point entered 

any open arm during these actions. The maze was cleaned between each subject 

using 2% acetic acid. 
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2.2.5. Food Neophobia 

  Reactivity to novel food was examined in mice following a period of 

adjustment to a water restriction schedule. The animals were assessed for a 

period of ten minutes for 11 consecutive days immediately before gaining two hour 

water access to maximise motivation to drink.  The novel foodstuff presented was 

a 10% condensed milk solution. All testing was carried out in novel cage and the 

animals were presented with two containers. The containers were filled with either 

water or the condensed milk solution and were weighed before they are placed 

into the cages (Figure 2.3). 

  For the first two days, the mice were only presented water. Their 

consumption levels were measured by re-weighing the containers after the 10 

minute session. Between the third and tenth day the mice were presented with an 

option of either water, or the condensed milk solution (novel). The position of the 

containers was counterbalanced at each session to avoid any spatial memory 

Figure 2.2 Elevated plus maze Apparatus with dimensions. 
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preference.  The consumption was again measured by weighing the containers 

before and after the session. On the final day of testing, the mice were presented 

only the milk solution.  

Consumption data was normalised using Kleiber’s 0.75 mass exponents. 

Percentage preference of novel foodstuff was calculated as a percentage of total 

consumption during the eight days where mice were presented with both liquids.  

 

2.2.6. Acoustic startle response (ASR) and Prepulse Inhibition 

(PPI)  

In order to measure any changes to the sensorimotor circuitry and gating, mice 

were tested for acoustic startle and prepulse inhibition. PPI and ASR was 

measured using SR Lab (San Diego Instruments, US).  The mice were placed in 

Perspex tubes in a sound attenuated chamber that is both lluminated and 

ventilated by a fan (Figure 2.4).The tubes were cleaned after each animal using 

2% acetic acid and aired out before the next test. ASR was measured through 

voltage measurement of movement by a piezoelectric sensor linked to a computer. 

To avoid confounding factors, all animals were tested for hearing ability from on an 

Figure 2.3  Hyponeophagia apparatus. Position of water and condensed 
milk was counterbalanced across genotype and sessions. 
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80dB above background to 150dB above background, there were no genotype 

differences and no animals used showed hearing impairment. 

Startle pulses analysed were at 120dB, with prepulse trials for both consisting of 4, 

8, and 16 dB above background pulses. The thirty minute sessions recorded a 

series of 91 trials, starting with a 5minute habituation period of white noise (70dB), 

to acclimatise the mice to the chamber. The startle response is average startle 

amplitude, measured in mV, collected during a 65ms window from the onset of the 

startle.  

Six pulse-alone trials were presented and this is analysed for startle 

habituation. This block is followed by a block of trials including two of each 

prepulse from which prepulse inhibition can be measured.  During this session, no 

stimulus trials were also presented. This allowed for the data to be normalised for 

movement not associated with the presence of a stimulus. Pulse alone trials 

consisted of a 40ms stimulus, whereas prepulse stimuli lasted 20ms. Sporadic 

measurement of no stimulus was taken as a control for normal movement.   

Percentage Prepulse Inhibition (PPI) is measured as a percentage difference in 

the amount of startle of the prepulse trials compared to eh pulse alone trials.  

PPI score for each trial was calculated: 

 %PPI = 100 × (ASRstartle pulse alone− ASRprepulse + startle pulse) 

   ASRstartle pulse alone. 
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Measurements were adjusted for weight using Kleiber’s 0.75 mass exponents 

(Schmidt-Nielson, 1990).  

2.2.7. Locomotor Activity  

Spontaneous locomotor activity was measured in a group of 12 clear 

Perspex chambers.  The mice we placed into chambers for 2 hours, their 

movement’s tracked using two equipped transverse infrared beams spaced 

equally along the length of the chamber (Figure 2.5). Using a computer running a 

custom programme on ARACHNID, Each beam break, indicative of short range 

movement, is recorded in a series of five minute blocks across the two hour 

session for a total of 24 blocks. Runs were measured as both the front and rear 

beams being broken in succession during the time period.  

Chambers were cleaned with 2% acetic acid between mice. The animals 

were tested in the dark for three consecutive days during their early light cycle, 

between 8:00-12:00, allowing for measurements in both gross locomotor 

characterisation and reactivity to novelty. Prior to the LMA task, all animals were 

Figure 2.4 Acoustic startle response and prepulse inhibition apparatus. Mice were presented with 

120dB pulses and their reactivity to the pulses was measured. Pre-pulse amplitudes of 4, 8, and 16 dB 
above background were pseudorandomly interjected to measure their prepulse inhibition. 
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tested for their motor coordination as a potential confounding factor, with no 

genotype differences emerging. 

 

 

   

 

 

 

2.2.8.  Statistics  

All data were analysed using SPSS 25 (SPSS, USA). Brain and body weight 

differences was analysed using two-way ANOVA examining the effects of SEX 

and GENOTYPE. Most behavioural data were analysed using ANOVA repeated 

measures to examine the effect of genotype on performance, with main between 

subject factors being GENOTYPE (Ehmt1D6cre/+ or Ehmt1flp/+). Elevated Plus 

maze Analysis of elevated plus maze, and where appropriate, student t-test was 

used. The following within-subject factors were also analysed: Food Neophobia 

Session (day of testing). Locomotor activity Session (day of testing); AGE (10 

weeks, 10 months). Acoustic Startle Response and PPI PRESENTATION 

(startle trial); PREPULSE INTENSITY (PPI intensity 4, 8, or 16 dB) AGE (10 

weeks, 10 months) . All data was tested for normality. Mauchly’s test of sphericity 

of the covariance matrix was applied to repeated measures ANOVAs due to their 

high susceptibility to violating sphericity and therefore leads to an increase in Type 

Figure 2.5 Locomotor activity apparatus. Two transverse infrared beams spaced equally along the 

length of the chamber record movement of the mouse in the chamber. 
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I error rates. Where the sphericity was violated, Huynh–Feldt corrections to the F-

ratio were applied as necessary, and adjusted degrees of freedom are provided. 

The behavioural data was corrected for multiple comparisons across the number 

of behavioural measures analysed across the tests using Benjamini-Hochberg 

FDR with a q-value of 0.05, and adjusted p-values are presented in text.  
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2.3. Results 
This chapter aims to characterise the basic behavioural phenotype of 

Ehmt1D6cre/+, an Ehmt1 haploinsufficient mouse model. First, verification of the 

function and specificity of the D6 driven cre-lox recombination and deletion was 

completed. Brain and body weights were taken from Ehmt1D6cre/+ and Ehmt1flp/+ 

mice to assess whether Ehmt1 D6-cre haploinsufficiency leads to possible 

confounding effects for exploratory driven behaviours. Finally, the basic and 

anxiety behavioural phenotype of Ehmt1D6cre/+ was assessed. 

2.3.1.  D6-Cre recombination lead to forebrain specific deletion of 

Ehmt1 allele  

Conditional forebrain ablation of Ehmt1 at E10.5 was achieved by breeding 

Ehmt1flp/flp mice to D6-Cre mice. This leads to the deletion of exon 23 in Ehmt1 

allele on E.10.5, leading to the haploinsufficiency of Ehmt1 in the developing 

neocortex and hippocampus. Expression of D6-cre remains restricted in the adult 

forebrain and hippocampus (van den Bout et al. 2002). Verification of cre-

specificity was assessed using isolated prefrontal cortices, hippocampi and 

cerebellums from Ehmt1D6cre/+ and Ehmt1flp/+ mice and the presence of the deleted 

allele was visualised using PCR and gel electrophoresis.  The presence of the 

deleted allele was only seen in the Ehmt1D6cre/+ mice with no apparent ‘leakage’ of 

cre recombination in the cerebellum (Figure 2.6). 

 

 

 

Figure 2.6 Verification of Cre Specificity in Ehmt1
D6cre/+

 mice.  Separate PCRs were run on the 

same samples to amplify the deleted allele, and the Flp & WT allele bands. Gel electrophoresis on 
PCR products visualised here show deleted alleles highly visible in PFC and Hippocampus of 
Ehmt1

D6cre/+
 sample 
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2.3.2. Ehmt1D6cre/+ mice have normal body and brain weight 

Ehmt1D6cre/+ and Ehmt1flp/+ mice were taken for adult body and brain weight 

analysis at 8 weeks old. Mice were weighed prior to culling and harvesting of 

brain. Brain to body mass ratio was also calculated.   Ehmt1D6cre/+ mice displayed 

normal body mass, compared to their wildtype counterparts, with males weighing 

more than female mice [Ehmt1flp/+ mean: 23.87g; Ehmt1D6cre/+ mean: 24.35g] 

(main effect of GENOTYPE, F1,95=0.628, p=0.430) (main effect of SEX, 

F1,95=21.933, p<0.001) (Figure 2.7A). Despite there being a sex difference in body 

weight, there was no interaction of genotype (SEX*GENOTYPE, F1, 95= 1.403, 

p=0.239). No differences were found when analysing their gross brain mass as 

well, with Ehmt1D6cre/+ mice averaging 461mg compared to Ehmt1flp/+ mice at 

453.86mg (main effect of GENOTYPE, F1, 95= 3.424, p=0.067) with no sex 

differences seen (main effect of SEX, F1,9 5= 0.371, p=0.544) (Figure 2.7B). Both 

groups also displayed equivalent brain to body mass ratio (main effect of 

GENOTYPE, F1,95=0.025, p=0.874). There was however sex differences, female 

mice had a higher brain to body mass ratio due to their smaller body mass (main 

effect of SEX, F1, 95=23.163, p<0.001). This difference was not associated to the 

genotype of the mice (SEX*GENOTYPE F1, 95= 0.841, p=0.361) (Figure 2.7C). 
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2.3.3. Ehmt1D6cre/+ mice show no differences in the elevated plus 

maze 

Mice underwent the elevated plus maze task for 5 minutes. As expected, all 

the mice found the open arms of the EPM anxiogenic, thus spending the majority 

of their time in the closed arms (~73% of total test time). There were no 

differences in the time spent on the open arms of the maze between the 

Ehmt1D6cre/+ and Ehmt1Flp/+ mice Figure 2.8A, t35=0.276, p=0.859).  Furthermore, 

both groups of mice made a comparable number of entries into the open arms 

(Figure 2.8B, t35=1.056, p=0.298), entered an open arm for the first time with a 

similar latency (Figure 2.8C, t35 = 0.563, p =0.748) and exited the starting closed 

arm at similar times (Figure 2.8D, t35 =-0.550, p = 0.748).  

Figure 2.7 Ehmt1
D6cre/+

 mice display normal body and brain weights compared to Ehmt1
flp/+

 mice. A) At 

8 weeks old, mice were weighed and culled for body and brain weight analysis. There was no difference 
between Ehmt1

D6cre/+
 and Ehmt1

flp/+
 mice in total body mass at 8 weeks old. B) Ehmt1

D6cre/+
 mice also showed 

equivalent brain mass compared to their wildtype counterparts. C) These findings translated to normal brain-

to-body mass ratio in the Ehmt1 haploinsufficient mice. 
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Figure 2.8 Ehmt1D6cre/+ mice displayed no difference in the elevated plus maze task. A) Mice 

underwent the EPM task for a total of 5 minutes. During this time a number of behaviours were 
measured. Ehmt1D6cre/+ mice spent an equivalent percentage of time in the open arms compared to the 
Ehmt1flp/+ mice. B) Both groups approached and entered the open arms at the same frequency. C)  It 
took both group similar times to first enter open arm. D) The latency to first start by exiting the starting 
closed arm was equivalent between groups. Data presented as mean values with SEM. Ehmt1

flp/+
 : 20, 

Ehmt1
D6cre/+

  : 17. 

In addition to tracking the movement of the mice, other anxiety related 

behaviours during the test were also collected and analysed (Table 2.3). 

Consistent with the movement data, no differences were seen between 

Ehmt1D6cre/+ and Ehmt1flp/+ mice in the number of stretch attend positions into the 

open arms (t35 = -0.469, p=0.777), head dips over the open arm ledge (t35 = -

1.758, p=0.876), and time spent grooming themselves (t35 = 0.98, p=0.582).  

 

 

 

 

 

 

 

 

 

Table 2.3 Average number of behavioural markers measured in the EPM by genotype 
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2.3.4. Ehmt1D6cre/+ mice show no differences in anxiety in a food 

neophobia test 

 Both groups of mice readily drank the solutions available during the 11 days 

of the test, with the volume consumed increasing daily (Figure 2.9A, main effect of 

SESSION, F5.80, 202.79=23.10, P<0.001), and no differences between Ehmt1D6cre/+ 

and Ehmt1flp/+ mice (main effect of GENOTYPE, F1, 35=0.460, p=0.799). 

With the introduction of a choice between water and 10% condensed milk 

solution on the 3rd day of testing, overall consumption significantly increased 

(F1,35=42.587, p<0.001).  This was due to an increasing preference for the 10% 

condensed milk solution (Figure 2.9B, main effect of SESSION (F5.996, 209.873 = 

8.535, p<0.001). However there were no differences seen between the 

Ehmt1D6cre/+ and Ehmt1flp/+ mice groups (main effect of GENOTYPE F1, 35=1.230, 

p= 0.571). 

 

Figure 2.9 Food Neophobia and habituation. A) Total volume consumed by Ehmt1
D6cre/+

 and Ehmt1
flp/+

 mice 
across sessions (adjusted for weight) B) Preference for novel foodstuff, 10% condensed milk solution cross 
sessions. All data presented as mean values with SEM, Ehmt1

flp/+
:20, Ehmt1

D6cre/+
:17. 
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2.3.5. Locomotor activity and habituation  

Locomotor activity was investigated in the mice twice in their lifetime. Initially 

LMA was conducted in young naive mice at 10 weeks old, across three days and 

the test was then repeated in the same mice at 10 months old.  

Ehmt1D6cre/+  and Ehmt1flp/+ controls showed similar levels of activity across 

all sessions  when analysing beam breaks from the mice at 10 weeks (main effect 

of GENOTYPE, F1,35 =0.870, p=0.58). There was greater number of beam breaks 

initially, suggestive of increased locomotion during the first session and this 

declined subsequently, (Figure 2.10B, main effect of SESSION, F2, 70 =24.626, 

p<0.001). Locomotor activity in both groups declined over the subsequent 

sessions at equal rates as the animals habituated to the novel environment 

(SESSION x GENOTYPE (F2, 70 =0.744, p=0.688). Similar results were seen when 

analysing the amount of runs made, assessed as the number of consecutive 

breaks of both beams in the chamber, with the greatest number of runs occurring 

in the first session and reduces throughout the subsequent sessions, (Figure A.1, 

main effect of SESSION (F2,70 =19.960, p<0.001). 

 

Figure 2.10 Locomotor activity and habituation at 10 weeks and 10 months old. A) Percentage change in 
number of beam breaks between first and last session at 10 weeks (young) and 10 months (old. B) Total 

number of beam breaks performed in the first and last session at young and old timepoints, all data presented 
as mean and SEM, Ehmt1

flp/+
: 20, Ehmt1

D6cre/+
: 17. 
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The analysis was repeated for locomotor activity data collected from the 

mice at 10 months old. This time no difference was seen between the first and last 

sessions in number of beam breaks, (Figure 2.10B, main effect of SESSION, F2, 70 

=2.120, p=0.29), the animals showed no habituation through the sessions, with no 

difference in the activity levels between the Ehmt1D6cre/+ and WT controls across all 

sessions, (main effect of GENOTYPE, F1, 35 = 0.790, P=0.58). Both groups 

showed similar locomotion in each session (SESSION x GENOTYPE, F2, 70 = 

0.133, p=0.876). When analysing runs, both groups showed comparable activity 

levels in the sessions, SESSION (Figure A.1, F1.534, 53.678 = 2.879, p=0.19). 

To discern whether age affected the locomotor activity of the mice, both time 

points were analysed together, with AGE at test as a parameter. The mice made 

more beam breaks in the first session compared to the last session (main effect of 

SESSION, F2, 70 = 21.198, p<0.001). As the mice aged, there was an increase in 

beam breaks (main effect of AGE, F1,35 = 7.724, p=0.025).  There was also an 

interaction of age with session (SESSION x AGE, F2,70= 13.305, P<0.001), at 10 

months old the mice were no longer habituating between the sessions, and 

reducing their activity levels by the final session.  

2.3.6. Increased startle responsivity in Ehmt1D6cre/+ mice. 

The reactivity of the mice to acoustic stimuli and their ability to attenuate their 

responses as a measure of sensorimotor gating were investigated in the same 

Ehmt1D6cre/+ and Ehmt1flp/+ mice at two ages, 10 weeks and 10 months old.  At 10 

weeks old, all mice showed plateaued responsivity with repeating presentation of 

each startle trial (Figure 2.11, main effect of PRESENTATION,F4.322,151.282=4.355, 

p=0.011), with no difference between Ehmt1D6cre/+ and Ehmt1flp/+  (main effect of 
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GENOTYPE, F1, 35 = 1.656, p= 0.268).  However while Ehmt1flp/+ mice appear to 

habituate as expected, Ehmt1D6cre/+ mice did not; when group mean differences 

were analysed individually for each startle presentation, Ehmt1D6cre/+ mice had a 

significantly larger startle response at the sixth presentation compared to the 

Ehmt1flp/+ mice, (Figure 2.11, t35 = -2.588, p=0.03). 

At 10 months old, both groups showed no habituation across the six startle 

presentations (Figure 2.11, main effect of PRESENTATION F4.223, 147.813= 0.830, 

p= 0.513). However Ehmt1D6cre/+ showed significantly higher magnitude of acoustic 

startle response across all startle presentations (main effect of GENOTYPE (F1,35= 

5.980, p=0.04). 

To assess the impact of age on the startle responsivity of the mice to 

acoustic stimuli, data collected at 10 weeks and 10 months was analysed together. 

Robust startle responses were shown by both groups of mice at the start of each 

session at both ages, although the amount of startle was reduced in older animals 

(Figure 2.11, main effect of AGE, F1,35=25.587, p<0.001). However, Ehmt1D6cre/+ 

mice showed significantly greater startle response compared to the Ehmt1flp/+ mice 

(main effect of GENOTYPE, F1,35=5.44, p=0.047).  Both groups showed differential 

startle response with increasing presentations (Figure 2.11, main effect of 

PRESENTATION, F4.21, 147.22=3.882, p=0.015). However, the Ehmt1D6cre/+ mice 

showed a reduced habituation to the startle presentations whereas their WT 

counterparts acclimatised to the repeating startle presentations, (PRESENTATION 

X GENOTYPE, F4.206, 147.217 = 2.808, p=0.30). The mice’s response to their startle 

response to repeating presentations was not affected by age (PRESENTATION X 

AGE (F (4.591, 160.694) = 2.374, p=0.48). 
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Figure 2.11 Increased startle responsivity in Ehmt1
D6cre/+

 mice. Mice were presented with 6 120db 
acoustic startle trials at both 10 weeks and 10 months old.  At 10 weeks old, Ehmt1

D6cre/+
 show an increased 

startle to the final presentation. At 10 months old, Ehmt1
D6cre/+

 mice startle significantly higher than Ehmt1lfp 
mice across all six presentations. Data presented as Mean and SEM, Ehmt1

flp/+
:20, Ehmt1

D6cre/+
: 17.  

 

2.3.7. Impaired sensorimotor gating in Ehmt1D6cre/+ mice. 

Prepulse inhibition, PPI, of startle response, a measure of sensorimotor gating, 

was investigated by examining the startle reflex of the mice, at 10 weeks and 10 

months old, to an acoustic stimulus that was preceded by a range of weaker 

prepulse stimuli.  

At 10 weeks old, there was a tendency for Ehmt1D6cre/+ to show reduced PPI 

compared to Ehmt1flp/+ mice (Figure 2.12, main effect of GENOTYPE F1,35=3.431, 

p= 0.11). A significant PREPULSE INTENSITY x GENOTYPE interaction (F2, 

70=4.30, p=0.037) demonstrated that this difference was greatest with a 16db 

above background prepulse stimulus, confirmed by post hoc comparison 

(t30.92=3.23, p=0.013).  At 10 months old, the difference in PPI between 

Ehmt1D6cre/+ and Ehmt1Flp/+ mice was significantly greater (Figure 2.12, main effect 

of GENOTYPE, F1,35=4.48, p=0.04), despite not surviving correction for multiple 
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corrections (p=0.069), suggesting impaired sensorimotor gating at all prepulse 

amplitudes assessed. 

When analysed taking into account AGE, mice at both ages demonstrated 

PPI, with levels of attenuation increasing as the prepulse intensity increased 

(Figure 2.11), main effect of PREPULSE INTENSITY, F2,70=80.88, p<0.001), with 

Ehmt1D6cre/+ mice showing reductions in PPI at both ages (main effect of 

GENOTYPE, F1,35=7.73, p=0.024).  This difference was consistent across both 

ages (main effect of AGE, F1,35= 2.72, p=0.158) although the genotype-related 

effect was greater in the older mice. 

 

Figure 2.12 Impaired sensorimotor gating in Ehmt1
D6cre/+

 mice. Mice were presented with 3 differing 

prepulse intensities; 4, 8, 16; prior to 120db acoustic startle trials at both 10 weeks and 10 months old.  At 10 
weeks old, Ehmt1

D6cre/+
 show an impairment in PPI at 16db prepulse intensity. This impaired sensorimotor 

gating was found across all prepulse intensities at 10 months old. Data presented as Mean and SEM, 
Ehmt1

flp/+
:20, Ehmt1

D6cre/+
: 17 
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2.4. Discussion 
This chapter investigated spontaneous behaviours, including anxiety 

behavioural phenotypes, sensory and motor behaviour, in the Ehmt1D6cre/+ mouse 

model. These mice have a deletion of one copy of the Ehmt1 gene in the frontal 

brain, including prefrontal cortex and hippocampal structures, with the deletion 

occurring from very early in development.  

The deleted Ehmt1 allele was detected in the prefrontal cortex and 

hippocampus of the Ehmt1D6cre/+ mouse. No detection was seen in the cerebellum, 

acting as an internal control and in Ehmt1flp/+ mouse brain regions, validating the 

specificity of the cre recombination. Ehmt1D6cre/+ mice also had normal brain and 

body weights compared to Ehmt1flp/+ mice.  

No difference between Ehmt1D6cre/+ mice and Ehmt1flp/+ mice were found in a 

range of different anxiety measures.  In the EPM task Ehmt1D6cre/+ mice explored 

both arms equally when compared to the Ehmt1flp/+ mice, and showed a normal 

preference for the closed arms, and avoidance of the open arms as seen in normal 

behaving rodents. Ehmt1D6cre/+ mice also showed no difference in their 

consumption levels in the food neophobia/novel food preference test. Ehmt1D6cre/+ 

mice have normal activity levels when tested in the locomotor activity chamber 

compared to Ehmt1flp/+ mice at both 10 weeks and 10 months old. 

The main finding of the chapter is Ehmt1D6cre/+ mice have significantly increased 

response to acoustic startle compared to their Ehmt1flp/+ mice. In addition to this, 

Ehmt1D6cre/+ mice showed greatly reduced prepulse inhibition compared to 

Ehmt1flp/+. 
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2.4.1. Anxiety 

The elevated plus maze paradigm found no difference in “state” anxiety. In 

this paradigm which measures approach-avoidance conflict (Pellow et al. 1985), 

the Ehmt1D6cre/+ mice explored both arms equally when compared to Ehmt1flp/+ 

mice, and showed a normal preference for the closed arms, and avoidance of the 

open arms as seen in normal behaving rodents (Pellow et al. 1985). In the test of 

hyponeophagia, there were no differences between Ehmt1D6cre/+ and Ehmt1flp/+ 

mice in their overall levels of consumption or preference for a novel foodstuff.   

However, these results contradict previous results found in other Ehmt1 

deficient models (Schaefer et al. 2009; Balemans et al. 2010). The Ehmt1+/- model 

showed a reduction in anxiety in various anxiety-related tests including open-field 

and light-dark box paradigms (Balemans et al. 2010) and the Ehmt1camk2a/cre model 

reduced anxiety in the EPM and decrease preference for a more palatable sucrose 

solution (Schaefer et al. 2009).  However, the nature of the tests used may 

account for the disparity in findings between the current work and previous 

studies.  It has been shown that anxiety tests on the same knockout rodent models 

lead to differing results dependent on the paradigm used (Steimer 2011; Lezak et 

al. 2017), and it is possible that these tests are dissociating differing neural 

processes of anxiety (Calhoon & Tye 2015).  

In addition to this, a confounding factor of most anxiety avoidance-approach 

tests are exploratory in nature, and thus highly dependent on locomotor behaviour 

(Calhoon & Tye 2015). The constitutive Ehmt1+/- mouse model has been found to 

be hypoactive compared to their WT littermates (Balemans et al. 2010), and the 

Ehmt1camk2a/cre model made reduced arm entries in the EPM, indicative also of 

reduced activity (Schaefer et al. 2009).  Thus, there is the possibility that in these 
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models reduced anxiety may be a product of hypoactivity or reduced motivation to 

explore rather than increased anxiety (Calhoon & Tye 2015).  In our model, EPM 

arm entries and activity measured in a separate locomotor test (see below) did not 

differ between Ehmt1D6cre/+ and Ehmt1flp/+ mice, suggesting that activity was not a 

confound in terms of our measures of anxiety. 

The Ehmt1camk2a/cre model has a forebrain specific promoter, leading primarily 

to expression in the striatum (Burgin et al. 1990), a brain region, along with other 

limbic structures including the hippocampus and PFC, which have long been 

associated with anxiety phenotypes (Lago et al. 2017), motivation and goal 

oriented behaviour (Mogenson et al. 1980). Motivation is linked to anxiety, and 

impairment in motivation can impact anxiety behaviour (Lang et al. 1998; Lago et 

al. 2017), and increased striatal activity can lead to increased anxiety due to 

enhanced motivation to avoid (Lago et al. 2017), and moreover active avoidance 

has been found to be striatal dependent (Darvas & Palmiter 2009). Thus it is 

possible that the apparent increases in anxiety and food neophobia in the 

Ehmt1camk2a/cre model could be due to reduced motivation. However, this 

hypothesis is not applicable for our model, where a forebrain specific promotor is 

also present, but anxiety phenotypes are absent.  These, differences in 

performance could be accounted for by differing expression levels, regional and 

tissue levels or the timing of the deletion, where the Ehmt1camk2a/cre model shows 

homozygous depletion of Ehmt1 in similar brain regions to the Ehmt1D6cre/+ model 

apart from the striatum, and only postnatally.  This may give rise to further ideas 

about the effects of Ehmt1 on development and function which will be discussed 

later. 



52 
 

2.4.2. Locomotor exploration 

As highlighted previously, on the EPM there were no fundamental differences 

in activity between Ehmt1D6cre/+ and Ehmt1flp /+ mice, which was further confirmed 

in a specific assessment of locomotor activity and exploration at two ages. 

Ehmt1D6cre/+ mice have normal activity levels when tested in the locomotor activity 

chamber compared to Ehmt1flp/+ mice at both 10 weeks and 10 months old.   

Again, in contrast to other Ehmt1 mouse models, no significant differences were 

observed in general activity or in habituation within or between sessions, however, 

it should be noted that this experimental procedure is different to any used 

previously (Schaefer et al. 2009; Balemans et al. 2010; Balemans et al. 2013) and 

therefore comparisons may be difficult to determine. The absence of differences in 

habituation would suggest that the Ehmt1D6cre/+ mice do not have any fundamental 

differences in habituation learning, at least with regard to environmental or 

contextual stimuli, suggesting that such learning may be unaffected in this model.   

Interesting to note, both previous mouse models suffered from increased 

weight (Schaefer et al. 2009; Balemans et al. 2010). Increase in weight in adult 

mice would affect their exploratory behaviour and could explain the normal 

locomotor activity levels in this mouse model; the lack of deletion of Ehmt1 in the 

cerebellum here also allows for behavioural assessments not confounded by 

deletion of Ehmt1 in purkinje cells, the key cellular output of locomotor learning 

and behaviour (Manto et al. 2012).  

2.4.3. Startle responsivity and sensorimotor gating 

The acoustic startle response and PPI was measured, and showed that 

Ehmt1D6cre/+ mice had higher levels of startle and reduced PPI compared to control 
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Ehmt1flp/+ mice.  These effects were present at both ages tested, although the 

differences were greater at 10 months, suggesting an age-related change in both 

responses, although overall startle was reduced at the older age in both groups of 

mice. Acoustic startle responding has not been previously assessed in a mouse 

model of Ehmt1 deletion, so therefore these results are novel and maybe 

informative in determining the function of this gene.  Increased startle and 

impaired habituation has been observed in rodent models that were administered 

with the psychotomimetic drugs PCP, MK-801 and D-AMP (Klamer et al. 2004), 

thus this may indicate that Ehmt1 has role in the development of cognitive 

phenotypes in schizophrenia.  Whilst acoustic startle response has been used as a 

measure for anxiety, the lack of other features of anxiety in this mouse model is 

suggestive of an impairment linked primarily to a deficit in sensorimotor gating 

processes.  

Ehmt1D6cre/+ mice also showed reduced prepulse inhibition compared to their 

Ehmt1flp/+ counterparts, which was more significant when the mice were older.  

This is suggestive of an increasing impairment in sensorimotor gating as the 

animals age, although this phenomenon was present from a young age, 

suggesting a strong phenotype in the mice. Reduced PPI has been associated 

with a number of different clinical conditions, in addition to being observed in a 

number of rodent genetic models of schizophrenia including DISC1, Neuroligin, 

and BDNF (Clapcote et al. 2007; Manning & van den Buuse 2013; Chen et al. 

2017). 

Furthermore, although startle and PPI have not been explicitly assessed in KS, 

recent work shows that KS patients show increased signs of psychosis as they 
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age (Verhoeven et al. 2011) which could indicate that they might also show PPI 

deficits which may also increase with age.  This suggests Ehmt1 may play a key 

role in the attention regulation necessary for sensorimotor gating and deficits in 

Ehmt1 can lead to growing impairment as KS patients go through adolescence 

and into adulthood. 
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2.5. Conclusion 

This chapter explored the basic characterisation of the Ehmt1D6cre/+ forebrain 

specific mouse model of Ehmt1 haploinsufficiency. Here Ehmt1D6cre/+ mice did not 

show anxiety-like behaviour in the anxiety-exploratory paradigms used. This was 

further validated with no difference seen in the exploratory locomotor behaviour.  

 This study provides the first evidence of compromised sensorimotor gating 

circuitry in Ehmt1 haploinsufficiency, and the first to suggest an increasing 

impairment into adulthood. This may become noteworthy clinically when taking 

into consideration the increase in psychotic symptoms in the current aging KS 

patient cohorts.  

The results laid out in this chapter suggest that although this model can be 

used to capture some phenotypes seen in KS, it will play a better role in 

understanding the function of Ehmt1 in the development of the forebrain and within 

cross diagnostic endophenotypes of neurodevelopmental disorders in general. 

Thus, these findings provide a foundation to investigate the role of Ehmt1 in more 

specific tests of learning and memory, and its effect of the development and 

maintenance of hippocampal and cortical structures. 
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 Dissecting the Role of Ehmt1 in Chapter 3

Memory  

3.1. Introduction 

Recently, great strides have been taken to understand the role of epigenetic 

regulation of learning and memory. Both DNA methylation and epigenetic post 

translational modifications, such as histone modifications have been attributed to 

the development of cognitive disorders [See review (Kleefstra et al. 2014)], with 

more recent work expanding their role into the development and maintenance of 

the biological circuitry of learning and memory.  Histone acetylation, an example of 

a histone modification, has been long studied in memory, and was first implicated 

in novel taste memory (Swank & Sweatt 2001). CBP-/+ mice, lacking a copy of a 

histone acetyltransferase, have impaired memory in the object recognition task 

(Alarcón et al. 2004; Korzus et al. 2004), contextual fear conditioning (Alarcón et 

al. 2004), and object location task (Korzus et al. 2004). Following the rescue of 

some of these impairments using a histone deacetylase inhibitor (Korzus et al. 

2004), the field of research surrounding the role of these HDAC inhibitors grew, 

along with the communal knowledge of HDAC inhibitors in treatment of cognitive 

deficits (Bredy & Barad 2008; Dash et al. 2010; Peleg et al. 2010). These studies 

show the role of histone acetylation and histone deacetylation modulate cortical 

and hippocampal dependent memory.  

Ehmt1 mono- and di-methylates histone 3 at the lysine 9 position. H3K9 

methylation is also involved in learning and memory. H3K9me2 epigenetic mark is 

regulated during fear conditioning, being transiently up-regulated in the CA1 region 
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of the hippocampus directly after task training (S. Gupta et al. 2010; Gupta-

Agarwal et al. 2012a). Inhibiting H3K9me2 in this region leads to impairment in 

contextual fear memory in rodents.  In fact, Ehmt1Camk2acre/+ knockout mice also 

showed impaired contextual fear memory 24 hours after training (Schaefer et al. 

2009), suggestive of the role of H3K9me2, and specifically Ehmt1, plays in 

hippocampal dependent memory processes. 

 A role for Ehmt1 in learning and memory is also suggested by its 

involvement in neurodevelopmental disorders. As previously stated, a key factor 

across the diagnostic lines of Ehmt1 associated disorders is the presence of 

moderate to severe intellectual disability (Morgan et al. 2008; Matson & 

Shoemaker 2009).  Ehmt1 and other chromatin modifiers are disproportionately 

enriched in neurodevelopmental disorders with intellectual disability (Kleefstra et 

al. 2014), suggestive of a critical role at key time points during the development 

the highly intricate neural circuitry required for normal cognitive functioning.  

This chapter will focus on characterising memory and learning phenotypes 

in our forebrain specific Ehmt1 haploinsufficient mouse model.  

3.1.1. Object Recognition Memory 

Object recognition memory, a form of declarative memory, has long been used 

as a marker for memory due to the ease of testing in rodents (Ennaceur & 

Delacour 1988; Antunes & Biala 2012a). Declarative memory involves episodic 

and semantic memory, and refers to events and facts that can be remembered 

and consciously called upon (Riedel & Blokland 2015). Object recognition is a key 
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part of episodic declarative memory and refers to the recognition of previously 

encountered objects (Bird 2017). Hippocampal and extra-hippocampal cortical 

structures have been linked to the process of recognition memory (Aggleton & 

Brown 2005; Antunes & Biala 2012a; Vogel-Ciernia & Wood 2014; Morici et al. 

2015; Bird 2017).  

3.1.1.1. Novel Object Recognition Task 

Object recognition memory can be investigated in rodents using a novel 

object recognition paradigm. This paradigm is considered to tax mechanisms 

analogous to human declarative memory (Rajagopal et al. 2014; Blaser & Heyser 

2015). The task relies on the natural tendency of rodents to explore novel objects 

without the need of a reinforcer or reward (Ennaceur & Delacour 1988; Antunes & 

Biala 2012a; Vogel-Ciernia & Wood 2014). This preference to novelty can be 

elicited by allowing the rodents to freely exploration of a novel and familiar objects, 

the animal’s preference for the novel object is thus suggestive of the maintenance 

of the familiar object in their memory (Antunes & Biala 2012a). This allows for 

large number of manipulations including number of objects and amount of time 

from exposure to the familiar object. The paradigm has been used to test short 

and long term memory as well as trying to understand the mechanisms of 

encoding, consolidation, and retrieval in declarative memory (Vogel-Ciernia & 

Wood 2014). Various studies have found novel object recognition to be impaired at 

different retention intervals in a number of manipulations effecting hippocampal 

and perirhinal cortical regions (Robert E. Clark et al. 2000; Hammond et al. 2004; 

Norman & Eacott 2004; Barker et al. 2007a; Broadbent et al. 2010; Gaskin et al. 

2010a; Engelmann et al. 2011; Antunes & Biala 2012b).  
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3.1.2. Spatial Memory and Novel object Location task 

Spatial memory in rodents has been used to investigate neural correlates of 

human cognition and memory dysfunction (Morellini 2013). There are numerous 

tasks that are used to assay spatial working memory, spatial reference memory 

and spatial learning (Morellini 2013; Vorhees & Williams 2014).  Object location 

memory is assessed in a novel object location task to test spatial memory and 

discrimination in rodents (Dix & Aggleton 1999; Vogel-Ciernia & Wood 2014). This 

task, like novel object recognition task, relies on the preference for exploring 

novelty. Unlike spatial tasks such as the Morris water maze and radial arm maze, 

it is a relatively simple task to structure without any necessary pretraining. The 

core structure of this task is similar to novel object recognition (Dix & Aggleton 

1999; Vogel-Ciernia & Wood 2014). However, instead of replacing an object for a 

novel object, one of the familiar objects is moved to a new location in the arena. 

The rodents are then allowed to explore both objects, one in a familiar location, 

and the other in a novel location, time spent exploring the objects is recorded (Dix 

& Aggleton 1999; Morellini 2013; Vogel-Ciernia & Wood 2014; Vorhees & Williams 

2014). If the rodents spend more time exploring the object in the novel location 

compared to the familiar location it would be suggestive of a reference of the 

familiar location being maintained in their memory. This task is believed to be 

more hippocampal dependent compared to the novel object task (Mumby et al. 

2002), with the hippocampus and hippocampal formation proving to have highly 

intricate neural correlates of spatial memory, including the cognitive map, including 

boundary, place, and grid cells (Brandon et al. 2014). 
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3.1.3. Aims 

 To examine the effect of forebrain specific knockdown of Ehmt1 on 

recognition and spatial memory in the Ehmt1D6cre/+ mouse.  
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3.2. Methodology 

3.2.1. Animals 

Experimental group generated in Chapter 2 to investigate basic and spontaneous 

behaviours also underwent the memory tasks described here (Table 3.1). 

Table 3.1 sample size and genotype and age for the behavioural cohort assayed in each memory and 
learning task 

 

3.2.2. Apparatus 

Both the novel object recognition task and novel object location task took place in 

a 30cm x 30cm arena with 30cm high white Perspex walls. The objects and arena 

were cleaned after each session with 70% ethanol to remove olfactory cues. A 

camera, mounted directly overhead allowed the mice to be tracked using Noldus 

Ethovision XT software. Tracking of each subject, determined as the location of 

the greater body-proportion (12 frames/s), was calibrated prior to testing using 

mice of the same body size and fur colour as the experimental cohort. Manual 

analysis of pilot sessions confirmed the accuracy of the tracking software, and all 

traces were examined for tracking-related artefacts prior to analysis.  

The arena was divided into 4 equal virtual sections, referred to as Q1, Q2, 

Q3, and Q4. Entries and time spent into each section were then automatically 
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determined by the software, in addition transitions into different halves of the 

arena, e.g.: movements from section 1 to section 2 (Q12 to Q34) and section 3 to 

section 4 (Q14 to Q23), and vice versa.  

3.2.3. Objects 

Mice were presented with different three- dimensional objects, which varied 

in colour, shape, size and texture. Any object with an obvious scent was excluded. 

Every object was available in triplicate and so if an object was to be presented 

twice in the same session a different copy could be used to avoid the possibility of 

odour marking. Objects for novel object recognition were: unlabelled tin can, green 

partially opaque glass bottle, and a black and white aerosol can. Objects used in 

the novel object location task were two identical wooden planks. 

3.2.4. Assessment of Object/Location contact  

Object exploration was defined by the mouse making contact with an object 

as well as facing an object within 10mm. Climbing on the object was not included 

within this measure, however placing the forepaws on the objects was. Each 

object approach was recorded by manual scoring using the video tracking system, 

with separate keyboard keys assigned to each familiar object/location and the 

novel object/location.  Thus, frequency, and overall duration spent exploring 

objects could be determined. Objects were cleaned with 70% ethanol between 

trials to avoid olfactory cues. Recognition performance of the novel 

objects/locations was assessed using the recognition index, calculated from the 

formula [time exploring the novel object/location/ (time exploring the novel 
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object/location + time exploring the familiar object/location)],  RI = TN/(TN + TF) 

(Gaskin et al. 2010b). Significantly above 0.5 is suggestive of preference towards 

to the novel object/location, whereas no significant difference from 0.5 is 

suggestive of lack of preference for the novel object, and thus a lack of recognition 

of novelty. 

Novel Object Recognition 

To investigate object recognition memory, the behavioural cohort underwent 

a novel object recognition task, according to the methods of Engelmann et al., 

2011 (Figure 3.1). All animals were habituated to the test chambers for 5 

consecutive days, with a single 10 minute session/day. Each session the subjects 

were placed into the empty arena and allowed to freely explore. 

Immediately after the final habituation session, the subjects were returned to 

the arena for the acquisition phase. In this phase, two identical objects (A,A’) were 

placed in the centre of the adjacent quadrants. During the 10 minute acquisition 

phase, the time spent exploring each object was measured (see above). 

Object recognition was assessed after two delays: 30 minutes and 24 hours 

after the acquisition phase.  During the test phases, one of objects was replaced 

with a novel object (B and C), in comparison with familiar object (A). The position 

of the novel/familiar objects were counterbalanced across each session, but 

always in the same locations used in the acquisition phase. In each retention test, 

the subjects could explore both objects for 5 minutes, and locomotor indices and 

time exploring each object was measured as previously stated.  
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Figure 3.1 Summary of Novel Object Recognition paradigm. Schematic summarising the arena set up for 

novel object recognition task during the habituation, acquisition, and test phases. A 10 minute habituation 
phase (5 sessions) is followed by acquisition phase with two identical objects (A, A’). The first test, 30 minutes 
after acquisition, object A’ is replaced with object B. 24 hours after initial acquisition, mice are presented with 
object A and C. 

3.2.5. Novel Object Location 

Spatial memory was investigated using a novel object location task. The 

task is set in the same arena as the novel object recognition task and followed a 

similar experimental design (Figure 3.2).  In this test, all object recognition was 

tested following a 24 hours delay, with a novel location recognition test, and a 

familiar location test as control, the order of which was counter-balanced between 

subjects.  For each test, the mice underwent 10 minute habituation and acquisition 

sessions and a 5 minute test session.  New objects were used in these tests. 

During acquisition, directly after a habituation phase, the subjects explored 

two identical objects placed in adjacent corners (Df1, Df2 or Ef1, Ef2). 24 hours after 

acquisition the subjects were tested in either the familiar (objects in the same 

positions as acquisition, Df1, Df2 or Ef1, Ef2) or novel (on object moved to a new 

location, Df1, Dn or Ef1, En) tests. The time spent exploring these object locations 

were measured along with locomotor indices, and the recognition index was 

measured to analyse preference for novelty (see above). 
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Figure 3.2Summary of Novel Object Location paradigm. Schematic summarising the arena set up for 

novel object location task during the habituation, acquisition, and test phases. A 10 minute habituation phase 
(4 sessions) is followed by acquisition phase with two identical objects in specific locations (Df1, Df2 or Ef1, Ef2). 
24 hours after acquisition mice where either tested with the objects in the same locations (Df1, Df2 or Ef1, Ef2), 
or with one object moved to a new location (Df1, Dn or Ef1, En).  

3.2.6. Statistical Analysis 

All data were analysed using SPSS 23 (SPSS, USA).  All data were 

checked for normality using the Shapiro-Wilkes test and appropriate analyses 

used. For the acquisition and test phases of the NOR and NOL, frequency and 

time spent exploring objects and locomotor indices, and the main measure of 

memory, the recognition index RI, were analysed using independent samples t-

tests with between-subjects factor of GENOTYPE (Ehmt1D6cre/+ or Ehmt1fl/+) if 

normally distributed.  Data not normally distributed were analysed using non-

parametric between-subjects Mann-Whitney U test for GENOTYPE differences. To 

evaluate if novel object or location recognition differed from chance, separate 

within-subject t-tests (or non-parametric Mann-Whitney U) to calculate difference 

from chance (0.5) for each group [Ehmt1D6cre/+ or Ehmt1fl/+] for the 30 minutes, 24 

hours after acquisition [NOR], and Novel and Familiar contexts [NOL].   
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 Habituation data, cumulative time spent moving, total distance moved, 

percentage of time spent in each quarter of the arena, and frequency entering 

each half of the arena (arena subdivisions described above), for both novel object 

recognition and location tasks were analysed using repeated measures ANOVA 

with between-subjects factor of GENOTYPE and within subject factor of 

SESSION.  These measurements together make up the locomotor indices 

measured throughout both tasks. Mauchly’s test of sphericity of the covariance 

matrix was applied. Huynh–Feldt corrections were applied as necessary for data 

that violated sphericity, and adjusted degrees of freedom are provided.  Data 

presented in this chapter was corrected for multiple comparisons using Benjamini-

Hochberg FDR with a q-value of 0.05, and adjusted p-values are presented in text. 

  



67 
 

3.3. Results 

3.3.1. Novel object Recognition  

Both short- and long-term object recognition memory abilities of the 

behavioural cohort were assessed in NOR with 30 minute and 24 hour retention 

intervals.  

As expected, when tested after a 30 minutes delay, both Ehmt1fl/+ and 

Ehmt1D6cre/+ mice showed an increased preference for the novel object compared 

to the familiar object and explored the novel object significantly above chance 

(Figure 3.3A, Ehmt1fl/+: t19=4.045, p=0.007, Ehmt1D6cre/+: t16=3.366, p=0.017). 

Although, the RI for Ehmt1fl/+ mice was greater than for the Ehmt1D6cre/+ mice, 

there was no significant group difference for this measure (t35=0.581, p=0.747).  

Therefore, both groups of mice made more approaches and spent longer exploring 

the novel object than the familiar object (Table 3.2), and there were no differences 

between the two groups for either of these measures: novel (approaches: t35=-

0.631, p=0.747 and duration: t35=-1.897 p=0.128) and familiar: (approaches: t35= 

1.93, p=0.78 and duration: t35= -0.578, p= 0.747). Thus, with a 30 minutes delay, 

both Ehmt1fl/+ and Ehmt1D6cre/+ mice showed robust memory function. 

However, when tested 24 hours after acquisition there was dissociation 

between the two groups in their ability to discriminate the novel and familiar 

objects. Ehmt1fl/+ mice showed retention of a preference for the novel object 

compared to familiar object, exploring it significantly above chance (t19=4.838, 

p=0.001). In contrast, Ehmt1D6cre/+ mice showed no preference for the novel object 
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(t16=-2.374, p=0.0757).  These effects were not a result of altered novel object 

exploration, as there were no group differences in the frequency (t35=0.465, 

p=0.796) or time spent (t35= 0.503. p=0.782) exploring the novel object (Table 3.2) 

but were a result of increased approaches (t35= 3.04 p=0.0178) and time spent 

(t35= 3.44, p=0.0105) exploring the familiar object by Ehmt1D6cre/+ mice.   

Thus, Ehmt1D6cre/+ mice demonstrate an apparent delay-dependent 

reduction in memory for objects in comparison to Ehmt1fl/+ mice. This was not due 

to differential exploration of objects during acquisition (Figure 3.3B), suggesting 

normal learning of familiar objects. Both groups spent equivalent times exploring 

both acquisition objects (A: t35= -1.257, p= 0.217; A’: t35= 0.126, p= 0.901) and 

made an equivalent number of approaches to both acquisition objects (A: t35= 

1.367, p= 0.326; A’: t35= 0.960, p= 0.524). 

 

Figure 3.3 Novel Object Recognition Test and Acquisition A) Novel object recognition 30 minutes and 24 

hours after acquisition: Both groups show a preference for the novel object 30 minutes after acquisition 
(intercept at 0.5, aka chance) with no difference between groups. However at 24 hour after acquisition, 
Ehmt1D6cre/+ mice no longer show a preference for the novel object suggesting impairment in long term 
recognition memory. B) Time spent exploring objects during acquisition: both groups explored either object 

equally during the acquisition phase, so impairment in long term recognition memory is not due to differential 
experience of objects by the Ehmt1D6cre/+ mice. Data presented as mean values with SEM * P<0.05, ** 
P<0.01, *** P<0.001, ns nonsignificant. Ehmt1

flp/+
: 20, Ehmt1

D6cre/+
: 17.  
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Table 3.2 Summary of frequency and duration spent exploring objects at 30 minutes and 24 hours 
after acquisition by genotype. 

 

Secondary indices of locomotor activity showed that all of the animals 

habituated to the novel environment over the initial 5 sessions, with total distance 

moved (main effect of SESSION, F3.273, 114.565= 32.97, p<0.001) significantly 

reduced across the sessions. However, Ehmt1D6cre/+ mice moved a greater total 

distance (main effect of GENOTYPE, F1,35=7.20, p=0.035) compared to their 

Ehmt1fl/+ littermates (Figure 3.4A). There was no interaction between GENOTYPE 

x SESSION.  

Interestingly whilst there was no difference in total distance moved by the 

final habituation session between groups (t35=-1.333 p=0.33), there was an 

increase in locomotor activity in both Ehmt1fl/+and Ehmt1D6cre/+ mice (t35=5.073, 

p<0.001, Figure 3.4B) indexed by the total distance moved in the acquisition 

phase.  The addition of (novel) objects to the arena during acquisition had a 

differential effect on the total distance moved by each group, with Ehmt1D6cre/+ mice 

moving significantly more compared to the Ehmt1fl/+ mice (t35= 2.873, p=0.025). 

There were no differences in total distance moved between the Ehmt1fl/+ 

and Ehmt1D6cre/+ mice in the 30 minute test (Figure 3.4B, (t35=1.319, p=0.344)). 24 

hours after acquisition during the second test phase, Ehmt1D6cre/+ mice once again 
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moved greater distance (t35=3.413, p=0.01) compared to their Ehmt1fl/+ littermates 

(Figure 3.4B). 

 

Figure 3.4Total Distanced Moved – NOR task A) Habituation: During the 5 day habituation phase, both 

groups reduced their total distanced moved between sessions however Ehmt1D6cre/+ mice were hyperactive 
compared to their Ehmt1fl/+ counterparts, until the last session where there was no difference between the 
groups. B) The addition of novelty in the form of the objects during acquisition leads to an increase in 

movement in both groups, with the Ehmt1D6cre/+ mice moving significantly more than their Ehmt1fl/+ 
counterparts. This difference was not seen 30 minutes after acquisition during the first test phase, however it 
remerges 24 hours after acquisition with the Ehmt1D6cre/+ move more than the Ehmt1fl/+ mice as reactivity 
to the environment. Data presented as mean values with SEM * P<0.05, ** P<0.01. Ehmt1

flp/+
: 20, 

Ehmt1
D6cre/+

: 17.Ehmt1
D6cre/+.

 

3.3.2. Novel Location memory 

Spatial memory was assessed in Ehmt1D6cre/+ mice using the novel object 

location paradigm. All mice underwent two tests with separate acquisitions, one 

where the location of the objects does not change, familiar; and where one object 

is moved to a different location, novel.  

  Animals were tested 24 hours after acquisition in both novel and familiar 

configurations (see methods for paradigm). In the familiar configuration both 

groups showed no preference for either object location as expected and  explored 

both objects no different to chance (Ehmt1fl/+ t19=-0.286, p=0.87; Ehmt1D6cre/+ t16=-

0.706, p=0.74) (Figure 3.5A) There was no significant difference seen between 

groups (t35= 0.362, p= 0.834). Therefore, there was no difference between the 
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groups in the number of approaches (DF1 t27.574=0.231, p=0.873, DF2 t35=0.685, 

p=0.741) or duration spent exploring (DF1 t35=1.209, p=0.389, DF2 t35=0.413, 

p=0.824) either familiar objects.  

When tested under a novel configuration, where one object was placed in a 

novel location, both groups of mice showed no preference for the novel location 

(Ehmt1flp/+ t19=2.275, p=0.0812, Ehmt1D6cre/+: t16= 2.488, p=0.07) and explored it 

no differently to chance. There was no difference between the two groups in their 

preference 24 hours after acquisition (t35= 0.634, p= 0.747). As expected, both 

Ehmt1fl/+ and Ehmt1D6cre/+ mice made more approaches to the object in the novel 

location compared to the familiar location and spent more time exploring the novel 

object (Table 3.3). However, there was no difference between the groups in the 

number of approaches made to either the familiar (DF t35= -1.905, p=0.065) or 

novel (DN t35= -1.561, p= 0.239) object locations. The same was found assessing 

the cumulative duration exploring the object locations (DF t35=0.115, p=0.909, DN 

t35= -0.578 p= 0.747). These results show that 24 hours after acquisition both 

Ehmt1D6cre/+ and Ehmt1fl/+ mice display no preference for either object location, 

suggestive of forgetting the familiar object location.  

This apparent forgetting was not due to differential exploration of the 

acquisition object locations by either group. During the acquisition phase for the 

novel configuration, both groups spent equivalent times exploring both acquisition 

objects and locations (DF1 t35= -0.262, p= 0.87; DF2 t35= 0.262, p= 0.87) (Figure 

3.5B) and made the similar number of approaches (DF1 t35= 0.091, p= 0.928; DF2 

t35= 0.243, p= 0.873). This was also seen in the acquisition step for the familiar 



72 
 

configuration, with no difference seen in duration spent exploring locations 

between groups (DF1: U= 175 z=0.154, p=0.909; DF2: U=183 z= 0.401, p=0.834). 

 

Figure 3.5 Novel Object Location Test and Acquisition. A) Novel object location: Both groups show no 

preference for the novel configuration 24 hours after acquisition (intercept at 0.5, aka chance). Both groups 
showed no preference to either object location in the familiar configuration 24 hours after acquisition, and 
explored both object locations equally. B) Time spent exploring objects during acquisition: both groups 

explored either object equally during the acquisition phase. Data presented as mean values with SEM. 
Ehmt1

flp/+
 : 20, Ehmt1

D6cre/+
  : 17.Ehmt1

D6cre/+. 

 

Table 3.3 Summary of frequency and duration spent exploring object location at Novel and Familiar 
configuration tests 24 hours after acquisition by genotype. 

 

 As in the object recognition task, secondary indices of locomotor activity 

were measured during the consecutive 4 days of habituation prior to the 

acquisition phases. Both groups show a comparable pattern of locomotor 

behaviour. However, here no habituation was seen across the 4 sessions; mice 

showed no reduction in total distance moved across the sessions (main effect of 
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SESSION, F3, 105=3.216, p=0.072). This was not found to be different between 

groups, with both Ehmt1D6cre/+ and Ehmt1flp/+ mice travelling equivalent total 

distances across the sessions (main effect of GENOTYPE, F1, 35=3.685, p=0.128). 

(Figure 3.6A). There was no interaction between GENOTYPE x SESSION.  

Again there is an effect of novelty to locomotor activity of the mice. The 

addition of (novel) objects during both acquisition phases lead an increase in 

locomotor activity in both Ehmt1flp/+ and Ehmt1D6cre/+, measured in total distance 

moved (Acquisitionfam t36= -4.435, p<0.001; Acquisitionnov t36= -6.501 p<0.001) 

compared to their final habituation session.  Whilst total distanced moved during 

the both test phases did not recapitulate the overall novelty-dependent increase in 

locomotion, the Ehmt1D6cre/+ group were significantly more active compared to the 

Ehmt1fl/+ group in total distance moved in both the familiar test phase (Testfam t35= 

3.347, p=0.01) and novel test phase (Testnov t35= -3.692 p=0.007) 24 hours after 

their respective acquisition phase (Figure 3.6B). 

 

Figure 3.6 Total Distanced Moved – NOR task A) Habituation phase: during the 4 day habituation neither 
group reduced their locomotor activity, indexed by distance moved. B) the addition of novelty in the form of the 

objects during acquisition and also the change in object location during the novel context test lead to an 
increase in movement in both groups, with the Ehmt1D6cre/+ mice showing significantly higher locomotor 
activity, indexed by total distance moved, during the test phase compared to Ehmt1

flp/+
 mice. Data presented 

as mean values with SEM ** P<0.01, ns nonsignificant. Ehmt1
flp/+

: 20, Ehmt1
D6cre/+

: 17.Ehmt1
D6cre/+.
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3.4. Discussion 

This chapter focussed on determining the role of Ehmt1 haploinsufficiency on 

memory in the forebrain specific knockout mouse model. The role of Ehmt1 in 

cognitive functions have been probed previously in spatial, object, and fear 

memory tasks leading to dissociable effects.  Ehmt1D6cre/+ mice showed reduced 

long term memory in the novel object recognition task, where a loss of preference 

for the novel object is seen at 24 hours after acquisition but not 30 minutes after 

acquisition. This is in contrast to the novel object location test, with both Ehmt1flp/+ 

and Ehmt1D6cre/+ mice showing a loss of preference by 24 hours in the novel 

configuration. Across both these tasks Ehmt1D6cre/+ mice also showed increased 

locomotor activity. This appeared to a differential response to novelty.  

Ehmt1D6cre/+ underwent a novel object recognition paradigm that tested both 

their short (30 minute retention interval) and long (24 hour retention interval) term 

recognition memory. Both groups explored the novel object far greater than 

chance when tested at 30 minutes. Although absolute levels were reduced, 

Ehmt1fl/+ control mice also explored the novel object far greater than chance when 

tested 24-hours after acquisition. Together these data suggest that in general the 

task was working as expected. In contrast, when tested 24-hours after acquisition 

Ehmt1D6cre/+ mice showed no increased exploration of the novel object, suggesting 

an impairment of long term recognition memory. Importantly, this deficit is not 

confounded by difference in exploration during the acquisition phases for the 

tasks, suggesting that the deficit in recognition memory is not due to the 

Ehmt1D6cre/+ mice experience either object differently. Interestingly, although at 30-

minutes post-acquisition Ehmt1D6cre/+ mice did show an increased exploration of 
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the novel object and a mean discrimination index equivalent to Ehmt1fl/+ controls, 

the spread of data is far greater with six animals demonstrating chance or below 

chance discrimination index (all Ehmt1fl/+ controls were above chance) (Figure 

3.3). This implies that degradation of memory of the familiar object may be 

occurring soon after acquisition.  

In contrast, when tested in the novel object location paradigm, Ehmt1D6cre/+ 

mice and Ehmt1fl/+ controls showed no differential impairment at 24 hours to the 

novel context, however due to both forgetting, differential retention can’t be 

determined. This could be due to differential sensitivity of the two tasks (i.e. floor 

or ceiling effects). It is possible that there is a dissociation between deficits in 

declarative and spatial memory in Ehmt1D6cre/+ mice, reflective the role of Ehmt1 in 

memory circuitry established in the forebrain of the mice. 

Novel object recognition has been attributed to the medial temporal lobe, 

specifically hippocampal and perirhinal cortex regions (Brown & Aggleton 2001). 

However, the role of the hippocampus in object recognition memory is not clear, 

with a number of studies supporting hippocampal involvement (Gaskin et al. 2003; 

Broadbent et al. 2004), and contradicted hippocampal involvement in object 

recognition (Aggleton et al. 2005; Barker & Warburton 2011). More widely 

accepted is the role of the perirhinal cortex on the formation and maintenance of 

recognition memory in a number of sensory domains; visuo-spatial, and tactile 

(Suzuki et al. 1993).  Early gene activation imaging found a disassociation of the 

roles of the hippocampus and perirhinal cortex (Wan et al. 1999). C-fos was 

activated significantly more in the perirhinal cortex in the presence of novel 

objects, whereas the hippocampus, and specifically the CA1 region, had a greater 
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activation of c-fos in the presence of novel spatial displays. However the studies 

have found that the perirhinal cortex and hippocampus work together as part of 

singular circuit of memory to support object recognition memory (Mumby et al. 

2002; Barker & Warburton 2011). In fact, a study has shown that the perirhinal 

cortex is sufficient for maintenance of object recognition memory in short term; 

however hippocampal involvement in necessary for longer term object recognition 

memory (Clark et al. 2000). Beyond this, the prefrontal cortex has also been linked 

to the recognition of novel objects, with lesions to the mPFC leading to impaired 

recognition memory (Bachevalier & Mishkin 1986; Meunier et al. 1997; Xiang & 

Brown 2004). Thus the overall integrity of the medial temporal lobe is important for 

normal performance in recognition memory, both object and location. However, 

this is contradicted in a study where bi- and uni-lateral lesioning of the perirhinal 

cortex and mPFC lead to differing results; a functional interaction of the mPFC and 

perirhinal cortex was necessary for object-in-place memory but not for object 

recognition memory (Barker et al. 2007). 

Here, evidence of differential impairment in recognition memory via length 

of retention interval suggests long term memory circuits are specifically impaired in 

the Ehmt1D6cre/+ mice. As mentioned above, evidence suggests hippocampal 

integrity is necessary for long term object recognition memory, which perhaps 

suggests a role of the Ehmt1 in hippocampal functioning. Another study has found 

that antagonism of NMDA receptors in the perirhinal cortex specifically leads to an 

impairment in long term but not short term recognition memory (Barker et al. 

2006), similar to what is seen in the Ehmt1D6cre/+ mice. Interestingly, 

electrophysiological analysis of the Ehmt1D6/cre+ mice shows comparable results to 
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Ehmt1fl/+ mice that were administered ketamine, an NMDA antagonist; this was 

paired with a reduction of Grin1 protein expression. Regardless it appears that 

cortical systems of long term object memory are impaired in these mice.   

Ehmt1D6cre/+ mice show a specific impairment in object discrimination 

despite unknown, and possibly un-affected spatial memory performance. This is 

suggestive of a distinct role of Ehmt1 in the neural circuitry of the prefrontal and 

perirhinal cortices for object recognition memory, and unimpaired hippocampal 

functioning. However this is in direct contradiction to studies showing specific 

hippocampal dysfunction in the Ehmt1+/- mouse model.  Balemans et al. (2010) 

found reduced dendritic arborisations and mature spine density in CA1 pyramidal 

neurons, as well as reduced mEPSCs in these neurons. This was associated with 

memory deficits in both object recognition (at 10 and 80 minute retention interval 

but not 40 minutes) and in object location memory at 60 minute retention interval. 

This result is likely due to the different retention intervals used in each study; a 

shorter retention interval would be an interesting follow-up in assessing the role of 

temporal recency to object location memory in Ehmt1D6cre/+ mice. Likely, the 

arguably more vital role of the hippocampus in novel object location would reveal 

an impairment in the Ehmt1D6cre/+ much earlier than 24 hours.  However this may 

not be the case. There may also be supporting, parallel circuitry that remain 

unimpaired in our forebrain specific knockout of Ehmt1 compared to previous work 

in the full heterozygous mouse model. One such circuitry involves the striatum. In 

this knockout, Ehmt1 expression remains unaffected in striatal circuits, of which 

forms of navigational memory are reliant upon. 
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Studies have shown the striatum is important for processing landmark-

based spatial learning (Doeller et al. 2008), in which the location of an object is 

determined by the position of another object or landmark. This is in contrast to the 

role of the hippocampus in making boundary-based judgements on object 

locations. Arguably, both these types of judgements are made in parallel to 

determine object location recognition; it may be possible that an unimpaired 

striatum is sufficient to make object location discrimination. Interestingly a study 

found that diminishing dopamine everywhere bar the dorsal striatum was sufficient 

to rescue a number of behavioural phenotypes including spatial memory (Darvas 

and Palmiter 2009). It could very well be that Ehmt1 forebrain specific 

haploinsufficiency is insufficient to cause impairment in object location memory 

under the current paradigm used, and further probing of performance in 

navigational tasks such as the Morris water maze, or increasing demand on 

memory reserves may lead to impairment.  

In addition to deficits in declarative memory at 24-hours, the Ehmt1D6cre/+ 

mice also showed increased locomotor activity at key points throughout both 

memory tasks that seemed to co-occur with novelty, either environmental or 

object.  This contrasts with the specific locomotor activity task in chapter 2 where 

Ehmt1D6cre/+ mice animals showed no baseline differences in their locomotion. 

Furthermore, this also corresponds with previous behavioural experiments 

conducted in these mice, where they spent more time in the novel location during 

the Novel Place Preference task as well as moved a greater total distance within 

the outer zone of the open field task (Davis B, unpublished).  
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Ehmt1D6cre/+ mice also appear to have habituation deficits as a part of this 

novelty induced hyperactivity. Interestingly habituation is considered an important 

mechanism in learning and memory and is considered a form sensory gating and 

a basic form of learning (Schmid et al. 2014). Habituation has been attributed to 

various regions in the brain, notably the hippocampus and prefrontal cortex, where 

these regions are key to the speedy habituation to novel contexts in humans 

(Yamaguchi et al. 2004). Increasing novelty has been shown to lead to 

depreciating activation of hippocampal networks in fMRI in humans (Murty et al. 

2013), suggesting normal functioning hippocampus adjust to the presence of 

novelty and thus decreased vigilance in humans. Interestingly, patients suffering 

from schizophrenia show deficit in habituation in both the hippocampus and visual 

cortex, paired with an inability to differentiate old and novel images in the 

hippocampus (Williams et al. 2013). Thus a lack of habituation may be telling 

when coupled with previous sensorimotor gating deficits seen in Chapter 2.  
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3.5. Conclusion 

Ehmt1D6cre/+ mice show specific and highly delineated phenotypes in their 

learning and memory. The forebrain specific knockout mouse model shows 

impairment in longer term recognition memory and not in short term object 

recognition memory; although the spread of the data may indicate some 

degradation of object memory soon after acquisition.  Moreover, Ehmt1D6cre/+ mice 

do not show a discernible deficit in longer term object location memory however a 

shorter retention interval is necessary. This dissociation differs to that seen in the 

full heterozygous knockout mouse model and allows for delineation in the possible 

neural substrates affected by the haploinsufficiency of Ehmt1 in the forebrain. This 

mouse model also shows an interesting novelty induced hyperactivity not seen in 

other baseline activity tasks such as the LMA. This suggests impaired learning of 

context as well possible deficits in forms of sensory filtering. 
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 Ehmt1 in Adult Hippocampal Chapter 4

Neurogenesis 

4.1. Introduction 

  Previously believed to be restricted to development, the creation of neurons 

starts around embryonic day 8 and is now known to persist into adulthood in 

humans  (Ehninger & Kempermann 2008a; Ming & Song 2011; Kempermann et al. 

2018). However, adult neurogenesis is canonically restricted to two main regions 

of the brain; the sub-ventricular zone, and the sub-granular zone (Ming & Song 

2011). The former gives rise to neuroblasts that radially migrate to the olfactory 

bulb and differentiate into interneurons (Yamaguchi et al. 2000; Lledo et al. 2008; 

Ming & Song 2011). This neurogenic region is far more involved in species in 

which olfaction is a more notable and important aspect in their behaviour, such as 

rodents. In fact, neurogenesis in the olfactory bulb is hardly detectable in the 

relatively less development olfactory system of humans (Bergmann et al. 2015). In 

contrast, the subgranular zone of the hippocampus is widely studied in human 

adult neurogenesis due to its importance in memory and executive functioning 

(Eriksson et al. 1998; Bergmann et al. 2015; Kempermann et al. 2018).  

4.1.1. Functional Neuroanatomy of the Dentate Gyrus 

Adult hippocampal neurogenesis takes place specifically in the subgranular 

zone of the dentate gyrus. The subgranular zone generates granule cells, the key 

excitatory neuron of the dentate gyrus (David & Pierre 2006; Ehninger & 

Kempermann 2008b; Ehninger & Kempermann 2008a). These cells migrate 

upward from the subgranular zone into the granule cell layer and form dendritic 

arbors that project to the molecular layer of the dentate. The molecular layer also 
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contains local interneurons and projections coming from layer II of the entorhinal 

cortex (David & Pierre 2006; Amaral et al. 2007). In fact the dentate gyrus is the 

major connection point of the unidirectional connections from the entorhinal cortex 

to the hippocampus known as the perforant pathway (Suzuki et al. 1993). The 

dentate gyrus must therefore play an important role in processing the sensory 

information from the cortex in memory formation (Kesner 2007). 

The dentate gyrus is subdivided into the functionally distinct suprapyramidal 

and infrapyramidal blades. The suprapyramidal blade consists of region of the 

granule cell layer that lies between the CA3 and CA1 fields, whilst the 

infrapyramidal blade is found opposite (Gallitano et al. 2016). The hippocampus 

can also be specified through its dorso-ventral and septo-temporal axes. 

Generally, the anterior (dorsal or septal) hippocampus is preferentially involved in 

learning and memory, whilst the posterior (ventral or temporal) hippocampus is 

involved inaffective behaviours including anxiety (Snyder et al. 2009; Jinno 2011). 

Higher levels of new born cells in adulthood are found in anterior hippocampus 

and specifically in the infrapyramidal blade compared to the posterior 

hippocampus and suprapyramidal blade of the dentate gyrus (Snyder et al. 2009). 

The blades also show distinct involvement in behaviour, with the suprapyramidal 

blade new born neurons are more involved in spatial learning, pattern separation 

and are preferentially targeted by chronic stress, whereas the infrapyramidal blade 

has not been found to be involved in many hippocampal related behaviours and 

has generally lower experience related activity  (Snyder et al. 2009; Schmidt et al. 

2012; Lieberwirth et al. 2016; Alves et al. 2018).  All evidence points towards a 

remarkably heterogeneous dentate gyrus neuroanatomical structure and 



83 
 

connectivity in which new born granule cells play important and region specific 

roles.  

4.1.2. Epigenetics and Adult hippocampal neurogenesis 

Various genetic and epigenetic mechanisms have been associated with adult 

hippocampal neurogenesis and its regulation. These include transcription factors 

such as Pax6, Sox, and bHLH factors (Hodge & Hevner 2011), histone 

deactylases including HDAC1, and histone methyltranferases such as Ehmt1, 

G9a, and Mll (Lunyak & Rosenfeld 2005; Sun et al. 2011; Levitt & Veenstra-

VanderWeele 2015; Hsieh & Zhao 2016; Yao et al. 2016). It is accepted that a 

highly complex cross talk of these intrinsic factors, along with extrinsic 

environmental factors, control neurogenesis through the modulation of the different 

stages of the process. The cell type progression of neural stem cells to mature 

granule cells involves highly regulated changes in the expression of these intrinsic 

factors and therefore a perturbation in the expression of one of these factors would 

thus lead to an impairment in the process of adult hippocampal neurogenesis.   

4.1.3. Behavioural impact of adult hippocampal neurogenesis 

 In the previous chapters, Ehmt1D6cre/+ mice showed a specific impairment 

memory and sensorimotor gating, suggestive of an impairment in hippocampal 

circuitry involved in these two processes. Adult neurogenesis has been linked to 

both of these phenotypes and thus impairment of this particular process may play 

a role in the pathology of the haploinsufficiency of Ehmt1.  

As previously mentioned, adult hippocampal neurogenesis is involved in the 

formation of memory. It has been confidently attributed to spatial memory, in 

object location memory, and navigational spatial memory (Snyder et al. 2005; 
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Snyder et al. 2012; Lieberwirth et al. 2016). In fact inhibiting the neurogenesis 

process through irradiation impairs the performance of rats in the Morris water 

maze task (Snyder et al. 2005). It is also attributed to the processing of object 

recognition memory, although this is less clear. Studies suggest hippocampal 

integrity and adult hippocampal neurogenesis is involved with recognition memory 

in a temporally specific manner (Brown & Aggleton 2001). 

An important memory formation process that involves neurogenesis is 

pattern separation. This is refers to the act of separating distinct but similar 

memory representations. Recollecting memory depends heavily on pattern 

separation when episodic memory representations bear heavy similarity to one 

another. The hippocampus, and specifically dentate gyrus, is considered a 

gateway for pivotal sensory information for the accurate formation of memories 

(Kesner 2007; Schmidt et al. 2012). In fact adult born granule cells carry out 

pattern separation and evidence shows a preferential incorporation of recently 

born adult granule cells for pattern separation in the mouse (Nakashiba et al. 

2012). Several experiments have shown adult hipoocampal neurogenesis 

impacting discrimination power in pattern separation behavioural paradigms in 

rodents models, including a Ehmt1+/- mouse model (Benevento et al. 2017; França 

et al. 2017).   

  Neurogenesis has also been associated with sensorimotor gating, and 

specifically pre-pulse inhibition (PPI), its operational measure. Multiple animal 

models of developmental genes demonstrate a co-morbidity of neurogenesis and 

PPI deficits including DISC1, and BDNF (Clapcote et al. 2007; Manning & van den 

Buuse 2013; Osumi et al. 2015). Due to these associative findings, steps have 
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been taken to understand the role of neurogenesis in sensorimotor gating. 

Inhibition of neurogenesis during a critical postnatal period of mouse development 

leads to PPI deficits in a mouse model (Osumi et al. 2015).  This attribution of the 

functional consequence of neurogenesis may also be region specific with evidence 

that PPI regulation takes place in the ventral hippocampus (Swerdlow et al. 2004; 

Snyder et al. 2009), and perhaps neurogenesis in this region are involved in this 

regulation.  

4.1.4. Neurogenesis in neurodevelopmental disorders 

It is not a surprise that adult hippocampal neurogenesis has been implicated 

in a number of neurodevelopmental (Chen et al. 2014; Gigek et al. 2015; Levitt & 

Veenstra-VanderWeele 2015; Allegra & Caleo 2017; Gilbert & Man 2017) , 

psychiatric (Osumi et al. 2015; Kang et al. 2016), and neurodegenerative 

disorders. A large number of autism genes have been implicated in neurogenesis 

including LIS1, MECP2, FMR1,and PTEN (Tsujimura et al. 2009; Levitt & 

Veenstra-VanderWeele 2015; Gilbert & Man 2017). Many of these genes are also 

implicated in various other neurodevelopmental disorders including intellectual 

disability and developmental delay. This is suggestive of a common group of 

genes involved in common endophenotypes in neurodevelopmental disorders. 

Adult neurogenesis has also been implicated in psychiatric disorders such as 

schizophrenia and depression. There is vast literature implicating impaired 

neurogenesis in depression with mechanistic and drug therapy studies. Various 

antidepressants stimulate adult hippocampal neurogenesis and enact 

neurogenesis dependant behavioural effects, including imipramine and fluoxetine 

(Sahay & Hen 2007; Levitt & Veenstra-VanderWeele 2015). Stress resiliency and 
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anxiety, aspects of depression, are also heavily associated with adult 

neurogenesis (Snyder et al. 2009; Alves et al. 2018).  

Due to the association of adult hippocampal neurogenesis to previously identified 

behavioural phenotypes in Ehmt1D6cre/+ mice, as well as the identified role of 

Ehmt1/G9a on the progression of cells through the neurogenesis process, it is 

possible that haploinsufficiency of Ehmt1 causes an impairment in adult 

hippocampal neurogenesis. This chapter will investigate the proliferative and 

neurogenic capacity of Ehmt1D6cre/+ mice in vivo.   

4.1.5. Aims 

 To assess the effect of Ehmt1 haploinsufficiency on adult hippocampal 

neurogenesis in vivo through both short and long BrdU pulse-chase 

experiment paradigms.  
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4.2. Methodology 

4.2.1. Animals 

Experimental animals were generated through breeding Ehmt1fl/fl mice 

with D6-Cre heterozygous mice leading to forebrain specific deletion mouse 

model (Ehmt1D6cre/+). Ehmt1fl/+ littermates were used as WT controls.  Mixed 

genotype litters were housed together in groups of 3-5 animals per cage. 

Both female and male mice were used for immunohistochemistry in this 

chapter.  All animals were housed under standard 12hr light – dark cycles, in 

temperature and humidity controlled environments. Cohort used for short 

term proliferation consisted of 9 Ehmt1D6cre/+ and 11 Ehmt1flp/+ mice. The 

cohort used for long term survival single BrdU-pulse chase paradigm 

consisted of 8 Ehmt1D6cre/+ and 9 Ehmt1flp/+ mice. The initial pilot BrdU cohort 

consisted of 3 animals for each genotype. 

 

4.2.2. BrdU injection and Perfusion 

BrdU was administered at 8 weeks (12 weeks for the pilot experiment) 

of age. Mice were given an intraperitoneal injection of 50mg/kg BrdU (Sigma-

Aldrich, B5002) in PBS (10mg/ml). Tissue was collected at either 4 hours 

after injection or 4 weeks after injection for the different paradigms. Mice 

were terminally anaesthetised with an intraperitoneal injection of Euthatal 

(200mg/ml, Boehringer Ingelheim) at 150mg/kg and transcardially perfused. 

First the thorax was opened and the ribcage separated to expose the heart. 

A perfusion cannula was then inserted into the right ventricle and a small 

puncture was introduced into the left atrium. An infusion of phosphate-
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buffered saline (PBS) was first introduced into the circulatory system to flush 

out blood before infusing with 4% Paraformaldehyde( Sigma-Aldrich, P6148) 

in PBS. Brains were then dissected out whole and placed in 4% PFA in PBS 

for fixation until ready for sectioning; clipping of tails were taken and placed 

in -20°C degrees for genotyping. 

 

4.2.3. Tissue Processing 

For preparation for sectioning, the brains were removed from the 

fixative and submerged into 30% sucrose solution until the samples had 

“sunk”, indicating enough absorption of solution for cryoprotection. The 

samples were then positioned in OCT (Tissue-Tek) in correct orientation for 

coronal sectioning and frozen and stored in -80C to be sectioned. Samples 

were sectioned into 40um sections using a cryostat, and sections were 

collected free-floating into 12 well plates filled with ethylene-glycol 

cryoprotectant. Sections were stored at -20°C in cryoprotectant until used for 

immunohistochemistry. 

4.2.4. Immunohistochemistry 

Prior to carrying out immunohistochemistry, the tissue sections were 

first washed 3 x 30 minutes in PBS to wash out the cryoprotectant.  

Appropriate wells were selected for each sample for every 6th section across 

the length of the dentate gyrus (every 10th in the pilot study). To allow for 

anti-BrdU antibody to access DNA incorporated BrdU, a DNA denaturing 

step was required. Tissues were incubated in pre-warmed 2M HCl for 30 

minutes at 37C. Sections were then blocked in 3% donkey serum in 0.1% 
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PBST for 2 hours at room temperature. Sections were subsequently 

incubated in primary antibodies diluted in 0.2% donkey serum in 0.1% PBST 

overnight at 4°C (mouse anti-BrdU BD Biosciences 1:200, rabbit anti-Ki67 

ABCAM 1:1000 / rabbit anti-NeuN ABCAM 1:500) (Table B. 1).   

The next day, sections were washed 3 x 30 minutes in 0.2% donkey 

serum in 0.1% PBST before being incubated in the secondary antibodies 

diluted in 0.2% donkey serum in 0.1% PBST for 2 hours in the dark at room 

temperature (Alexa Fluor® 488 Donkey α-mouse; Alexa Fluor® 647 Donkey 

α-rabbit; 1:1000) (Table B. 1). Sections were then washed once in PBS 

before nuclei were stained with DAPI (0.5 μg/ml, 1:200) in PBS for 5 minutes. 

Sections were washed once more in PBS mounting. Tissue sections were 

carefully mounted onto microscope slides and sealed with coverslips using 

Flouromount G.  

 

4.2.1. Imaging and Counting  

Tissue sections mounted onto microscope slides were imaged on an 

upright Leica DM600b fluorescence microscope. The dentate gyrus was tile 

scan imaged and images stitched together. The micrographs were then used 

for cells counts in ImageJ. Using the Cell counter plugin, total DAPI cells 

positive for BrdU or Ki67 were counted in the short pulse proliferation 

paradigm. In the survival pulse-chase paradigm, total numbers of DAPI cells 

positive for BrdU in the DG was counted and proportion of BrdU+ cells 

expressing NeuN were analysed.  
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4.2.2. Statistical Analysis 

All data were analysed using SPSS 23 (SPSS, USA). When analysing 

group differences in proliferation, independent two tailed t-tests were 

performed. Two-way ANOVA was used when analysing group differences 

between the proliferation and survival paradigms. A between-subject factors 

of GENOTYPE, and PROTOCOL was used.  
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4.3. Results 

4.3.1. Pilot study to evaluate proliferation in vivo 

A pilot study was first conducted on a smaller sample of 3 mice per 

genotype. Mice were injected with BrdU and brains collected 4 hours after 

injection. This single short single pulse and chase of BrdU will allow for 

analysis of adult hippocampal neurogenesis, and specifically the 

proliferation levels in the mice. Tissue was stained for both BrdU and Ki67, 

an intracellular marker for proliferation (Figure 4.1).   

 

Figure 4.1 In vivo proliferation assay 4 hours following injection with BrdU. Brains were 

sectioned across the length of the dentate gyrus and stained for proliferative markers BrdU and Ki67. 
DAPI cells positive for BrdU and Ki67 was manually counted.   

The initial pilot study showed no significant differences between BrdU 

and Ki67 labelled cells in Ehmt1D6cre/+ and Ehmt1flp/+ mice. However, this was 

unsurprising given the low “N”. Nevertheless, Ehmt1D6cre/+ mice had overall 

larger number of cells stained for either marker.  Ehmt1flp/+ mice had an 

average of 136 cells positive for BrdU (Figure 4.2), compared to Ehmt1D6cre/+ 

mice with 146.7 cells (t4= -1.543, p= 0.198) (Figure 4.4A).  
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Figure 4.2 BrdU positive cells 4 hours after injection. Sections were immunolabeled for BrdU which 
incorporates into DNA during the S phase of a cell’s cycle. A) Ehmt1

flp/+
 show a robust incorporation of 

BrdU in the dentate gyrus. B) Ehmt1
D6cre/+

 dentate gyrus shows a nonsignificant increase in number of 

cells expressing BrdU. 

 

Ehmt1D6cre/+ also had a higher mean number of Ki67 positive cells (Figure 

4.3) at 318.3, whilst Ehmt1flp/+ mice had an average of 269 cells positive 

for Ki67 (t4= -1.464, p= 0.217) (Figure 4.4B). 
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Figure 4.3 Ki67 positive cells 4 hours after injection. Sections were labelled for Ki67, an 

endogenous marker for proliferation, expressed during most of the mitotic phase of the cell cycle. A) 
Ehmt1

flp/+
 showed positive expression of Ki67 in cells in the subgranular zone of the dentate gyrus. B) 

Ehmt1
D6cre/+

 subgranular zone shows a robust but nonsignificant increase in the mean number of cells 
expressing Ki67 compared to Ehmt1

flp/+
. 
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Figure 4.4in vivo Proliferation Pilot study. Numbers of BrdU and Ki67 positive cells across the 
length of the dentate gyrus in 5 sections were counted. A) There was no significant difference in BrdU 
positive cells between Ehmt1

flp/+
 and Ehmt1

D6cre/+
 mice. B) Ehmt1

D6cre/+
 cells had a higher number of 

cells expressing the proliferative marker Ki67 compared to Ehmt1
flp/+

, but this was not significant. 

Consequently, the pilot study proved the experiment to be 

methodologically valid to measure proliferation differences between 

genotypes. The experiment was then repeated with a larger sample size 

and increased section sampling for more accuracy. A separate longer 

pulse-chase experimental interval of 4 weeks after injection was also 

implemented to analyse the progression of these cells in the dentate 

gyrus.  

4.3.2. Increased in vivo proliferation in Ehmt1D6cre/+ mice  

Sections from samples collected after 4 hours of injection of BrdU 

showed an increase in proliferation. The number of BrdU+ cells was 

significantly increased in the Ehmt1D6cre/+ brains compared to the 

Ehmt1flp/+ samples (t18= -6.198, p <0.001) with a mean number of 465 

BrdU+ cells in the Ehmt1D6cre/+ and 360 cells in the Ehmt1flp/+ brains 
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(Figure 4.5A).  This increase was also seen in the number of positive 

Ki67+ cells (t18= -5.505, p<0.001) with Ehmt1D6cre/+ sections having an 

average of 714 Ki67+ cells compared to Ehmt1flp/+ sections, with a lesser 

595 cells (Figure 4.5B). 

 

Figure 4.5 in vivo Proliferation main study Ehmt1
D6cre/+

 dentate gyrus had increased proliferation 
compared to Ehmt1

flp/+
. A) Ehmt1

D6cre/+
 mice has a higher number of BrdU

+
 cells compared to 

Ehmt1
flp/+

 mice. B) Ehmt1
D6cre/+

 mice has a higher number of the proliferative marker KI67
+
 cells 

compared to Ehmt1
flp/+

 mice. 

4.3.3. Ehmt1D6cre/+ does not affect adult hippocampal 

neurogenesis 

The longer pulse-chase paradigm involved a single pulse injection of 

BrdU, followed by a chase period of 4 weeks. After 4 weeks, tissue was 

collected.  Ehmt1D6cre/+ and Ehmt1flp/+ brains had comparable number of 

Brdu+ cells in the dentate gyrus with an average of 251 and 253 BrdU 

retaining cells respectively (t15= 0.148, 0.885) (Figure 4.6A). To analyse the 

proportion of BrdU cells that have matured into neurons, sections were co-

immunolabelled with NeuN, a neuronal marker first expressed in early 

mature neurons (Figure 4.7). The number of BrdU+ positive cells that were 
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also NeuN+ was counted and a ratio calculated. Genotype did not have an 

impact in the proportion of BrdU+/NeuN+ cells in the mice’s dentate gyri, with 

Ehmt1D6cre/+ and Ehmt1flp/+ mice having similar proportion of colocalised 

staining for the markers (t15= -0.507, 0.623) (Figure 4.6B). 

 

Figure 4.6 4 week single pulse-chase BrdU assay. After 4 week chase period, brains were 

sectioned and for BrdU and NeuN, and the ratios NeuN neuronal marker was compared to total 
number of BrdU

+
 cells stained. A) Ehmt1D6cre/+ and Ehmt1

flp/+
 mice had comparable number of BrdU 

retaining cells 4 weeks after injection. B) Ehmt1
D6cre/+

 and Ehmt1
flp/+

 BrdU
+ 

cells in the dentate gyrus 

had a comparable proportion co-localising with NeuN.  
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Figure 4.7 Example of BrdU/NeuN immunolabeling. Cells were stained for BrdU and NeuN, and 

ratio of BrdU positive cells that are NeuN positive were counted to analyse the number of cells that 
incorportated BrdU that matured into neurons during the 4 week chase period.  

 



98 
 

4.3.4. No differences in number of BrdU retaining cells 

between Ehmt1D6cre/+ and Ehmt1flp/+ mice  

In order to analyse the effects of genotype on the survival of BrdU 

positive cells, two-way ANOVA was utilised. Here “short” is used to refer to 

the 4 hour long pulse-chase, whereas “long” refers to the 4 week long pulse-

chase BrdU paradigm. Comparing the number of the BrdU+ cells between the 

two pulse chase durations can allow us to infer whether Ehmt1 may affect 

the survival rate of newborn cells. This analysis showed a statistically 

significant interaction between genotype of the mice and pulse-chase 

duration for number of BrdU retaining cells (F1, 33 = 19.83, p < 0.001, partial 

η2 = 0.375), thus one of the variables is impacted by the other variable. Due 

to the interaction, simple main effects were assessed for each variable at 

each level. 

When analysing the simple main effects of each genotype across each 

chase period there is a  statistical difference in the mean number of BrdU 

retaining cells within both Ehmt1D6cre/+ mice (F1, 33 = 149.791, p < 0.001, 

partial η2 = 0.819) and Ehmt1flp/+ mice (F1, 33 = 44.534, p < 0.001, partial η2 = 

0.574) taken at 4 hours and 4 weeks after injection (Figure 4.8).  

Next, the simple main effects of chase-pulse duration were analysed. Here 

the genotype of the mice had a significant effect on mean number of BrdU 

retaining cells in samples taken 4 hours after injection (F1,33  = 41.454, p < 

0.001, partial η2 = 0.557), with a statically significance difference in the mean 

of BrdU+ cells between Ehmt1D6cre/+ and Ehmt1flp/+ . This difference in the 

mean is not recapitulated at 4 weeks after injection (F1,33 = 0.012, p = 0.913), 
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and the number of BrdU retaining cells was comparable between genotypes 

after this pulse-chase duration (Figure 4.8). 

 

Figure 4.8 Differences in number BrdU retaining cells in short and long pulse-chase paradigms. 

When analysing the mean number of BrdU retaining cells in the dentate gyrus of Ehmt1
D6cre/+

 and 
Ehmt1

flp/+
 mice  either 4 hours or 4 weeks after injection, we see there is a significant decrease within 

genotype in number of BrdU
+
 cells with a long 4 week chase period, compared to the short 4 hours. 

There is a difference between genotype mean number of BrdU retaining cells during the short pulse-
chase duration, but this difference is not seen in samples from the long pulse-chase paradigm.   
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4.4. Discussion  

Here, I examined whether haploinsufficiency of Ehmt1 altered adult 

neurogenesis in the hippocampus in vivo. Ehmt1D6cre/+ mice showed a 

significant increase in new cell production in the hippocampus, with an 

increase in the proportion of cells labelled for both BrdU and Ki67 compared 

to Ehmt1flp/+ control hippocampus following a short 4-hour pulse-chase BrdU 

paradigm. In contrast, a longer 4-week pulse-chase BrdU experiment 

revealed no difference in the proportion of BrdU+ retaining cells and the 

proportion of NeuN+ (a neuronal marker) cells, nor in the proportion of BrdU 

retaining cells expressing NeuN, between Ehmt1D6cre/+ and control mice. 

Together, these data suggest that although there is an increase in 

proliferation in Ehmt1D6cre/+ mice, but that this does not necessarily lead to 

increased neurogenesis in vivo. 

An increase in the number BrdU+ cells and cells positive for the 

proliferation marker Ki67 in Ehmt1D6cre/+ mice relative to controls following a 

4-hour BrdU chase experiment is indicative of greater proliferation. Overall, 

there was a significant reduction in number of BrdU retaining cells in samples 

that had a 4 week chase period compared to samples taken 4 hours after 

BrdU pulse.  The number of BrdU+ cells decrease rapidly over time and 

stabilises by 4 weeks in the mouse, with the number of BrdU+ cells at 4 

weeks comparable to the number of BrdU retaining cells at 11 months after 

last injection (Kempermann et al. 2003). This general reduction in BrdU+ cells 

between the early and 4 week time-points is expected during the progression 

of neurogenesis. However, at this latter stage any difference between 

Ehmt1D6cre/+ and control mice in the number of BrdU+ cells had dissapeared. 
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Therefore, whilst Ehmt1D6cre/+ mice have an increased proliferative activity in 

the adult dentate gyrus, this does not necessarily lead to increased adult 

hippocampal neurogenesis. Moreover, evidence suggests that these new 

born neurons are electrophysiologically indistinguishable from older neurons 

(van Praag et al. 2002). Therefore probing survival of BrdU-positive cells 

after a 4 week chase period provides an accurate assessment of the 

neurogenic phenotype of the Ehmt1D6cre/+ mouse model.  

In this chapter I examined adult hippocampal neurogenesis as a possible 

neural mechanism underlying the sensorimotor gating and memory deficits 

seen in earlier chapters, as well as the cognitive deficits found in other 

Ehmt1 haploinsufficiency mouse models. The results presented in this 

chapter do not directly suggest an impairment in number of neurons born as 

a cause for the behavioural phenotypes outlined in previous chapters. 

Nevertheless I did not probe the impact, phenotype, and functioning of 

neurons born in Ehmt1D6cre/+, therefore it is possible that other factors such 

as the incorporation and connectivity of these neurons are impacted by 

Ehmt1 haploinsufficiency.  

A recent study found an improved pattern separation in Ehmt1 

haploinsufficient mouse model compared to wildtype. This difference was 

linked to increased adult hippocampal neurogenesis in the model (Benevento 

et al. 2017). However, this study probed proliferation only and therefore there 

is no evidence these increased proliferation lead to increased neurogenesis.  

This is due to various factors including BrdU+ cells entering gliogenesis, or 

undergoing apoptosis during the process. Here the phenotype of increased 
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proliferation but not neurogenesis could be due to a preference for 

gliogenesis or vascular changes. However because there is no difference in 

raw BrdU+ cell numbers after 4 week chase period, it is more credible that 

the increased number of proliferative cells in the short single pulse-chase 

experiment are lost through cell death by 4 weeks’ time. Therefore this 

imbalance seen in proliferation may be homeostatically restored. Or 

specifically, the changes are due to specific impairment in the regulatory 

systems involved in proliferation, whilst the regulation of cells leaving 

proliferation and entering the differentiation process in neurogenesis remains 

intact. However, a maintained increase in proliferation and subsequent loss 

of these new born cells marked with BrdU may lead to deteriorated 

neurogenic capacity in older age, with reduction in the proliferative niche. 

Assessing the proliferative and neurogenic capacity of older Ehmt1D6cre/+ 

mice will help further understanding of Ehmt1 on hippocampal neurogenesis 

across the lifetime.  

These findings are interesting in regards to the behavioural findings in the 

previous chapters. Memory phenotypes and neurogenesis phenotypes often 

coincide in literature. Often, it is a reduction of new born neurons that are 

linked to learning and memory deficits. Here I show that the long term object 

memory deficits are associated with a transient increase in proliferation in the 

dentate gyrus. This is suggestive of the a pleiotropic role of Ehmt1, and 

perhaps linking not just a deficit in new born neurons but rather homeostasis 

of hippocampal neurogenesis to normal cognitive functioning. 
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This imbalance in proliferation is likely due to the tight epigenetic 

regulation of proliferation and differentiation markers which have been 

associated with Ehmt1/G9a (Lunyak & Rosenfeld 2005; Fiszbein et al. 2016; 

Deimling et al. 2017), along with numerous other epigenetic regulators. This 

impairment of regulation of cell cycle markers, regardless of directionality, 

has been attributed as a possible model for neurodevelopmental disorders 

and autism (Chen et al. 2014; Gigek et al. 2015).  Genes including FMR1 

and MECP2, associated with Fragile X intellectual disability and Rett 

Syndrome respectively, have been found to lead to increased proliferation 

but stunted neurogenesis (Smrt et al. 2007; Tsujimura et al. 2009; 

Peschansky et al. 2016). NRXN1, associated with autism (Onay et al. 2016), 

schizophrenia (Kirov et al. 2009), and developmental delay (Zeng et al. 

2013), impacted differentiation of neural precursors.   

To fully understand the impact of Ehmt1D6cre/+ on adult hippocampal 

neurogenesis, further probing is needed. Although there is no difference in 

base neurogenesis between the genotypes, it would be interesting to see 

how that fares when comparing BrdU+ cells in the suprapyramidal versus 

infrapyramidal blades, or anterior versus posterior hippocampus. This may 

delineate in a manner that would have functional consequences to explain 

the behavioural and cognitive deficits.  The increase in proliferation may be 

due to either a general misregulation of proliferation across all proliferative 

neural precursor cell types or in a specific increase in one cell type during the 

process of neurogenesis.  
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4.5. Conclusions 

This chapter focussed on an in vivo analysis of Ehmt1’s role in 

proliferation and neurogenesis of adult hippocampal cells.  Ehmt1D6cre/+   

mice appear to have a temporary neurogenesis phenotype. Ehmt1D6cre/+ 

hippocampi have an increased proliferative rate compared to Ehmt1flp/+ cells. 

This is seen in an increase in BrdU and Ki67 positive cells in the sub-

granular zone of the dentate gyrus. When analysing survival of proliferative 

cells 4 weeks after incorporation of BrdU, this increased number of BrdU 

positive cells are no longer found. In fact Ehmt1D6cre/+ has a comparable 

levels of BrdU positive cells in the dentate gyrus 4 weeks following BrdU 

injection. The mice also had comparable level of BrdU positive cells co-

labelling for NeuN, a marker for mature neurons.  This apparent lack of 

survival of the larger number of cells labelled early on in the neurogenic track 

is suggestive of possible increased cell death, or impairment in the process 

of proliferation, whilst differentiation remains normal.  
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 In Vitro Analysis of Hippocampal Chapter 5

cells 

5.1. Introduction 

In chapter 4, I analysed the proliferation and neurogenesis of Ehmt1D6cre/+ 

mice in vivo. These findings showed an apparent increase in proliferation in 

number of labelled cells after a 4 hour short pulse BrdU experiment in 

Ehmt1D6cre/+ mice compared to Ehmt1flp/+. This increase in labelled cells is not 

found in mice taken 1 month after initial injection. In order to more 

extensively probe the phenotype of the hippocampal cells, this chapter 

focusses on an in vitro analysis. 

Using in vitro methods for cell culture allows for a much simpler 

analysis of cell types compared to in vivo. Here we can further probe the role 

of Ehmt1 on the proliferation, differentiation and survival of postnatal 

hippocampal neural precursor cells. Hippocampal cells are isolated at P7, 

allowing for the extraction and analysis of NPCs that are closest to the 

behaviour adult hippocampal NPCs whilst maintaining a high enough yield 

for experimentation. In this chapter the in vitro methods allow us to analyse 

the effect of Ehmt1 deficiency on the cell type ratios and the neurogenic 

developmental track.  

It is first necessary to determine whether this proliferation phenotype 

can be validated in vitro.  Proliferation assays using cell synthesis 

incorporation of a label, e.g. BrdU, in vitro is a highly accurate and reliable 

method for extrapolating relative proliferation rates in cell cultures. This 
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process is similar to the method in vivo and allows for reliable comparison 

across the methods.  

 

5.1.1. Ehmt1 and G9a in Cellular fate specificity 

It is generally accepted that increased histone methylation and 

repressive marks are vital for differentiation and lineage specificity (Wu & 

Sun 2006; Jobe & Zhao 2017). The histone modification H3K9me2, generally 

regarded as transcription silencer, plays a role in this cellular commitment. It 

has been linked to the differentiation and specification of cells in blood, brain, 

and germline (Chen et al. 2012; Zylicz et al. 2015; Fiszbein et al. 2016; 

Olsen et al. 2016; Deimling et al. 2017).  

Ehmt1 is necessary for normal early development, with homozygous 

knockout of the gene leading to embryonic lethality, suggesting a role of this 

gene in the progression and specification of cells (Tachibana et al. 2005). 

Furthermore, knocking out the related protein G9a, leads to impaired retinoic 

acid induced differentiation in vitro (Tachibana et al. 2002; Feldman et al. 

2006; Epsztejn-Litman et al. 2008).  This is due to the reduction in H3k9me2 

marks necessary for prolonged repression of the chromatin in lineage 

specification and differentiation; G9a, and more specifically the E10 included 

isoform of G9a is necessary to promote neuronal differentiation and 

reinforces cellular specificity and commitment (Fiszbein et al. 2016). This is 

further exemplified in the fact the Ehmt1, and specifically its ability to 

recognise and bind to H3k9 methylation, was found to be important for 

silencing of genes involved in pluripotency in response to retinoic acid (Nan 
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Liu et al. 2015).  This evidence shows that Ehmt1 plays a significant role in 

the differentiation of NPCs into neurons.   

Some of Ehmt1/G9a’s role in fate specification occurs with the 

recruitment of the proteins to the RE1-silencing transcription factor (REST) 

complex (Roopra et al. 2004; Chen et al. 2012). REST is necessary for the 

coordinating temporal development of the cortex (Ballas et al. 2005; Lunyak 

& Rosenfeld 2005), and deletion of REST causes impaired repression of 

pluripotent genes, and is specifically important for the maintenance and 

subsequent differentiation of type 1 radial glial cells (Soldati et al. 2012). 

 

5.1.2. Neuronal differentiation in hippocampal neurogenesis 

In the adult mouse hippocampus, there are a number of cell types 

within the neurogenic niche of the subgranular zone of the dentate gyrus 

which together maintains normal levels of adult neurogenesis (Ehninger & 

Kempermann 2008a; Ehninger & Kempermann 2008b). The first cell type in 

the neurogenic development track is the type 1 precursor cell. These cells, 

also referred to as radial glial cells due to their characteristic morphology, are 

the beginning of adult neurogenesis in the hippocampus (Yamaguchi et al. 

2000; Ehninger & Kempermann 2008a; Berg et al. 2018). Type 1 precursor 

cells maintain a degree of stem cell abilities in which they self-renew allowing 

for the maintenance of the neurogenic capacity of the hippocampus 

(Kriegstein & Alvarez-Buylla 2009). Type 1 cells express a number of 

markers including Glial fibrillary acidic protein (GFAP), Nestin, and sex 

determining region y-box 2(Sox2) (Yamaguchi et al. 2000; Kriegstein & 
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Alvarez-Buylla 2009; Kempermann 2016). These cells are also generally 

quiescent, and divide rather limitedly. However, they are able to 

asymmetrically divide to give rise to type 2 intermediate precursor cells that 

are highly mitotic (Filippov et al. 2003; Fukuda et al. 2003; Steiner et al. 

2006).  

Type 2 intermediate precursor cells can be further delineated to type 

2a, and type 2b cells. Type 2a cells maintain expression of the glial marker 

GFAP but have lost morphological characteristics of type 1 cells 

(Kempermann et al. 2018). This sets them apart from type 2b precursor cells 

in which GFAP is no longer expressed and instead neuron markers including 

neuronal migration protein doublecortin (DCX) and transcription factor 

Neurogenic differentiation 1 (NeuroD1) are expressed alongside Nestin 

(Steiner et al. 2006; Kempermann et al. 2018). In this cell type the 

expression of these markers provide evidence of an increased neuronal 

specificity not seen in type 1 and type 2a cells.  These cells can further 

asymmetrically divide to type 3 cells (Brandt et al. 2003; Brown et al. 2003).  

Type 3 cells are considered low proliferative and lose expression of 

Nestin but maintain expression of neuron-specific markers DCX and NeuroD 

among others (Brandt et al. 2003; Brown et al. 2003). These cells go through 

cell cycle exit and become newly postmitotic neurons (Brandt et al. 2003; 

Jessberger et al. 2005; Kempermann et al. 2018). These new born neurons 

express DCX and NeuN among other neuronal markers and go through an 

early phase of maturation and survival before becoming incorporated as 

mature neurons in the dentate gyrus (Ehninger & Kempermann 2008a).  
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The process of advancing through precursor cells types is necessary 

for the formation of neurons in adult hippocampal neurogenesis and it is this 

process has been found to go awry in a number of neurological disorders 

including intellectual disabilities such as Rett and Fragile X syndromes 

(Pons-Espinal et al. 2013; Allegra & Caleo 2017). 

 There is a large scientific literature linking functions of various genes 

linked to intellectual disabilities to the process of adult hippocampal 

neurogenesis. Deficiency of Ophn-1, linked to X-linked intellectual disability, 

leads to a significant decrease in survival and maturation of new born 

neurons in the hippocampus (Khelfaoui et al. 2007; Allegra et al. 2017). 

FMR4, a long on-coding RNA impacted in Fragile X syndrome, promotes 

neural precursor proliferation and impairment could therefore contribute to 

the intellectual disability phenotype of Fragile X syndrome (Peschansky et al. 

2016). MeCP2, a gene in which mutations within it is known to cause Rett 

syndrome, has been linked to both cellular specification of neural precursor 

cells (Tsujimura et al. 2009), as well as the neuronal maturation of new born 

post-mitotic neurons (Kishi & Macklis 2004; Smrt et al. 2007).  

 Due to the known role of Ehmt1/G9a on cellular specificity and 

differentiation, and the interesting short term phenotype discovered in 

chapter 4, it is possible that haploinsufficiency of Ehmt1 causes an 

imbalance in progenitor sub types and an impairment in the process of 

neurogenesis, and specifically the switch between proliferation and 

differentiation. This chapter will investigate whether there are changes to the 

process of neurogenesis in vitro. 
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5.1.3. Aims 

 To validate in vivo findings of increased proliferation in vitro 

 To assess whether Ehmt1 deficiency affects the neural lineage 

pathway of hippocampal NPCs in vitro. 
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5.2. Methodology 
 

5.2.1. Generation of Primary Hippocampal cell cultures 

All cultures used in this chapter were generated from P7 pups 

hippocampal cells isolated in separation, and were maintained in serum-free 

conditions for 5 days (Figure 5.1). Tissue for genotyping was taken during 

isolation, and cells were maintained blind to genotype.  

 

Figure 5.1  Summary of in vitro experimentation. Mice were culled at P7, brains were removed from 

the skull and hippocampi carefully isolated. The tissue was then dissociated and cells were released 

and then plated on coverslips coated in poly-L-lysine and laminin. The cells were maintained in a 

serum free medium with growth factors until day 5 in vitro, at which point cells underwent the different 

experiments discussed below. 

5.2.1.1. Tissue culture coating 

Tissue culture plastic-ware was prepared prior to the isolation. 13mm 

glass autoclaved coverslips were placed into 24-well plates for individually 

isolated hippocampal samples. Each well was coated with 350μl of poly-L-

lysine (50μg/ml, PLL, Sigma) for 2 hours and incubated at 37˚C. The poly-L-

lysine was then removed and the wells washed in sterilised PBS and left to 

dry for approximately one hour, and 350μl of laminin (10μg/ml, Sigma) in 

PBS for cell adherence to the glass coverslips. Wells were incubated at 37˚C 

overnight. On the day of isolations, the laminin was removed and wells 

washed in PBS once and allowed to dry fully before cell plating. 
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5.2.1.2. Tissue isolation protocol 

7 day old pups from mixed genotype litters were culled by cervical 

dislocation and decapitated, heads were sprayed with 70% ethanol. Skulls 

were carefully folded back and their brains removed. The hippocampi of each 

pup was dissected out carefully, and placed into petri dishes containing cold 

PBS and were immediately proceeded to the next step. Tissue from each 

pup was also taken for post-mortem genotyping. 

5.2.1.3.  Tissue dissociation and cell release 

Individual samples were placed on the stage of a Mcilwain Tissue 

Chopper set to 400μm and were chopped in order to aid tissue dissociation 

and cell density.  Tissue was then immediately transferred into a papain 

enzymatic disassociation solution for digestion. The solution was made up of 

pre-filtered Papain (2μl/ml, Sigma) prepared in pre-warmed standard culture 

medium (Neurobasal A [NBA; Life Technologies], 2% b27 [Life 

Technologies], 1% Antibiotic [ABX, Life Technologies] and 0.25% 

Glutamax™ [Life Technologies]). Tissue sections were incubated at 37˚C in 

the papain solution for 30 minutes. 

After the 30 minutes, the tissue was removed from the papain and 

added to 500μl of prewarmed standard culture medium. The solution was 

then mechanically triturated to further dissociated cells before being placed 

on top of an Optiprep (Stemcell Technologies) density gradient in a 1.5ml 

Eppendorf tube. Optiprep was used to fractionate cells by flotation through a 

density barrier. The density gradient was made by a carefully layering (to 

avoid mixing) of 250μl of 10% Optiprep in NBA/BS27/Glutamax medium on 
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top of a 20% optiprep solution in order to form a clean interface. The gradient 

was then centrifuged for 15 minutes at 600rcf.  

After the centrifugation step, the cell fraction was suspended at the 

interface and was pipetted up and resuspended in 500μl of fresh standard 

culture medium in a 1.5 ml Eppendorf tube. The solution was then 

centrifuged at 250rcf for 5 minutes, pelleting the cell into the bottom of the 

tube. The supernatant was carefully aspirated and the pellet resuspended in 

fresh 500μl of standard culture medium ready for cell counting and plating. 

Density of cells per ml was calculated using a haemocytometer and 

cells were further diluted in standard culture medium appropriately to plate at 

a concentration of 1x105 cells per ml.  

5.2.1.4. Cell maintenance 

Cells were plated at 500μl per well in the previously prepared and 

coated 24 well plates at a total cell concentration of 5x104 cells. Cells were 

then incubated at 37˚C incubator kept at 5% CO2 and 9% O2. Two hours 

after plating, all standard medium was aspirated to remove dead cells that 

did not adhere to the plate. Wells were then replaced with standard culture 

medium of NBA/B27/Glutamax supplemented with growth factors: 20ng/ml 

Epidermal growth factor (EGF, Sigma), and 20ng/ml Fibroblast growth factor 

(FGF-2, Sigma) to promote survival and growth of cultures.  Partial medium 

change occurs on day 3 in vitro, where half the medium with growth factors 

were replenished. Cells were taken for experiments at 5 DIV.  
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5.2.2. Primary cell culture assays 

5.2.2.1. Proliferation 

In vitro proliferation levels were assayed at 5 DIV. 6 hours prior to 

fixation standard culture medium with growth factors was removed and 

replaced with 10 µM BrdU in standard medium labelling solution. The cells 

were then returned into the incubator. During the 6 hours cells were able to 

incorporate BrdU into their DNA during synthesis.  After 6 hours, medium 

was aspirated and wells washed once with PBS. Cells were then fixed with 

50ul of 4% paraformaldehyde (PFA, Sigma) and stained for BrdU (BD 

Biosciences, 1:250) and Ki67 (Abcam, 1:1000) as markers for proliferation 

(Table B. 1).  

5.2.2.2. Cell phenotype 

Cell type phenotypes of primary hippocampal cell cultures were 

assayed in 5 DIV cell cultures. At DIV 5, standard culture medium was 

removed and wells were washed once in PBS. Cells were then fixed and 

stained for neuronal lineage markers: GFAP (ThermoFisher, 1:1000), Nestin 

(Milipore, 1:500), and Doublecortin (Santa Cruz Biotech, 1:500) for an 

accurate snapshot of cell type ratios. All nuclei were stained with DAPI 

(Table B. 1). 

5.2.2.3. Caspase induced cell death and cellular stress response 

Cell type phenotypes of primary hippocampal cell cultures were 

assayed in 5 DIV cell cultures. For baseline cell death, standard culture 

medium was removed and wells were washed once in PBS. Cells were then 

fixed with 500ul 4% PFA for 30 minutes at 4C and stained for activated 
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caspase-3, alongside neuronal lineage markers GFAP and Nestin.  To assay 

the cells response to stress, 5DIV all media was aspirated, and replenished 

with growth-factor and B27 free NBA/Abx/Glutamax media for 8 hours. Cells 

were then fixed and stained as described for baseline cell death assay 

(Table B. 1). 

5.2.3. Immunocytochemistry 

After cells were fixed in 4% PFA for 30 minutes at 4C, they were 

washed times in PBS and then blocked for 30 minutes at room temperature 

with 5% Donkey serum and 0.1% triton-X in PBS. The solution was then 

aspirated and replaced with primary antibodies at 250ul/well in 0.1% PBS-

Triton-X overnight at 4C.  Cells were then washed three times in PBS before 

incubated in appropriate secondary antibodies [Alexa Fluor® 488 Donkey α-

mouse; Alexa Fluor® 555 Donkey α-rat; Alexa Fluor® 647 Donkey α-rabbit] 

in 250ul/well 01% PBS-T for two hours in the dark. The antibodies were then 

removed and cells washed once in PBS before counterstained in DAPI in 

dH2O for 5 minutes away from light. Coverslips were removed from the wells 

and mounted face down onto slides in Flouromount-G (Table B. 1). 

5.2.4. Imaging and Counting  

Coverslips mounted onto microscope slides were imaged on an 

upright Leica DM600b fluorescence microscope. 8 fields per coverslip were 

randomly sampled and imaged. The micrographs were then used for cells 

counts in ImageJ. Total DAPI cells were counted and proportion of cells 

expressing different stained markers relative to total cells were analysed.  
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5.2.5. Statistical Analysis 

All data were analysed using SPSS 23 (SPSS, USA). When analysing 

group differences in proliferation and phenotype assays, independent two 

tailed t-tests were performed. ANOVA was used when analysing caspase 

induced cell death and cellular stress response with a between subject actor 

of GENOTYPE, and a within subject factor of PROTOCOL to compare cells 

that underwent starvation protocol against cells from the same pup that were 

plated for baseline caspase cell counts. 
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5.3. Results 

In vitro Validation of in vivo increase in proliferation 

Ehmt1flp/+ and Ehmt1D6cre/+ primary hippocampal cultures were 

established, and the in vitro rate of proliferation as measured at DIV 5. BrdU 

was incorporated 6 hours prior to fixation.  Immunocytochemistry was 

preformed and cells were labelled for BrdU and Ki67 expression for the 

identification of proliferating cells (Figure 5.2).  

There was no difference in total number of cells counted between 

genotypes (t14=-0.588, p=0.566), with both Ehmt1flp/+ and Ehmt1D6cre/+ 

cultures have similar number of DAPI stained nuclei (Figure 5.3A).  

There was however a significant difference in the ratio of DAPI cells 

that were also BrdU+ or Ki67+ cells in the cultures.  A higher ratio of DAPI 

stained cells in Ehmt1D6cre/+ cultures also expressed both BrdU (Figure 5.3B) 

and Ki67 (Figure 5.3C) compared to Ehmt1flp/+ cultures (BrdU [t13=-3.905, 

p=0.002], Ki67 [t14=-6.794, p<0.001]). 

This increase in in vitro proliferation of Ehmt1D6cre/+ hippocampal cells 

replicates previously discussed changes in in vivo adult hippocampal 

proliferation in Ehmt1D6cre/+ mice (Chapter 4).  
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Figure 5.2 in vitro proliferation assay. At day 5 in vitro cell cultures were incubated with standard 

medium incorporated with BrdU for 6 hours, after which cells were fixed and stained for proliferative 

markers BrdU and Ki67. A) Ehmt1
D6cre/+

 cell cultures showed robust incorporation of BrdU and 

expression of Ki67. B) Ehmt1
flp/+

 hippocampal cells showed incorporation of BrdU and expression of 

Ki67 but to a lesser extent. 
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Figure 5.3 Ehmt1
D6cre/+

 primary hippocampal cell cultures are more proliferative compared to 

Ehmt1
flp/+

 cell cultures. A) After 6 hours of incubation with BrdU, cells were ficed and stained for 

BrdU and Ki67, and the ratios of these markers were compared to total number of cells stained. There 

was no difference between Ehmt1
D6cre/+

 and Ehmt1
flp/+

 cultures in total number of DAPI stained cells. 

B) Ehmt1
D6cre/+

 cells had a higher ratio of BrdU
+
 cells compared to Ehmt1

flp/+
 cells.  C) Ehmt1

D6cre/+
 cells 

had a higher ratio of cells expressing the proliferative marker Ki67 compared to Ehmt1
flp/+

 cells. 

 

Ehmt1D6cre/+ leads to a dual phenotypic shift in neurogenic 

lineage proportions 

To determine what these differences in proliferation mean in terms of 

cell type ratios, the phenotype of the cells were investigated. The cells were 

fixed at DIV 5 and co-stained for neural differentiation markers GFAP, 
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Nestin, and DCX. Cells co-expressing GFAP and Nestin are classified as 

radial-glia like type1 and intermediate type2a neural precursors, where 

Nestin positive cells, not expressing GFAP are classified as a subset of non-

GFAP expressing type 2a intermediate prescursors. Nestin and DCX 

colocalised cells are classified as the more neuronally restricted type 2b 

transient amplifying precursors, and DCX positive only cells describe cells 

that are either minimally proliferative type 3 cells, or very early postmitotic 

neurons. Therefore costaining of these 3 markers of differentiation allows for 

an extensive snapshot of the phenotype of the primary cell cultures (Figure 

5.4). 
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Figure 5.4  Example of Cellular phenotype counting. Cells were stained for GFAP, Nestin and Dcx 

allowing for an accurate snapshot of the developmental stages of the cell culture to be analysed. 

GFAP
+ 

 only cells are considered glial cells, whilst GFAP
+
/Nestin

+ 
, Nestin

+
, Nestin

+
/Dcx

+ 
, and Dcx

+
 

cells label the various progenitor subtypes in the process of neurogenesis. 

 

There was a no significant difference in ratio of DAPI+ cells that were 

also GFAP+, marking astrocytes between the two genotypes (t10=1.689, 

p=0.122). However when looking at the combination of markers for neural 

differentiation, there is a significant increase in the proportion of 

Nestin+/GFAP+ cells in Ehmt1D6cre/+ cultures compared to Ehmt1flp/+ cultures 
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(t10=-2.409, p=0.037), suggestive of an increase in early proliferative type 1 

and type 2a neural precursors (Figure 5.5).  This genotype difference 

disappears when analysing the proportion of type 2a Nestin+ cells (t10=0.516, 

p=0.617) and type 3 Nestin+/DCX+ cells (t10=0.885, p=0.397).  

  A genotype difference re-emerges when the proportion of early post-

mitotic neurons labelled with DCX. Ehmt1flp/+ cultures had significantly higher 

proportion of DAPI stained cells that also expressed DCX compared to 

Ehmt1D6cre/+ cultures (t10=3.2, p=0.009), suggesting a decrease in postmitotic 

neurons in the Ehmt1D6cre/+ cultures (Figure 5.5). 
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Figure 5.5 Ehmt1
D6cre/+

 cells show a phenotypic shift in cellular subtypes. A) A representative 

image from a Ehmt1
D6cre/+

 cell culture. B) A representative image from a Ehmt1
flp/+

 cell culture C) 

Ehmt1
D6cre/+

 hippocampal cell cultures have an increased number of GFAP+/Nestin+ type 1 cells. 

However despite having more early progenitor cells , Ehmt1
D6cre/+

 culture have significantly less Dcx 

expressing cells, suggesting reduced number of late progenitor and immature neurons compared to 

Ehmt1
flp/+

 cell cultures.   

 

Ehmt1D6cre/+ does not affect baseline cell survival or cells 

resiliency in vitro 

In order to identify possible cause for the decrease in post mitotic 

neurons despite the increase in both proliferation and presence of transient 
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amplifying precursors in Ehmt1D6cre/+ cultures, baseline cell survival was 

measured using activated capase-3 as a marker for cell death, and co-

stained with Nestin and GFAP to identify any possible cell type specific 

changes (Figure 5.6A). To determine whether Ehmt1 deficiency leads to a 

decrease of cellular resiliency, cultures were also stained for activated 

caspase-3 after 6 hour long serum-starvation stress protocol (Figure 5.6B).  

Virtually all cells stained for caspase-3 in both protocols co-expressed 

both Nestin and GFAP, marking type 1 and type 2a precursor cells.  No 

differences in proportion of activated capase-3 stained cells in baseline 

survival cultures, with both Ehmt1D6cre/+ and Ehmt1flp/+ cultures having a 

similar amount of cell death (Ehmt1D6cre/+ mean=0.116, Ehmt1flp/+ 

mean=0.125). There was a significant increase in proportion of cells stained 

for activated caspase-3 in cultures that underwent serum-starvation protocol 

compared to baseline (Ehmt1D6cre/+ mean=0.291, Ehmt1flp/+ mean=0.280) 

(F1,18=151.511, p<0.001).  Ehmt1D6cre/+ cells did not have a divergent effect to 

the starvation protocol, with no effect of GENOTYPE x PROTOCOL 

(F1,18=0.589, P=0.453).  There was no effect of GENOTYPE (F1,18=.014, 

p=0.909), with both Ehmt1D6cre/+ and Ehmt1flp/+ cell cultures having similar 

expression of activated caspase-3 (Figure 5.7).  
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Figure 5.6 Example of Caspase-3 staining with Nestin and GFAP. A) Baseline: cells were taken at 

DIV 5 and stained for activated caspase-3 and neural markers GFAP and Nestin. B) Stressed protocol: 

Cells were starved for 6 hours before fixed and stained as described. Images show increased staining 

for caspase-3 in stressed protocol compared to baseline, and thus this is a successful protocol for 

inducing cell death. 
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Figure 5.7 Ehmt1
D6cre/+

 cells have normal baseline and stressed-induced cell death. Ehmt1
D6cre/+

 

and Ehmt1
flp/+

 cells were measured for both their baseline capase-3 expression and the caspase-3 

expression after undergoing a starvation protocol. Ehmt1
D6cre/+

 cells showed normal baseline cell 

survival compared to Ehmt1
flp/+

 cells. After undergoing the starvation protocol, caspase-3 expression 

increased significantly for both groups, however there was no differential effect in cellular resilience in 

either genotype.  
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5.4. Discussion  

In vitro analysis of Ehmt1D6cre/+ hippocampal cells show a similar 

proliferation phenotype as seen in vivo, with a significant increase in 

proportion of cells labelled for both BrdU and Ki67 compared to Ehmt1flp/+ 

hippocampal cells. Coupling this with the in vivo results shows a definitive 

increase in proliferative capacity in adult and postnatal hippocampal cells.  

Ehmt1D6cre/+ cells also show an increase in the number of 

Nestin+/GFAP+ positive cells. This suggests an increase in specifically early 

proliferative type 1 and type 2a neural precursors. Conversely, Ehmt1D6cre/+ 

cells showed a decrease in number of cells staining for DCX, marking late 

progenitor type 3 cells and early post-mitotic neurons. This is suggestive of a 

lack of development through the neurogenic track, and the increase in 

proliferation therefore does not necessarily conclude an increase in neurons 

in vitro. 

To further analyse why there is a two pronged phenotype impairment 

in the Ehmt1D6cre/+ cell culture, I probed whether there is an increase in cell 

death occurring In Ehmt1D6cre/+ cells during the neurogenic track.  

Interestingly, there was no difference seen in the number of cells staining for 

activated caspase-3, a marker for apoptosis, between genotypes. This 

remained true when looking at cell types that stained for caspase-3, with 

virtually all caspase-3 cells in all cultures were also labelled as 

Nestin+/GFAP+ type 1 and type 2a cells. 

Cells were also plated as replicates, allowing for different wells isolated 

from the same animal to be used in a nutrient serum starvation protocol. This 
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allowed for the analysis of whether specific cell types in Ehmt1D6cre/+ cell 

cultures were more prone to an apoptotic response to cellular stress to 

account for the phenotypic cell type differences between genotypes. After 6 

hours in serum starvation protocol, there was a significant increase in 

activated capsase-3 labelled cells compared to cells that did not undergo 

starvation, however there was no difference between genotypes in terms of 

number of caspase-3 labelled cells or proportion of cells labelled 

Nestin/GFAP.  

The starvation protocol included the removal of growth factors and b27- a 

nutrient supplement necessary for normal and healthy survival of the cells. 

Cells are generally able to reduce their energy consumption to survive the 

starvation, however cells that are less resilient to this form of stress will show 

an increase in apoptotic activity (Caro-Maldonado & Muñoz-Pinedo, 2011). 

The process to isolate, dissociate and plate cells involves drastic mechanical 

stress under normal circumstances and leads to a large amount of cell death 

at plating, thus mechanical stress during isolation could account for 

difference in DIV5 cellular phenotypes. However as mimicking the 

mechanical stress after plating would not be possible, this starvation protocol 

was chosen as a proxy to stress the cells. In this case, there is no 

differences  in cell death in starvation stress, however it may not be possible 

to conclude that mechanical stress during isolation is not involved but it could 

be argued that the Ehmt1D6cre/+ cells do not appear less resilient to stressful 

environments compared to Ehmt1flp/+ cells in vitro.  
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Haploinsufficiency of Ehmt1 leads to an increase in proliferation, which 

can be explained by the increase in type 1 progenitors. Ehmt1D6cre/+ mice 

therefore have a larger neurogenic/progenitor pool and thus a higher 

proliferative capacity compared to Ehmt1flp/+ mice. This increase in 

proliferation however does not correlate with an increase in newborn neurons 

in culture. This lack of later stage progenitors and new born neurons are 

neither associated with increased cell death or reduced cellular resiliency in 

the Ehmt1D6cre/+ cell cultures. This provides more evidence towards Ehmt1’s 

role in the epigenetic switch between cellular proliferation and differentiation.  

Various studies have shown that cellular proliferation and differentiation 

involves specific, local and highly differential changes to epigenetic 

repression versus just a global reduction of repression (see: Wu & Sun 2006; 

Hsieh and Zhao 2016; Yao et al. 2016; Jobe & Zhao 2017) . This is also true 

for Ehmt1; Ehmt1/G9a have been previously associated with the necessary 

silencing of temporally regulated genes, including proliferative genes, for the 

development of  neurons (Mozzetta et al. 2014).  Their epigenetic mark 

H3K9me2 has been found to have a dynamic presence in neural 

development as well (Lienert et al. 2011). 

Ehmt1’s known involvement in neural development is often associated 

with REST and Polycomb (PRC2) repressive complexes which Ehmt1/G9a 

connect with during development (Ballas et al. 2005; Mozzetta et al. 2014). 

Both these repressive complexes are found to be important in neuronal 

development, and specifically in the temporal regulation of genes. REST acts 

as a scaffold for a number of regulatory enzymes that are recruited to gene 
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regulation; Ehmt1/G9a are recruited to REST and silence target genes 

(Roopra et al. 2004). REST has been found have a multistage effect in 

neurogenesis; REST expression is reduced dramatically during stem cell to 

progenitor transitioning while remaining bound to RE1 sites of target genes 

primed for expression (Ballas et al. 2005). Upon further differentiation REST 

unbinds said targets to allow of the expression of genes associated with 

differentiation (Ballas et al. 2005). This adds to the evidence that differential 

levels of REST and thus by association Ehmt1/G9a are necessary for timely 

coordinating regulation in neurogenesis. Altering expression of these 

proteins will thus have a differential effect on cells at different stages of 

neurogenesis as seen in this chapter.   

  



131 
 

5.5. Conclusions 

This chapter focussed on an in vitro analysis of Ehmt1’s role in 

proliferation and neuronal fate specificity in postnatal hippocampal cells. 

Ehmt1D6cre/+ cells show a highly specific neurogenesis phenotype. 

Ehmt1D6cre/+ cells have an increased proliferative rate compared to Ehmt1flp/+ 

cells. This is associated with an increase in type 1 neural progenitors in the 

cultures. When analysing the ratio of cell subtypes in the culture, whilst 

Ehmt1D6cre/+ cells show an increase in type 1 progenitors, this difference 

doesn’t remain across other neural subtypes. In fact Ehmt1D6cre/+ has a 

significant reduction in Dcx+. These cells are either late type 3 progenitor 

cells, or new born immature neurons in the culture. This apparent lack of 

progression of early progenitor cells to neurons in Ehmt1D6cre/+ cell cultures is 

not associated with any increase in apoptotic activity or decreased cellular 

resilience to external stress.   

This chapter sets out evidence of Ehmt1’s importance in the dynamic 

epigenetic regulation of neurogenesis and cell fate specificity using in vitro 

analysis. 
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 Retrospective analysis of RNA-Seq Chapter 6

data  

6.1. Introduction 

 Ehmt1’s role as an epigenetic regulator represents an important aspect in 

neurodevelopment and cognition (Shinkai & Tachibana 2011). So far this 

thesis investigated the role of Ehmt1 through a forebrain specific 

haploinsufficient mouse model. This allowed for the assessment and 

identification of phenotypes associated with Ehmt1 dysfunction as it relates 

to cognition, executive functioning and cellular specificity. However to better 

understand Ehmt1’s role in gene expression regulation, transcriptomic and 

epigenomic analyses are required. One such analysis is RNA-Seq, a high 

through-put method for measuring RNA transcript abundance in tissues and 

cells. This allows for an unbiased quantification of genes affected by Ehmt1 

dysfunction, and could help pin point biological relevant processes resulting 

in the endophenotypes observed in previous chapters.  

6.1.1. Previous Gene expression analyses of Ehmt1 

RNA analysis has been used to assess Ehmt1 reduction in a number of 

publications. One of the first analyses investigating RNA changes in Ehmt1 

reduction was in the Ehmt1camk2a-cre mouse model conducted using a 

microarray analysis (Schaefer et al. 2009). This was conducted as a 

microarray analysis. Comparison of WT and knockdown tissue (striatum, 

hippocampus, cortex, and hypothalamus) found both a collection of genes 

marking deficiency of Ehmt1 across all brain regions, as well as region 

specific gene expression changes, showing Ehmt1 has a region specific and 



133 
 

likely a cell type specific function. They also found an upregulation of non-

neuronal genes making up a robust portion of the deregulated genes, such 

as genes expressed in the development of skeletal systems.  

 Chen et al. (2014) also analysed the molecular consequences of 

haploinsufficiency of EHMT1 by a number of next generation sequencing 

techniques, including RNA-Seq. In human derived fetal brain cells (FBCs), 

they used shRNA to generate stable EHMT1 knockdown cell lines. Despite 

EHMT1 being regarded as a gene repressor, the study found 409 genes with 

increased expression patterns and 318 genes with decreased expression, 

suggestive of EHMT1’s much  wider impact. This is corroborated with 

enrichment seen in processes of development including cellular 

differentiation. 

 Recently, Iacano et al. (2018) also used RNA-Seq, combined with 

ChIP-seq and Bisulfite-Seq, to provide a developmental track of Ehmt1 

haploinsufficiency dependent gene expression changes from postnatal day 1 

to 30 in the Ehmt1+/- mouse model.  

6.1.2. Dataset background 

This chapter will be retrospectively analysing the RNA-Seq data 

available from Benevento et al. (2016) for enrichment in disorders. These 

authors used primary neuronal cell cultures from E18 rat to conduct analysis 

of shRNA mediated Ehmt1 knockdown. In combination, they also examined 

the effect of TTX (Tetrodotoxin) incubation. TTX, Tetrodotoxin, is a sodium 

channel blocker that inhibits action potential initiation in neurons triggering 

synaptic upscaling in networks through the trafficking of receptors to the 
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post-synaptic membrane in order to return excitatory postsynaptic potentials 

back to normal levels (Chowdhury & Hell 2018). Although the transcriptional 

machinery necessary for synaptic upscaling is generally unknown, here the 

authors demonstrated that Ehmt1 is necessary for synaptic upscaling 

through the H3K9me2 repression of BDNF expression (Benevento et al. 

2016).  

This dataset was chosen as the disruption of homeostatic plasticity is a 

common pathology across neurodevelopmental disorders including autism 

spectrum disorders, intellectual disabilities, schizophrenia, and Fragile X 

Syndrome (Mohn et al. 1999; Südhof 2008; Gao et al. 2010; Jakawich et al. 

2010; Soden & Chen 2010; Blackman et al. 2012; Sarti et al. 2013; 

Wondolowski & Dickman 2013; Della Sala & Pizzorusso 2014). The role of 

Ehmt1 in synaptic scaling could therefore explain the role of Ehmt1 in 

executive function and cognitive deficits.  This also allows for the linking of 

epigenetic regulation to more developed frameworks of pathology such as 

‘synaptopathies’ of neurodevelopmental disorders.  Retrospective mining of 

this publically available data, using both the non-TTX changes and TTX-

related changes, for enrichment in processes and pathways as well as 

associated disorders can therefore help unearth translatable, cross-species 

processes and genes in the pathways involved in the development of 

phenotypes associated with Ehmt1 haploinsufficiency.  
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6.1.3. Aims 

 To validate the quality and variation in the chosen dataset. 

 To analyse functional and phenotype enrichment of gene-sets. 

 To analyse enrichment for key neurodevelopmental disorders.  
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6.2. Methodology 

6.2.1. Dataset 

This chapter retrospectively analysed publically available data set 

published in Benevento et al. 2016. The RNA-Seq data was collected on E18 

primary cortical neuronal rat cultures. Briefly, the cell cultures were 

transfected with shRNAs to significantly reduce Ehmt1 expression by 50% at 

DIV 0 to create shRNA-treated cells. At DIV 11, both WT and shRNA-

transfected cultures were either incubated with TTX for 48 hours for TTX-

conditioning, or kept as baseline.  

 

Figure 6.1 Schematic of sample prep. Rat embryonic day 18 cortical neurons were cultured  in vivo; 
6 wells were treated with shRNA, knocking down Ehmt1 expression on DIV0, whilst 6 were maintained 
as WT cell cultures. At DIV11, 3 cultures from each WT and ShRNA-transfected cultures were 
incubated with TTX for 48 hours to induce synaptic upscaling. RNA-seq analysis was done on WT, KO, 
TTX-conditioned WT, and TTX-conditioned KO cell cultures. WT and KO transcriptomes were 
compared to find baseline differences in gene expression. TTX-conditioned WT and KO transcriptomes 
were compared to find conditioned gene expression changes.  
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Total RNA was treated with ribo-Zero rRNA removal kit. Depleted RNA 

was resuspended in RNase free water. The RNA-Seq library was prepared 

with KAPA Hyper prep kit. The libraries were sequenced on the illumina 

HiSeq, yielding at least 40 million single-end reads per sample. The RNA-

Seq libraries were mapped to the rat gnome and read count calculated 

before DEseq2 was used for differential expression analysis.  RNA-Seq data 

is available on GEO at: GSE68960.  

6.2.2. Data validation and Gene Set Selection 

Using the excel tables available on GEO, the normalized read counts 

were independently inputted into Deseq2 for all the samples to verify p-

values and calculating log fold changes. This chapter focused on two main 

pairwise comparisons:  

1) The data labelled as “Startpoint_wt_shrna_VS_wt” for the effect of 

shRNA silencing of Ehmt1 on neurons; this data is referred to as baseline 

changes here.   

2) The data labelled as “Endpoint_ttx_shrna_VS_ttx” for the effect of 

shRNA silencing of Ehmt1 on the TTX incubated samples, this data is 

labelled as TTX-conditioned changes. 

 Briefly, “Wt_ttx” and “shrna_ttx” data files were also validated to check 

for the strength TTX-conditioning in WT samples and transduced samples.  

These data underwent evaluation for sample and group variation based on 

treatment or condition.   
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For human disease enrichment, Differentially expressed genes found in 

“endpoint” TTX-conditioned samples were compared to “startpoint” baseline 

samples, and all genes uniquely effected by shRNA silencing of Ehmt1 after 

TTX-conditioning were taken as a separate third gene-set labelled “unique”. 

6.2.3. Functional Enrichment Analyses 

6.2.3.1. Gene Ontology Enrichment 

Gene ontology enrichment analyses on each gene-set were 

performed using the Database for Annotation, Visualization and Integrated 

Discovery (DAVID) (https://david.ncifcrf.gov/) against a background of all 

expressed genes in RNA-Seq datasets in Rattus norvegicus genome. 

Enrichment of GO terms was corrected for multiple testing by the Benjamini-

Hochberg method with adjusted p-values presented in the chapter.  

6.2.3.2. MGI Mamallian Phenotype Enrichment 

For phenotypic enrichment analysis of phenotypes of associated with 

mouse mutants, the standardized by Mouse Genome Informatics mammalian 

phentyope database is used. Specifically, the gene-sets were converted one-

to-one human protein coding homologs, and then the human genes were 

compared against the background gene-set for MGI phenotype using locally 

developed MGI list containing entrez ids of human protein coding genes that 

are annotated to mouse phenotypes. A contingency table was made and odd 

ratio calculated before fisher’s exact test was performed. The significant 

phenotypic terms corrected by Benjamini-Hochberg’s method for multiple 

testing.  

https://david.ncifcrf.gov/
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6.2.4. Gene Set Enrichment Analysis 

6.2.4.1. De novo mutations enrichment analysis 

Genes associated with de novo mutations for schizophrenia, autism, 

and intellectual disability were compiled from Fromer et al. 2014 for gene set 

enrichment analysis. In order to model enrichment of de novo mutations 

within the gene sets, dnenrich was used. It allows for one-sided pathway 

enrichment and recurrence analysis, using a binomial distribution to calculate 

p-value for observed hits per gene-set.  

6.2.4.2. De novo SNV analysis 

 SNV data 6.2.4.2.A

Enrichment of de novo SNV from autism and schizophrenia patients in 

the gene sets was tested using a modified Denovolyzer statistical framework 

as described in Samocha et al. 2014. Here a scaled Poisson distribution 

analysis was used.  Using gene mutation rates provided in Ware et al. 2015, 

as well as in frame insertion and deletion mutation rates calculated using 

DDD study methods.  

6.2.4.3. Schizophrenia CNV enrichment analysis 

 CNV studies 6.2.19.1.A

Schizophrenia patient CNVs used for the analysis were compiled the 

following data sets: the International Schizophrenia Consortium (3395 cases, 

3185 controls), the Molecular Genetics of Schizophrenia (2215 cases, 2556 

controls) study and CLOZUK (6307 cases, 10 675 controls) as used in Clifton 

et al. 2017. These CNV data sets were annotated with the genes spanning 
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CNVs. Analyses were performed on CNVs at least 100 kb in size and 

covered by at least 15 probes, to optimise CNV calling reliability.  

 

 Logistic Regression Analysis 6.2.19.1.B

Baseline, TTX-conditioned and Unique gene sets underwent enrichment 

analysis for schizophrenia case CNVs. Using the following covariates: CNV 

study, chip, CNV size (in kb) and total number of genes hit by the CNV, case 

status was regressed against overlapping genes for each gene set in a two-

tailed analysis. 
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6.3. Results 

6.3.1. Basic evaluation of RNA-Seq data quality 

Since the quality of RNA-Seq data can vary, the quality of the publically 

available RNA-Seq datasets were assessed. First, the Benevento et al. 

(2016) gene sets used here were validated using deseq-normalised gene 

expression counts available. Genes corresponding with a deseq p-value of 

<0.05 were taken for gene set analysis.  

Systematic evaluation of the RNA-Seq data using principal component 

analysis on four key gene expression analyses was conducted. When 

analysing gene expression pattern of individual samples from baseline WT 

and shRNA treated cultures, the use of short hairpin RNA to silence Ehmt1 

was enough to adequately separate samples based on gene expression 

variation (Figure 6.2A). 

 

Figure 6.2 PCA plots of baseline and TTX-conditioned samples. A) WT and shRNA treated 

unconditioned baseline samples plotted on principle components from normalised count gene 
expression data. B) WT and shRNA treated TTX-conditioned samples. Both plots show that samples 

adequately separate based on shRNA treatment. TTX-conditioning shows specific gene expression 
characteristics where both shRNA treatment and TTX-conditioning are a driving force of variation in 
samples. 
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 However when plotting principal components of unconditioned and 

TTX-conditioned WT or shRNA treated samples, the effect of TTX incubation 

on gene expression, presented as normalised counts, was not sufficient to 

cluster samples by condition (Figure 6.3) and thus the effect of TTX on gene 

expression within sample groups was not a large driving force of variation 

between treated and untreated cultures. 

 

Figure 6.3 PCA plots of baseline versus TTX-conditioned samples. A) WT unconditioned and 

TTX-conditioned samples plotted on principle components from normalised count gene expression 
data . B) shRNA treated unconditioned and TTX-conditioned samples. Both plots show that TTX-

conditioning shows variable, nonspecific gene expression characteristics where TTX-conditioning is 
not the driving force of variation in samples. 

 

 Despite this, the effect of TTX between WT and shRNA treated 

cultures showed suitable variation between groups, suggesting shRNA 

treatment and TTX-conditioning interact to effect the gene expression profile, 

distinct from WT  cultures (Figure 6.2)  
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In fact when looking at the top 500 most variable genes in WT and 

shRNA treated cultures that underwent TTX- conditioning with a heatmap 

and dendogram, WT and shRNA treated by  group sample, suggestive of 

highest degree of similarity within samples in the same conditions (Figure 

6.4).   

Figure 6.4 Hierarchical clustering and heatmap of TTX-conditioned samples. WT and shRNA treated cell cultures that 

underwent TTX incubation clustered by group when looking at the top 500 most variable genes. Thus the top genes 
responsible for the variation cluster together as both shRNA treatment and TTX-conditioning affect gene expression. Yellow 
samples are WT TTX treated samples,whilst blue samples indicate shRNA TTX treated samples. 
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6.3.2. Functional Enrichment Analysis 

The differentially expressed genes in unconditioned shRNA treated 

cells compared to WT cells were taken as one gene set referred to baseline 

changes. Differentially expressed genes in TTX-conditioned shRNA treated 

cells compared to TTX-conditioned WT cells were taken as the second gene 

set of interest, and referred to as conditioned changes. 

 Gene ontology enrichment analysis was performed on these two 

gene sets to gain insight into the functional properties of genes differentially 

regulated between both WT and shRNA treated cultures at both baseline and 

after TTX-conditioning. At baseline, all differentially expressed genes 

enriched 20 functional groups after FDR adjustment (Table 6.1), including 

focal adhesion (p= 2.01e-10), driven by downregulated genes (Table C. 1 

Gene Ontology Enrichment of differentially DOWNREGULATED genes of 

baseline WT versus shRNA treated cultures.Table C. 1), protein binding (p= 

2.32e-07) that is driven by differentially upregulated genes (Table C. 2), and 

substantia nigra development (p= 1.32e-05), that does not appear to be 

driven by up- or down- regulated genes.  
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Table 6.1 Gene Ontology Enrichment of differentially expressed genes of baseline WT versus 
shRNA treated cultures. 

 

In the TTX-conditioned gene set the differentially expressed genes 

enriched 39 functional groups after FDR adjustment, 16 of which were also 

found to be enriched in the baseline gene-set (Figure 6.5).  
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Figure 6.5 Overlap between enriched GO terms at baseline and after TTX-conditioning.  Of the 

20 enriched GO terms at baseline, 16 remained enriched at TTX-conditioned gene set. TTX-
conditioned gene-set also were uniquely overrepresented in 23 other GO terms. 

 

The 23 uniquely enriched in the TTX-conditioned WT vs shRNA 

differentially expressed gene-set included membrane (p=1.38e-11) and 

neuron projection (p= 6.03e-08) (Table 6.2). There was a number of 

processes and terms highly enriched in the differentially upregulated genes 

(Table C. 4) compared to the downregulated genes in the gene-set (Table C. 

3), and contain a number of terms not seen in other gene groups. 

Differentially upregulated genes in the TTX-conditioned gene-set are 

statistically overrepresented in processes including response to cocaine 

(p=1.74e-05) and amphetamine (p2.77e-06), both of which have a relatively 

high fold enrichments (6.6, and 8.2 respectively) (Table C. 4).  
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Table 6.2  Gene Ontology Enrichment of differentially expressed genes of TTX-conditioned WT 
versus shRNA treated cultures. 

 

6.3.3. MGI Mammalian Phenotype Enrichment 

In order to complement the gene ontology functional enrichment and to 

gain insight on phenotypes that could be translatable in Ehmt1D6cre/+ mouse 
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model, the gene-sets of interest were analysed for enrichment using the MGI 

mammalian phenotype database. 

When analysing all differentially expressed genes at baseline WT vs 

shRNA samples, we see enrichment in 4 mammalian phenotype terms 

(Table 6.3). This is driven primarily by the differentially upregulated genes, 

with an additional 6 mammalian phenotypes found to be enriched (Table C. 

5). No enrichment was found when analysing the differentially downregulated 

genes. The enriched phenotypes are broadly categorised into three areas; 

anxiety and affect behaviour, synaptic transmission, and learning behaviour 

and deficits. 

Table 6.3 MGI Mammalian phenotype enrichment of differentially expressed genes of baseline 
WT versus shRNA treated cultures. 

 

The number of enriched phenotypes in differentially expressed genes 

from TTX-conditioned WT vs shRNA treated cultures was considerably 

higher at 42, with all 4 enriched phenotypes at baseline present. Again most 

phenotypes can be categorised into abnormal synaptic transmission; 

including abnormal post- and pre-synaptic currents, susceptibility to seizures, 

and long term potentiation; abnormal cognition; including a number of 

learning related phenotypes; and basic behaviour; including anxiety, 

locomotor activity, and startle reflex (Table 6.4). These are again mainly 

driven by the differentially upregulated genes (Table C. 6). 



149 
 

Interestingly, the differentially down regulated genes did have an 

enrichment in the TTX-conditioned gene-set, with 4 phenotype terms not 

seen in other gene sets, including abnormal long bone morphology (p=3.59e-

05), and abnormal cell cycle (p=6.12e-07)(Table C. 7) 

Table 6.4 MGI Mammalian phenotype enrichment of differentially expressed genes of TTX-
conditioned WT versus shRNA treated cultures. 
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6.3.4. Human disease enrichment 

The gene-sets used were then converted to their one-to-one human 

homologs for enrichment analyses in human disorders. As we are interested 

in parsing the effect of uniquely impacted genes in Ehmt1 deficient cells after 

TTX incubation to assess the role of Ehmt1 knockdown in a synaptic and 

developmental event, a third gene set made of genes that are uniquely found 

deregulated in TTX-conditioned shRNA treated cell cultures , and not seen in 

baseline shRNA mediated changes. Baseline and TTX-conditioned gene-

sets were compared and genes only found in the TTX-conditioned gene-set 

were referred to as the unique gene-set.  

6.3.4.1. De novo rare mutations  

Firstly, we looked for enrichment in the gene sets for de novo 

mutations in autism spectrum disorder, intellectual disability, and 

schizophrenia. The Dnenrich framework calculated enrichment for de novo 

non-synonymous mutations in the gene sets, and also for specifically loss-of-

function mutations (nonsense, spice, and frameshift). 

None of the gene-sets (baseline, TTX-conditioned, or unique) were 

enriched for genes hit by intellectual disability or schizophrenia 

nonsynonymous or loss-of-function de novo mutations (Table 6.5). 

Overall differentially expressed genes at baseline were not enriched 

for autism de novo mutations (non-synonymous and/or loss-of-function). 

However, when analysed separately, the differentially upregulated genes 

were statistically overrepresented in genes hit by de novo nonsynonymous 
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mutations (p=0.016). This was not driven specifically by an enrichment in 

loss-of-function mutations specifically (p=0.261) (Table 6.5).  

 The differential expressed genes in TTX-conditioned gene-sets were 

enriched for genes with de novo nonsynonymous mutations in autism 

(p=0.016), and is primarily driven by the differentially upregulated genes 

(p=0.049) (Table 6.5) . All genes that were deregulated in TTX-conditioned 

gene set that were not also deregulated at baseline was isolated as a unique 

gene set; we see no significant enrichment of ASD de novo mutations 

(p=0.09) in this gene set, and no particular enhanced enrichment in either 

the up- or down-regulated genes (Table 6.5) (appendix table). 

Table 6.5 Summary results of de novo mutation enrichment analysis by gene-set and 
associated disorders. NS: nonsynonymous, LOF: loss of function (subset of NS) 

 

6.3.4.2. De Novo SNV enrichment analysis 

Next the gene sets were analysed specifically for enrichment in genes 

hit by de novo nonsynonymous single nucleotide variants associated with 

autism and schizophrenia. Here again, loss-of-function mutations were also 

specified as a subcategory of non-synonymous SNVs. Again, none of the 
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gene-sets (baseline, TTX or unique) were enriched for genes containing non-

synonymous and/or loss of function SNVs associated with schizophrenia. 

This was also true when the overall gene-sets were sub-divided into up- and 

down-regulated genes (Table 6.6). 

Genes containing SNVs associated with autism were not enriched in 

baseline differentially expressed genes, although this was marginally non-

significant SNVs (p=0.0571). When this gene-set was subdivided in up- or 

down-regulated genes, it was clear this was primarily driven by an 

enrichment for autism SNV gene hits in genes that are differentially up-

regulated  at baseline (p=0.0192).  

Differentially expressed genes in the TTX-conditioned gene set were 

enriched for autism-associated SNVs (p=0.006). This enrichment was not 

specifically driven by either upregulated (p=0.0246) or downregulated genes 

(p=0.0297), with both sets enriched for ASD nonsynonymous de novo SNVs, 

but not loss-of-function SNVs specifically (Table 6.6). The uniquely 

deregulated gene-set were also overrepresented for genes with de novo 

ASD-associated SNVs (p=0.0221), but there was no enrichment seen in 

either up (p=0.0656) or downregulated genes (p=0.103) (Table 6.6). 
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6.3.4.3. Schizophrenia CNV enrichment analysis 

We investigated whether our gene-sets of interest were enriched for 

genes hit by schizophrenia CNVs. There was no enrichment in baseline 

differentially expressed genes for schizophrenia patient CNVs (p=0.437) 

(Table 6.7). This was maintained when looking at both the up- and 

downregulated genes separately, as well as defining either deletion or 

duplication CNV gene hits (Figure 6.7).  

However after TTX incubation, cells that were treated with shRNA had 

differentially expressed genes that are statistically overrepresented in genes 

hit by schizophrenia CNVs (p<0.001) (Table 6.7). This enrichment was driven 

by both the differentially upregulated (p=0.012) and downregulated (p=0.023) 

genes (Figure 6.7A). Statistical overrepresentation varied when defined as 

amongst genes hit by deletion CNVs or duplication CNVs. Whilst 

downregulated genes appeared to be primarily enriched for genes hit by 

deletion patient CNVs (p<0.001) (Figure 6.7B), upregulated genes were 

primarily enriched for genes hit by duplication CNVs (p<0.001), and were 

significantly depleted of genes hit by deletion CNVs, as indicated by the 

negative coefficient (p=0.045) (Figure 6.7C).  

Genes that were uniquely deregulated in shRNA treated cells after 

TTX incubation were also enriched in patient CNVs (p<0.001). This effect 

was primarily driven by differentially upregulated genes (p<0.001), however 

enrichment was also seen in downregulated genes (p=0.037) (Table 6.7, 

Figure 6.8A). Again, downregulated genes were disproportionately 

overrepresented in deletion CNVs (p<0.001) (Figure 6.8B), whilst 
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upregulated genes were enriched for genes hit by patient duplication CNVs 

(p<0.001) (Figure 6.8C).  

Table 6.7 P-value results summary for enrichment of Schizophrenia CNVs for each gene-set. +/- 

symbols indicate correlation coefficients from regression analysis.  

 

 

 

Figure 6.6 Baseline shRNA-treatment genes have no enrichment in copy number variants 
(CNVs) associated with schizophrenia. The baseline gene-set was sub-categorised into up- and 
down-regulated genes. No enrichement is seen when analysing A) All CNVs. This remains true when 
analysing either B) deletion CNVs or C) duplication CNVs. Data is represented in −log10(P-value) , 

dotted lines represent a p=0.05 threshold for statistical significance. 
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Figure 6.7 TTX-conditioned shRNA-treatment genes are enriched for copy number variants 
(CNVs) associated with schizophrenia. The gene-set was sub-categorised into up- and down-
regulated genes. A) Enrichment is seen for All CNVs for both down and upregulated genes.  B) Whilst 

both upregulated and downregulated genes were separately enriched for deletion CNVs, 
downregulated genes were mainly overrepresented in this category deletion CNVs C) duplication 

CNVs enrichment is seen in upregulated genes which drives the baseline gene-set’s enrichment for 
duplication CNVs. Data is represented in −log10(P-value) , dotted lines represent a p=0.05 threshold 
for statistical significance. 

 

 

 

 

Figure 6.8 Uniquely TTX-conditioned differentially expressed genes are enriched for copy 
number variants (CNVs) associated with schizophrenia. The gene-set was sub-categorised into 
up- and down-regulated genes. A) Enrichment is seen for All CNVs for the geneset and both down and 
upregulated genes, but mainly driven by upregulated genes  B) Downregulated genes were statistically 
overrepresented in  deletion CNVs C) duplication CNVs enrichment is seen in upregulated genes 

which drives the baseline gene-set’s enrichment for duplication CNVs. Data is represented in 
−log10(P-value) , dotted lines represent a p=0.05 threshold for statistical significance. 
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6.4. Discussion  

The Benevento et al. (2016) publically available RNA-seq dataset was 

used to mine for potential biologically interesting enrichment in functional and 

phenotypic terms, as well as an association with human neurodevelopmental 

disorders: intellectual disability, autism, and schizophrenia. 

 This data-set was ideal in probing Ehmt1’s role development and disease 

by identifying the functional and phenotypic relevance of genes deregulated 

by the gene’s knockdown at baseline in neurons. Due to the known 

association of Ehmt1 in a number of disorders, notably intellectual disability, 

but also autism and schizophrenia, the primary hypothesis was that there 

would be enrichment for genes associated with these disorders, particularly 

autism and intellectual disability, in this gene set.  This dataset also allowed 

for the functionally relevant probing of the effect of Ehmt1 deficiency during 

synaptic upscaling, a process necessary in normal learning, memory, and 

neurodevelopment in vivo.  Benevento et al. (2016) proved knocking down 

Ehmt1 directly disrupts this vital synaptic event, therefore the genes 

deregulated in this process due to Ehmt1 knockdown were hypothesised to 

be involved in associated disorders, notably schizophrenia due to the high 

concordance of synaptic genes associated with the disorder, but also in ID 

and autism.  Together this allowed for the possible identification of 

downstream targets and mechanisms in the pathology of Ehmt1 deficiency.  

 Enrichment in functional GO terms was reserved at baseline, with only 20 

terms enriched when assessing the whole gene-set.   This number of GO 

terms enriched was significantly increased in TTX-conditioned genes, with 23 
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additional terms enriched in this gene-set. Interestingly, whilst at baseline, 

downregulated genes showed no enrichment for GO terms, TTX-conditioned 

down regulated genes were enriched for bone morphology terms. This is 

interesting due to the known increase in non-neuronal genes in neurons, 

including bone development and function. In fact Ehmt1+/- mice and children 

suffer from cranio-facial abnormalities due to abnormal bone growth 

(Balemans et al. 2014; Atik et al. 2015).  

 A similar pattern is seen when looking at enrichment for associated 

phenotypes in mutant mice. These terms can be summarised into impaired 

learning and cognitive functioning, affective/emotional behavioural deficits, 

and in the TTX-conditioned gene set, irregular bodyweight and locomotion. 

Interestingly, TTX-conditioning also saw an enrichment for cocaine and 

amphetamine response, and addiction, therefore disrupted synaptic 

upscaling pathways in Ehmt1 deficient cells  play a role in the drug 

responses of mutant mice (Benevento et al. 2015).  We also see enrichment 

for terms involved in the phenotypes seen in other chapters including 

impaired sensorimotor gating, increased startle reflex, and impaired memory. 

Baseline and TTX-conditioned Ehmt1 deficiency-dependent gene 

expression changes as well as a list of shRNA dependent genes uniquely 

effected by  TTX incubation were analysed for enrichment in genes hit by de 

novo mutations, SNVs, and CNVs in autism, schizophrenia and ID.  The 

findings are summarised in the table below (Table 6.8). 
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Table 6.8 Summary of Human disorder enrichment analysis. P-values that are significant are in 
bold, p-values that are close to significance are underlined. 

 

No enrichment was seen for intellectual disability de novo mutations. 

This is likely due to the smaller list of gene hits available, whilst autism and 

schizophrenia studies have been robust, the number of genes associated 

with de novo mutations in I.D. is smaller and often involve large regulatory 

genes such as Ehmt1 itself (van Bokhoven 2011), as opposed to genes 

regulated by Ehmt1.  

Autism de novo mutations and SNVs were enriched in upregulated 

genes at baseline. This was amplified after TTX-conditioning, with 

enrichment being seen for both autism SNVs and general de novo mutations 

when analysing the whole gene-set. The shRNA genes uniquely impacted by 

TTX maintained enrichment for autism de novo SNVs. This shows an 

interesting pattern whereby at baseline there is already an 

overrepresentation of deregulated genes associated with autism, and this 

number can be aggravated and enrichment increased with introducing the 
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process of synaptic upscaling; a process that is impaired in Ehmt1 deficient 

cells. As previously stated impairment in homeostatic plasticity has been 

associated with autism (Wondolowski & Dickman 2013), and it could be that 

Ehmt1 contributes to autism risk through this synaptic scaling impairment. 

This however would be partial as it would not account for the enrichment 

seen at baseline. 

Enrichment for schizophrenia associated genes was only seen in 

analysis of CNV and not in SNV or other de novo mutations. This enrichment 

was also restricted to TTX-conditioned gene set, and reinforced by the 

unique gene-set which lists the uniquely TTX-dependent effects on Ehmt1 

deficient cells. This is likely due to a number of reasons, one being CNV 

analyses in schizophrenia are far more comprehensive, and only recent 

strides have been made to characterise SNV and in-del mutations in 

schizophrenia (Rees et al. 2012). CNVs, due to their size, also tend to hit far 

more genes, and thus the list is more robust.  Enrichment in these genes 

being seen only after TTX treatment, and thus impaired synaptic upscaling 

once again suggests Ehmt1’s role in the pathogenesis of schizophrenia to be 

one involving the impairment of the pathways of homeostatic plasticity. This 

is associated with the phenotype terms enriched, such as associative 

learning. Schizophrenia is highly enriched for associative learning genes, 

particularly those involved in extinction of fear learning/memory (Clifton et al. 

2017). It has been found that homeostatic plasticity is necessary for 

extinction of memory (Mendez et al. 2018). This is of particular interest as 

Ehmt1+/- mouse model suffers from impaired fear extinction (Balemans et al. 

2013). These lines of evidence suggest Ehmt1 modulation of H3K9me2 is 
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necessary for homeostatic plasticity which in the hippocampus is needed for 

adequate fear memory extinction.  

In terms of human development, it is widely agreed that synaptic scaling 

is a very important process for executive functioning, and adolescence is a 

crucial time point in which a large synaptic scaling takes place, along with the 

emergence of executive functions (Selemon 2013). The effect of stress, 

alcohol, and other environmental factors have been shown to be have 

enhanced detriment during this time point likely due to the large synaptic 

plasticity events taking place (Acheson et al. 1998; Arnsten & Shansky 

2004). The continued haploinsufficiency of Ehmt1 disrupts this process and 

downstream causes impairment into key executive functioning such as 

impulse control, and goal setting behaviour (Belin et al. 2008; Selemon 

2013).   Therefore it is likely that whilst a large amount of Ehmt1 dysfunction 

can be attributed to the lack of expression embryonically, this sustained lack 

Ehmt1 causes continued postnatal problems through adolescence and into 

adulthood. It could also explain the emergence of early onset psychosis in 

Kleefstra patients (Vermeulen et al. 2017).  

Briefly, some genes of interest that drove some of the enrichment 

analyses can help cast understanding on the pathways and processes 

Ehmt1 haploinsufficiency effects. These genes are notably important for 

development and are involved in cell positioning and migration, axonal 

guidance, and synapse formation. They are also individually associated with 

neurodevelopmental disorders; mainly intellectual disability syndromes.  
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Some of these genes identified here include Netrin ( NTNG1); a gene 

expressed across the embryonic and perinatal CNS and is shown to be  

important for axonal guidance. It has been implicated in a number of 

disorders including Rett Syndrome and Schizophrenia (Fukasawa et al. 

2004; Archer et al. 2006; Nectoux et al. 2007; Eastwood & Harrison 2008). 

Another gene implicated in the in these enrichment analyses is Reelin. 

Reelin, widely studied in both development and disorder, is highly expressed 

across the developing brain and is secreted by Cajal-Retzius cells during the 

formation of the cortex layers. It is critical for normal cell positioning and 

neuronal migration during development. Because of this it has been 

identified as associated in a number of developmental disorders, most 

notably lissencephaly, but also epilepsy, ID, autism, and schizophrenia 

(D’Arcangelo 2014). TBR1, a gene involved in intellectual disability and 

microcephaly with pontine and cerebellar hypoplasia or MICPCH syndrome, 

was also identified as a gene of interest in this analysis. This gene is critical 

for normal vertebrate embryonic development and is used as a marker for 

neuronal differentiation, particularly in marking the developmental lineage of 

glutamatergic neurons (Englund et al. 2005; Hevner 2007; Hadjivassiliou et 

al. 2010). Expressed across the cerebral cortex, hippocampus & olfactory 

bulb TBR1 has an important role in neuronal migration and axonal projection 

as well as the modulation of NMDA receptors in the hippocampus(Bedogni et 

al. 2010; Kwan et al. 2012). Lastly, KIRREL3 a gene associated with 

autosomal dominant non-syndromic intellectual disability was also identified. 

This gene is in expressed in embryonic and adult brain. It is highly implicated 
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in the synaptogenesis through interactions with synaptic protein CASK 

(Gerke et al. 2006; Ying F. Liu et al. 2015; Martin et al. 2015). 
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6.5. Conclusions 

This chapter focussed on a retrospective enrichment analysis on Ehmt1 

deficiency related genes from a publically available RNA-Seq dataset.  No 

enrichment was seen in Ehmt1 deficiency related genes for intellectual 

disability de novo mutations. Ehmt1 deficiency related genes do however 

show a baseline enrichment for genes hit by de novo mutations and SNVs 

associated with autism. This is increased after TTX incubation; initiating 

synaptic upscaling events in Ehmt1 knockdown cells lead to an increase in 

statistical overrepresentation of autism genes. TTX-treated Ehmt1 deficiency 

related genes were uniquely enriched for genes hit by patient CNVs of 

schizophrenia. These findings correlate with enrichment in molecular and 

behavioural endophenotypes in mice with associated genes.  

This chapter sets out evidence of Ehmt1’s role in the pathogenesis of 

neurodevelopmental disorders using publically available data to find 

biologically interesting points for further study. 
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 General Discussion Chapter 7

7.1. Overview 

Epigenetics, such as post-translational histone modifications, 

coordinate dynamic changes to the chromatin leading to spatial and 

temporally specific gene regulation necessary for normal neurodevelopment. 

The role of epigenetics in neurodevelopment is wide-ranging, including 

neurogenesis, cellular specificity, synapse functioning, and network 

connectivity. Therefore it is anticipated that epigenetic modifiers may cast a 

deeper understanding in the pathogenesis of a number of 

neurodevelopmental disorders (NDDs).  

Various neurodevelopmental disorders share commonalities amongst 

each other, and are often co-diagnosed with one another. This indicates that 

there are common pathways and genes vulnerable to disruption associated 

with these disorders. EHMT1 is one such gene in which mutations and 

deletions of the gene has been associated with autism, schizophrenia, and 

intellectual disabilities such as Kleefstra syndrome. A number of studies have 

implemented models to gain an understanding of the role of Ehmt1 in 

development and disorder. This includes the ubiquitous heterozygous Ehmt1 

mouse model, and the homozygous postnatal forebrain knockout model 

driven by CamK2acre. Whilst these models have led to a greater 

understanding of Ehmt1 in the establishment of behavioural phenotypes, I 

utilised an embryonically deleted heterozygous forebrain specific knockout to 

better deconstruct the region specific role of Ehmt1, focussing on 
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hippocampal and cortical dependent cognitive behaviours associated with 

the neurodevelopmental disorders linked to Ehmt1 dysfunction.  

Table 6.9 Table recapitulating thesis aims and main findings 

Aims  Main Findings 

Assess the behavioural phenotype of 

the Ehmt1D6cre/+ mouse model 

 No anxiety phenotype 

 No deficits in locomotor activity and 

habituation 

 Age-related startle and sensorimotor gating 

deficit 

 Deficit in long term object recognition 

memory  

Evaluate in vivo adult neurogenesis in 

Ehmt1D6cre/+ hippocampus 

 Increased proliferation in 4 hour pulse-chase 

paradigm 

 No evidence of increased neurogenesis in 4 

week pulse-chase paradigm 

Assess the in vitro phenotype of 

hippocampal cells from the 

Ehmt1D6cre/+ mouse model 

 In vitro replication of proliferation 

phenotype 

 Stalling phenotype in the progression of cells 

across neurogenic track 

 Reduced type3/immature neurons not due 

to increased apoptosis or reduced cellular 

resiliency 

Mine publically available data for 

functional relevant biological points of 

interest for future research.  

 Benevento et al. (2016) chosen for 

retrospective analysis for disease 

enrichment 

 Ehmt1 deficient cells were enriched for 

genes linked to ASD 

 Ehmt1 deficient cells undergoing synaptic 

upscaling were enriched for genes linked to 

the pathogenesis of schizophrenia. 
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7.2. Ehmt1
D6cre/+ 

displays distinct behavioural 

phenotypes compared to other mouse models  

Ehmt1D6cre/+ mouse model displayed behavioural phenotypes similar 

to, but subtly distinct from the previous mouse models. A leading motive for 

the current model was to avoid confounds of the deletion of Ehmt1 in 

peripheral tissue. Lack of Ehmt1 in other mouse models led to a reduction in 

locomotor activity and was in some cases associated with weight 

gain/obesity in mice (Schaefer et al. 2009; Balemans et al. 2010). Here, 

Ehmt1D6cre/+ mice had no reduction in overall locomotor activity, opposing 

findings in the previous constitutive heterozygous and conditional hemi and 

homozygous mouse models. This suggests the restriction of Ehmt1 

heterozygous deletion to cells expressing Dach1 (D6) gene circumvents 

pathways involved in the pathogenesis of these phenotypes in other mouse 

models. The lack of an anxiety phenotype in Ehmt1D6cre/+ mice can also be 

attributed to the lack of impairment in locomotor activity due to the 

exploratory nature of anxiety tasks such as EPM; whilst other models show 

increased anxiety, this may be confounded by the reduction in locomotor 

activity.  

Ehmt1D6cre/+ and Ehmt1camK2acre/+/Ehmt1camK2acre/camK2acre mouse models 

share very similar patterns of deletion. Both are forebrain specific deletions, 

however CamK2a is also expressed in the striatum; therefore phenotypes 

associated with striatal dysfunction seen in that mouse model are not 

recapitulated here. This includes the lack of reduce palatability for a sweet 

food substance. In the food neophobia task, Ehmt1D6cre/+ showed a normal 

preference for the condensed milk solution and no increased anxiety in 
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approaching the novel foodstuff, whilst the Ehmt1camK2acre/+ had impaired 

palatability for a sucrose substance (Schaefer et al. 2009). These findings 

suggest Ehmt1 plays an important role in motivation and reward circuitry in 

the striatum. It also suggests that the decreased goal oriented behaviour 

seen in Kleefstra patients (Kleefstra et al., 2006) may not be PFC and 

hippocampal dependent, but more striatal dependent. This is supported by 

the implication of G9a in cocaine dependence in mice and its role in striatal 

pathways (Maze et al. 2010). 

These findings show distinct differences in the phenotype in 

Ehmt1D6cre/+ mice compared to other mouse models of Ehmt1 

haploinsufficiency, pointing towards the specific and variable role of Ehmt1 in 

different cell types and pathways of behaviour.  

7.3. Ehmt1
D6cre/+

 displays key translational 

psychiatric and NDD endophenotypes: a focus on the 

hippocampus 

Interestingly, this mouse model was found to exhibit behaviour related 

to translational endophenotypes of neurodevelopmental disorders, namely 

an impairment in startle reactivity and sensorimotor gating, as well as 

memory deficits.  An interesting aspect of the impairment of startle and 

prepulse inhibition seen in Ehmt1D6cre/+ mice was the apparent emergence 

and deterioration with age.  The emergence of startle reactivity deficits at an 

older age coincides with the known literature on the appearance of this 

phenotype in patients during the acute stage of psychosis, whilst 

impairments in PPI can already be seen during the prodormal phase 

(Quednow et al. 2008). This provides the first evidence of Ehmt1 
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haploinsufficiency in an animal model corroborating the growing literature on 

the regressive pathology of Kleefstra syndrome in human patients. 

These mice also show a deficit in novel object recognition memory. 

This deficit emerges at 24 hours after acquisition pointing towards 

impairment of long term memory, increasing the evidence of Ehmt1’s role in 

the process of consolidation and recall of memory. To further test whether 

these memory deficits are due to altered acquisition, retention, consolidation 

or retrieval, pharmacological interventions of Ehmt1 function during a 

memory task would be necessary. Pre-/and post-acquisition and time 

sensitive effects of Ehmt1 deletion can be used to tease apart effects of gene 

on novel object memory. H3K9me2 transiently mediates necessary changes 

in the chromatin during learning and memory processes. H3K9me2 is 

upregulated in CA1 region of the hippocampus 1 hour after associative and 

novel context learning phases, and is necessary for the repression of 

transcription in the process of consolidation (Gupta et al. 2010; Gupta-

Agarwal et al. 2012b). In fact inhibiting Ehmt1 in the CA1 region led to 

reduced ‘freezing’ 24 hours after fear conditioning learning, suggesting a loss 

in associative memory (Gupta-Agarwal et al. 2012b). Taken together, Ehmt1 

and its modification lead to subtle but important transient changes to the 

chromatin in a region specific manner during key stages of memory and 

learning. Therefore the deletion/reduction of Ehmt1 in a number of 

neurodevelopmental disorders would lead to the impairment of these key 

processes that lead to the cognitive and executive function impairments 

commonly seen across diagnostic boundaries.   
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An interesting commonality between these translational 

endophenotypes is the evidence of the role of the hippocampus in their 

manifestation.  Infusion and lesion studies investigating the role of various 

aspects of the hippocampus on behaviour found that disruption of the ventral 

hippocampus, and specifically GABAergic transmission, leads to decreased 

startle reactivity and disrupted prepulse inhibition (Bast et al. 2001; Daenen 

et al. 2003; Swerdlow et al. 2004).  Sensorimotor gating deficits in animal 

models of neurodevelopmental and psychiatric disorders are often found 

alongside cognitive deficits included impaired memory. This is most likely 

due to the processes involved in information filtration necessary for normal 

sensorimotor gating being intertwined with the processes involved in learning 

and memory. The hippocampus has long been examined in the context of 

normal and impaired memory (Ergorul & Eichenbaum 2004). Specifically it 

has been linked to a number of processes of memory including the transition 

between short and long term memory, and the extinction of associative fear 

memory in numerous lesion, pharmacological, and animal model studies 

(Alonso et al. 2002; Vianna et al. 2004; Hartley et al. 2007; Ji & Maren 2007; 

Ji & Maren 2008; Jeneson et al. 2011).  

Postnatal hippocampal neurogenesis has been linked to both memory 

and sensorimotor gating. There is a high association of neurogenesis and 

PPI deficits in animal models of psychiatric and neurodevelopmental 

disorders (Osumi et al. 2015). It would therefore not be overly speculative to 

assume a link between the two. Impairing neurogenesis has been also been 

found to cause object memory impairments. Interestingly, dorsal 

hippocampal neurogenesis is associated with learning and memory whilst 
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ventral hippocampal neurogenesis is associated with affective and mood 

behaviours (Jinno 2011); sensorimotor gating deficits are commonly seen in 

specific ventral hippocampal lesion and pharmacological studies (Swerdlow 

et al. 2004). Ehmt1 haploinsufficiency might be  causing differential gene 

expression changes across the dorso-ventral hippocampus corresponding to 

these phenotypes seen in the Ehmt1D6cre/+ mouse model. To test this 

hypothesis, analysis of the BrdU and NeuN labelling changes across the 

dorso-ventral axis is necessary.    

The constitutive Ehmt1 heterozygous mouse model has recently been 

shown to have increased proliferation in the adult hippocampus. This 

increase was associated with impaired memory, but enhanced pattern 

separation (Benevento et al. 2017). The memory deficits were comparable to 

the deficits seen in the Ehmt1D6cre/+ mouse model. Due to these findings, and 

corroborative literature, in vivo proliferation and neurogenesis was examined 

in my mouse model. Findings show a specific transient increase in BrdU+ 

cells i.e. increased proliferation, with no evidence of neurogenesis. This in 

part recapitulates what was seen in the Ehmt1+/- mouse model; however 

survival and neurogenesis was not measured in that model. This suggests 

that Ehmt1, and likely it’s modification H3K9me2, transiently influences the 

process of neurogenesis through regulating genes involved in the activation 

of quiescent cells to enter the cell cycle and divide to create new cells, as 

well as the genes that push these cells through the developmental track to 

neurons. These are probably dynamically opposing and transient, and 

dynamic expression of H3K9me2 is involved in the switch between the two 

processes.  
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To better understand the in vivo phenotype of proliferation, 

Ehmt1D6cre/+ hippocampal cells were cultured in vitro to assess the 

proliferation and neuronal fate specificity. The increase in proliferation was 

also seen in vitro. This is associated with an increase in type 1 neural 

progenitors in the cultures. This difference doesn’t remain across other 

neural subtypes. In fact Ehmt1D6cre/+ cultures have a significant reduction in 

cells that are either late type 3 progenitor cells, or new born immature 

neurons. This apparent lack of progression of early progenitor cells to 

neurons in Ehmt1D6cre/+ cell cultures was not associated with any increase in 

baseline apoptotic activity or decreased cellular resilience to external stress. 

Ehmt1 is most likely involved in the progression of the cells through the 

neurogenic track and knockdown of Ehmt1 would therefore lead to a 

halting/slowing of the progression across the neurogenic track. This could 

eventually lead to a depletion of the neurogenic niche which may be a 

contributor to the regressive pathology of Kleefstra syndrome patients.  

Findings presented in these chapters point towards specific 

behavioural phenotypes attributed to dysfunction in the formation and 

functioning of the hippocampus, in part related to the role Ehmt1 plays on the 

formation of new born adult neurons in the dentate gyrus of the 

hippocampus. 
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7.4. Ehmt1 knockdown effects genes and pathways 

vulnerable to neurodevelopmental disorders 

The final chapter focussed on a retrospective enrichment analysis of 

Ehmt1 deficiency related genes from a publically available RNA-Seq dataset 

linked to synaptic plasticity.  Ehmt1 deficiency related genes showed a 

baseline enrichment for genes hit by de novo mutations and SNVs 

associated with autism, with slight increases in enrichment after triggering 

synaptic upscaling events. The baseline enrichment is likely due to the 

involvement of important neurodevelopmental genes, and genes with high 

foetal brain expression, whilst the slight increase after TTX incubation 

capturing the addition of specific synaptic genes signal.  

TTX-treated Ehmt1 deficiency related genes were uniquely enriched 

for genes hit by patient CNVs of schizophrenia, pointing towards evidence 

that initiating synaptic upscaling events in Ehmt1 knockdown cells leads to 

an increase in statistical overrepresentation of genes associated with 

schizophrenia, hitting genes represented in learning and memory. An 

interesting aspect of this enrichment is the seemingly biologically relevant 

signals seen; downregulated genes after triggering synaptic upscaling were 

specifically enriched for deletion CNVs, whilst upregulated genes were 

specifically enriched for duplication CNVs. These are suggestive of a 

common dosage dependent effect of Ehmt1 knockdown related genes and 

genes associated with schizophrenia. This also falls in line with the 

emergence of psychosis in Kleefstra patients as well as the age-related 

onset of sensorimotor gating deficits seen in the Ehmt1D6cre/+ mouse model.  
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The synaptic upscaling event used here is a form of synaptic 

plasticity. This has been shown by Benevento et al. (2017) and others to be 

impaired in Ehmt1 knockdown neurons. This is a possible explanation for the 

role of Ehmt1/G9a in drug addiction, notably cocaine, due to the role of 

synaptic plasticity and Bdnf expression on reward, drug seeking, and 

vulnerability to relapsing (Schoenbaum et al. 2007). Ehmt1/G9a role in Bdnf 

regulation also effects protein synthesis dependent LTP (Sharma et al. 

2016), a hebbian form of plasticity.  

Taken together, all evidence point towards Ehmt1 as a synaptic 

plasticity regulator, and reduction of Ehmt1 leads to cognitive and 

behavioural deficits due to both early and postnatal changes to the formation 

and normal functioning of neurons in a region and cell type specific manner.  

7.5. Limitations 

Whilst this thesis was designed to minimise confounding factors, there 

are limitations to the study design. For instance the Ehmt1D6cre/+ mouse 

group used were compared to Ehmt1flp/+ mice acting as wild types, rather 

than pure WT mice. This was to minimise number of mice used, and to allow 

for efficient within cage littermate controls. Comparison to wild types would 

be preferable due to some evidence of other flp/flp mouse models carrying 

their own distinct phenotypes (Kwan 2002). However Ehmt1flp/+ mice were 

found to behave within the constraints of normal behaving mice e.g. time 

spent in open versus closed arms, and short and long term object 

recognition. Ehmt1flp/+ mice show no distinct outlier phenotypes suggesting 
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they provide an accurate representation of wild type for comparison with 

Ehmt1D6cre/+ mice.  

An interesting confound seen in the behavioural tasks was the 

increased locomotor activity in Ehmt1D6cre/+ mice compared to Ehmt1flp/+ 

mice. In most tasks this increased locomotion was found, although only 

surviving multiple corrections in the memory tasks.  Heightened locomotion 

induced by novelty ad maintained locomotion even after habituation suggests 

a possibility that the mice are still being affected by the arena unlike the WT 

mice, and thus confounding object exploration results. 

One major limitation of this study is the inability to properly quantify 

the level of haploinsufficiency in the mouse model. Although genotyping has 

shown deletion of one copy of the Ehmt1, I was unable to translate this 

deletion to reduction in protein or mRNA levels. qPCR analyses found that 

the haploinsufficiency levels were variable between each sample with no 

statistically significant reduction in the Ehmt1D6cre/+ cohort.  This is may be 

due to a feedback mechanism by Ehmt1/G9a with evidence pointing towards 

an ability to self-regulate. It could also be that because this flp is directed at 

exon 23, the shorter transcripts not affected by the deletion of the exon are 

affecting the ability to quantify the deletion.  This variability in Ehmt1 levels 

can also account for the greater spread of data in the Ehmt1D6cre/+ mice in the 

novel object recognition task at 30 minutes after acquisition. 

This thesis focussed on adult and postnatal neurogenesis, ideally 

characterisation of embryonic neurogenesis and brain development in this 

mouse model will discern whether the adult phenotype is a uniquely 
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postnatal feature of Ehmt1 haploinsufficiency, or if Ehmt1 knockdown also 

affects embryonic neurogenic processes. 

Here the in vitro work was assessed at 5 DIV, this allowed for a fair 

snapshot of the cell culture neurogenic lineage to avoid losing early neuronal 

lineage markers. However to proper understand whether it is a stalling of 

progression phenotype or a slowing, culturing the cells until DIV 14 or DIV 20 

would be necessary.  

In Chapter 6, data used was from a rat cell culture experiment. These 

gene sets were then changed to both mouse and human protein coding 

homologous gene sets. This allowed for the enrichment analyses linked to 

mouse model phenotypes and human disease phenotypes. However due to 

the lack of some homologous genes between the species, data was lost at 

each stage. Whilst these genes may be important and are affected by Ehmt1 

reduction in the rat, this method of analysis meant not all genes can be 

translated to the human. Along with this, whether Ehmt1 function and targets 

are conserved across evolution is not entirely known; therefore it is possible 

that some homologous genes are unreliable in understanding EHMT1’s role 

in human disorder.  

7.6. Future directions 

Further behavioural characterisation of Ehmt1 function is necessary to 

understand the forebrain specific role of Ehmt1 in the mouse. Whilst two 

experiments were repeated at an older age to determine old age effects of 

Ehmt1 haploinsufficiency, Ehmt1 function as an early developmental gene 

means the analysis of behavioural output of adolescent mice. Determining 
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whether locomotor activity and memory deficits remain in adolescents or 

whether these deficits are specific to the mature neural circuitry will increase 

the current understanding of Ehmt1.  More cognition driven behavioural tasks 

including pattern separation would help elucidate more specific pathways for 

Ehmt1 function, particularly in linking the proliferative phenotype with the 

learning and memory behaviour, especially as pattern separation is widely 

accepted to preferentially use newborn neurons in the dentate gyrus. A more 

robust spatial memory task such as the Morris water maze will allow me to 

properly burden hippocampal dependent pathways to test whether Ehmt1 

haploinsufficiency in my mouse model has a leads to spatial memory 

impairment. Aside from pure behavioural analyses, experiments to assess 

the causality of the molecular phenotype on the behavioural phenotypes are 

necessary. Cells specific and timed reduction of Ehmt1 in the hippocampus 

during behavioural assessment of memory would provide a better 

understanding of the correlation between these findings. Use of transgenic 

mice with techniques such as optogenetic simulation in tandem with 

spontaneous behavioural tasks can help specify behavioural findings to 

specific cell types and pathways. 

 

 To further probe the role of Ehmt1 in the forebrain, embryonic 

assessment of Ehmt1D6cre/+ mice is necessary. Whilst this thesis, and most 

other work on Ehmt1 knockdown models in literature, focussed only on the 

postnatal endophenotypes associated with disorders, embryonic focus on the 

development of the cortex and hippocampus would help to understand the 



178 
 

key developmental role of Ehmt1 as well as parsing embryonic and postnatal 

phenotypes and effects of haploinsufficiency. In combination with this, single 

cell resolution analyses for gene expression changes during development 

will help identify Ehmt1 regulated global expression patterns during 

development and maturation of neurons. Overlaid with chromatin data from 

NGS techniques such as ATAC-seq, ChIP-seq, or DNase-seq, these gene 

expression profiles will allow for the identification of cis regulatory elements 

transiently and dynamically regulated by Ehmt1. Together this data will lead 

to the temporal and spatial identification of genes as well as enhancers 

targeted by Ehmt1 during development. 

This will allow for the determination of specific regulated genes during 

development. As illustrated, Ehmt1’s role is complex, to advance knowledge 

further focus on smaller portions of its role in terms of affected 

genes/pathways in a cell type specific and temporally specific manner will 

help unravel the complexity. Focussing on specific pathways conferring 

specific vulnerability to Ehmt1 haploinsufficiency will also allow for 

identification of potential therapeutic targets for drug discovery in 

translational research in the future. 
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Appendix A 

 
Figure A. 1 Total number of RUNS, defined by consequetive breaks of both beams,  performed 
in the first and last session at young and old timepoints, all data presented as mean and SEM, 
Ehmt1

flp/+
: 20, Ehmt1

D6cre/+
: 17. 
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Appendix B 
 

Table B. 1 Table of Primary and Secondary Antibodies used in Chapters 4 and 5 
IHC/ICC 
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Appendix C 
 

Table C. 1 Gene Ontology Enrichment of differentially DOWNREGULATED genes of baseline 
WT versus shRNA treated cultures. 

 

Table C. 2 Gene Ontology Enrichment of differentially UPREGULATED genes of baseline WT 
versus shRNA treated cultures. 
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Table C. 3 Gene Ontology Enrichment of differentially DOWNREGULATED genes of TTX-
Conditioned  WT versus shRNA treated cultures. 
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Table C. 4 Gene Ontology Enrichment of differentially UPNREGULATED genes of TTX-
Conditioned  WT versus shRNA treated cultures 
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Table C. 5 MGI Mammalian phenotype enrichment of differentially UPREGULATED genes of 
baseline WT versus shRNA treated cultures. 
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Table C. 6 MGI Mammalian phenotype enrichment of differentially UPREGULATED genes of TTX-

Conditioned WT versus shRNA treated cultures. 
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Table C. 7 MGI Mammalian phenotype enrichment of differentially DOWNREGULATED genes of 
TTX-Conditioned WT versus shRNA treated cultures. 

 


